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We prove a reducibility result for a class of quasi-periodically forced linear wave

equations on the d-dimensional torus Td of the form

∂ttv −�v + εP(ωt)[v] = 0,

where the perturbation P(ωt) is a second order operator of the form P(ωt) = −a(ωt)�−
R(ωt), the frequency ω ∈ Rν is in some Borel set of large Lebesgue measure, the function

a : Tν → R (independent of the space variable) is sufficiently smooth and R(ωt) is

a time-dependent finite rank operator. This is the first reducibility result for linear

wave equations with unbounded perturbations on the higher dimensional torus Td. As

a corollary, we get that the linearized Kirchhoff equation at a smooth and sufficiently

small quasi-periodic function is reducible.

1 Introduction and Main Result

We consider a linear quasi-periodically forced wave equation of the form

∂ttv −�v + εP(ωt)[v] = 0, x ∈ Td (1.1)
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where T := R/(2πZ), ε > 0 is a small parameter, ω ∈ � ⊆ Rν , with � a closed bounded

domain and the operator P(ωt) is given by

P(ϕ)[v] := −a(ϕ)�v − R(ϕ)[v], ϕ ∈ Tν , v ∈ L2
0(T

d,R) (1.2)

with R(ϕ) being an operator of the form

R(ϕ)[v] :=
N∑
k=1

bk(ϕ,x)
∫

Td
ck(ϕ,y)v(y)dy + ck(ϕ,x)

∫
Td
bk(ϕ,y)v(y)dy, ϕ ∈ Tν ,

v ∈ L2
0(T

d,R). (1.3)

Here ν,d ≥ 1 are integer numbers, L2
0(T

d,R) denotes the space of the real-valued L2

functions with zero average and the functions a : Tν → R,bk, ck : Tν × Td → R, k =
1, . . . ,N are assumed to be sufficiently smooth, namely a ∈ Cq(Tν ,R),bk, ck ∈ Cq(Tν×Td,R)

for some q > 0 large enough. The operator R(ϕ) is symmetric with respect to the real

L2-inner product. Our aim is to prove a reducibility result for the equation (1.1) for ε

small enough and for ω in a suitable Borel set of parameters�ε ⊂ �with asymptotically

full Lebesgue measure. The partial differential equation (PDE) (1.1) may be written as

the first order system ⎧⎨⎩∂tv = ψ

∂tψ = (1 + εa(ωt))�v + εR(ωt)[v]
(1.4)

which is a real Hamiltonian system of the form⎧⎨⎩∂tv = ∇ψH(ωt,v,ψ)

∂tψ = −∇vH(ωt,v,ψ)
(1.5)

whose ϕ-dependent Hamiltonian is given by

H(ϕ,v,ψ) := 1

2

∫
Td

(
ψ2 + (1 + εa(ϕ))|∇v|2) dx − ε

1

2

∫
Td

R(ϕ)[v]v dx. (1.6)

In (1.5), ∇ψH and ∇vH denote the L2-gradients of the Hamiltonian H with respect to the

variables v and ψ . We assume that the functions bk(ϕ,x), ck(ϕ,x), k = 1, . . . ,N have zero

average with respect to x ∈ Td, namely∫
Td
bk(ϕ,x)dx = 0,

∫
Td
ck(ϕ,x)dx = 0 ∀ϕ ∈ Tν , k = 1, . . . ,N . (1.7)
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In order to precisely state the main result of this article, let us introduce some

more notations. For any s ≥ 0, we define the Sobolev spacesHs(Td) = Hs(Td,C),Hs(Td,R),

respectively, of complex- and real-valued functions

Hs(Td) :=
⎧⎨⎩u(x) =

∑
j∈Zd

uje
ijx : ‖u‖2

Hsx
:=
∑
j∈Zd

〈j〉2s|uj|2 < +∞
⎫⎬⎭,

Hs(Td,R) := {u ∈ Hs(Td) : u = u
}

(1.8)

where

〈j〉 := max{1, |j|}, |j| :=
√
j21 + . . .+ j2d, ∀j = ( j1, . . . , jd) ∈ Zd.

Moreover, we define

Hs
0(T

d) :=
{
u ∈ Hs(Td) :

∫
Td
u(x)dx = 0

}
, Hs

0(T
d,R) :=

{
u ∈ Hs(Td,R) :

∫
Td
u(x)dx = 0

}
(1.9)

and introduce the real subspace Hs
0(T

d) of Hs
0(T

d)× Hs
0(T

d)

Hs
0(T

d) := {u := (u,u) : u ∈ Hs
0(T

d)
}
, equippedwith thenorm ‖u‖Hsx := ‖u‖Hsx .

Given a linear operator R : L2
0(T

d) → L2
0(T

d) (where L2
0(T

d) := H0
0 (T

d)), we define its

Fourier coefficients with respect to the exponential basis {eij·x : j ∈ Zd \ {0}} of L2
0(T

d) as

Rj′
j := 1

(2π)d

∫
Td

R[eij′·x]e−ij·x dx, ∀j, j′ ∈ Zd \ {0}. (1.10)

We introduce the linear operator R, defined by R[u] = R[u], for any u ∈ L2
0(T

d).

We say that the operator R is block diagonal if Rj′
j = 0 for any j, j′ ∈ Zd \{0} with |j| �= |j′|.

Because of the hypothesis (1.7), the Hamiltonian vector field

L(ϕ) :=
(

0 1

�− εP(ϕ) 0

)
(1.2)=
(

0 1

(1 + εa(ϕ))�+ εR(ϕ) 0

)
, ϕ ∈ Tν (1.11)

leaves the space of functions with zero average invariant. More precisely for any 0 ≤
s ≤ q

L(ϕ) : Hs+2
0 (Td,R)× Hs+1

0 (Td,R) → Hs+1
0 (Td,R)× Hs

0(T
d,R), ∀ϕ ∈ Tν

and therefore we can choose H1
0 (T

d,R)× L2
0(T

d,R) as phase space for the Hamiltonian H

defined in (1.6). Now we are ready to state the main result of the present paper.
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Theorem 1.1. Let ν,d be integer numbers greater or equal than 1. There exists a strictly

positive integer q0 = q0(ν,d) > 1/2 such that for any q ≥ q0 there exists εq = ε(q, ν,d) > 0

and Sq := S(q, ν,d), with 1/2 < Sq < q such that if a ∈ Cq(Tν ,R),bk, ck ∈ Cq(Tν × Td,R),

with bk, ck satisfying the hypothesis (1.7) for any k = 1, . . . ,N , then for any ε ∈ (0, εq)

there exists a Borel set �ε ⊂ � of asymptotically full Lebesgue measure, that is

|�ε| → |�| as ε → 0, (1.12)

such that the following holds: for all ω ∈ �ε and ϕ ∈ Tν , there exists a bounded linear

invertible operator W∞(ϕ) = W∞(ϕ;ω) such that for any 1
2 ≤ s ≤ Sq

W∞(ϕ) : Hs
0(T

d) → H
s+ 1

2
0 (Td,R)× H

s− 1
2

0 (Td,R)

satisfying the following property: (v(t, ·),ψ(t, ·)) is a solution of (1.4) in H
s+ 1

2
0 (Td,R) ×

H
s− 1

2
0 (Td,R) if and only if

u(t, ·) = (u(t, ·),u(t, ·)) = W∞(ωt)−1[(v(t, ·),ψ(t, ·)))]

is a solution in Hs
0(T

d) of the PDE with constant coefficients

∂tu = D∞u, D∞ := i

(
−D(1)

∞ 0

0 D(1)

∞

)

where for any s ≥ 1, D(1)
∞ : Hs

0(T
d) → Hs−1

0 (Td) is a linear, time-independent, L2-self-

adjoint, block-diagonal operator. �

The following corollary holds:

Corollary 1.1. For any ω ∈ �ε and any initial data (v(0),ψ(0)) ∈ H
s+ 1

2
0 (Td,R)×H

s− 1
2

0 (Td,R)

with 1/2 ≤ s ≤ Sq, the solution t ∈ R �→ (v(t, ·),ψ(t, ·)) ∈ H
s+ 1

2
0 (Td,R)×H

s− 1
2

0 (Td,R) of the

Cauchy problem

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tv = ψ

∂tψ = (1 + εa(ωt))�v + εR(ωt)[v]
v(0, ·) = v(0)

ψ(0, ·) = ψ(0)

(1.13)
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is stable, namely

sup
t∈R

(
‖v(t, ·)‖

H
s+ 1

2
x

+ ‖ψ(t, ·)‖
H
s− 1

2
x

)
≤ Cq

(
‖v(0)‖

H
s+ 1

2
x

+ ‖ψ(0)‖
H
s− 1

2
x

)

for some constant Cq = C(q, ν,d) > 0. �

Remark 1.1. The constants εq, Sq in Theorem 1.1 and the constant Cq in Corollary 1.1

depend also on the ‖ · ‖q Sobolev norms of the functions a, bk, ck, k = 1, . . . ,N appearing

in the definition of the perturbation P given in (1.2) and (1.3). �

Theorem 1.1 implies a reducibility result for the linearized Kirchhoff equation

at a small and sufficiently smooth quasi-periodic function εv0(ωt,x). The Kirchhoff

equation

K(v) := ∂ttv −
(
1 +

∫
Td

|∇v|2 dx
)
�v = 0 (1.14)

describes nonlinear vibrations of a d-dimensional body (in particular, a string for d = 1

and a membrane for d = 2). The Cauchy problem for the Kirchhoff equation has been

extensively studied, starting from the pioneering paper of Bernstein [11]. Both local and

global existence results have been established for initial data in Sobolev and analytic

class, see [1, 2, 24, 25, 40, 42, 45] and the recent survey [43]. The existence of periodic

solutions for the Kirchhoff equation has been proved by Baldi [3]. This result is proved

via Nash–Moser method and thanks to the special structure of the nonlinearity (it is

diagonal in space), the linearized operator at any approximate solution can be inverted

by Neumann series. This approach does not imply the linear stability of the solutions,

since only the first orderMelnikov conditions are required along the proof. In one space-

dimension (d = 1), the existence of quasi-periodic solutions and the reducibility of

the linearized equation have been established in [44]. In dimension greater or equal

than 2, there are no results concerning the existence of quasi-periodic solutions. It is

well known that a good strategy for proving the existence and the linear stability of

quasi-periodic solutions is to prove the reducibility of the linearized equations at small

quasi-periodic approximate solutions obtained along a suitable iterative scheme. Hence

our result (Theorem 1.2 below) could be used to prove the existence of quasi-periodic

solutions for the nonlinear Kirchhoff equation.

Linearizing the operator K in (1.14) at a quasi-periodic function εv0(ωt,x) and writing

the linearized equation K ′(εv0)[v] = 0 as a first order system, one gets a system of
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differential equations of the form (1.4) where

a(ϕ) =
∫

Td
|∇v0(ϕ,x)|2 dx, R(ϕ)[v] = −2�v0(ϕ,x)

∫
Td
�v0(ϕ,y)v(y)dy, ϕ ∈ Tν ,

v ∈ L2
0(T

d,R).

The operator R(ϕ) defined above has the same form as the one defined in (1.3), by taking

N = 1, b1 = −�v0, c1 = �v0. We point out that �v0 has zero average in x ∈ Td, hence the

hypothesis (1.7) is satisfied. An immediate consequence of Theorem 1.1 and Corollary

1.1 is then the following

Theorem 1.2. Let q0,q, εq,Sq as in Theorem 1.1 and v0 ∈ Cq+2(Tν × Td,R). Then the

conclusions of Theorem 1.1 and Corollary 1.1 hold for the linearized Kirchhoff equation

K ′(εv0)[v] = 0 at the quasi-periodic function εv0(ωt,x). �

Now we outline some related works concerning the reducibility of quasi-periodically

forced linear partial differential equations. Let us consider a linear differential equation

of the form

∂tu = Du+ εP(ωt)u, (1.15)

where D is a diagonal operator with discrete spectrum and P(ωt) is a linear quasi-

periodically forced vector field with nonconstant coefficients. We say that such an

equation is reducible if there exists a quasi-periodically forced change of variable

u = �(ωt)[v] such that in the new coordinate v, the equation (1.15) is reduced to con-

stant coefficients. Typically, it is necessary to assume that ε (size of the perturbation)

is small enough and that the frequency ω, together with the eigenvalues of the operator

D, satisfy the so-called second order Melnikov non-resonance conditions. These non-

resonance conditions involve the differences of the eigenvalues of the operator D. We

point out that the reducibility of linear equations is the main ingredient for proving

the existence of quasi-periodic solutions (KAM tori) for nonlinear PDEs. Indeed the first

reducibility results for linear PDEs have been obtained as a corollary of Kolmogorov-

Arnold-Moser (KAM) theorems. We mention the pioneering articles of Kuksin [37], and

Wayne [47] concerning the existence of invariant tori for Schrödinger and wave equa-

tions in one space dimension with Dirichlet boundary conditions and with bounded

perturbations. The first KAM results for PDEs with unbounded perturbations have been

obtained by Kuksin [38], Kappeler and Pöschel [36] for analytic perturbations of the

KdV equation. Here the unperturbed vector field is ∂xxx and the perturbation contains
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one space derivative ∂x . Concerning unbounded perturbations of the quantumHarmonic

oscillator on the real line, the first result is due to Bambusi and Graffi [10]. In all these

aforementioned results, the perturbation contains derivatives of order δ < n− 1, where

n is the order of the highest derivative appearing in the linear constant coefficients term.

In the case of critical unbounded perturbations, that is δ = n − 1, we mention [41, 48]

concerning the derivative Non linear Schrödinger equation (NLS) with Dirichlet bound-

ary conditions, in which the authors generalized appropriately the so-called Kuksin

Lemma, developed in [38]. We also mention the KAM results for the derivative Klein–

Gordon equation [12, 13] in which the generalization of the Kuksin Lemma developed in

[41, 48] does not apply because of the weaker dispersion relation.

It is well known that the ideas used to deal with the case δ ≤ n − 1 do not apply in the

quasi-linear and fully nonlinear case, that is δ = n. The first KAM results in this case

have been obtained in [5–7, 32] for quasi-linear perturbations of the Airy, KdV andm-KdV

equations, in [30, 31] for quasi-linear Hamiltonian and reversible NLS equations, in [44]

for the Kirchhoff equation and in [18, 19] for the water waves equations. The key idea in

these series of articles is to split the reduction to constant coefficients of the linearized

equation into two parts: the first part is to reduce the equation to another one which is

constant coefficients plus a bounded remainder and this is inspired by the breakthrough

result of Iooss et al. [35]. In a second step, one applies a convergent KAM reducibility

scheme which reduces quadratically the size of the perturbation and completes the

diagonalization of the equation. This method has been extended also by Bambusi in

[8, 9] to deal with unbounded quasi-periodic perturbations of the Schrödinger operator

on the real line.

Another difficulty for the reduction procedures and the KAM schemes concerns the mul-

tiplicity of the eigenvalues of the unperturbed part of the equation. The first result in

this direction is due to Chierchia and You [23] in which the authors prove a KAM result

for analytic bounded perturbations of nonlinear wave equations with periodic bound-

ary conditions (double eigenvalues). Wemention also the more recent articles [17, 30, 44]

concerning Schrödinger and Kirchhoff equations with periodic boundary conditions.

There are very few results for PDEs in higher space dimension since the second order

Melnikov non-resonance conditions are violated, typically due to the high multiplicity

of the eigenvalues. The first KAM and reducibility results in higher space dimension

have been obtained by Eliasson and Kuksin [28, 29] for the linear Schrödinger equation

on Td with a multiplicative analytic potential and for the nonlinear Schrödinger equa-

tion with a convolution potential. The second order Melnikov non-resonance conditions

are verified blockwise, by introducing the notion of Töplitz-Lipschitz Hamiltonians.
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AKAMresult for the completely resonantNonlinear Schrödinger equation onTd has been

proved by Procesi and Procesi [46], by using Quasi-Töplitz Hamiltonians. We also men-

tion the KAM theorem for the beam equation obtained by Eliasson et al. [26]. Recently,

Grebert and Paturel [33] proved a reducibility result for the quantum harmonic oscil-

lator on Rd with an analytic multiplicative potential and in [34] they proved a KAM

result for the nonlinear Klein Gordon equation on the d-dimensional sphere. In [14–16],

the authors proved the existence of quasi-periodic solutions for Nonlinear wave and

Schrödinger equations on Td and on Lie groups, by using themultiscale method, intro-

duced by Bourgain [20–22] in the analytic setup. This approach does not imply the linear

stability of the quasi-periodic solutions since it requires to impose only the first order

Melnikov conditions.

The reducibility for the quasi-periodically forced Klein–Gordon equation with a small

multiplicative potential ∂ttu−�u+mu+ εV(ωt,x)u = 0 on Td is still open. Eliasson et

al. [27] proved that this equation is almost reducible in the sense that it can be reduced

to constant coefficients up to a small remainder. The aim of the present article is to

provide a class of linear wave equations with unbounded perturbations on Td which are

reducible. We point out that the main difference between Schrödinger and wave (Klein–

Gordon) equations is the following: for the Schrödinger equation, the eigenvalues of the

linear part of the equation grow like ∼ |j|2, j ∈ Zd, whereas the wave equation, written

as a first order system in complex coordinates, has eigenvalues growing as ∼ |j|, j ∈ Zd.

It turns out that the second order Melnikov non-resonance conditions

|ω · + μj − μj′ | ≥ γ

〈〉τ , ∀(, j, j′) ∈ Zν × Zd × Zd, (, |j|, |j′|) �= (0, |j|, |j|) (1.16)

in the case of the wave (Klein–Gordon) equation, that is, μj ∼ |j|, j ∈ Zd are violated.

In the following, we shall explain the main ideas of the proof of Theorem 1.1. The proof

consists in reducing the quasi-periodically forced linear vector field L(ωt) defined in

(1.11) to a time-independent block-diagonal operator. This reduction procedure is split

into two parts.

Regularization of the vector field L(ωt). Our first goal is to conjugate the vector field

L(ωt) to another one which is diagonal up to a sufficiently regularizing perturbation.

This is achieved by using a change of variables induced by a reparameterization of time

(so that the highest order term has constant coefficients) and time dependent Fourier

multipliers (introduced in Section 2.4), see Section 3. We point out that this procedure

involve only a reduction in time, since our unbounded perturbation P(ωt) is assumed to
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be diagonal in space up to the finite rank operator R(ωt), which is already regularizing,

see (1.2) and (1.3).

KAM reducibility scheme. After the preliminary reduction of the order of derivatives,

we deal with a time dependent vector field which is a small and regularizing perturba-

tion of a diagonal time-independent vector field. We then perform a KAM reducibility

scheme, see Theorem 4.1. The key feature of the scheme is that since the perturbation

is regularizing, along the KAM iteration, we can impose non-resonance conditions with

a loss of derivatives in space, namely

|ω ·+μj −μj′ | ≥ γ

|j|d|j′|d〈〉τ , ∀(, j, j′) ∈ Zν × (Zd \ {0})× (Zd \ {0}), (, |j|, |j′|) �= (0, |j|, |j|)
(1.17)

for some constant exponents d and τ large enough and γ ∈ (0, 1). Neverthless, all the

canonical transformations defined along the iteration will be bounded linear operators

(on Sobolev spaces), since the regularizing property of the remainder balances the loss

of space derivatives in the Melnikov conditions (1.17). This strategy has been used also

in [4], to prove a KAM result for gravity water waves in finite depth without capillarity

and we implement it within this context.

The conditions (1.17) are much weaker that the ones given in (1.16) and we are able to

prove that they are fulfilled for a large set of parameters ω. We use the block-decay norm

|·|s (see (2.76)) to estimate the size of the remainders along the iteration. This is convenient

since the class of operators having finite block-decay norm is closed under composition

(Lemma 2.7), solution of the homological equation (Lemma 4.1) and projections (Lemma

2.9). This norm is well adapted to finite rank operators of the form (1.3) and it gives

a strong decay of the blocks arising in the spectral decomposition with respect to the

eigenspaces of the operator
√−�, see Sections 2.2, 2.3.

