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ABsTRACT. We show that the moduli stack of admissible G-covers of prestable curves is an algebraic

stack, loosely following [ACV03, App. B]. As preparation, we discuss finite group actions on algebraic

spaces.
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1. INTRODUCTION

One of the most-studied objects in algebraic geometry is the moduli space .#, parametrizing
smooth curves of genus g. From early on, there has been considerable interest in describing the finite
étale covers of .#,. Their understanding is not only of intrinsic interest, but also offers technical
advantages. For example, while .#, is only smooth when considered as an algebraic stack, many of
its finite étale covers are given by smooth schemes; in some cases, statements for ///g can then be
reduced to scheme-theoretic statements for these covers.

Another important tool in the study of .#, is its compactification by the moduli stack %g
of stable curves of genus g. Admissible G-covers were introduced in [ACVO03] to give modular
interpretations for compactifications of many finite étale covers of .#,. The authors showed that
the stacks o7dm4(G) of admissible G-covers of curves of genus g are still smooth and the maps
Admg(G) — %g still proper and quasi-finite. Moreover, they constructed groups G for which

2/dmg(G) is a smooth projective scheme which is finite over ]g. In this chapter, we give a detailed
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proof of one the fundamental theorems of [ACV03] in the more general setting of prestable curves,

relying solely on results from the Stacks Project.
Theorem A. 7dm(G) = | | #dmg(G) is an algebraic stack over Spec(Z[1/|G|]).

As explained in [ACVO03, Sec 4.2], the stack of admissible G-covers is also the normalization of
(a generalization of) the stack of admissible covers studied initially in [HM82] and also in [Moc95],
[Wew98]. A general reference for these covers and their associated moduli stacks is [BR11]. In the

next subsections, we define .«7dm(G) in full detail and then outline our proof of Theorem A.

Definition of admissible G-covers. An admissible G-cover is a finite cover X — Y of prestable
curves that is generically a G-torsor and has prescribed behavior on the nodes and markings. We

note that we allow a family of prestable curves to have disconnected geometric fibers (Definition 9).

Definition 1. Let G be a finite group and let S be a scheme over Spec(Z[1/|G|]). Let (Y —
S,{qi}_,) be a marked connected prestable curve over S. An admissible G-cover is a finite
morphism f: X — Y from a prestable curve X together with a G-action on X which leaves f
invariant, such that
(i) Away from the nodes and markings of Y, f is a G-torsor.
(i) Nodes of X map to nodes of Y.
(iii) For any geometric point 5: Spec k — S and any node x € Xs, the map f*": &%

Yo f (1)
ﬁ;& .. can be identified with the strict henselization of the map

(kL v W@'V)) oy = (KL V1 @) (s U a0 > 0°

for some e € Z-;. Under this identification, the action of the stabilizer G, on ﬁ;& It
balanced, i.e., given by u > &£(g)u, v > £~ (g)v for some character &: G, — k*.
(iv) For any geometric point §: Spec k — S and any x € X; lying over a marked point in Y,

the map f*": ﬁ;h o) ﬁ)s(hi .. can be identified with the strict henselization of

kvl = klulw, v u®

for some e € Z-;. Under this identification, the action of the stabilizer G, on ﬁ)s(t{ L 1s

given by u — £(g)u for some character £: G, — k*.

Admissible G-covers form a category fibered in groupoids 27dm(G); for a rigorous description,

see Definition 67.

Remark 2. Our definition of an admissible G-cover differs slightly from that of [ACV03, Def 4.3.1]

in that we only require the descriptions (iii) and (iv) in geometric fibers.

Remark 3. We follow [ACVO03, Def 4.3.1] in allowing a prestable curve X — S to have disconnected
geometric fibers. If one modifies Definition 1 to require X — S to be a prestable curve with
geometrically connected fibers, the discussion in this article shows (with very minor changes) that

the resulting moduli stack is algebraic.

Remark 4. In part (iii) of Definition 1 we have required G to act on # and v via inverse characters;
that is, we require the action to be balanced. To motivate this requirement, recall from see [SP21,
Tag OCBX] that if f: X — S is a morphism of schemes and a