The article is organized as follows. In Section 2, we introduce some notations and

abstract technical tools needed along the proof of Theorem 1.1. The proof of the Theorem

is developed in Sections 3–5. In Section 3, we perform the regularization procedure for

the linear Hamiltonian vector field L and we conjugate it to the vector field L4, defined

in (3.70). In Section 4, we prove the block-diagonal reducibility of the vector field L4,

showing that it is conjugated to the block diagonal operator D∞ defined in (4.83). In

Section 5, we provide the measure estimate of the set of good parameters �2γ
∞ defined

in (4.77). Finally, in Section 6, we conclude the proof of Theorem 1.1 and we prove the

Corollary 1.1.
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2 Function Spaces, Linear Operators, and Norms

For a function u ∈ L2
0(T

d) ≡ L2
0(T

d,C) we consider its Fourier series

u(x) =
∑

j∈Zd\{0}
uje

ij·x , uj := 1

(2π)d

∫
Td
u(x)e−ij·x dx, ∀j ∈ Zd \ {0}. (2.1)

We denote by σ0(
√−�) the spectrum of the operator

√−� restricted to the zero-average

functions, that is

σ0(
√−�) :=

{
|j| =

√
j21 + . . .+ j2d : j = (j1, . . . , jd) ∈ Zd \ {0}

}
(2.2)

and for any eigenvalue α ∈ σ0(
√−�), we denote by Eα the corresponding eigenspace,

that is

Eα := span{eij·x : j ∈ Zd, |j| = α }. (2.3)

Then, any function u ∈ L2
0(T

d) can be written as

u(x) =
∑

α∈σ0(
√−�)

uα(x), uα(x) =
∑
|j|=α

uje
ij·x ∈ Eα (2.4)

and if u ∈ Hs
0(T

d) for some s ≥ 0, one has

‖u‖2
Hsx

=
∑

j∈Z
d\{0}

|j|2s|uj|2 =
∑

α∈σ0(
√−�)

α2s
∑
|j|=α

|uj|2 =
∑

α∈σ0(
√−�)

α2s‖uα‖2
L2x
. (2.5)

We also deal with functions u ∈ L2
0(T

ν × Td) = L2(Tν ,L2
0(T

d)) which can be

regarded as ϕ-dependent family of functions u(ϕ, ·) ∈ L2
0(T

d) that we expand in Fourier

series as

u(ϕ,x) =
∑

j∈Zd\{0}
uj(ϕ)e

ij·x =
∑
∈Z

ν

j∈Z
d\{0}

ûj()e
i(·ϕ+j·x), (2.6)

where

uj(ϕ) := 1

(2π)d

∫
Td
u(ϕ,x)e−ij·x dx, ûj() := 1

(2π)ν+d

∫
Tν+d

u(ϕ,x)e−i(·ϕ+j·x) dϕ dx.

According to (2.4), we can write

u(ϕ,x) =
∑

α∈σ0(
√−�)

uα(ϕ,x) =
∑
∈Z

ν

α∈σ0(
√−�)

ûα()e
i·ϕ (2.7)
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where

uα(ϕ,x) :=
∑
|j|=α

uj(ϕ)e
ij·x , ûα() ≡ ûα(,x) := 1

(2π)ν

∫
Tν

uα(ϕ,x)e
−i·ϕ dϕ =

∑
|j|=α

ûj()e
ij·x .

(2.8)

We define for any s ≥ 0 the Sobolev spaces Hs
0(T

ν+d) = Hs
0(T

ν+d,C) as

Hs
0(T

ν+d) :=

⎧⎪⎪⎨⎪⎪⎩u ∈ L2
0(T

ν × Td) : ‖u‖2
s :=

∑
∈Z

ν

j∈Z
d\{0}

〈, j〉2s|ûj()|2 < +∞

⎫⎪⎪⎬⎪⎪⎭ , (2.9)

where 〈, j〉 := max{1, ||, |j|}, and for any  = (1, . . . , ν) ∈ Zν , || := √
21 + . . .+ 2ν . One

has

‖u‖2
s =

∑
∈Z

ν

j∈Z
d\{0}

〈, j〉2s|ûj()|2 =
∑
∈Z

ν

α∈σ0(
√−�)

〈,α〉2s
∑
|j|=α

|ûj()|2 =
∑
∈Z

ν

α∈σ0(
√−�)

〈,α〉2s‖̂uα()‖2
L2 (2.10)

where 〈,α〉 := max{1, ||,α}, for any  ∈ Zν ,α ∈ σ0(
√−�).

In a similar way, we define the spaces of real valued functions L2
0(T

d,R), L2
0(T

ν+d,R),

Hs
0(T

d,R), Hs
0(T

ν+d,R) and we also deal with Sobolev functions x-independent, belonging

to the Sobolev space Hs(Tν) (or Hs(Tν ,R)). For u ∈ Hs(Tν) we denote by ‖u‖s its Sobolev

norm, given by

‖u‖s :=
∑
∈Zν

〈〉2s|û()|2, û() := 1

(2π)ν

∫
Tν

u(ϕ)e−i·ϕ dϕ.

Given a Banach space (E, ‖ · ‖E), we denote by L∞(Tν ,E) the space of the essentially

bounded functions Tν → E equipped with the norm

‖u‖L∞(Tν ,E) := esssupϕ∈Tν‖u(ϕ)‖E .

For any p ∈ N we denote by Wp,∞(Tν ,E) the space of the p-times weakly differentiable

functions Tν → E equipped with the norm

‖u‖Wp,∞(Tν ,E) := max|a|≤p‖∂aϕu‖L∞(Tν ,E).

In the above formula, for any multi-index a = (a1, . . . ,aν) ∈ Nν , we use the notations

|a| := a1+ . . .+aν and ∂aϕ = ∂a1ϕ1 . . . ∂
aν
ϕν
. We also denote by C0(Tν ,E) the space of continuous

functions Tν → E equipped with the norm

‖u‖C0(Tν ,E) := supϕ∈Tν‖u(ϕ)‖E
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and we denote by Cp(Tν ,E) the space of the p-times differentiable functions with

continuous derivatives equipped with the norm

‖u‖Cp(Tν ,E) := max|a|≤p‖∂aϕu‖C0(Tν ,E).

We recall the standard property

Wp+1,∞(Tν ,E) ⊂ Cp(Tν ,E). (2.11)

For a function f : �o → E, ω �→ f (ω), where (E, ‖·‖E) is a Banach space and�o is a subset

of Rν , we define the sup-norm and the lipschitz semi-norm as

‖f ‖sup
E,�o := sup

ω∈�o
‖f (ω)‖E , ‖f ‖lip

E,�o := sup
ω1,ω2∈�o
ω1 �=ω2

‖f (ω1)− f (ω2)‖E
|ω1 − ω2| (2.12)

and, for γ > 0, we define the weighted Lipschitz-norm

‖f ‖Lip(γ )
E,�o := ‖f ‖sup

E,�o + γ ‖f ‖lip
E,�o . (2.13)

To shorten the above notations we simply omit to write �o, namely ‖f ‖sup
E = ‖f ‖sup

E,�o ,

‖f ‖lip
E = ‖f ‖lip

E,�o , ‖f ‖Lip(γ )
E = ‖f ‖Lip(γ )

E,�o . If f : �o → C, we simply denote ‖f ‖Lip(γ )
C

by |f |Lip(γ )
and if E = Hs(Tν+d)we simply denote ‖f ‖Lip(γ )

Hs := ‖f ‖Lip(γ )
s . Given two Banach spaces E,F ,

we denote by B(E,F) the space of the bounded linear operators E → F . If E = F , we

simply write B(E).

Notation. From now on we fix

s0 :=
[
ν + d

2

]
+ 1 (2.14)

where for any real number x ∈ R, we denote by [x] its integer part. We write

a �s b ⇐⇒ a ≤ C(s)b

for some constant C(s) depending on the data of the problem, namely the Sobolev norms

‖a‖s, ‖bk‖s, ‖ck‖s of the functions a,bk, ck appearing in (1.2), the number ν of frequencies,

the dimension d of the space variable x, the diophantine exponent τ > 0 in the non-

resonance conditions, which will be required along the proof. For s = s0 we only write

a � b. Also the small constants δ in the sequel depend on the data of the problem.
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We recall the classical estimates for the operator (ω · ∂ϕ)−1 defined as

(ω · ∂ϕ)−1[1] = 0, (ω · ∂ϕ)−1[ei·ϕ] = 1

i(ω · )e
i·ϕ, ∀ �= 0, (2.15)

for ω ∈ DC(γ , τ), where for γ , τ > 0,

DC(γ , τ) :=
{
ω ∈ � : |ω · | ≥ γ

||τ , ∀ ∈ Zν \ {0}
}
. (2.16)

If h(·;ω) ∈ Hs+2τ+1(Tν), with ω ∈ DC(γ , τ), we have

‖(ω · ∂ϕ)−1h‖s ≤ γ −1‖h‖s+τ , ‖(ω · ∂ϕ)−1h‖Lip(γ )
s ≤ γ −1‖h‖Lip(γ )

s+2τ+1. (2.17)

We also recall some classical Lemmas on the composition operators and on the interpo-

lation. Since the variables (ϕ,x) have the same role, we present it for a generic Sobolev

space Hs(Tn). For any s ≥ 0 integer, for any domain A ⊆ Rn we denote by Cs(A) the space

of the s-times continuously differentiable functions equipped by the usual ‖ · ‖Cs norm.

Lemma 2.1. (Interpolation) Let u,v ∈ Hs(Tn) with s ≥ sn, sn := [n/2] + 1. Then, there

exists an increasing function s �→ C(s) such that

‖uv‖s ≤ C(s)‖u‖s‖v‖sn + C(sn)‖u‖sn‖v‖s.

If u(·;ω), v(·;ω), ω ∈ �o ⊆ Rν are ω-dependent families of functions in Hs(Tn), with s ≥ sn

then the same estimate holds replacing ‖ · ‖s by ‖ · ‖Lip(γ )
s . �

Iterating the above inequality one gets that, for some constant K(s), for any

n ≥ 0,

‖uk‖s ≤ K(s)k‖u‖k−1
s0

‖u‖s (2.18)

and if u(·;ω) ∈ Hs, s ≥ sn is a family of Sobolev functions, the same inequality holds

replacing ‖ · ‖s by ‖ · ‖Lip(γ )
s .

We consider the composition operator

u(y) �→ f(u)(y) := f (y,u(y)).

The following lemma is a classical result due to Moser.
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Lemma 2.2 (Composition operator). Let f ∈ Cs+1(Tn × R,R), with s ≥ sn := [n/2] + 1.

If u ∈ Hs(Tn), with ‖u‖sn ≤ 1, then ‖f(u)‖s ≤ C(s, ‖f ‖Cs)(1 + ‖u‖s). If u(·,ω) ∈ Hs(Tn),

ω ∈ �o ⊆ Rν is a family of Sobolev functions satisfying ‖u‖Lip(γ )
sn

≤ 1, then, ‖f(u)‖Lip(γ )
s ≤

C(s, ‖f ‖Cs+1)(1 + ‖u‖Lip(γ )
s ). �

Nowwe state the tame properties of the composition operatoru(y) �→ u(y+p(y))

induced by a diffeomorphismof the torusTn. The Lemmabelow, can be proved as Lemma

2.21 in [18].

Lemma 2.3 (Change of variables). Let p := p(·;ω) : Rn → Rn, ω ∈ �o ⊂ Rν be a family of

2π-periodic functions satisfying

‖p‖Csn+1 ≤ 1/2, ‖p‖Lip(γ )
sn

≤ 1 (2.19)

where sn := [n/2] + 1. Let g(y) := y + p(y), y ∈ Tn. Then the composition operator

A : u(y) �→ (u ◦ g)(y) = u(y + p(y))

satisfies for all s ≥ sn, the tame estimates

‖Au‖sn �sn ‖u‖sn , ‖Au‖s ≤ C(s)‖u‖s + C(sn)‖p‖s‖u‖sn+1. (2.20)

Moreover, for any family of Sobolev functions u(·;ω)

‖Au‖Lip(γ )
sn

�sn ‖u‖Lip(γ )
sn+1 , (2.21)

‖Au‖Lip(γ )
s �s ‖u‖Lip(γ )

s+1 + ‖p‖Lip(γ )
s ‖u‖Lip(γ )

sn+2 , ∀s > sn. (2.22)

The map g is invertible with inverse g−1(z) = z + q(z) and there exists a constant

δ := δ(sn) ∈ (0, 1) such that, if ‖p‖Lip(γ )
2sn+2 ≤ δ, then

‖q‖s �s ‖p‖s, ‖q‖Lip(γ )
s �s ‖p‖Lip(γ )

s+1 . (2.23)

Furthermore, the composition operator A−1u(z) := u(z + q(z)) satisfies the estimate

‖A−1u‖s �s ‖u‖s + ‖p‖s‖u‖sn+1, ∀s ≥ sn (2.24)

and for any family of Sobolev functions u(·;ω)

‖A−1u‖Lip(γ )
s �s ‖u‖Lip(γ )

s+1 + ‖p‖Lip(γ )
s+1 ‖u‖Lip(γ )

sn+2 , ∀s ≥ sn. (2.25)

�
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2.1 Linear operators

Let R ∈ B(L2
0(T

d)). The action of this operator on a function u ∈ L2
0(T

d) is given by

R[u] =
∑

j,j′∈Zd\{0}
Rj′

j uj′e
ij·x (2.26)

where the Fourier coefficientsRj′
j ofR are defined in (1.10).We shall identify the operator

R with the infinite-dimensional matrix of its Fourier coefficients

(
Rj′

j

)
j,j′∈Z

d\{0}
. (2.27)

We define the conjugated operator R by

Ru := Rū. (2.28)

One gets easily that the operator R has the matrix representation

(
R−j′

−j
)
j,j′∈Zd\{0}

. (2.29)

An operator R is said to be real if it maps real-valued functions on real valued functions

and it is easy to see that R is real if and only if R = R.

We define also the transpose operator RT by the relation

〈R[u], v〉L2x = 〈u, RT [v]〉L2x , ∀u,v ∈ L2
0(T

d), ∀ϕ ∈ Tν (2.30)

where

〈u,v〉L2x :=
∫

Td
u(x)v(x), dx, ∀u,v ∈ L2

0(T
d). (2.31)

The operator RT has the matrix representation

(RT )
j′
j = R−j

−j′ , ∀j, j′ ∈ Zd. (2.32)

An operator R is said to be symmetric in R = RT .

We define also the adjoint operator R∗ as

(R[u], v)L2x = (u, R∗[v])L2x , ∀u,v ∈ L2
0(T

d), (2.33)
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where (·, ·)L2x is the scalar product on L2
0(T

d), namely

(u, v)L2x := 〈u, v〉L2x =
∫

Td
u(x)v(x)dx, ∀u,v ∈ L2

0(T
d). (2.34)

An operator R is said to be self-adjoint if R = R∗. It is easy to see that R∗ = RT
and its

matrix representation is given by

(R∗)j
′
j = Rj

j′ , ∀j, j′ ∈ Zd \ {0}.

We also define the commutator between two linear operators R, T ∈ B(L2
0(T

d)) by

[R, T ] := RT − T R.

In the following we also deal with real operators G ∈ B
(
L2
0(T

d,R)× L2
0(T

d,R)
)
, of the

form

G :=
(
A B

C D

)
(2.35)

where A,B,C,D ∈ B(L2
0(T

d,R)). By (2.30), the transpose operator GT with respect to the

bilinear form

〈(v1,ψ1), (v2,ψ2)〉L2x := 〈v1,v2〉L2x + 〈ψ1, ψ2〉L2x , (2.36)

∀(u1,ψ1), (u2,ψ2) ∈ L2
0(T

d,R)× L2
0(T

d,R), is given by

GT =
(
AT CT

BT DT

)
. (2.37)

Then it is easy to verify that G is symmetric, that is G = GT if and only if A = AT , B = CT ,

D = DT . It is also convenient to regard the real operator G in the complex variables

(v,ψ) = C[(u,u)], (u,u) = C−1[(v,ψ)] (2.38)

where

C := 1√
2

(
1 1
1
i − 1

i

)
C−1 = 1√

2

(
1 i

1 −i

)
. (2.39)

The operators C, C−1 satisfies

C : L2
0(T

d) → L2
0(T

d,R)× L2
0(T

d,R), C−1 : L2
0(T

d,R)× L2
0(T

d,R) → L2
0(T

d)
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where L2
0(T

d) is the real subspace of L2
0(T

d)× L2
0(T

d) defined by

L2
0(T

d) := {(u,u) : u ∈ L2
0(T

d)
}
. (2.40)

If G ∈ B
(
L2
0(T

d,R)× L2
0(T

d,R)
)
is a real operator of the form (2.35), one has that the

conjugated operator

R := C−1GC : L2
0(T

d) → L2
0(T

d)

has the form

R =
(
R1 R2

R2 R1

)
, R1 := A+ D− i(B− C)

2
, R2 := A− D+ i(B+ C)

2
. (2.41)

For the sequel, we also introduce for any s ≥ 0, the real subspace of Hs
0(T

d)× Hs
0(T

d)

Hs
0(T

d) := (Hs
0(T

d)× Hs
0(T

d)
) ∩ L2

0(T
d) (2.42)

and we set

‖u‖Hsx := ‖u‖Hsx , ∀u = (u,u) ∈ Hs
0(T

d). (2.43)

It is straightforward to verify that for any s ≥ 0

C : Hs
0(T

d) → Hs
0(T

d,R)× Hs
0(T

d,R), C−1 : Hs
0(T

d,R)× Hs
0(T

d,R) → Hs
0(T

d). (2.44)

2.2 Block representation of linear operators

We may regard an operator R : L2
0(T

d) → L2
0(T

d) as a block matrix

([R]βα
)
α,β∈σ0(

√−�) (2.45)

where for all α,β ∈ σ0(
√−�) (recall (2.2)), the block-matrix [R]βα is defined by

[R]βα :=
(
Rj′

j

)
|j|=α, |j′|=β

. (2.46)

The operator [R]βα is a linear operator from Eβ onto Eα where for all α ∈ σ0(
√−�), the

finite dimensional spaceEα is defined in (2.3).We identify the spaceB(Eβ ,Eα) of the linear
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operators from Eβ onto Eα with the space of the matrices of their Fourier coefficients,

namely

B(Eβ ,Eα) �
{
M =

(
Mj′

j

)
j,j′∈Z

d\{0}
|j|=α, |j′|=β

}
. (2.47)

Indeed if M ∈ B(Eβ ,Eα), its action is given by

Mu(x) =
∑
|j|=α
|j′|=β

Mj′
j uj′e

ij·x , ∀u ∈ Eβ , u(x) =
∑
|j′|=β

uj′e
ij′·x . (2.48)

If β = α, we use the notation B(Eα) = B(Eα,Eα) and we denote by Iα the identity operator

on the space Eα, namely

Iα : Eα → Eα, u �→ u. (2.49)

According to (2.4), (2.45), and (2.48), we may write the action of an operator R on a

function u(x) as

Ru =
∑

α,β∈σ0(
√−�)

[R]βα[uβ]. (2.50)

If [R]βα = 0, for any α �= β, we say that R is block-diagonal and we use the notation

R = diagα∈σ0(
√−�)[R]αα. (2.51)

The action of a block-diagonal operator R on a function u ∈ L2
0(T

d) is given by

Ru =
∑

α∈σ0(
√−�)

[R]αα[uα]. (2.52)

LetM ∈ B(Eβ ,Eα). The transpose operatorMT ∈ B(Eα,Eβ) has the matrix representation

(MT )
j′
j := M−j

−j′ , |j| = β, |j′| = α. (2.53)

The conjugate operator M ∈ B(Eβ ,Eα) is given by

(M)j
′
j := M−j′

−j , |j| = α, |j′| = β (2.54)

and the adjoint operator M∗ ∈ B(Eα,Eβ) by

M∗ := M
T
. (2.55)



Reducibility Result for a Class of Linear Wave Equations 19

Let α,β, λ ∈ σ0(
√−�). Given A ∈ B(Eβ ,Eα), B ∈ B(Eλ,Eβ), the operator AB ∈

B(Eλ,Eα) has the matrix representation

(AB)j
′
j :=

∑
|k|=β

Ak
j B

j′
k , ∀|j| = α, |j′| = λ. (2.56)

Given an operator A ∈ B(Eα), we define its trace as

Tr(A) :=
∑
|j|=α

Aj
j. (2.57)

It is easy to check that if A,B ∈ B(Eα), then

Tr(AB) = Tr(BA). (2.58)

For all α,β ∈ σ0(
√−�), the space B(Eβ ,Eα) defined in (2.47), is a Hilbert space equipped

by the inner product given for any X ,Y ∈ B(Eβ ,Eα) by

〈X ,Y〉 := Tr(XY ∗). (2.59)

This scalar product induces the Hilbert-Schmidt norm

‖X‖HS :=
√
Tr(XX ∗) =

⎛⎜⎜⎝∑
|j|=α
|j′|=β

|Xj′
j |2
⎞⎟⎟⎠

1
2

. (2.60)

For any operator X ∈ B(Eβ ,Eα), we define also the operator norm as

‖X‖B(Eβ ,Eα) := sup
{‖Xu‖L2 : u ∈ Eβ , ‖u‖L2 ≤ 1

}
. (2.61)

First we recall some preliminary properties of these norms.

Lemma 2.4. (i) Let α,β ∈ σ0(
√−�), M ∈ B(Eβ ,Eα) and u ∈ Eβ . Then ‖Mu‖L2 ≤

‖M‖HS‖u‖L2 , implying that ‖M‖B(Eβ ,Eα) ≤ ‖M‖HS.
(ii) Let α,β, λ ∈ σ0(

√−�), M ∈ B(Eβ ,Eα), X ∈ B(Eλ,Eβ). Then ‖MX‖HS ≤ ‖M‖HS‖X‖HS. �

Proof. The proof is a straightforward application of the Cauchy-Schwartz inequality.

�
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Given a linear operator L : B(Eβ ,Eα) → B(Eβ ,Eα), we denote by ‖L‖Op(α,β) its operator

norm,when the spaceB(Eβ ,Eα) is equippedwith theHilbert-Schmidt norm (2.60), namely

‖L‖Op(α,β) := sup
{‖L(M)‖HS : M ∈ B(Eβ ,Eα), ‖M‖HS ≤ 1

}
. (2.62)

We denote by Iα,β the identity operator on B(Eβ ,Eα), namely

Iα,β : B(Eβ ,Eα) → B(Eβ ,Eα), X �→ X . (2.63)

For any operatorA ∈ B(Eα)wedenote byML(A) : B(Eβ ,Eα) → B(Eβ ,Eα) the linear operator

defined for any X ∈ B(Eβ ,Eα) as

ML(A)X := AX . (2.64)

Similarly, given an operator B ∈ B(Eβ), we denote by MR(B) : B(Eβ ,Eα) → B(Eβ ,Eα) the

linear operator defined for any X ∈ B(Eβ ,Eα) as

MR(B)X := XB. (2.65)

By Lemma 2.4-(ii), we have

‖ML(A)‖Op(α,β) ≤ ‖A‖HS, ‖MR(B)‖Op(α,β) ≤ ‖B‖HS. (2.66)

For any α ∈ σ0(
√−�), we denote by S(Eα), the set of the self-adjoint operators form Eα

onto itself, namely

S(Eα) := {A ∈ B(Eα) : A = A∗} (2.67)

and given A ∈ B(Eα) denote by spec(A) the spectrum of A. The next Lemma follows by

elementary arguments of linear algebra and hence its proof is omitted.

Lemma 2.5. Let A ∈ S(Eα), B ∈ S(Eβ), then the following holds:

(i) The operatorsML(A),MR(B) defined in (2.64) and (2.65) are self-adjoint operators with

respect to the scalar product defined in (2.59).

(ii) The spectrum of the operator ML(A)±MR(B) satisfies

spec (ML(A)±MR(B)) = {λ± μ : λ ∈ spec(A), μ ∈ spec(B)} . �
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We also deal with smooth ϕ-dependent families of linear operators

R : Tν → B(L2
0(T

d)), ϕ �→ R(ϕ). (2.68)

According to (2.27), for any ϕ ∈ Tν , the operator R(ϕ) has the matrix representation

(Rj′
j (ϕ))j,j′∈Zd\{0}. We can write the Fourier expansions

R(ϕ) =
∑
∈Zν

R̂()ei·ϕ, Rj′
j (ϕ) =

∑
∈Zν

R̂j′
j ()e

i·ϕ, ∀ ∈ Zν , ∀j, j′ ∈ Zd \ {0}

where

R̂() := 1

(2π)ν

∫
Tν

R(ϕ)e−i·ϕ dϕ ∈ B(L2
0(T

d)), ∀ ∈ Zν , (2.69)

R̂j′
j () :=

1

(2π)ν

∫
Tν

Rj′
j (ϕ)e

−i·ϕ dϕ, ∀ ∈ Zν , ∀j, j′ ∈ Zd \ {0}. (2.70)

For any  ∈ Zν , the operator R̂() ∈ B(L2
0(T

d)) has the matrix representation

R̂() =
(
R̂j′

j ()
)
j,j′∈Zd\{0}

. (2.71)

Furthermore, by (2.45), for any ϕ ∈ Tν , the operator R(ϕ) has the block representation

([R(ϕ)]βα)α,β∈σ0(
√−�) and for any  ∈ Zν , R̂()has the block representation ([R̂()]βα)α,β∈σ0(

√−�).

For any α,β ∈ σ0(
√−�), we have the Fourier expansion [R(ϕ)]βα =∑∈Zν

[R̂()]βαei·ϕ with

[R̂()]βα := 1

(2π)ν

∫
Tν

[R(ϕ)]βαe−i·ϕ dϕ =
(
R̂j′

j ()
)

|j|=α, |j′|=β
∀ ∈ Zν , (2.72)

recall (2.70).

Let R : Tν → B(L2
0(T

d)) be differentiable and let ω ∈ Rν . For any ϕ ∈ Tν , the operator

ω ·∂ϕR(ϕ) is represented by the matrix (ω ·∂ϕRj′
j (ϕ))j,j′∈Zd\{0} and its block representation is

given by (ω · ∂ϕ[R(ϕ)]βα)α,β∈σ0(
√−�). We also note that for any  ∈ Zν , the operator ω̂ · ∂ϕR()

admits the block representation (iω · [R̂()]βα)α,β∈σ0(
√−�).

Given R : Tν → B(L2
0(T

d)), recalling the notation (2.51), we define the block-diagonal

operator Rdiag as

Rdiag := diagα∈σ0(
√−�)[R̂(0)]αα (2.73)

and for any N ∈ N, we define the smoothing operator �NR by

[�̂NR()]βα :=
⎧⎨⎩[R̂()]βα if max{||,α,β} ≤ N

0 otherwise.
(2.74)
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It is straightforward to verify that

(�NR)diag = �NRdiag. (2.75)

2.3 Block-decay norm for linear operators

Given a smooth ϕ-dependent family R : Tν → B(L2
0(T

d)), ϕ �→ R(ϕ) as in (2.68), we define

the block-decay norm

|R|s := supα,β∈σ0(
√−�)

(∑
∈Zν

〈,α,β〉2s‖[R̂()]βα‖2
HS

)1/2

, 〈,α,β〉 := max{1, ||,α,β}. (2.76)

For families of operators of the form R(ω) : ϕ �→ R(ϕ;ω), ω ∈ �o ⊂ Rν , we define the

norm

|R|Lip(γ )s := |R|sups + γ |R|lips , (2.77)

|R|sups := sup
ω∈�0

|R(ω)|s, |R|lips := sup
ω1,ω2∈�o
ω1 �=ω2

|R(ω1)− R(ω2)|s
|ω1 − ω2| .

Moreover, if R : Tν → B(L2
0(T

d)), that is, R has the form

R(ϕ) =
(

R1(ϕ) R2(ϕ)

R2(ϕ) R1(ϕ)

)
, (2.78)

we define

|R|s := |R1|s + |R2|s, |R|Lip(γ )s := |R1|Lip(γ )s + |R2|Lip(γ )s . (2.79)

In the following, we state some properties of this norm. We prove such properties for

families of operators R : Tν → B(L2
0(T

d)). If R is an operator of the form (2.78) then the

same statements hold with the obvious modifications.

Lemma 2.6.

(i) The norm | · |s is increasing, namely |R|s ≤ |R|s′ , for s ≤ s′.

(ii) The operator Rdiag defined by (2.73), satisfies |Rdiag|s ≤ |R|s, implying that

‖[R]αα‖HS ≤ α−s|R|s for any α ∈ σ0(
√−�)

(iii) Items (i), (ii) hold, replacing | · |s by | · |Lip(γ )s . �
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Proof. The proof is elementary. It follows directly by the definitions (2.76) and (2.77),

hence we omit it. �

Lemma 2.7. Let R, T be operators of the form (2.78). Then for any s ≥ s0 (recall (2.14))

|RB|s �s |R|s|B|2s0 + |R|2s0 |B|s.

If R = R(ω), T = T (ω) are Lipschitz with respect to the parameter ω ∈ �o ⊆ �, then the

same estimate holds replacing | · |s by | · |Lip(γ )s . �

Proof. According to the notations (2.45) and (2.46), for any ϕ ∈ Tν , the operatorR(ϕ)B(ϕ)
has the block representation

R(ϕ)T (ϕ) = ([R(ϕ)T (ϕ)]βα)α,β∈σ0(
√−�)

∈Z
ν

, [R(ϕ)T (ϕ)]βα =
∑

α1∈σ0(
√−�)

[R(ϕ)]α1α [T (ϕ)]βα1

and for all  ∈ Zν

[R̂T ()]βα =
∑

α1∈σ0(
√−�),′∈Zν

[R̂(− ′)]α1α [T̂ (′)]βα1 .

Then, using Lemma 2.4-(ii), we get that for any α,β ∈ σ0(
√−�)

∑
∈Zν

〈,α,β〉2s‖[R̂T ()]βα‖2
HS ≤

∑
∈Zν

⎛⎜⎜⎝ ∑
′∈Z

ν

α1∈σ0(
√−�)

〈,α,β〉s‖[R̂(− ′)]α1α ‖HS‖[T̂ (′)]βα1‖HS

⎞⎟⎟⎠
2

. (2.80)

Using that for any α,β,α1 ∈ σ0(
√−�), , ′ ∈ Zν , 〈,α,β〉s �s 〈− ′,α,α1〉s + 〈′,α1,β〉s, we

get

(2.80) �s (I)+ (II) (2.81)

where

(I) :=
∑
∈Zν

⎛⎜⎜⎝ ∑
′∈Z

ν

α1∈σ0(
√−�)

〈− ′,α,α1〉s‖[R̂(− ′)]α1α ‖HS‖[T̂ (′)]βα1‖HS

⎞⎟⎟⎠
2

(2.82)

(II) :=
∑
∈Zν

⎛⎜⎜⎝ ∑
′∈Z

ν

α1∈σ0(
√−�)

〈′,α1,β〉s‖[R̂(− ′)]α1α ‖HS‖[T̂ (′)]βα1‖HS

⎞⎟⎟⎠
2

. (2.83)
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Using that, by Lemma A.1-(i),
∑

′∈Z
ν

α1∈σ0(
√−�)

〈′,α1〉−2s0 ,
∑

α1∈σ0(
√−�) α

−2s0
1 < +∞ (recall that

s0 > (ν + d)/2), applying the Cauchy Schwartz inequality, one gets

(I) �
∑
∈Zν

∑
′∈Z

ν

α1∈σ0(
√−�)

〈− ′,α,α1〉2s‖[R̂(− ′)]α1α ‖2
HS〈′,α1〉2s0‖[T̂ (′)]βα1‖2

HS

�s

∑
′∈Z

ν

α1∈σ0(
√−�)

〈′,α1〉2s0‖[T̂ (′)]βα1‖2
HS

∑
∈Zν

〈− ′,α,α1〉2s‖[R̂(− ′)]α1α ‖2
HS

�s

∑
′∈Z

ν

α1∈σ0(
√−�)

1

α
2s0
1

〈′,α1〉4s0‖[T̂ (′)]βα1‖2
HS

∑
∈Zν

〈− ′,α,α1〉2s‖[R̂(− ′)]α1α ‖2
HS

�s

∑
α1∈σ0(

√−�)
α

−2s0
1

(
sup

α1∈σ0(
√−�)

∑
′∈Zν

〈′,α1〉4s0‖[T̂ (′)]βα1‖2
HS

)

×
(

sup
α,α1∈σ0(

√−�)

∑
k∈Zν

〈k,α,α1〉2s‖[R̂(k)]α1α ‖2
HS

)
(2.76)

�s |B|22s0 |R|2s . (2.84)

Similarly one proves that (II) �s |T |2s |R|22s0 and then, recalling (2.80), (2.81) one proves

|RT |s �s |T |2s0 |R|s + |T |s|R|2s0 . The estimate for the norm | · |Lip(γ )s follows easily by the

previous one, by applying the triangular inequality. �

For all n ≥ 1, iterating the estimate of Lemma 2.7 we get

|Rn|2s0 ≤ [C(s0)]n−1|R|n2s0 and |Rn|s ≤ nC(s)n|R|n−1
2s0

|R|s, ∀s ≥ 2s0, (2.85)

and the same bounds also hold for the norm | · |Lip(γ )s if R is Lipschitz continuous with

respect to the parameter ω.

Lemma 2.8. Let � = exp(�) with � := �(ω), depending in a Lipschitz way on the

parameter ω ∈ �o ⊂ R, such that |�|Lip(γ )2s0
≤ 1, |�|Lip(γ )s < +∞, with s ≥ 2s0. Then

|�±1 − Id|s �s |�|s, |�±1 − Id|Lip(γ )s �s |�|Lip(γ )s . (2.86)

�

Proof. The claimed estimates can be proved by using the Taylor expansion of�±1−Id =
exp(±�)− Id, using the condition |�|Lip(γ )2s0

≤ 1 and by applying the estimates (2.85). �
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Lemma 2.9. The operator �⊥
NR := R −�NR (recall (2.74)) satisfies

|�⊥
NR|s ≤ N−b|R|s+b, |�⊥

NR|Lip(γ )s ≤ N−b|R|Lip(γ )s+b , b ≥ 0, (2.87)

where in the second inequality R is Lipschitz with respect to the parameter

ω ∈ �o ⊆ �. �

Proof. We have that for all b ∈ N, α,β ∈ σ0(
√−�)∑

∈Z
ν

〈,α,β〉2s‖[�̂⊥
NR()]βα‖2

HS
(2.74)=

∑
{:〈,α,β〉>N}

〈,α,β〉2s‖[R̂()]βα‖2
HS

≤ N−2b
∑
∈Zν

〈,α,β〉2(s+b)‖[R̂()]βα‖2
HS

(2.76)≤ N−2b|R|2s+b,

and the lemma follows. �

Lemma 2.10. Let us define the operator

R(ϕ)[h] := q(ϕ,x)
∫

Td
g(ϕ,y)h(y)dy, h ∈ L2

0(T
d) q,g ∈ Hs

0(T
ν+d), s ≥ s0. (2.88)

Then

|R|s �s ‖g‖s0‖q‖s + ‖g‖s+s0‖q‖0.

Moreover, if the functions g and q are Lipschitzwith respect to the parameterω ∈ �o ⊆ �,

then the same estimate holds replacing | · |s by | · |Lip(γ )s and ‖ · ‖s by ‖ · ‖Lip(γ )
s . �

Proof. A direct calculation shows that for all  ∈ Zν and for all j, j′ ∈ Zd \ {0}

R̂j′
j () =

∑
′∈Zν

q̂j(− ′)̂g−j′(′).

Using definition (2.60), the Cauchy–Schwartz inequality (using that
∑

′∈Zν
〈′〉−2s0 < +∞)

we get

‖[R̂()]βα‖2
HS =

∑
|j|=α
|j′|=β

|R̂j′
j ()|2 ≤

∑
|j|=α
|j′|=β

(∑
′

|̂qj(− ′)||̂g−j′(′)|
)2

≤
∑
|j|=α

∑
|j′|=β

∑
′

|̂qj(− ′)|2〈′〉2s0 |̂g−j′(′)|2

(2.4),(2.8)=
∑
′

‖̂qα(− ′)‖2
L2〈′〉2s0 ‖̂gβ(′)‖2

L2 . (2.89)
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Now for all α,β ∈ σ0(
√−�),

∑
∈Zν

〈,α,β〉2s‖[R̂()]βα‖2
HS

(2.89)≤
∑
,′∈Zν

〈,α,β〉2s‖̂qα(− ′)‖2
L2〈′〉2s0 ‖̂gβ(′)‖2

L2 . (2.90)

Using that 〈,α,β〉2s �s 〈− ′,α〉2s + 〈′,β〉2s we get

(2.90) �s

∑


∑
′

〈− ′,α〉2s‖̂qα(− ′)‖2
L2〈′〉2s0 ‖̂gβ(′)‖2

L2

+
∑


∑
′

〈′,β〉2s‖̂qα(− ′)‖2
L2〈′〉2s0 ‖̂gβ(′)‖2

L2

�s

∑
′

〈′〉2s0 ‖̂gβ(′)‖2
L2

∑


〈− ′,α〉2s‖̂qα(− ′)‖2
L2

+
∑
′

〈′,β〉2(s+s0)‖̂gβ(′)‖2
L2

∑


‖̂qα(− ′)‖2
L2

(2.10)

�s ‖g‖2
s0

‖q‖2
s + ‖g‖2

s+s0‖q‖2
L2 (2.91)

and hence the lemma follows. �

For a ϕ-independent linear operator R ∈ B(L2
0(T

d)) having the block-matrix

representation (2.45), the block-decay norm (2.76) becomes

|R|s = sup
α,β∈σ0(

√−�)
〈α,β〉s‖[R]βα‖HS, 〈α,β〉 := max{α,β}. (2.92)

The following Lemma holds:

Lemma 2.11. (i) Let R ∈ B(L2
0(T

d)) satisfy |R|s+2s0 < +∞, for s ≥ 0. Then R ∈
B(L2

0(T
d),Hs

0(T
d)) and ‖R‖B(L20,H

s
0)

� |R|s+2s0 . As a consequence R ∈ B(Hs
0), with ‖R‖B(Hs0) ≤

‖R‖B(L20,H
s
0)

� |R|s+2s0 .

(ii) Let k ∈ N and R : Tν → B(L2
0(T

d)) with |R|s+k+2s0 < +∞. Then R ∈ Wk,∞ (Tν ,B(L2
0,H

s
0)
)

and for any a ∈ Nν , |a| ≤ k, one has

‖∂aϕR‖L∞(Tν ,B(Hs0)) � sup
ϕ∈Tν

|∂αϕR(ϕ)|s+2s0 � |R|s+|a|+2s0 . �

Proof. Proof of (i). Let u ∈ L2
0(T

d). By (2.52) and (2.5), one has that

‖R[u]‖2
Hsx

=
∑

α∈σ0(
√−�)

α2s

∥∥∥∥∥∥
∑

β∈σ0(
√−�)

[R]βα[uβ]
∥∥∥∥∥∥
2

L2

�
∑

α∈σ0(
√−�)

⎛⎝ ∑
β∈σ0(

√−�)
αs‖[R]βα[uβ]‖L2

⎞⎠2

. (2.93)
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Using Lemma 2.4-(i) and recalling (2.92), one gets

‖R[u]‖2
Hsx

�
∑

α∈σ0(
√−�)

⎛⎝ ∑
β∈σ0(

√−�)

αs+s0βs0

αs0βs0
‖[R]βα‖HS‖uβ‖L2

⎞⎠2

�
∑

α∈σ0(
√−�)

1

α2s0

⎛⎝ ∑
β∈σ0(

√−�)

〈α,β〉s+2s0

βs0
‖[R]βα‖HS‖uβ‖L2

⎞⎠2

� |R|2s+2s0

∑
α∈σ0(

√−�)

1

α2s0

⎛⎝ ∑
β∈σ0(

√−�)

1

βs0
‖uβ‖L2

⎞⎠2

. (2.94)

By the Cauchy–Schwartz inequality

(2.94) � |R|2s+2s0

∑
α,β∈σ0(

√−�)

1

α2s0β2s0

∑
β∈σ0(

√−�)
‖uβ‖2

L2

(2.5)

� |R|2s+2s0
‖u‖L2 (2.95)

by applying Lemma A.1-(i) (note that 2s0 = 2([(ν +d)/2] + 1) > ν +d) and then the claim

follows.

Proof of (ii).For any α,β ∈ σ0(
√−�) and for any multi-index a ∈ Nν , |a| ≤ k one has that

the operator ∂aϕR(ϕ) admits the block-matrix representation

∂aϕR(ϕ) = (∂aϕ [R(ϕ)]βα)α,β∈σ0(
√−�) .

Expanding in Fourier series ∂aϕ [R(ϕ)]βα , one has

∂aϕ [R(ϕ)]βα =
∑
∈Zν

i|a|a[R̂()]βαei·ϕ,

and by the Cauchy–Schwartz inequality

‖∂aϕ [R(ϕ)]βα‖HS ≤
∑
∈Zν

|||a|‖[R̂()]βα‖HS �
(∑
∈Zν

〈〉2(|a|+s0)‖[R̂()]βα‖2
HS

) 1
2

. (2.96)

Thus by (2.96), for any α,β ∈ σ0(
√−�), for any ϕ ∈ Tν , one has

〈α,β〉2s‖∂aϕ [R(ϕ)]βα‖2
HS

(2.96)

�
∑
∈Zν

〈,α,β〉2(s+|a|+s0)‖[R̂()]βα‖2
HS

(2.76)

� |R|2s+|a|+s0

and then the lemma follows by recalling (2.92) and by applying item (i). �
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2.4 A class of ϕ-dependent Fourier multipliers

For any m ∈ R, we define the class Sm of Fourier multipliers of order m as

Sm :=
{
r : σ0(

√−�) → C : sup
α∈σ0(

√−�)
|r(α)|α−m < +∞

}

where we recall that the set σ0(
√−�) is defined in (2.2). To any symbol r ∈ Sm, we

associate the linear operator Op(r) defined by

Op(r)u(x) :=
∑

j∈Zd\{0}
r(|j|)uje

ij·x , ∀u ∈ Hm
0 (T

d). (2.97)

We denote by OPSm the class of the operators associated to the symbols in Sm.

In the following we deal with ϕ-dependent families of Fourier multipliers r : Tν ×
σ0(

√−�) → C, r(ϕ, ·) ∈ Sm. The action of the operator Op(r) = Op(r(ϕ, |j|)) on Sobolev

functions u ∈ Hs
0(T

ν+d) is given by

Op(r)u(ϕ,x) :=
∑

j∈Zd\{0}
r(ϕ, |j|)uj(ϕ)e

ij·x =
∑
,′∈Z

ν

j∈Z
d\{0}

r̂(− ′, |j|)ûj(
′)ei(·ϕ+j·x). (2.98)

Using the representation (2.7), the action of the operator Op(r) on a function u(ϕ,x) can

be written as

Op(r)u(ϕ,x) =
∑

α∈σ0(
√−�)

r(ϕ,α)uα(ϕ,x) =
∑
,′∈Z

ν

α∈σ0(
√−�)

r̂(− ′,α)̂uα(′,x)ei·ϕ. (2.99)

The following elementary properties hold:

Op(r) = Op(r) = Op(r)∗, Op(r)T = Op(r) (2.100)

(recall (2.28), (2.30), and (2.33)). The above properties imply that

Op(r) = Op(r)∗ if and only if r(ϕ,α) = r(ϕ,α), ∀(ϕ,α) ∈ Tν × σ0(
√−�).

(2.101)

Let R = Op(r) ∈ OPSm, B = Op(b) ∈ OPSm
′
. Then the composition operator R ◦ B is given

by

R ◦ B = Op(r) ◦ Op(b) = Op(rb) ∈ OPSm+m′
. (2.102)
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Note that R ◦ B = B ◦ R.

For an operator R = Op(r) ∈ OPSm, for any s ≥ 0, m ∈ R, we define the family of norms

||Op(r)||m,s := sup
α∈σ0(

√−�)
‖r(·,α)‖sα−m (2.103)

and if r = r(ϕ,α;ω), ω ∈ �o ⊆ � is Lipschitz with respect to the parameter ω ∈ �o then

we define

||Op(r)||Lip(γ )m,s = ||Op(r)||supm,s + γ ||Op(r)||lipm,s (2.104)

where

||Op(r)||supm,s := sup
ω∈�o

||Op(r)(ω)||m,s, ||Op(r)||lipm,s := sup
ω1,ω2∈�o
ω1 �=ω2

||Op(r)(ω1)− Op(r)(ω2)||m,s

|ω1 − ω2| .

We also deal with operators

R =
(
Op(r1) Op(r2)

Op(r2) Op(r1)

)
, r1, r2 ∈ Sm. (2.105)

With a slight abuse of notations we still denote by OPSm the class of operators of the

form (2.105). For such operators, we define the norms ||R||m,s := ||Op(r1)||m,s+||Op(r2)||m,s and

||R||Lip(γ )m,s := ||Op(r1)||Lip(γ )m,s + ||Op(r2)||Lip(γ )m,s . In the following, we state some properties of the

norm || · ||m,s. We prove such properties for operators R(ϕ) = Op(r(ϕ, ·)). If R is an operator

of the form (2.105) then the same statements hold with the obvious modifications.

It is immediate to verify that

|| · ||m,s ≤ || · ||m,s′ , ∀s ≤ s′, ∀m ∈ R, (2.106)

|| · ||m,s ≤ || · ||m′,s, ∀m ≥ m′, ∀s ≥ 0 (2.107)

and the same inequality holds for the corresponding Lipschitz norms.

Lemma 2.12. Let R = Op(r) with ||R||0,s < +∞, s ≥ s0. Then for any u ∈ Hs
0(T

ν+d)

‖Ru‖s �s ||R||0,s‖u‖s0 + ||R||0,s0‖u‖s.

The same statements hold, replacing ‖ · ‖s by ‖ · ‖Lip(γ )
s and || · ||0,s by || · ||Lip(γ )0,s . If R is an

operator of the form (2.105), then a similar estimate holds. �
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Proof. The claimed estimate follows by the same arguments used to prove Lemma 2.13

in [18], hence the proof is omitted. Actually our case is even simpler since the symbol r

does not depend on the variable x ∈ Td. �

Lemma 2.13. Let R = Op(r), with ||R||0,s0+1 < +∞. Then R ∈ C1(Tν ,B(Hs
0)) for any s ≥ 0

and ‖R‖C1(Tν ,B(Hs0)) � ||R||0,s0+1. �

Proof. Let R = Op(r) ∈ OPS0. Since ||R||0,s0+1 < +∞, by the definition (2.103), the

symbol r(·,α) is in Hs0+1(Tν) for any α ∈ σ0(
√−�). Hence, by the Sobolev embedding

r(·,α) ∈ C1(Tν) with ‖r(·,α)‖C1(Tν ) � ‖r(·,α)‖s0+1 � ||R||0,s0+1 for any α ∈ σ0(
√−�). Since

‖R‖C1(Tν ,B(Hs0)) ≤ supα∈σ0(
√−�) ‖r(·,α)‖C1(Tν ) for any s ≥ 0, the claimed statement follows. �

Lemma 2.14. Let m,m′ ∈ R and R ∈ OPSm, B ∈ OPSm
′
be two operators of the form

(2.105) with ||R||m,s, ||B||m′,s < ∞, with s ≥ s0. Then the operator RB ∈ OPSm+m′
has still the

form (2.105) and it satisfies the estimate

||RB||m+m′,s �s ||R||m,s||B||m′,s0 + ||R||m,s0 ||B||m′,s.

The same estimate holds replacing the norm || · ||m,s by the norm || · ||Lip(γ )m,s , if R and B are

Lipschitz with respect to the parameter ω ∈ �o. �

Proof. The claimed statement follows by using the property (2.102), the definition

(2.103) and the interpolation Lemma 2.1. �

The above lemma implies that if R ∈ OPSm, then Rk ∈ OPSkm for any k ≥ 1 and

||Rk||km,s0 ≤ C(s0)
k−1||R||km,s0

, ||Rk||km,s ≤ kC(s)k||R||k−1
m,s0

||R||m,s, s ≥ s0. (2.108)

The same estimate holds replacing || · ||m,s by || · ||Lip(γ )m,s .

Lemma 2.15. Let �(ϕ) ∈ OPS−m, ϕ ∈ Tν , m ≥ 0, with

||�||−m,s0 ≤ 1. (2.109)

Then the operator �(ϕ) := exp(�(ϕ)) satisfies �(ϕ)− Id ∈ OPS−m, ∀ϕ ∈ Tν , with

||�− Id||−m,s �s ||�||−m,s. (2.110)
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Moreover, the operator

�≥2(ϕ) :=
∑
k≥2

�(ϕ)k

k! ∈ OPS−2m, ∀ϕ ∈ Tν (2.111)

and it satisfies the estimate

||�≥2||−2m,s �s ||�||−m,s||�||−m,s0 . (2.112)

If the operator � depends in a Lipschitz way on the parameter ω ∈ �o ⊆ � and ||�||Lip(γ )−m,s0 ≤
1, then the estimates (2.110) and (2.112) hold replacing the norm || · ||−m,s by the norm

|| · ||Lip(γ )−m,s . �

Proof. The Lemma follows by using the Taylor expansion of the operator � − Id, the

definition (2.111), the estimate (2.108) and the condition (2.109). �

In the next lemma we compare the block-decay norm | · |s defined in (2.76) with

the norm || · ||m,s defined in (2.103).

Lemma 2.16. Let s ≥ 0 and R(ϕ) ∈ OPS−s−d−1
2 , ϕ ∈ Tν . Then

|R|s � ||R||−s−d−1
2 ,s.

The same estimate holds replacing | · |s by | · |Lip(γ )s and || · ||−s−d−1
2 ,s by || · ||Lip(γ )−s−d−1

2 ,s
if the

operator R depends in a Lipschitz way on the parameter ω ∈ �o ⊆ �. �

Proof. Let R = Op (r). By the representation (2.99), for any ϕ ∈ Tν , the operator R(ϕ) is
block-diagonal (recall the definition (2.51)) and it has the block representation

R(ϕ) = diagα∈σ0(
√−�)[R(ϕ)]αα, [R(ϕ)]αα = r(ϕ,α)Iα, ∀α ∈ σ0(

√−�)

and for any  ∈ Zν

[R̂()]αα = r̂(,α)Iα, ∀α ∈ σ0(
√−�), ∀ ∈ Zν

where we recall that Iα : Eα → Eα is the identity. Hence, using that ‖Iα‖HS � α
d−1
2 (see

(2.60)), recalling the definition (2.76), one gets

|R|2s = sup
α∈σ0(

√−�)

∑
∈Zν

〈,α〉2s‖[R̂()]αα‖2
HS = sup

α∈σ0(
√−�)

∑
∈Zν

〈,α〉2s |̂r(,α)|2‖Iα‖2
HS

� sup
α∈σ0(

√−�)

∑
∈Zν

〈,α〉2s |̂r(,α)|2αd−1 � sup
α∈σ0(

√−�)
‖r(·,α)‖2

sα
2s+d−1 � ||R||2−s−d−1

2 ,s
(2.113)

which is the claimed estimate. �



32 R. Montalto

2.5 Hamiltonian formalism

We define the symplectic form W as

W[z1, z2] := 〈z1, Jz2〉L2x , J =
(

0 1

−1 0

)
, ∀z1, z2 ∈ L2

0(T
d,R)× L2

0(T
d,R). (2.114)

Definition 2.1. A ϕ-dependent linear vector field X(ϕ) : L2
0(T

d,R) × L2
0(T

d,R) →
L2
0(T

d,R)× L2
0(T

d,R), ϕ ∈ Tν , is Hamiltonian, if X(ϕ) = JG(ϕ), where J is given in (2.114)

and the operator G(ϕ) is symmetric for every ϕ ∈ Tν . �

Definition 2.2. A ϕ-dependent map �(ϕ) : L2
0(T

d,R)× L2
0(T

d,R) → L2
0(T

d,R)× L2
0(T

d,R),

ϕ ∈ Tν is symplectic if for any ϕ ∈ Tν , for any z1, z2 ∈ L2
0(T

d,R)× L2
0(T

d,R),

W[�(ϕ)[z1], �(ϕ)[z2]] = W[z1, z2],

or equivalently �(ϕ)TJ�(ϕ) = J for any ϕ ∈ Tν . �

Assume to have a differentiable map ϕ ∈ Tν �→ �(ϕ) ∈ B
(
L2
0(T

d,R)× L2
0(T

d,R)
)

and let us consider the quasi-periodically forced linear Hamiltonian PDE

∂tz = X(ωt)z, X(ϕ) := JG(ϕ), ϕ ∈ Tν , z ∈ L2
0(T

d,R)× L2
0(T

d,R). (2.115)

Under the change of coordinates z = �(ωt)h, the above PDE is transformed into the

equation

∂th = X+(ωt)h, (2.116)

where X+(ωt) is the transformed vector field under the action of the map �(ωt) (push-

forward), namely

X+(ϕ) = �ω∗X(ϕ) := �(ϕ)−1X(ϕ)�(ϕ)−�(ϕ)−1ω · ∂ϕ�(ϕ), ∀ϕ ∈ Tν . (2.117)

It turns out that, since X(ϕ) is a Hamiltonian vector field and �(ϕ) is symplectic, the

transformed vector field X+(ϕ) is still Hamiltonian, namely it has the form given in

Definition (2.1).
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2.5.1 Hamiltonian formalism in complex coordinates

In this section we describe how the Hamiltonian structure described before,

reads in the complex coordinates introduced in (2.38) and (2.39). Let JG(ϕ), ϕ ∈ Tν be a

linear Hamiltonian vector field, with G(ϕ) ∈ B
(
L2
0(T

d,R)× L2
0(T

d,R)
)
being a symmetric

operator as in (2.35). The conjugated vector field R(ϕ) := C−1JG(ϕ)C ∈ B(L2
0(T

d)) has the

form

R(ϕ) = i

(
R1(ϕ) R2(ϕ)

−R2(ϕ) −R1(ϕ)

)
, (2.118)

where

R1(ϕ) := −A(ϕ)−D(ϕ)+ iB(ϕ)− iB(ϕ)T , R2(ϕ) := −A(ϕ)+D(ϕ)− iB(ϕ)− iB(ϕ)T (2.119)

(recall that the operatorR is defined in (2.28)). The operatorsR1(ϕ),R2(ϕ) are linear opera-

tors acting on complex valued L2 functions L2
0(T

d). Furthermore, sinceG(ϕ) is symmetric,

that is, A(ϕ) = A(ϕ)T , B(ϕ) = C(ϕ)T , D(ϕ) = D(ϕ)T , it turns out that

R1(ϕ) = R1(ϕ)
∗, R2(ϕ) = R2(ϕ)

T , ∀ϕ ∈ Tν . (2.120)

We refer to an operator R of the form (2.118), with R1 and R2 satisfying (2.120), as a

Hamiltonian vector field in complex coordinates. The operator R(ϕ) in (2.118) satisfies

R(ϕ)[u] = iJ∇uH(ϕ,u), u := (u, ū), ∇uH = (∇uH,∇ūH), (2.121)

where the real Hamiltonian H has the form

H(ϕ,u) := 〈G(ϕ)[u], u〉, G(ϕ) :=
(
R2(ϕ) R1(ϕ)

R1(ϕ) R2(ϕ)

)
, (2.122)

that is

H(ϕ,u, ū) =
∫

Td
R1(ϕ)[u]ūdx + 1

2

∫
Td
R2(ϕ)[u],udx + 1

2

∫
Td
R2(ϕ)[ū] ūdx (2.123)

and

∇uH = 1√
2

(∇vH − i∇ψH
)
, ∇uH = 1√

2

(∇vH + i∇ψH
)
.

By (2.120), we deduce that

G(ϕ) = G(ϕ)T , ∀ϕ ∈ Tν .
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The symplectic form W defined in (2.114) reads in the coordinates u = (u, ū) as.

�[u1,u2] = i
∫

Td
(u1ū2 − ū1u2)dx = i〈u1, Ju2〉L2x , ∀u1,u2 ∈ L2

0(T
d) (2.124)

where

〈u1,u2〉L2x :=
∫

Td
u1u2 + u1u2 dx, ∀u1,u2 ∈ L2

0(T
d). (2.125)

Definition 2.3. A ϕ-dependent family of linear operators�(ϕ) : L2
0(T

d) → L2
0(T

d), ϕ ∈ Tν

is symplectic if

�[�(ϕ)[u1],�(ϕ)[u2]] = �[u1,u2], ∀u1,u2 ∈ L2
0(T

d), ∀ϕ ∈ Tν . �

It is well known that if R(ϕ) is an operator of the form (2.118), (2.120),namely by

(2.121), it is a linear Hamiltonian vector field associated to the real quadratic Hamilton-

ian H in (2.123), the operator �(ϕ) = exp(R(ϕ)) is a symplectic. Assume that the map

ϕ ∈ Tν �→ �(ϕ) ∈ B(L2
0(T

d)) is a differentiable family of maps and let ϕ ∈ Tν �→ X (ϕ) ∈
B(L2

0(T
d)) be a differentiable families of Hamiltonian vector fields, that is,X (ϕ) = iJG(ϕ),

G(ϕ) = G(ϕ)T for any ϕ ∈ Tν . Arguing as in (2.115) and (2.116), under the transformation

u = �(ωt)h, the PDE

∂tu = X (ωt)u, ω ∈ Rν , t ∈ R, (2.126)

transforms into the PDE

∂th = X+(ωt)h, X+(ϕ) := �ω∗X (ϕ) = �(ϕ)−1X (ϕ)�(ϕ)−�(ϕ)−1ω · ∂ϕ�(ϕ), ∀ϕ ∈ Tν .

(2.127)

If�(ϕ) is symplectic then the vector field X+(ϕ) is Hamiltonian, that is it satisfies (2.118)

and (2.120). In the following, we will consider also reparameterizations of time of the

form

τ = t + α(ωt),

where α : Tν → R is a sufficiently smooth function with ‖α‖C1 small enough. Then the

function t �→ t + α(ωt) is invertible and its inverse is given by

t = τ + α̃(ωτ).
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by setting v(t) := A(ωt)u := u(t + α(ωt)), the PDE (2.126) is transformed into

∂τv = JG+(ωτ)v, G+(ϑ) := 1

ρ(ϑ)
G(ϑ +ωα̃(ϑ)), ρ(ϑ) := 1+ω · ∂ϕα (ϑ + ωα̃(ϑ)) (2.128)

which is still a Hamiltonian equation.

3 Regularization Procedure of the Vector Field L(ϕ)

As described in Section 1, in this section we carry out the first part of the reduction

procedure of the vector field L(ϕ), defined in (1.11), to a block-diagonal operator with

constant coefficients. Our purpose is to transform the vector field L(ϕ) into the vector

fieldL4(ϕ)which is a regularizing perturbation of a time-independent diagonal operator,

see (3.70). The regularizing perturbation R4 defined in (3.71) is the sum of a finite rank

operator and a ϕ-dependent Fourier multiplier of order −M where the constant M is

fixed in (3.68). In the following subsections, we describe in details all the steps needed

to transform the vector field L(ϕ) into the vector field L4(ϕ).

3.1 Symplectic symmetrization of the highest order

We start by symmetrizing the highest order of the vector field

L(ϕ) =
(

0 1

(1 + εa(ϕ))�+ εR(ϕ) 0

)
, ϕ ∈ Tν

where we recall the definitions given in (1.11) and (1.3). For any ϕ ∈ Tν , let us consider

the transformation

S(ϕ) : Hs
0(T

d,R)× Hs
0(T

d,R) → H
s+ 1

2
0 (Td,R)× H

s− 1
2

0 (Td,R),

(
u

ψ

)
�→
⎛⎝β(ϕ)|D|− 1

2u
1

β(ϕ)
|D| 12ψ

⎞⎠ (3.1)

where β : Tν → R is a function close to 1 to be determined and for allm ∈ R, the operator

|D|m is defined by

|D|m(eij·x) = |j|meij·x ∀j �= 0. (3.2)

For any ϕ ∈ Tν , the inverse of the operator S(ϕ) is given by

S(ϕ)−1 : Hs
0(T

d,R)× Hs−1
0 (Td,R) → H

s− 1
2

0 (Td,R)× H
s− 1

2
0 (Td,R),

(
u

ψ

)
�→
⎛⎝ 1

β(ϕ)
|D| 12u

β(ϕ)|D|− 1
2ψ

⎞⎠ .

(3.3)
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By (2.117), the push-forward of the vector field L(ϕ) bymeans of the transformation S(ϕ)
is given by

L1(ϕ) := Sω∗L(ϕ) = S(ϕ)−1L(ϕ)S(ϕ)− S(ϕ)−1ω · ∂ϕS(ϕ)

=
(

−β−1(ϕ)(ω · ∂ϕβ(ϕ)) β−2(ϕ)|D|
(1 + εa(ϕ))β2(ϕ)|D|−1�+ εβ2(ϕ)|D|− 1

2 R(ϕ)|D|− 1
2 −β(ϕ)(ω · ∂ϕβ−1(ϕ))

)
(3.4)

and we look for β : Tν → R such that

β−2(ϕ) = (1 + εa(ϕ))β2(ϕ), (3.5)

namely we choose

β(ϕ) := 1

[1 + εa(ϕ)] 14
. (3.6)

Since

β(ϕ)ω · ∂ϕβ−1(ϕ) = −ω · ∂ϕβ(ϕ)
β(ϕ)

and −� = |D|2

we get that

L1(ϕ) =
(

−a0(ϕ) a1(ϕ)|D|
−a1(ϕ)|D| + εR(1)(ϕ) a0(ϕ)

)
, (3.7)

where

a0(ϕ) := ω · ∂ϕβ(ϕ)
β(ϕ)

, a1(ϕ) :=
√
1 + εa(ϕ), R(1)(ϕ) := β2(ϕ)|D|− 1

2 R(ϕ)|D|− 1
2 . (3.8)

Since β is a real-valued function, the operator S(ϕ) is real for any ϕ ∈ Tν and a direct

verification shows that it is also symplectic. Hence the transformed vector field L1(ϕ) is

still real and Hamiltonian. By (3.6) and (3.8), the functions β, a1 and the operator R(1) do

not depend on the parameter ω ∈ �, whereas the function a0(ϕ) = a0(ϕ;ω) depends on

ω ∈ �.
Now we give some estimates on the coefficients of the vector field L1(ϕ).

Lemma 3.1. Let q > s0 + 1. Then there exists δq ∈ (0, 1) small enough such that for any

ε ∈ (0, δq), for any s0 ≤ s ≤ q − 1, the following holds: the functions β, a0, a1 defined in

(3.6), (3.8) satisfy the estimates

‖β±1 − 1‖s, ‖a1 − 1‖s, ‖a0‖Lip(γ )
s �q ε. (3.9)
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The remainder R(1)(ϕ) in (3.8) has the form

R(1)(ϕ)[v] =
N∑
k=1

b(1)k (ϕ,x)
∫

Td
c(1)k (ϕ,y)v(y)dy + c(1)k (ϕ,x)

∫
Td
b(1)k (ϕ,y)v(y)dy, (3.10)

ϕ ∈ Tν ,v ∈ L2
0(T

d,R) (then it is symmetric R(1)(ϕ) = R(1)(ϕ)T , for all ϕ ∈ Tν ) with

‖b(1)k ‖s, ‖c(1)k ‖s �q 1, ∀k = 1, . . . ,N . (3.11)

Furthermore, for any s ≥ 1/2, the maps

ϕ �→ S(ϕ), Tν → B
(
Hs

0(T
d,R)× Hs

0(T
d,R),H

s+ 1
2

0 (Td,R)× H
s− 1

2
0 (Td,R)

)
,

ϕ �→ S(ϕ)−1, Tν → B
(
H

s+ 1
2

0 (Td,R)× H
s− 1

2
0 (Td,R),Hs

0(T
d,R)× Hs

0(T
d,R)

)
are C1 maps. �

Proof. The estimates (3.9) follows by the definitions (3.6) and (3.8) and by Lemmata 2.1

and 2.2. Let us prove the estimates (3.11). By (3.8), recalling the definition of R(ϕ) given
in (1.3), using that |D|− 1

2 is symmetric, one has that the operator R(1)(ϕ) has the form

(3.10) with

b(1)k (ϕ,x) := β(ϕ)|D|− 1
2 bk(ϕ,x), c(1)k (ϕ,x) := β(ϕ)|D|− 1

2 ck(ϕ,x), k = 1, . . . ,N .

Then the claimed estimates follow by applying the estimate (3.9) and applying the

interpolation Lemma 2.1. A direct verification shows that R(1)(ϕ) = R(1)(ϕ)T for any

ϕ ∈ Tν . �

3.2 Complex variables

Nowwewrite the vector fieldL1(ϕ) defined in (3.7) in the complex coordinates introduced

in (2.38) and (2.39). More precisely, we conjugate the vector field L1(ϕ) by means of the

transformation C defined in (2.39). Since C is ϕ-independent, we get that by (2.117), the

push-forward L2(ϕ) := Cω∗L1(ϕ) = C−1L1(ϕ)C is given by

L2(ϕ) =
(

−ia1(ϕ)|D| + iεR(2)(ϕ) −a0(ϕ)+ iεR(2)(ϕ)

−a0(ϕ)− iεR(2)(ϕ) ia1(ϕ)|D| − iεR(2)(ϕ)

)
, R(2)(ϕ) := R(1)(ϕ)√

2
. (3.12)
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Since a1 and a0 are real valued functions and R(1)(ϕ) (and then R(2)(ϕ)) is symmetric and

real, the operatorL2(ϕ) is a Hamiltonian vector field in complex coordinates, in the sense

of the Definition (2.118). We recall that the transformations C, C−1 satisfy the property

(2.44).

3.3 Quasi-periodic reparameterization of time

The aim of this Section is to reduce to constant coefficients the term a1(ϕ)|D| in the

operator L2(ϕ) defined in (3.12). In order to do this, let us consider a function α : Tν → R

(to be determined) and define a reparameterization of time of the form

R → R, t �→ t + α(ωt), ω ∈ �. (3.13)

It is easy to verify that if ‖α‖C1 is small enough, the above function is invertible and its

inverse has the form

τ �→ τ + α̃(ωτ). (3.14)

The reparameterization of time (3.13) induces also a diffeomorphism of the torus Tν

Tν → Tν , ϕ �→ ϕ + α(ϕ) (3.15)

whose inverse is given by

Tν �→ Tν , ϑ �→ ϑ + α̃(ϑ). (3.16)

The corresponding composition operators A,A−1 acting on the periodic functions h :

Tν × Td → C are given by

Ah(ϕ,x) := h(ϕ + ωα(ϕ),x), A−1h(ϑ ,x) := h(ϑ + ωα̃(ϑ),x). (3.17)

According to (2.128), under the reparameterization of time defined by

A(ωt)v(t,x) := v(t + α(ωt),x), A(ωt)−1v(τ ,x) := v(τ + α̃(ωτ),x), (3.18)
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the vector field L2(ϕ) transforms into the vector field

L3(ϑ) := 1

ρ(ϑ)
L2(ϑ + ωα̃(ϑ))

= 1

ρ(ϑ)

(
−i(A−1a1)(ϑ)|D| + iεR(2)(ϑ + ωα̃(ϑ)) −(A−1a0)(ϑ)+ iεR(2)(ϑ + ωα̃(ϑ))

−(A−1a0)(ϑ)− iεR(2)(ϑ + ωα̃(ϑ)) +i(A−1a1)(ϑ)|D| − iεR(2)(ϑ + ωα̃(ϑ))

)
(3.19)

where

ρ(ϑ) := 1 + ω · ∂ϕα(ϑ + ωα̃(ϑ)) = A−1[1 + ω · ∂ϕα](ϑ). (3.20)

We want to choose the function α(ϕ) so that

(A−1a1)(ϑ)

ρ(ϑ)
= m, ∀ϑ ∈ Tν , (3.21)

for some constant m ∈ R to be determined. The above equation leads to

m
(
1 + ω · ∂ϕα(ϕ)

) = a1(ϕ) ∀ϕ ∈ Tν . (3.22)

Integrating on Tν we fix the value of m as

m := 1

(2π)ν

∫
Tν

a1(ϕ)dϕ (3.23)

and then, assuming that ω ∈ DC(γ , τ), for some γ , τ > 0 (see the definition (2.16)), we get

α(ϕ) = (ω · ∂ϕ)−1
[a1

m
− 1
]
(ϕ) (3.24)

where the operator (ω ·∂ϕ)−1 is defined by (2.15). Since the function a1 is real valued, then

m is real and α is a real-valued function.

By (3.19)–(3.24), the vector field L3(ϑ) has then the form

L3(ϑ) :=
(

−im|D| + iεR(3)(ϑ) a2(ϑ)+ iεR(3)(ϑ)

a2(ϑ)− iεR(3)(ϑ) im|D| − iεR(3)(ϑ)

)
, (3.25)

where

a2(ϑ) := ρ−1(ϑ)A−1[a0](ϑ), R(3)(ϑ) := ρ(ϑ)−1R(2)(ϑ + ωα̃(ϑ)). (3.26)
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The operator L3(ϑ) is still a Hamiltonian vector field in complex coordinates, since

L2(ϑ) is Hamiltonian and the reparameterization of time A preserves the Hamilton-

ian structure (see Section 2.5.1). We point out that by (3.23) and (3.8), the constant m

is independent of the parameter ω ∈ �, whereas by (3.24), (3.17), (3.20), and (3.26), the

functions α, α̃, ρ,a2 and the operator R(3) depend in a Lipschitz way with respect to the

parameter ω ∈ DC(γ , τ).

Lemma 3.2. Let τ > 0, γ ∈ (0, 1) and ω ∈ DC(γ , τ) (recall (2.16)). Then there exists

a constant σ = σ(τ) > 0 such that if q > s0 + σ , there exists δq ∈ (0, 1) such that if

εγ −1 ≤ δq, for all s0 ≤ s ≤ q− σ the following estimates hold:

|m− 1|, ‖a2‖Lip(γ )
s , ‖ρ±1 − 1‖Lip(γ )

s �q ε, ‖α‖Lip(γ )
s , ‖α̃‖Lip(γ )

s �q εγ
−1 (3.27)

The symmetric operator R(3)(ϑ) defined in (3.26) has the form

R(3)(ϑ)[u] =
N∑
k=1

b(3)k (ϑ ,x)
∫

Td
c(3)k (ϑ ,y)v(y)dy + c(3)k (ϑ ,x)

∫
Td
b(3)k (ϑ ,y)v(y)dy, (3.28)

ϕ ∈ Tν , v ∈ L2
0(T

d), with

‖b(3)k ‖Lip(γ )
s , ‖c(3)k ‖Lip(γ )

s �q 1, k = 1, . . . ,N . (3.29)

�

Proof. The estimates (3.27) follow by (3.23), (3.24), and (3.26) and by the estimates (3.9)

by applying Lemmata 2.1–2.3. The formula (3.28) follows by (3.10), (3.12), and (3.26), by

defining b(3)k := 2− 1
4 ρ− 1

2 b(1)k , c(3)k := 2− 1
4 ρ− 1

2 c(1)k , k = 1, . . . ,N and the estimates (3.29) follow

by (3.11) and (3.27) and Lemmata 2.1 and 2.3. �

3.4 Symplectic reduction up to order |D|−M

Introducing the notation

T :=
(

−Id 0

0 Id

)
, Id : L2

0(T
d) → L2

0(T
d) is the identity (3.30)

and renaming the variable ϑ = ϕ, we can write the vector field in (3.25) as

L3(ϕ) = imT |D| + A2(ϕ)+ εR3(ϕ), (3.31)
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where

A2(ϕ) :=
(

0 a2(ϕ)

a2(ϕ) 0

)
, R3(ϕ) := i

(
R(3)(ϕ) R(3)(ϕ)

−R(3)(ϕ) −R(3)(ϕ)

)
, ϕ ∈ Tν (3.32)

and the operator R(3)(ϕ), defined in (3.26), has the form (3.28). The aim of this section is

to conjugateL3(ϕ) to the vector fieldL4(ϕ) defined in (3.70) which is the sum of a diagonal

operator and a regularizing remainder. Since the operator R(3)(ϕ) is finite rank operator

of the form (3.28), it is already regularizing. Hence in the following two Sections 3.4.1

and 3.4.2, we neglect the operator R3(ϕ) in (3.31) and we work with the vector field

L(0)3 (ϕ) := imT |D| + A2(ϕ), ϕ ∈ Tν . (3.33)

We compute the complete conjugation of L3 in Section 3.31.

3.4.1 Block-decoupling up to order |D|−M
Given a positive integer M , our goal is to conjugate the operator L(0)3 in (3.33) to

the operator L(M)3 in (3.51) whose off-diagonal part QM is an operator of order −M . This

is achieved by applying iteratively M-times a conjugation map which transforms the

off-diagonal block operator into a 1-smoother ones. For such a procedure we will use

the class of ϕ-dependent Fourier multipliers introduced in Section 2.4.

We describe the inductive step of such a procedure. We assume that q > s0 + σ + M ,

where the constant σ = σ(τ) is given in Lemma 3.2 and M ∈ N is the number of the

steps of this regularization procedure. In this section we use the following notation: If

n ∈ {1, . . . ,M}, s ≥ 0, we write

a �n,s b ⇐⇒ a ≤ C(n, s)b

for some constant C(n, s) > 0 (that may depend also on d, τ , ν).

At the nth step, we have a Hamiltonian vector field

L(n)3 (ϕ) = imT |D| + Rn(ϕ)+Qn(ϕ), (3.34)

where Rn(ϕ) = Rn(ϕ;ω), Qn(ϕ) = Qn(ϕ;ω), ω ∈ DC(γ , τ) are Hamiltonian vector fields of

the form

Rn := i

(
Op(rn) 0

0 −Op(rn)

)
, Qn := i

(
0 Op(qn)

−Op(qn) 0

)
(3.35)
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and rn(ϕ, ·) ∈ S−1, qn(ϕ, ·) ∈ S−n. Moreover they satisfy the estimates

||Rn||Lip(γ )−1,s , ||Qn||Lip(γ )−n,s �n,q ε, ∀s0 ≤ s ≤ q− n− σ (3.36)

where σ = σ(τ) > 0 is given in Lemma 3.2. Recall that the definition of the norm || · ||m,s is

given in (2.103).

Initialization. The Hamiltonian vector field L(0)3 (ϕ) in (3.33) satisfies the assumptions

(3.34)–(3.36), with R0(ϕ) = 0 and Q0(ϕ) = A2(ϕ) ∈ OPS0, by Lemma 3.2.

Inductive step. We consider a symplectic transformation of the form

Vn := exp(iVn) (3.37)

where the operator Vn has the form

Vn :=
(

0 Op(vn)

−Op(vn) 0

)
, vn ∈ S−n−1. (3.38)

We write

Vn = Id + iVn + Vn,≥2, Vn,≥2 :=
∑
k≥2

ik

k!V
k
n . (3.39)

In the above formula, with a slight abuse of notations we denote by Id : L2
0(T

d) → L2
0(T

d)

the identity on the space L2
0(T

d). By Lemma 2.15, one gets Vn,≥2 ∈ OPS−2(n+1). We now

compute the push-forward (Vn)ω∗L
(n)
3 (ϕ). By (2.127) one has

(Vn)ω∗L
(n)
3 (ϕ) = Vn(ϕ)

−1
(
L(n)3 (ϕ)Vn(ϕ)− ω · ∂ϕVn(ϕ)

)
. (3.40)

Since ω · ∂ϕVn(ϕ) = ω · ∂ϕ (Vn(ϕ)− Id), by Lemmata 2.14 and 2.15, one has

−Vn(ϕ)
−1ω · ∂ϕVn(ϕ) = −Vn(ϕ)

−1ω · ∂ϕ (Vn(ϕ)− Id) ∈ OPS−n−1. (3.41)

Moreover

L(n)3 (ϕ)Vn(ϕ)
(3.34)= iVn(ϕ)mT |D| + [imT |D|, iVn(ϕ)] +Qn(ϕ)+ Rn(ϕ)

+ [imT |D|,Vn,≥2(ϕ)] + (Rn(ϕ)+Qn(ϕ))(Vn(ϕ)− Id). (3.42)
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Note that [imT |D|,Vn,≥2(ϕ)] ∈ OPS−2n−1 ⊂ OPS−n−1, (Rn(ϕ)+Qn(ϕ))(Vn(ϕ)−Id) ∈ OPS−n−2 ⊂
OPS−n−1, therefore the only off-diagonal term of order −n (which we want to eliminate)

is given by [imT |D|, iVn(ϕ)] +Qn(ϕ). We want to choose Vn(ϕ) so that

[imT |D|, iVn(ϕ)] +Qn(ϕ) = 0. (3.43)

By a direct calculation, one has

[imT |D|, iVn(ϕ)] +Qn(ϕ)

=
(

0 Op (2m|j|vn(ϕ, |j|)+ iqn(ϕ, |j|))
Op (2m|j|vn(ϕ, |j|)+ iqn(ϕ, |j|)) 0

)
. (3.44)

Then [imT |D|, iVn] +Qn = 0 if we choose the symbol vn so that

vn(ϕ,α) := − iqn(ϕ,α)

2mα
, ∀ϕ ∈ Tν , ∀α ∈ σ0(

√−�). (3.45)

Since qn(ϕ, ·) ∈ S−n, the symbol vn(ϕ, ·) ∈ S−n−1 for any ϕ ∈ Tν .

Lemma 3.3. For any s0 ≤ s ≤ q − n − σ , the operators Vn(ϕ),Vn(ϕ) − Id ∈ S−n−1 and

Vn,≥2(ϕ) ∈ OPS−2(n+1), see (3.38) and (3.39) (which depend on the parameter ω ∈ DC(γ , τ))

satisfy the estimates

||Vn||Lip(γ )−n−1,s, ||V±1
n − Id||−n−1,s, ||Vn,≥2||−2(n+1),s �n,q ε. (3.46)

�

Proof. The estimate for the operator Vn follows by the definitions (3.38) and (3.45) and

by the estimates (3.27) and (3.36). The estimates for Vn(ϕ) − Id and Vn,≥2(ϕ) follow by

applying Lemma 2.15, using the estimate on Vn(ϕ). �

By (3.40)–(3.43), one gets

L(n+1)
3 (ϕ) = imT |D| + Rn(ϕ)+ Pn(ϕ), (3.47)

where

Pn := (V−1
n − Id)Rn + V−1

n

([imT |D|,Vn,≥2] + (Rn +Qn)(Vn − Id)− ω · ∂ϕ(Vn − Id)
)
. (3.48)

Note that Pn is the only operator which contains off-diagonal terms. In the next lemma,

we provide some estimates on the remainder Pn.
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Lemma 3.4. For any s0 ≤ s ≤ q − σ − n − 1, the operator Pn(ϕ) = Pn(ϕ;ω) ∈ OPS−n−1,

ω ∈ DC(γ , τ) satisfies the estimates

||Pn||Lip(γ )−n−1,s �n,q ε. (3.49)

�

Proof. The Lemma follows by Lemma 3.3, the estimates (3.36), by applying the property

(2.107) and Lemma 2.14 to estimate all the terms in (3.48). �

By (3.47) and (3.49), the vector field L(n+1)
3 (ϕ) has the same form (3.34) and (3.35)

with Rn+1(ϕ), Qn+1(ϕ) that satisfy the estimates (3.36) at the step n + 1. Since L(n)3 is a

Hamiltonian vector field and Vn is symplectic, the vector field L(n+1)
3 is still Hamiltonian.

We can repeat iteratively the procedure of Lemmata 3.3 and 3.4. Applying it M-times,

we derive the following proposition.

Proposition 3.1. Let γ ∈ (0, 1), τ > 0,M ∈ N, q > s0+σ+M . Then there exists a constant

δq ∈ (0, 1) (possibly smaller than the one appearing in Lemma 3.2) such that for εγ −1 ≤ δq,

for any s0 ≤ s ≤ q − σ − M , for any ω ∈ DC(γ , τ), the following holds: the symplectic

invertible map ṼM (ϕ) := V0(ϕ) ◦ . . . ◦ VM−1(ϕ) ∈ OPS0 satisfies the estimate

||Ṽ±1
M ||Lip(γ )0,s , ||ṼT

M ||Lip(γ )0,s �M ,q 1, (3.50)

and the push forward L(M)3 (ϕ) := (ṼM )ω∗L
(0)
3 (ϕ) of the Hamiltonian vector field L(0)3 (ϕ) in

(3.33) is the Hamiltonian vector field

L(M)3 (ϕ) = imT |D| + RM (ϕ)+QM (ϕ) (3.51)

where RM (ϕ) = RM (ϕ;ω),QM (ϕ) = QM (ϕ;ω), ω ∈ DC(γ , τ) have the form

RM := i

(
Op(rM ) 0

0 −Op(rM )

)
, rM (ϕ, ·) ∈ S−1, (3.52)

QM := i

(
0 Op(qM )

−Op(qM ) 0

)
, qM (ϕ, ·) ∈ S−M (3.53)

and satisfy the estimates

||RM ||Lip(γ )−1,s , ||QM ||Lip(γ )−M ,q �M ,s ε, ∀s0 ≤ s ≤ q− σ −M . (3.54)

�
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Proof. We need only to prove the estimates (3.50). For any n = 1, . . . ,M − 1 one has

||Vn||0,s ≤ 1 + ||Vn − Id||0,s (2.107)≤ 1 + ||Vn − Id||−n−1,s

(3.46)

�n,s 1,

for any s0 ≤ s ≤ q − n − σ . Since n ≤ M , one has that the above estimate holds for

any s0 ≤ s ≤ q − σ − M . Applying Lemma 2.14 and using the above estimate one gets

the estimate (3.50) for ṼM . The estimates for Ṽ−1
M follow by similar arguments and the

estimates for ṼT
M follow since ||ṼT

M ||0,s ≤ ||ṼM ||0,s and then the lemma is proved. �

The operator L(M)3 (ϕ) in (3.51) is a space-diagonal operator up to the smoothing remainder

QM (ϕ) ∈ OPS−M . The prize which has been paid is that there is a loss of regularity of M

derivatives with respect to the variable ϕ. In any case, the number of regularizing steps

M will be fixed in (3.68).

3.4.2 Reduction to constant coefficients of the diagonal reminder RM

Our next aim is to eliminate the ϕ dependence from the diagonal remainderRM (ϕ)

of the Hamiltonian vector field L(M)3 (ϕ) defined in (3.51). In order to achieve this purpose,

we look for a transformation of the form

E(ϕ) := exp(iE(ϕ)), E(ϕ) :=
(
Op(e(ϕ, |j|)) 0

0 −Op(e(ϕ, |j|))

)
, e(ϕ, ·) ∈ S−1. (3.55)

For any ϕ ∈ Tν ,

E(ϕ)±1 =
(
Op (exp(±ie(ϕ, |j|))) 0

0 Op (exp(±ie(ϕ, |j|)))

)
(3.56)

and

E(ϕ)−1ω · ∂ϕE(ϕ) =
(
Op
(
iω · ∂ϕe(ϕ, ·)

)
0

0 Op
(
iω · ∂ϕe(ϕ, ·)

)) . (3.57)

Therefore by (2.117), (3.56), and (3.57) and recalling the properties stated in (2.100), the
vector field L(M)4 (ϕ) := Eω∗L

(M)
3 (ϕ) is given by

L(M)4 := E−1L(M)3 E − E(ϕ)−1ω · ∂ϕE

=
(
Op (exp(−ie)) (im|D| + iOp(rM ))Op (exp(ie)) 0

0 Op (exp(−ie)) (im|D| + iOp(rM ))Op (exp(ie))

)
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+ E−1QME −
(
Op
(
iω · ∂ϕe

)
0

0 Op
(
iω · ∂ϕe

))

=
(
im|D| + Op

(
irM − iω · ∂ϕe

)
0

0 −im|D| + Op
(
irM − iω · ∂ϕe

))+ E−1QME . (3.58)

To shorten notations, in the above chain of equalities, we avoided to write the depen-

dence on ϕ. In order to eliminate the ϕ-dependence from the symbol rM (ϕ, |j|), we need

to solve the equation

−ω · ∂ϕe(ϕ, |j|)+ rM (ϕ, |j|) = c(|j|) ∈ R, ∀j ∈ Zd \ {0}, ∀ϕ ∈ Tν

or equivalently

−ω · ∂ϕe(ϕ,α)+ rM (ϕ,α) = c(α), ∀(ϕ,α) ∈ Tν × σ0(
√−�), c(α) ∈ R. (3.59)

Integrating with respect to ϕ the above equation, we determine the value of the constant

c(α), namely

c(α) := 1

(2π)ν

∫
Tν

rM (ϕ,α)dϕ, ∀α ∈ σ0(
√−�) (3.60)

and then we choose

e(ϕ,α) := (ω · ∂ϕ)−1 (rM (ϕ,α)− c(α)) , ∀(ϕ,α) ∈ Tν × σ0(
√−�), (3.61)

(note that ω ∈ DC(γ , τ) and recall the definition (2.15)). By (3.53), (3.56), (3.58), and (3.59),

one gets

L(M)4 (ϕ) = Eω∗L
(M)
3 (ϕ) = iDMT +QM ,4(ϕ), (3.62)

where the diagonal operator DM is defined as

DM := m|D| + Op(c(|j|)) = diagj∈Zd\{0} (m|j| + c(|j|)) (3.63)

and

QM ,4(ϕ) := E(ϕ)−1QM (ϕ)E(ϕ) = i

(
0 Op(qM ,4)

−Op(qM ,4) 0

)
, qM ,4 := qMexp(−2ie). (3.64)

Lemma 3.5. Let γ ∈ (0, 1), τ > 0, M ∈ N, q > s0 + σ + 2τ + M + 1. Then there exists

a constant δq ∈ (0, 1) (possibly smaller than the one appearing in Proposition 3.1) such
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that for εγ −1 ≤ δq, for any s0 ≤ s ≤ q − M − σ − 2τ − 1, the following holds: for any

α ∈ σ0(
√−�), the constant c(α) = c(α;ω), given in (3.60), is real and defined for all the

parameters ω ∈ DC(γ , τ). Furthermore it satisfies the Lipschitz estimate

sup
α∈σ0(

√−�)
|c(α)|Lip(γ )α �M ,q ε. (3.65)

The symplectic invertible operator E(ϕ) = E(ϕ;ω) ∈ OPS0, ω ∈ DC(γ , τ), defined in (3.55)

satisfies the estimates

||E±1||Lip(γ )0,s , ||ET ||Lip(γ )0,s �M ,q 1. (3.66)

The Hamiltonian vector field QM ,4(ϕ) = QM ,4(ϕ;ω) ∈ OPS−M , ω ∈ DC(γ , τ) defined in (3.64)

satisfies the estimates

||QM ,4||Lip(γ )−M ,s �M ,q ε. (3.67)

�

Proof. Since the remainderRM in (3.52) is aHamiltonian vector field, thenOp(rM ) is self-

adjoint, hence by (2.101) the symbol rM (ϕ,α) is real, implying that, by (3.60), c(α) is real

for any α ∈ σ0(
√−�). The estimate (3.65) follows by (3.60) and (3.54). The estimates (3.66)

follow by (3.56), (3.61), (3.54), and (3.65) (using also Lemma 2.2 to estimate ‖exp(ie)‖s.)
The estimate (3.67) follows by Lemma 2.14 and by the estimates (3.54) and (3.66). �

3.4.3 Conjugation of the operator L3 in (3.31)

Now we compute the conjugation of the vector field L3 = L(0)3 + R3 in (3.31) (see

(3.32) and (3.33)). First, we link the number of regularization steps with the regularity q

of the functions a(ϕ),bk(ϕ,x), ck(ϕ,x), k = 1, . . . ,N (recall (1.2), (1.3)). We define

M = M(q) := [q/2], μ = μ(τ ,d) := d− 1

2
+ σ + 2τ + 1 (3.68)

and we define the map

T := ṼM ◦ E . (3.69)

By (3.51) and (3.62) one gets that

L4(ϕ) := (T )ω∗L3(ϕ) = iDMT + R4(ϕ) (3.70)
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where the diagonal operatorDM is defined in (3.63), T is defined in (3.30) and the operator

R4 is defined by

R4(ϕ) := QM ,4(ϕ)+ εT (ϕ)−1R3(ϕ)T (ϕ), ϕ ∈ Tν . (3.71)

Lemma 3.6. Let γ ∈ (0, 1), τ > 0, q > 2(s0 + μ), where μ is defined in (3.68). Then

there exists δq ∈ (0, 1) (possibly smaller than the one appearing in Lemma 3.5) such that

if εγ −1 ≤ δq, for all s0 ≤ s ≤ [q/2] − μ, the following holds: the symplectic invertible

operator T (ϕ) = T (ϕ;ω) ∈ OPS0, ω ∈ DC(γ , τ) defined in (3.55) satisfies the estimates

||T ±1||Lip(γ )0,s , ||T T ||Lip(γ )0,s �q 1. (3.72)

As a consequence one has T ±1 ∈ C1
(
Tν ,B(Hs

0(T
d))
)
.

The remainder R4(ϕ) = R4(ϕ;ω), ω ∈ DC(γ , τ) defined in (3.71) satisfies the estimates

|R4|Lip(γ )s �q ε (3.73)

where the block-decay norm | · |Lip(γ )s is defined in (2.76)-(2.79). �

Proof. By the choices of the constants in (3.68), one has that if s0 ≤ s ≤ [q/2] − μ, then

s+ d− 1

2
≤ M and s0 ≤ s ≤ q−M − σ − 2τ − 1.

The estimates (3.72) follow by Lemma 2.14 and by the estimates (3.50) and (3.66). The

fact that T ±1 ∈ C1
(
Tν ,B(Hs

0(T
d))
)
follows by applying Lemma 2.13.

Now we prove the estimate (3.73). We estimate separately the two terms in (3.71).

Estimate of QM ,4. By Lemma 2.16 one gets

|QM ,4|Lip(γ )s � ||QM ,4||Lip(γ )−s−d−1
2 ,s

hence we can apply the estimate (3.67), obtaining that ||QM ,4||Lip(γ )−s−d−1
2 ,s

� ||QM ,4||Lip(γ )−M ,s �M ,q

ε �q ε, since the constant M = M(q) = [q/2].
Estimate of T −1R3T . Recalling the definition of R3 given in (3.32) and using that the

operator R(3) has the form (3.28), defining

B1,k := (ib(3)k ,−ib(3)k ), B2,k := (b(3)k ,b(3)k ), C1,k := (ic(3)k ,−ic(3)k ), C2,k := (c(3)k , c(3)k ),

k = 1, . . . ,N
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we have that for u = (u,u) ∈ L2
0(T

d),

R3[u] =
N∑
k=1

B1,k〈C2,k, u〉L2x + C1,k〈B2,k, u〉L2x

where we recall that the bilinear form 〈·, ·〉L2x is defined in (2.125). Thus

(T −1R3T )[u] =
N∑
k=1

B̃1,k〈C̃2,k, u〉L2x + C̃1,k 〈̃B2,k, u〉L2x ,

B̃1,k := T −1B1,k, B̃2,k := T TB2,k, C̃1,k := T −1C1,k, C̃2,k := T TC2,k, k = 1, . . . ,N .

The operator εT −1R3T satisfies the claimed inequality, by applying the estimates (3.29),

(3.72) and Lemmata 2.12, 2.10. �

4 Block-Diagonal Reducibility

In this section, we carry out the second part of the reduction of L(ϕ) to a block-diagonal

operatorwith constant coefficients. Our goal is to block-diagonalize the linearHamilton-

ian vector fieldL4(ϕ) obtained in (3.70).We are going to perform an iterative Nash–Moser

reducibility scheme for the linear Hamiltonian vector field

L0(ϕ) := L4(ϕ) = D0 + R0(ϕ), (4.1)

where

D0 = i

(
−D(1)

0 0

0 D(1)
0

)
, D(1)

0 := DM = diagj∈Zd\{0} (m|j| + c(|j|)) (4.2)

(see (3.63)) and R0(ϕ) := R4(ϕ), ϕ ∈ Tν , is a Hamiltonian vector field of the form

R0(ϕ) = i

(
R(1)

0 (ϕ) R(2)
0 (ϕ)

−R(2)

0 (ϕ) −R(1)

0 (ϕ)

)
, R(1)

0 (ϕ) = R(1)
0 (ϕ)

∗, R(2)
0 (ϕ) = R(2)

0 (ϕ)
T (4.3)

satisfying, by (3.73), the estimate

|R0|Lip(γ )s �q ε, ∀s0 ≤ s ≤ [q/2] − μ (4.4)

where the constant μ is defined in (3.68). According to the block representation (2.45),

the operator D(1)
0 can be written as

D(1)
0 = diagα∈σ0(

√−�)μ
0
αIα, μ0

α := mα + c(α), ∀α ∈ σ0(
√−�) (4.5)
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where Iα : Eα → Eα is the identity (recall (2.3), (2.51)) and the real constants m and c(α)

satisfy the estimates (3.27) and (3.65). We define

N−1 := 1, Nk := Nχk

0 ∀k ≥ 0, χ := 3/2 (4.6)

(then Nk+1 = Nχ

k , ∀k ≥ 0) and for τ ,d > 0, we define the constants

s0 := 2s0, a := 4τ + 8d+ 3, b := a+ 1, Sq := [q/2] −μ− b, with q > 2(s0 +μ+ b).

(4.7)

In order to state the theorem below, we recall the definition of the space S(Eα),α ∈
σ0(

√−�) given in (2.67), the definition of the norm ‖ · ‖Op(α,β),α,β ∈ σ0(
√−�) given in

(2.62), the identity Iα,β ,α,β ∈ σ0(
√−�) in (2.63), the definition of ML(A) in (2.64) and the

definition of MR(B) in (2.65).

Theorem 4.1 (KAM reducibility). Let γ ∈ (0, 1), τ ,d > 0 and let q satisfy (4.7). There

exist, N0 = N0(q, τ ,d, ν,d) ∈ N large enough, δq = δ(q, τ ,d, ν,d) ∈ (0, 1) (possibly smaller

than the one appearing in Lemma 3.6) such that, if

εγ −1 ≤ δq (4.8)

then, for all k ≥ 0:

(S1)k There exists a Hamiltonian vector field

Lk(ϕ) := Dk + Rk(ϕ), ϕ ∈ Tν , (4.9)

Dk = i

(
−D(1)

k 0

0 D(1)
k

)
, D(1)

k := diagα∈σ0(
√−�)[D(1)

k ]αα, [D(1)
k ]αα ∈ S(Eα),

∀α ∈ σ0(
√−�) (4.10)

defined for all ω ∈ �γ

k , where �γ

0 := DC(γ , τ) (see (2.16)) and for k ≥ 1,

�
γ

k :=
{
ω ∈ �γ

k−1 : ‖A−
k−1(,α,β)

−1‖Op(α,β) ≤ αdβd〈〉τ
γ

,

∀(,α,β) ∈ Zν × σ0(
√−�)× σ0(

√−�),
(,α,β) �= (0,α,α), 〈,α,β〉 ≤ Nk−1 and ‖A+

k−1(,α,β)
−1‖Op(α,β)

≤ 〈〉τ
γ 〈α + β〉 ,

∀(,α,β) ∈ Zν × σ0(
√−�)× σ0(

√−�), 〈,α,β〉 ≤ Nk−1

}
. (4.11)
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The operators A±
k−1(,α,β) : B(Eβ ,Eα) → B(Eβ ,Eα) are defined by

A−
k−1(,α,β) := ω · Iα,β +ML([D(1)

k−1]αα)−MR([D(1)
k−1]ββ), (4.12)

A+
k−1(,α,β) := ω · Iα,β +ML([D(1)

k−1]αα)+MR([D(1)
k−1]ββ). (4.13)

For k ≥ 0, for all α ∈ σ0(
√−�), the self-adjoint operator [D(1)

k ]αα ∈ S(Eα)

satisfies

‖[D(1)
k − D(1)

0 ]αα‖Lip(γ )
HS �q εα

−Sq ∀α ∈ σ0(
√−�). (4.14)

The remainder Rk is Hamiltonian and ∀s ∈ [s0,Sq],

|Rk|Lip(γ )s ≤ |R0|Lip(γ )s+b N−a
k−1, |Rk|Lip(γ )s+b ≤ |R0|Lip(γ )s+b Nk−1. (4.15)

Moreover, for k ≥ 1,

Lk(ϕ) = (�k)ω∗Lk−1(ϕ), �k−1 := exp(�k−1) (4.16)

where the map �k−1 is a Hamiltonian vector field and satisfies

|�k−1|Lip(γ )s ≤ |R0|Lip(γ )s+b γ −1N2τ+4d+1
k−1 N−a

k−2. (4.17)

(S2)k For all α ∈ σ0(
√−�), there exists a Lipschitz extension to the set DC(γ , τ),

that we denote by [D̃(1)
k ]αα(·) : DC(γ , τ) → S(Eα) of [D(1)

k ]αα(·) : �γ

k → S(Eα)

satisfying, for k ≥ 1,

‖[D̃(1)
k ]αα − [D̃(1)

k−1]αα‖Lip(γ )
HS � α−Sq |Rk−1|Lip(γ )Sq � N−a

k−2α
−Sq |R0|Lip(γ )Sq+b . (4.18)

�

Remark 4.1. The constants τ ,d > 0 in (4.11) will be fixed in the formula (5.1), in Section

5, in order to prove the measure estimate of the set �2γ
∞ defined in (4.77) (see Theorem

5.1). �

4.1 Proof of Theorem 4.1

Proof of (Si)0, i = 1, 2. Properties (4.9)–(4.15) in (S1)0 hold by (4.1)–(4.4) with [D(1)
0 ]αα given

in (4.5) (for (4.15) recall that N−1 := 1, see (4.6)). Moreover, since the constants m and

c(α) = c(α;ω) are real, [D(1)
0 ]αα is self-adjoint, then there is nothing else to verify.

(S2)0 holds, since the constant m is independent of ω and c(α) = c(α;ω), α ∈
σ0(

√−�), is already defined for all ω ∈ DC(γ , τ).
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4.2 The reducibility step

We now describe the inductive step, showing how to define a symplectic transformation

�k := exp(�k) so that the transformed vector field Lk+1(ϕ) = (�k)ω∗Lk(ϕ) has the desired

properties. To simplify notations, in this section we drop the index k and we write +
instead of k + 1. At each step of the iteration we have a Hamiltonian vector field

L(ϕ) = D + R(ϕ), (4.19)

where

D := i

(
−D(1) 0

0 D(1)

)
, D(1) := diagα∈σ0(

√−�)[D(1)]αα, [D(1)]αα ∈ S(Eα) ∀α ∈ σ0(
√−�)

(4.20)

and R(ϕ) is a Hamiltonian vector field, namely it has the form

R = i

(
R(1) R(2)

−R(2) −R(1)

)
, R(1)(ϕ) = R(1)(ϕ)∗, R(2)(ϕ) = R(2)(ϕ)T , ∀ϕ ∈ Tν . (4.21)

Let us consider a transformation

�(ϕ) := exp(�(ϕ)), �(ϕ) := i

(
�(1)(ϕ) �(2)(ϕ)

−�(2)
(ϕ) −�(1)

(ϕ)

)
, ϕ ∈ Tν (4.22)

with �(1)(ϕ) = �(1)(ϕ)∗, �(2)(ϕ) = �(2)(ϕ)T , for all ϕ ∈ Tν . Writing

� = Id +� +�≥2, �≥2 :=
∑
k≥2

�k

k! . (4.23)

By (2.127) we have �ω∗L(ϕ) = �(ϕ)−1
(
L(ϕ)�(ϕ)− ω · ∂ϕ�(ϕ)

)
. By the expansion (4.23),

recalling the definition of the projector operator �NR given in (2.74), one gets that

L(ϕ)�(ϕ)− ω · ∂ϕ�(ϕ) = �(ϕ)D + (−ω · ∂ϕ� + [D,�(ϕ)] +�NR(ϕ)
)+�⊥

NR(ϕ)

− ω · ∂ϕ�≥2(ϕ)+ [D,�≥2(ϕ)] + R(ϕ)(�(ϕ)− Id). (4.24)

We want to determine the operator �(ϕ) so that

−ω · ∂ϕ�(ϕ)+ [D,�(ϕ)] +�NR(ϕ) = �NRdiag, (4.25)
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where recalling the definitions (2.73) and (2.74)

�NRdiag := i

(
�NR(1)

diag 0

0 −�NR(1)

diag

)
. (4.26)

Lemma 4.1 (Homological equation). For all ω ∈ �γ

k+1 (see (4.11)), there exists a solution

� of the homological equation (4.25), which is Hamiltonian and satisfies

|�|Lip(γ )s � N2τ+4d+1γ −1|R|Lip(γ )s . (4.27)

�

Proof. Recalling (4.21) and (4.22), the equation (4.25) is split in the two equations

−iω · ∂ϕ�(1)(ϕ)+ [D(1),�(1)(ϕ)] + i�NR(1)(ϕ) = i�NR(1)
diag, (4.28)

−iω · ∂ϕ�(2)(ϕ)+ (D(1)�(2)(ϕ)+�(2)(ϕ)D(1)
)+ i�NR(2)(ϕ) = 0. (4.29)

Using the decomposition (2.45) and recalling (2.72), the equations (4.28) and (4.29) become

for any α,β ∈ σ0(
√−�),  ∈ Zν

ω · [�̂(1)()]βα + [D(1)]αα[�̂(1)()]βα − [�̂(1)()]βα[D(1)]ββ = −i[�̂NR
(1)
()]βα + i[�̂NR

(1)

diag()]βα
(4.30)

ω · [�̂(2)()]βα + [D(1)]αα[�̂(2)()]βα + [�̂(2)()]βα[D
(1)]ββ = −i[�̂NR

(2)
()]βα . (4.31)

By the definitions (4.12) and (4.13), namely setting

A−(,α,β) := ω · Iα,β +ML([D(1)]αα)−MR([D(1)]ββ), A+(,α,β)

:= ω · Iα,β +ML([D(1)]αα)+MR([D(1)]ββ) (4.32)

the equations (4.30) and (4.31) can be written in the form

A−(,α,β)[�̂(1)()]βα = −i[�̂NR
(1)
()]βα + i[�̂NR

(1)

diag()]βα , A+(,α,β)[�̂(2)()]βα
= −i[�̂NR

(2)
()]βα .
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Then, since ω ∈ �
γ

k+1, recalling the Definition (2.74), we can define for any (,α,β) ∈
Zν × σ0(

√−�)× σ0(
√−�)

[�̂(1)()]βα :=
⎧⎨⎩iA−(,α,β)−1[R̂(1)()]βα if (,α,β) �= (0,α,α), 〈,α,β〉 ≤ N

0 otherwise
(4.33)

[�̂(2)()]βα :=
⎧⎨⎩iA+(,α,β)−1[R̂(2)()]βα if 〈,α,β〉 ≤ N

0 otherwise.
(4.34)

We have

‖A−(,α,β)−1‖Op(α,β) ≤ αdβd〈〉τ
γ

, ‖A+(,α,β)−1‖Op(α,β) ≤ 〈〉τ
γ (α + β)

and since [�̂(1)()]βα , [�̂(2)()]βα are nonzero only if 〈,α,β〉 ≤ N , we get immediately that

‖[�̂(1)()]βα‖HS ≤ N τ+2dγ −1‖[R̂(1)()]βα‖HS, ‖[�̂(2)()]βα‖HS ≤ N τ γ −1‖[R̂(2)()]βα‖HS. (4.35)

Hence, recalling the definition (2.76) of the block-decay norm, one gets that

|�(1)|s � N τ+2dγ −1|R(1)|s, |�(2)|s � N τ γ −1|R(2)|s. (4.36)

Now, let ω1,ω2 ∈ �
γ

k+1. As a notation for any function f = f (ω) depending on the

parameter ω, we write �ωf := f (ω1)− f (ω2). By (4.33), one has

�ω[�̂(1)()]βα = i�ωA−(,α,β)−1[R̂(1)(;ω1)]βα + iA−(,α,β;ω2)
−1�ω[R̂(1)()]βα . (4.37)

As in (4.35), one gets

‖A−(,α,β;ω2)
−1�ω[R̂(1)()]βα‖HS � N τ+2dγ −1‖�ω[R̂(1)()]βα‖HS, (4.38)

hence it remains to estimate only the first term in (4.37). We have

�ωA−(,α,β)−1 = −A−(,α,β;ω1)
−1
(
�ωA−(,α,β)

)
A−(,α,β;ω2)

−1, (4.39)

Therefore

‖�ωA−(,α,β)−1‖Op(α,β) ≤ N2τ α2dβ2d

γ 2
‖�ωA−(,α,β)‖Op(α,β). (4.40)
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Moreover

�ωA−(,α,β) = (ω1 − ω2) ·  Iα,β +ML(�ω[D(1)]αα)−MR(�ω[D(1)]ββ) (4.41)

and using that, by (4.5) and (4.14)

[D(1)(ω)]αα = μ0
α(ω)Iα +[D(1)−D(1)

0 ]αα, with ‖[D(1)−D(1)
0 ]αα‖Lip(γ )

HS �q εα
−Sq , ∀α ∈ σ0(

√−�),
(4.42)

we get

ML(�ω[D(1)]αα)−MR(�ω[D(1)]ββ) = �ω

(
μ0
α − μ0

β

)
Iα,β +ML(�ω[D(1) − D(1)

0 ]αα)
−MR(�ω[D(1) − D(1)

0 ]ββ).

Using that the constant m is independent of ω, that is �ωm = 0 and by recalling (4.5)

and (3.65), one gets

|�ω(μ
0
α − μ0

β)| � |�ωc(α)| + |�ωc(β)| � sup
α∈σ0(

√−�)
|c(α)|lip|ω1 − ω2|

� γ −1 sup
α∈σ0(

√−�)
|c(α)|Lip(γ )|ω1 − ω2|

�q εγ
−1|ω1 − ω2|. (4.43)

By (4.42), (4.43) and using the property (2.66) one gets

‖ −ML(�ω[D(1)]αα)+MR(�ω[D(1)]ββ)‖Op(α,β)

�|�ω(μ
α
0 − μ

β

0)|‖Iα,β‖Op(α,β)

+ ‖MR(�ω[D(1) − D(1)
0 ]ββ)−ML(�ω[D(1) − D(1)

0 ]αα)‖Op(α,β)

�q εγ
−1|ω1 − ω2|. (4.44)

Recalling (4.41), we get the estimate

‖�ωA−(,α,β)‖Op(α,β) ≤ (C〈〉 + C ′(q)εγ −1
) |ω1 − ω2|,

for some constants C,C ′(q) > 0, hence, by (4.40), by taking δq in (4.8) small enough (so

that C ′(q)εγ −1 ≤ 1), one gets that for 〈,α,β〉 ≤ N

‖�ωA−(,α,β)−1‖Op(α,β) � N2τ+4d+1γ −2|ω1 − ω2|.
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The above estimate implies that

‖ {�ωA−(,α,β)−1
} [R̂(1)(;ω1)]βα‖HS � N2τ+4d+1γ −2‖[R̂(1)(;ω1)]βα‖HS|ω1 − ω2|. (4.45)

By (4.37), (4.38), and (4.45) we get the estimate

‖�ω[�̂(1)()]βα‖HS � N τ+2dγ −1‖�ω[R̂(1)()]βα‖HS + N2τ+4d+1γ −2‖[R̂(1)(;ω1)]βα‖HS. (4.46)

Thus (4.36) and (4.46) and the definitions (2.76) and (2.77) imply

|�(1)|Lip(γ )s � N2τ+4d+1γ −1|R(1)|Lip(γ )s .

The estimate of �(2) in terms of R(2) follows by similar arguments and then (4.27) is

proved. �

By (4.24) and (4.25), we get

L+(ϕ) := �ω∗L(ϕ) = D+ + R+(ϕ), ϕ ∈ Tν , (4.47)

D+ := D +�NRdiag, R+ := (�−1 − Id)�NRdiag

+�−1
(
�⊥

NR − ω · ∂ϕ�≥2 + [D,�≥2] + R(�− Id)
)
. (4.48)

Lemma 4.2 (The new block-diagonal part). The new block-diagonal part is given by

D+ := D +�NRdiag = i

(
−D(1)

+ 0

0 D(1)

+

)
, D(1)

+ := D(1) +�NR(1)
diag = diagα∈σ0(

√−�)[D(1)
+ ]αα,
(4.49)

where

[D(1)
+ ]αα :=

⎧⎨⎩[D]αα + [R̂(1)(0)]αα if α ≤ N

[D]αα otherwise.
(4.50)

As a consequence

‖[D(1)
+ ]αα − [D]αα‖Lip(γ )

HS � α−Sq |R|Lip(γ )Sq , ∀α ∈ σ0(
√−�). (4.51)

�

Proof. Notice that, since R(1)(ϕ) is selfadjoint, the operators [R̂(1)(0)]αα : Eα → Eα are

self-adjoint, that is [R̂(1)(0)]αα ∈ S(Eα), for any α ∈ σ0(
√−�) and using that [D(1)]αα is self-

adjoint, we get that [D(1)
+ ]αα is self-adjoint for all α ∈ σ0(

√−�). The formula (4.50) follows
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by (4.49) and recalling the definitions (2.73), (2.74). The estimate (4.51) follows by

sup
α∈σ0(

√−�)
αSq‖[D(1)

+ ]αα − [D]αα‖Lip(γ )
HS

(4.50)≤ sup
α∈σ0(

√−�)
αSq‖[R̂(1)(0)]αα‖Lip(γ )

HS

Lemma2.6≤ |R|Lip(γ )Sq (4.52)

which implies the estimate (4.51). �

4.3 The iteration

Let k ≥ 0 and let us suppose that (Si)k are true. We prove (Si)k+1. To simplify notations,

in this proof we write | · |s for | · |Lip(γ )s .

Proof of (S1)k+1. Since the self-adjoint operators [D(1)
k ]αα ∈ S(Eα) are defined on

�
γ

k , the set �
γ

k+1 is well-defined and by Lemma 4.1, the following estimates hold on �γ

k+1

|�k|s �s N
2τ+4d+1
k γ −1|Rk|s

(4.15)

�s N2τ+4d+1
k N−a

k−1γ
−1|R0|s+b, ∀s ∈ [s0, [q/2] − μ]. (4.53)

In particular, by (4.6)–(4.8), taking δq small enough,

|�k|s0 ≤ 1. (4.54)

By (4.54), we can apply Lemma 2.8 to the map �±1
k := exp(±�k), obtaining that

|�±1
k − Id|s �s |�k|s, |�±1

k − Id|s �s |�k|s, ∀s ∈ [s0, [q/2] − μ]. (4.55)

By (4.47), we get Lk+1(ϕ) := (�k)ω∗Lk(ϕ) = Dk+1 + Rk+1(ϕ), where Dk+1 := Dk +�Nk (Rk)diag

and

Rk+1 := (�−1
k − Id)�Nk (Rk)diag +�−1

k

(
�⊥

Nk
Rk − ω · ∂ϕ�k,≥2 + [Dk,�k,≥2] + Rk(�k − Id)

)
.

(4.56)

Since Rk is defined on �γ

k and �k is defined on �γ

k+1, the remainder Rk+1 is defined on

�
γ

k+1 too. Since the remainder Rk is Hamiltonian, the map �k is Hamiltonian, then �k is

symplectic and the operator Lk+1 is Hamiltonian.

Now let us prove the estimates (4.15) for Rk+1. Applying Lemmata 2.6–2.8 and

the estimates (4.53)–(4.55), for any s ∈ [s0, [q/2] − μ], we get

|(�−1
k − Id)�Nk (Rk)diag|s, |�−1

k Rk(�k − Id)|s �s N
2τ+4d+1
k γ −1|Rk|s|Rk|s0 (4.57)

and

|�−1
k �

⊥
Nk

Rk|s �s |�⊥
Nk

Rk|s + N2τ+4d+1
k γ −1|Rk|s|Rk|s0 . (4.58)
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Then, it remains to estimate the term �−1
k

(−ω · ∂ϕ�k,≥2 + [Dk,�k,≥2]
)
in (4.56). A direct

calculation shows that for all n ≥ 2

−ω · ∂ϕ(�n
k )+ [Dk,�

n
k ] =

∑
i+j=n−1

� i
k(−ω · ∂ϕ�k + [Dk,�k])� j

k

(4.25)=
∑

i+j=n−1

� i
k

(
�Nk (Rk)diag −�NkRk

)
�

j
k, (4.59)

therefore using (4.53) and (4.54), Lemmata 2.6 and 2.7, and the estimate (2.85) we get that

for any n ≥ 2, for any s ∈ [s0, [q/2] − μ]∣∣∣− ω · ∂ϕ(�n
k )+ [Dk,�

n
k ]
∣∣∣
s
≤ n2C(s)n

(
|�k|n−1

s0
|Rk|s + |�k|n−2

s0
|�k|s|Rk|s0

)
(4.53),(4.54)≤ 2n2C(s)nN2τ+4d+1

k γ −1|Rk|s|Rk|s0 . (4.60)

The estimate (4.60) implies that∣∣∣ω · ∂ϕ�k,≥2 + [Dk,�k,≥2]
∣∣∣
s
�
∑
n≥2

1

n!
∣∣∣ω · ∂ϕ(�n

k )+ [Dk,�
n
k ]
∣∣∣
s

(4.60)

� N2τ+4d+1
k γ −1|Rk|s|Rk|s0

∑
n≥2

C(s)nn2

n!

�s N
2τ+4d+1
k γ −1|Rk|s|Rk|s0 . (4.61)

Using again (4.53)–(4.55) and Lemma 2.7, we get∣∣∣�−1
k

(−ω · ∂ϕ�k,≥2 + [Dk,�k,≥2]
) ∣∣∣

s
�s N

2τ+4d+1
k γ −1|Rk|s|Rk|s0 , ∀s ∈ [s0, [q/2] − μ]. (4.62)

Collecting the estimates (4.57)–(4.62), we obtain

|Rk+1|s �s |�NkRk|s + N2τ+4d+1
k γ −1|Rk|s|Rk|s0 , ∀s ∈ [s0, [q/2] − μ]. (4.63)

Recalling that Sq = [q/2] − μ − b, see (4.7), using the smoothing property (2.87) and by

(4.8) and (4.15), one gets for any s ∈ [s0,Sq]

|Rk+1|s �s N
−b
k |Rk|s+b + N2τ+4d+1

k γ −1|Rk|s|Rk|s0 , |Rk+1|s+b �s |Rk|s+b. (4.64)

By the second inequality in (4.64)

|Rk+1|s+b ≤ C(s)|Rk|s+b (4.15)≤ C(s)|R0|s+bNk−1 ≤ |R0|s+bNk
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provided Nχ−1
k−1 ≥ C(s) for any k ≥ 0, which is verified by taking N0 > 0 large enough.

Therefore, the second inequality in (4.15) for Rk+1 has been proved. Let us prove the first

inequality in (4.15) at the step k + 1. We have

|Rk+1|s
(4.15)

�s N−b
k Nk−1|R0|s+b + N2τ+4d+1

k N−2a
k−1γ

−1|R0|s0+b|R0|s+b ≤ |R0|s+bN−a
k

provided

Nb−a
k N−1

k−1 ≥ 2C(s), γ −1|R0|s0+b ≤ N2a
k−1N

−a−2τ−4d−1
k

2C(s)
, ∀k ≥ 0

which are verified by (4.4), (4.6)–(4.8), by taking N0 > 0 large enough and δq small enough.

The estimate (4.14) for [D(1)
k+1]αα − [D(1)

0 ]αα follows, since

‖[D(1)
k+1]αα − [D(1)

0 ]αα‖Lip(γ )
HS ≤

k∑
j=0

‖[D(1)
j+1]αα − [D(1)

j ]αα‖Lip(γ )
HS

(4.51),(4.15)

�q α−Sq |R0|Lip(γ )Sq+b
∑
j≥0

N−a
j−1

(4.4)

�q α
−Sqε.

Proof of (S2)k+1. We now construct a Lipschitz extension of the function ω ∈
�
γ

k+1 �→ [D(1)
k+1(ω)]αα ∈ S(Eα), for any α ∈ σ0(

√−�).We apply LemmaM.5 in [39] to functions

with values in S(Eα). Recall that the space S(Eα) is a Hilbert subspace of B(Eα) equipped

by the scalar product defined in (2.59), thus Lemma M.5 in [39] can be applied, since it

holds for functions with values in a Hilbert space. By the inductive hypothesis, there

exists a Lipschitz function [D̃(1)
k ]αα : DC(γ , τ) → S(Eα), satisfying [D̃(1)

k (ω)]αα = [D(1)
k (ω)]αα, for

all ω ∈ �γ

k . For any α ∈ σ0(
√−�), let us define Fk,α(ω) := [D(1)

k+1(ω)]αα − [D(1)
k (ω)]αα, ω ∈ �γ

k+1.

By the estimate (4.51) one has that

‖Fk,α‖Lip(γ )
HS ≤ α−Sq |Rk|Lip(γ )Sq

(4.15)≤ α−Sq |R0|Sq+bN−a
k−1

and then by Lemma M.5 in [39] there exists a Lipschitz extension F̃k,α : DC(γ , τ) → S(Eα)

still satisfying the above estimate. Then we define

[D̃(1)
k+1]αα := [D̃(1)

k ]αα + F̃k,α, ∀α ∈ σ0(
√−�)

and the claimed estimate (4.18) holds at the step k + 1.

Corollary 4.1 (KAM transformation). Let q/2 > s0 + μ + b + 2s0 + 2 (recall (3.68) and

(4.7)). Then ∀ω ∈ ∩k≥0�
γ

k the sequence

�̃k := �0 ◦�1 ◦ · · · ◦�k (4.65)
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is in C1(Tν ,B(Hs
0)) for any 0 ≤ s ≤ Sq − 2 − 2s0 (recall the definition of Sq given in (4.7))

and it converges in ‖ · ‖Lip(γ )
C1(Tν ,B(Hs0))

to an operator �∞ which satisfies

∥∥�±1
∞ − Id

∥∥Lip(γ )
C1(Tν ,B(Hs0))

�q εγ
−1. (4.66)

Moreover, �±1
∞ is symplectic. �

Proof. To simplify notations, we write | · |s instead of | · |Lip(γ )s . First, note that for any

k ≥ 0

�k = exp(�k) = Id + Mk, Mk :=
∑
j≥1

�
j
k

j! (4.67)

with

|Mk|s
(2.86)

�s |�k|s
(4.17)

�s |R0|Lip(γ )s+b γ −1N2τ+4d+1
k N−a

k−1

(4.4)

�q εγ
−1N2τ+4d+1

k N−a
k−1, ∀s0 ≤ s ≤ Sq. (4.68)

Therefore, by applying Lemma 2.11-(ii) one gets that for any 0 ≤ s ≤ Sq − 2 − 2s0,

Mk ∈ W2,∞(Tν ,B(Hs
0)) with ‖Mk‖W2,∞(Tν ,L(Hs0)) �q εγ

−1N2τ+4d+1
k N−a

k−1. By the property (2.11),

applied with p = 1 and E = B(Hs
0), one gets that Mk ∈ C1(Tν ,B(Hs

0)) and

‖Mk‖C1(Tν ,B(Hs0)) ≤ ‖Mk‖W2,∞(Tν ,B(Hs0)) �q εγ
−1N2τ+4d+1

k N−a
k−1, ∀0 ≤ s ≤ Sq − 2 − 2s0. (4.69)

Therefore, one gets that �k ∈ C1(Tν ,B(Hs
0)) and hence �̃k ∈ C1(Tν ,B(Hs

0)) for any k ≥ 0,

using the algebra property of the space C1(Tν ,B(Hs
0)). By (4.65)–(4.67), for any k ≥ 0, one

gets

�̃k+1 = �̃k�k+1 = �̃k + �̃kMk+1, (4.70)

therefore (4.69) imply that

‖�̃k+1‖C1(Tν ,B(Hs0)) ≤ ‖�̃k‖C1(Tν ,B(Hs0))(1 + εk(q)), εk(q) := C(q)εγ −1N2τ+4d+1
k+1 N−a

k . (4.71)

Iterating the above inequality, one then prove that for any k ≥ 0

‖�̃k‖C1(Tν ,B(Hs0)) ≤
k−1∏
j=0

(1 + εj(q)). (4.72)
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Using that

ln

⎛⎝k−1∏
j=0

(1 + εj(q))

⎞⎠ =
k−1∑
j=0

ln(1 + εj(q)) ≤
∑
j≥0

εj(q)
(4.71),(4.7),(4.8)≤ C1(q),

one gets that

‖�̃k‖C1(Tν ,B(Hs0)) ≤ exp(C1(q)) =: C2(q), ∀ν ≥ 0. (4.73)

Now we show that (�̃k)k≥0 is a Cauchy sequence with respect to the norm ‖ · ‖C1(Tν ,B(Hs0)).

One has

‖�̃k+j − �̃k‖C1(Tν ,B(Hs0)) ≤
k+j−1∑
i=k

‖�̃i+1 − �̃i‖C1(Tν ,B(Hs0))
(4.70)

�
k+j−1∑
i=k

‖�̃i‖C1(Tν ,B(Hs0))‖Mi+1‖C1(Tν ,B(Hs0))

(4.73),(4.69)

�q εγ −1
∑
i≥k

N2τ+4d+1
i+1 N−a

i �q εγ
−1N2τ+4d+1

k+1 N−a
k → 0 (4.74)

by using (4.6) and (4.7). Thus �̃k converges with respect to the norm ‖ · ‖C1(Tν ,B(Hs0)) to an

operator �∞ which satisfies the estimate

‖�∞ − Id‖C1(Tν ,B(Hs0)) �q εγ
−1.

Similarly, one can show that

�̃−1
k = �−1

k ◦ . . . ◦�−1
0

is a Cauchy sequence and since �̃−1
k �̃k = Id for any k ≥ 0, �̃−1

k converges to �−1
∞ and the

estimate (4.66) for �−1
∞ holds. Since �k is symplectic for any k ≥ 0, �∞ is a symplectic

map too. �

Let us define for all α ∈ σ0(
√−�), for all ω ∈ DC(γ , τ), the self-adjoint blocks

[D(1)
∞ (ω)]αα as

[D(1)
∞ (ω)]αα := lim

ν→+∞[D̃(1)
ν (ω)]αα. (4.75)

It could happen that�γ

k0
= ∅ (see (4.11)) for some k0. In such a case the iterative process of

Theorem 4.1 stops after finitelymany steps. However, we can always set [D̃(1)
k ]αα := [D̃(1)

k0
]αα,

∀k ≥ k0, for all α ∈ σ0(
√−�) and the functions [D(1)

∞ (·)]αα : DC(γ , τ) → S(Eα) are always

well defined.
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Corollary 4.2 (Final blocks). For any k ≥ 0,α ∈ σ0(
√−�),

‖[D(1)
∞ ]αα − [D̃(1)

k ]αα‖Lip(γ )
HS �q α

−SqεN−a
k−1, ‖[D(1)

∞ ]αα − [D̃(1)
0 ]αα‖Lip(γ )

HS �q α
−Sqε. (4.76)

�

Proof. The bound (4.76) follows by (4.18), (4.15), and (4.4) by summing the telescoping

series. �

Now we define the set

�2γ
∞ :=

{
ω ∈ DC(γ , τ) : ‖A−

∞(,α,β;ω)
−1‖Op(α,β) ≤ αdβd〈〉τ

2γ
,

∀(,α,β) ∈ Zν × σ0(
√−�)× σ0(

√−�),

(,α,β) �= (0,α,α), ‖A+
∞(,α,β;ω)

−1‖Op(α,β) ≤ 〈〉τ
2γ 〈α + β〉 ,

∀(,α,β) ∈ Zν × σ0(
√−�)× σ0(

√−�)
}

(4.77)

where the operators A±
∞(,α,β) = A±

∞(,α,β;ω) : B(Eβ ,Eα) → B(Eβ ,Eα) are defined for

any ω ∈ DC(γ , τ), (,α,β) ∈ Zν × σ0(
√−�)× σ0(

√−�) as

A−
∞(,α,β) := ω · Iα,β +ML([D(1)

∞ ]αα)−MR([D(1)
∞ ]ββ) (4.78)

A+
∞(,α,β) := ω · Iα,β +ML([D(1)

∞ ]αα)+MR([D(1)

∞ ]ββ). (4.79)

Lemma 4.3. One has

�2γ
∞ ⊂ ∩k≥0�

γ

k . (4.80)

�

Proof. It suffices to show that for any k ≥ 0, �2γ
∞ ⊆ �

γ

k . We argue by induction. For

k = 0, since �γ

0 = DC(γ , τ), it follows from the definition (4.77) that �2γ
∞ ⊆ �

γ

0 . Assume

that �2γ
∞ ⊆ �

γ

k for some k ≥ 0 and let us prove that �2γ
∞ ⊆ �

γ

k+1. Let ω ∈ �2γ
∞ . By the

inductive hypothesis ω ∈ �γ

k , hence by Theorem 4.1, the operators [D(1)
k (ω)]αα ∈ S(Eα) are

well defined for all α ∈ σ0(
√−�) and [D(1)

k (ω)]αα = [D̃(1)
k (ω)]αα.

Let (,α,β) ∈ Zν × σ0(
√−�) × σ0(

√−�) with (,α,β) �= (0,α,α), 〈,α,β〉 ≤ Nk. By the

definitions (4.12) and (4.13), also the operators A±
k (,α,β;ω) are well defined. Since ω ∈

�2γ
∞ , the operator A−

∞(,α,β;ω) is invertible and we may write

A−
k (,α,β;ω) = A−

∞(,α,β;ω)+�−
∞(,α,β;ω)

= A−
∞(,α,β;ω)

(
Iα,β + A−

∞(,α,β;ω)
−1�−

∞(,α,β;ω)
)
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where

�−
∞(,α,β;ω) := ML

(
[D(1)

k (ω)]αα − [D(1)
∞ (ω)]αα

)
−MR

(
[D(1)

k (ω)]ββ − [D(1)
∞ (ω)]ββ

)
.

By the property (2.66) and by the estimate (4.76)

‖�−
∞(,α,β;ω)‖Op(α,β) �q N

−a
k−1ε(α

−Sq + β−Sq). (4.81)

Since 〈,α,β〉 ≤ Nk, one has

‖A−
∞(,α,β;ω)

−1�−
∞(, j, j

′;ω)‖Op(α,β) �q
〈〉τ αdβd

γ
N−a
k−1ε(α

−Sq + β−Sq)

�q N
τ+2d
k N−a

k−1εγ
−1 (4.7)−(4.8)≤ 1

2
(4.82)

for N0 > 0 in (4.8) large enough and δq in (4.8) small enough. Thus the operator

A−
k (,α,β;ω) is invertible, with inverse given by the Neumann series. Hence

‖A−
k (,α,β;ω)

−1‖Op(α,β) ≤ ‖A−
∞(,α,β;ω)

−1‖Op(α,β)

1 − ‖A−∞(,α,β;ω)−1�−∞(,α,β;ω)‖Op(α,β)

(4.82)≤ 2‖A−
∞(,α,β;ω)

−1‖Op(α,β)

(4.77)≤ 〈〉τ αdβd
γ

.

By similar arguments, one can also obtain that ‖A+
k (,α,β;ω)

−1‖Op(α,β) ≤ 〈〉τ
γ (α+β) , for any

(,α,β) ∈ Zν × σ0(
√−�) × σ0(

√−�) with 〈,α,β〉 ≤ Nk, then ω ∈ �
γ

k+1 and the proof is

concluded. �

To state the main result of this section, we introduce the operator

D∞ = D∞(ω) := i

(
−D(1)

∞ (ω) 0

0 D(1)

∞ (ω)

)
, D(1)

∞ (ω) := diagα∈σ0(
√−�)[D(1)

∞ (ω)]αα, (4.83)

for any ω ∈ DC(γ , τ), where the self-adjoint operators [D(1)
∞ (ω)]αα ∈ S(Eα), α ∈ σ0(

√−�),
are defined in (4.75). For any ω ∈ DC(γ , τ), the vector field D∞(ω) is a ϕ-independent

block-diagonal bounded linear operator D∞(ω) : Hs
0 → Hs−1

0 , for any s ≥ 1.

Theorem 4.2. Let q/2 > s0 + μ̄ + b + 2s0 + 2. Then there exists a constant δq =
δ(q, τ ,d, ν,d) > 0 (possibly smaller than the one in (4.8)) such that if

εγ −1 ≤ δq, (4.84)
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on the set�2γ
∞ , the Hamiltonian vector fieldL0(ϕ) in (4.1) is conjugated to the Hamiltonian

vector field D∞ by �∞, namely for all ω ∈ �2γ
∞ ,

D∞(ω) = (�∞)ω∗L0(ϕ;ω). (4.85)

�

Proof. Since �2γ
∞

(4.80)⊆ ∩k≥0�
γ

k , the estimate (4.66) holds on the set �2γ
∞ , and

‖�±1
∞ − Id‖Lip(γ )

C1(Tν ,B(Hs0))
�qεγ

−1, ∀0 ≤ s ≤ Sq − 2s0 − 2.

By (4.16) and (4.65), for any k ≥ 1, we get

Lk(ϕ) = (�̃k−1)ω∗L0 = �̃k(ϕ)
−1
(
L0(ϕ)�̃k(ϕ)− ω · ∂ϕ�̃k(ϕ)

) = Dk+Rk(ϕ), �̃k = �0◦. . .◦�k.

(4.86)

For all k ≥ 0, for any s ∈ [0,Sq]

|D(1)
∞ − D(1)

k |Lip(γ )s ≤ |D(1)
∞ − D(1)

k |Lip(γ )Sq = sup
α∈σ0(

√−�)
αSq‖[D(1)

k ]αα − [D(1)
∞ ]αα‖Lip(γ )

HS

(4.76)

�q εN
−a
k−1

k→+∞→ 0 and |Rk|Lip(γ )s

(4.15),(4.4)

�q εN−a
k−1

k→+∞→ 0. (4.87)

Hence, |Lk −D∞|Lip(γ )s
k→+∞→ 0 for all s0 ≤ s ≤ Sq. By applying Lemma 2.11 and the property

(2.11), Rk ∈ W1,∞(Tν ,B(Hs
0)) ⊆ C0(Tν ,B(Hs

0)) for any 0 ≤ s ≤ Sq − 2s0 − 1 with

‖Rk‖C0(Tν ,B(Hs0)) ≤ ‖Rk‖W1,∞(Tν ,B(Hs0)) � |Rk|s+2s0+1 → 0

and

‖Dk − D∞‖B(Hs0) ≤ |Dk − D∞|s+2s0 → 0.

Thus, Lk → D∞ with respect to the norm ‖ · ‖C0(Tν ,B(Hs0)), for any 0 ≤ s ≤ Sq − 2s0 − 1.

Since, by Lemma 4.1, �̃±1
k

k→+∞→ �±1
∞ with respect to the norm ‖ · ‖Lip(γ )

C1(Tν ,B(Hs0))
, formula (4.85)

follows by taking the limit for k → +∞ in (4.86). �

5 Measure Estimates

In this section, we estimate the measure of the set �2γ
∞ defined in (4.77). We fix the

constants τ and d in (4.77) as

d := 2d, τ := ν + 4d. (5.1)

We prove the following theorem:
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Theorem 5.1. Under the same assumptions of Theorem 4.2, one has

|� \�2γ
∞ | = O(γ ). �

The rest of this section is devoted to the proof of Theorem 5.1.

By the definition (4.77), one can write that

� \�2γ
∞ = (� \ DC(γ , τ)) ∪ (DC(γ , τ) \�2γ

∞
)
. (5.2)

By a standard volume estimate one has

|� \ DC(γ , τ)| � γ . (5.3)

Using again the definition (4.77), we write

DC(γ , τ) \�2γ
∞ =

⋃
(,α,β)∈Z

ν×σ0(
√−�)×σ0(

√−�)
(,α,β)�=(0,α,α)

R(,α,β)
⋃

(,α,β)∈Zν×σ0(
√−�)×σ0(

√−�)
Q(,α,β), (5.4)

where for any (,α,β) ∈ Zν × σ0(
√−�)× σ0(

√−�), (,α,β) �= (0,α,α),

R(,α,β) :=
{
ω ∈ DC(γ , τ) : A−

∞(,α,β;ω) is not invertible or it is invertible and

‖A−
∞(,α,β;ω)

−1‖Op(α,β) >
αdβd〈〉τ

2γ

}
(5.5)

and for any (,α,β) ∈ Zν × σ0(
√−�)× σ0(

√−�)

Q(,α,β) :=
{
ω ∈ DC(γ , τ) : A+

∞(,α,β;ω) is not invertible or it is invertible and

‖A+
∞(,α,β;ω)

−1‖Op(α,β) >
〈〉τ

2γ (α + β)

}
. (5.6)

By (4.5), for any α ∈ σ0(
√−�), we can write

[D(1)
∞ ]αα = μ0

αIα + R∞,α, R∞,α := [D(1)
∞ ]αα − [D(1)

0 ]αα ∈ S(Eα)

which is self-adjoint and Lipschitz continuous with respect to the parameter ω ∈
DC(γ , τ). We set

spec(R∞,α(ω)) :=
{
r(α)k (ω),k = 1, . . . ,dα

}
with r(α)1 (ω) ≤ r(α)2 (ω) ≤ . . . ≤ r(α)nα

(ω), (5.7)
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where nα is the dimension of the finite dimensional space Eα

nα = card
{
j ∈ Zd \ {0} : |j| = α

} � αd−1. (5.8)

By the property (A.2 in Appendix), one has that

|r(α)k (ω)| ≤ ‖R∞,α‖B(Eα)
Lemma2.4−(i)≤ ‖R∞,α‖HS

(4.76)

�q εα
−Sq (5.9)

uniformly for any ω ∈ DC(γ , τ).

Furthermore, by Lemma A.2-(i) the functions ω �→ r(α)k (ω) are Lipschitz with respect to

ω, since

|r(α)k (ω1)− r(α)k (ω2)| ≤ ‖R∞,α(ω1)− R∞,α(ω2)‖B(Eα)
Lemma2.4−(i)≤ ‖R∞,α(ω1)− R∞,α(ω2)‖HS

≤ ‖R∞,α‖lip
HS|ω1 − ω2|

(4.76)

�q εγ
−1α−Sq |ω1 − ω2|. (5.10)

We also set

spec([D(1)
∞ (ω)]αα) :=

{
λ
(α)

k (ω),k = 1, . . . ,nα
}

with λ
(α)

1 (ω) ≤ λ
(α)

2 (ω) ≤ . . . ≤ λ(α)nα
(ω).

By Lemma A.2-(ii), we have that

λ
(α)

k (ω) = μ0
α(ω)+ r(α)k (ω)

(4.5)= mα + r(α)k (ω), r(α)k := c(α)+ r(α)k , ∀k = 1, . . . ,nα. (5.11)

By the estimates (3.65), (5.9), and (5.10), one gets

|r(α)k |Lip(γ ) �q εα
−1, ∀α ∈ σ0(

√−�), ∀k = 1, . . . ,nα. (5.12)

By the definitions (4.78), (4.79) and by Lemmata 2.5, A.2-(ii), the operators A±
∞(,α,β) :

B(Eβ ,Eα) → B(Eβ ,Eα) are self-adjoint with respect to the scalar product (2.59) and the

following holds:

for any (,α,β) ∈ Zν × σ0(
√−�)× σ0(

√−�), (,α,β) �= (0,α,α)

spec
(
A−

∞(,α,β;ω)
) =

{
ω · + λ

(α)

k (ω)− λ
(β)

j (ω), k = 1, . . . ,nα, j = 1, . . . ,nβ
}

and for any (,α,β) ∈ Zν × σ0(
√−�)× σ0(

√−�)

spec
(
A+

∞(,α,β;ω)
) =

{
ω · + λ

(α)

k (ω)+ λ
(β)

j (ω), k = 1, . . . ,nα, j = 1, . . . ,nβ
}
.
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Therefore, recalling the definitions (5.5) and (5.6) and also by applying Lemma A.2-(iii),

one has

R(,α,β) ⊆ R̃(,α,β) :=
nα⋃
k=1

nβ⋃
j=1

R̃kj(,α,β), ∀(,α,β) ∈ Zν × σ0(
√−�)× σ0(

√−�),

(,α,β) �= (0,α,α), (5.13)

Q(,α,β) ⊆ Q̃(,α,β) :=
nα⋃
k=1

nβ⋃
j=1

Q̃kj(,α,β), ∀(,α,β) ∈ Zν × σ0(
√−�)× σ0(

√−�) (5.14)

where for any (,α,β) ∈ Zν × σ0(
√−�) × σ0(

√−�), (,α,β) �= (0,α,α), k = 1, . . . ,nα,

j = 1, . . . ,nβ

R̃kj(,α,β) :=
{
ω ∈ DC(γ , τ) : |ω · + λ

(α)

k (ω)− λ
(β)

j (ω)| <
2γ

〈〉τ αdβd
}

(5.15)

and for any (,α,β) ∈ Zν × σ0(
√−�)× σ0(

√−�), k = 1, . . . ,nα, j = 1, . . . ,nβ

Q̃kj(,α,β) :=
{
ω ∈ DC(γ , τ) : |ω · + λ

(α)

k (ω)+ λ
(β)

j (ω)| <
2γ (α + β)

〈〉τ
}
. (5.16)

Thus, by (5.4) one has

DC(γ , τ) \�2γ
∞ ⊆

⋃
(,α,β)∈Z

ν×σ0(
√−�)×σ0(

√−�)
(,α,β)�=(0,α,α)

R̃(,α,β)
⋃

(,α,β)∈Zν×σ0(
√−�)×σ0(

√−�)
Q̃(,α,β). (5.17)

Lemma 5.1. (i) If R̃(,α,β) �= ∅, then |α − β| � 〈〉. Moreover, for any α,β ∈ σ0(
√−�),

α �= β, then R̃(0,α,β) = ∅.
(ii) If Q̃(,α,β) �= ∅, then α,β � 〈〉. Moreover, for any α,β ∈ σ0(

√−�) then

Q̃(0,α,β) = ∅. �

Proof. We prove item (i). The proof of item (ii) is similar. Assume that R̃(,α,β) �= ∅.
Then there exist k ∈ {1, . . . ,nα}, j ∈ {1, . . . ,nβ} such that R̃kj(,α,β) �= ∅. For any ω ∈
R̃kj(,α,β), one has

|ω · + λ
(α)

k (ω)− λ
(β)

j (ω)| <
2γ

〈〉τ αdβd

and using (5.11) and the estimates (3.27) and (5.12), for ε small enough, one gets that

|λ(α)k − λ
(β)

j | ≥ 1

2
|α − β| − C(q)ε(α−1 + β−1) (5.18)
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implying that

|α − β| ≤ |ω||| + 2γ

〈〉τ αdβd + C(q)ε(α−1 + β−1) � 〈〉.

Now we show that if α,β ∈ σ0(
√−�) with α �= β, then R̃kj(0,α,β) = ∅ for any k ∈

{1, . . . ,nα}, j ∈ {1, . . . ,nβ}. By using (5.18) and Lemma A.1-(ii), for ε small enough one gets

|λ(α)k − λ
(β)

j | ≥ C1

(
1

α
+ 1

β

)
α,β≥1≥ C1

αβ
, (5.19)

for some constant C1 > 0 implying that R̃kj(0,α,β) = ∅ by the definition (5.15), since

d > 1 and taking 0 < γ < C1. Item (i) then follows by recalling the definition of R̃(,α,β)

in (5.13). �

Lemma 5.2. For εγ −1 small enough, the following holds:

(i) For any (,α,β) ∈ Zν × σ0(
√−�) × σ0(

√−�), (,α,β) �= (0,α,α), if R̃(,α,β) �= ∅ then

|R̃(,α,β)| � γαd−1−dβd−1−d〈〉−τ−1.

(ii) For any (,α,β) ∈ Zν × σ0(
√−�) × σ0(

√−�), if Q̃(,α,β) �= ∅ then |Q̃(,α,β)| �
γαd−1βd−1〈α + β〉〈〉−τ−1. �

Proof. Let us prove item (i). The proof of item (ii) can be done by using similar argu-

ments. Let (,α,β) ∈ Zν × σ0(
√−�) × σ0(

√−�) with (,α,β) �= (0,α,α). By (5.13), it is

enough to estimate the measure of the set R̃kj(,α,β) for any k = 1, . . . ,nα, j = 1, . . . ,nβ .

Since, by Lemma 5.1-(i),  �= 0, we can write

ω = 

||s+ v, with v ·  = 0

and we define

φ(s) := ||s+ λ
(α)

k (s)− λ
(β)

j (s), (5.20)

λ
(α)

k (s) := λ
(α)

k

(


||s+ v
)
, ∀α ∈ σ0(

√−�), ∀k = 1, . . . ,nα

and according to (5.11) and (5.12)

λ
(α)

k (s) = mα + r(α)k (s), |r(α)k |Lip(γ ) �q ε α
−1. (5.21)
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Using that | · |lip ≤ γ −1| · |Lip(γ ), recalling that m does not depend on ω (see Section 3.3),

one gets

|φ(s1)− φ(s2)| ≥
(
|| − (|r(α)j |lip + |r(β)k |lip)

)
|s1 − s2|

≥
(
|| − γ −1(|r(α)j |Lip(γ ) + |r(β)k |Lip(γ ))

)
|s1 − s2|

(5.21)≥ (|| − C(q)εγ −1
) |s1 − s2|≥||

2
|s1 − s2| (5.22)

for εγ −1 small enough. The above estimate implies that

∣∣∣ {s : ||s+ v ∈ R̃kj(,α,β)
} ∣∣∣ � γ

αdβd〈〉τ+1

and by Fubini Theorem we get |R̃kj(,α,β)| � γ

αdβd〈〉τ+1 . Finally recalling (5.8) and (5.13),

we get the claimed estimate for the measure of R̃(,α,β) and the proof is concluded. �

Proof of Theorem 5.1 concluded. By (5.17), by applying Lemmata 5.1 and 5.2 and

recalling the definitions of the constants τ and d made in (5.1), one gets the estimate

|DC(γ , τ) \�2γ
∞ | �

∑
∈Z

ν , j,j′∈Z
d

γ

〈j〉d+1−d〈j′〉d+1−d〈〉τ+1
+

∑
∈Z

ν , j,j′∈Z
d

|j|,|j′|�〈〉

γ

〈〉τ+1−2d
� γ . (5.23)

Hence, the Theorem 5.1 follows by (5.2), (5.3), (5.23).

6 Proof of Theorem 1.1 and Corollary 1.1

In this section, we prove Theorem 1.1 and Corollary 1.1. We define

W1(ϕ) := S(ϕ) ◦ C, W2(ϕ) := T (ϕ) ◦�∞(ϕ), ϕ ∈ Tν (6.1)

where the maps S, C, T are defined in (3.1), (2.39), and(3.69) and the map �∞ is given in

Corollary 4.1. We define the constants

q = q(ν,d) := 2(s0 + μ+ b+ 2s0 + 2)

and for any q > q, we define

Sq = S(q, ν,d) := Sq − 2 − 2s0 = [q/2] − μ− b− 2s0 − 2
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where we recall the definitions (3.68), (4.7), (5.1). By Lemmata 3.1, 3.6, 2.13, and Corollary

4.1, one gets that for εγ −1 ≤ δq (for some constant δq small enough depending on q, ν,d),

for any ϕ ∈ Tν , for any ω ∈ �2γ
∞ the maps Wi(ϕ) = Wi(ϕ;ω), i = 1, 2 are bounded and

invertible with

W1(ϕ) : Hs
0(T

d) → H
s+ 1

2
0 (Td,R)×Hs− 1

2
0 (Td,R), W1(ϕ)

−1 : H
s+ 1

2
0 (Td,R)×Hs− 1

2
0 (Td,R) → Hs

0(T
d),

for any 1/2 ≤ s ≤ Sq and

W2(ϕ)
±1 : Hs

0(T
d) → Hs

0(T
d), ∀0 ≤ s ≤ Sq.

Let 1/2 ≤ s ≤ Sq and (v(0),ψ(0)) ∈ Hs+ 1
2 (Td,R) × Hs− 1

2 (Td,R). For any ω ∈ �2γ
∞ , defining

W∞(ϕ) := W1(ϕ) ◦ A ◦ W2(ϕ), by the change of variable

(v(t, ·),ψ(t, ·)) = W∞(ωt)[u(t, ·)], u = (u,u) (6.2)

(recall that A is the reparameterization of time defined in (3.18)), the Cauchy problem⎧⎨⎩(∂tv, ∂tψ) = L(ωt)[(u,ψ)].
(v(0, ·),ψ(0, ·)) = (v(0),ψ(0))

(6.3)

is transformed into⎧⎨⎩∂tu = D∞u

u(0, ·) = u(0)
, u(0) = (u(0),u(0)) = W2(0)

−1 ◦ W1(0)
−1[(v(0),ψ(0))] (6.4)

where the operator D∞ =
(

−iD(1)
∞ 0

0 iD(1)

∞

)
is defined in (4.83). Since for any α ∈ σ0(

√−�),
the block [D(1)

∞ ]αα is self-adjoint, one has that the operator D(1)
∞ is self-adjoint, that is.

D(1)
∞ = (D(1)

∞
)∗
. (6.5)

Then, we consider the Cauchy problem⎧⎨⎩∂tu = −iD(1)
∞ u

u(0, ·) = u(0).
(6.6)

We prove that

‖u(t, ·)‖Hsx = ‖u(0)‖Hsx , ∀t ∈ R. (6.7)
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Since D(1)
∞ is a block-diagonal operator, one can easily verify that the commutator

[|D|s,D(1)
∞ ] = 0 and therefore

∂t‖h(t, ·)‖2
Hsx

= − (i(D(1)
∞ − (D(1)

∞
)∗
)|D|sh, |D|sh)

L2x

(6.5)= 0

which implies (6.7).

Now, by (6.2) one has that for any 1/2 ≤ s ≤ Sq

‖(u(t, ·),ψ(t, ·))‖
H
s+ 1

2
x ×Hs−

1
2

x

�q‖A ◦ W2(ωt)[u(t, ·)]‖Hsx

(3.18)

�q ‖W2(ωτ + ωα(ωτ))[u(τ + α(ωτ), ·)]‖Hsx

�q‖u(τ + α(ωτ), ·)‖Hsx

(6.7)

�q ‖u0‖Hsx

(6.4)

�q ‖(v(0),ψ(0))‖
H
s+ 1

2
x ×Hs−

1
2

x

.

Set γ = εa, with 0 < a < 1 and �ε := �2γ
∞ . Then εγ −1 = ε1−a and hence the small-

ness condition εγ −1 ≤ δq is fulfilled by taking ε small enough. Furthermore, by Theorem

5.1, since γ = εa, we get that (1.12) holds and therefore Theorem 1.1 and Corollary 1.1

have been proved.
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Appendix

We prove some elementary properties of the set σ0(
√−�) defined in (2.2).

Lemma A.1. (i) Let p > d. Then
∑

α∈σ0(
√−�) α

−p < +∞. If p > d + ν,
∑

∈Z
ν

α∈σ0(
√−�)

〈,α〉−p <

+∞.

(ii) Let α,β ∈ σ0(
√−�)with α �= β. Then there exists a constant C > 0 such that |α−β| ≥

C(α−1 + β−1). �
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Proof of (i). By the definition (2.2) one has that

∑
α∈σ0(

√−�)
α−p ≤

∑
j∈Zd

〈j〉−p,
∑
∈Z

ν

α∈σ0(
√−�)

〈,α〉−p ≤
∑
∈Z

ν

j∈Z
d

〈, j〉−p

the first series on the right-hand side converges if p > d and the second one for p > ν+d.

Proof of (ii). First, we note that if x,y ∈ N, x �= y one has that

|√x − √
y| ≥ max

{
1√
x
,

1√
y

}
≥ C

(
1√
x

+ 1√
y

)
,

for some constant C > 0. Since by the definition of σ0(
√−�), if α,β ∈ σ0(

√−�), α �= β,

they are square roots of integer numbers, that is α2,β2 ∈ N, the claimed inequality

follows. �

Now we recall some well-known facts concerning linear self-adjoint operators on finite

dimensional Hilbert spaces. Let H a finite dimensional Hilbert space of dimension n

equipped by the inner product 〈·, ·〉H. Let us denote by B(H) the space of the linear

operators from H onto itself, equipped by the operator norm ‖·‖B(H). For any self-adjoint

operator A : H → H, we order its eigenvalues as

spec(A) := {λ1(A) ≤ λ2(A) ≤ . . . ≤ λn(A)} . (A.1)

We recall the well-known property

‖A‖B(H) = maxλ∈spec(A)|λ|. (A.2)

Moreover, the following lemma holds

Lemma A.2. Let H be a Hilbert space of dimension n. Then the following holds:

(i) Let A1,A2 : H → H be self-adjoint operators. Then their eigenvalues, ranked

as in (A.1), satisfy the Lipschitz property

|λk(A1)− λk(A2)| ≤ ‖A1 − A2‖B(H), ∀k = 1, . . . ,n.

(ii) Let A = ηIdH + B, where η ∈ R, IdH : H → H is the identity and B : H → H is

selfadjoint. Then

λk(A) = η + λk(B), ∀k = 1, . . . ,n.
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(iii) Let A : H → H be self-adjoint and assume that spec(A) ⊂ R \ {0}. Then A is

invertible and its inverse satisfies

‖A−1‖B(H) = 1

mink=1,...,n |λk(A)| . �
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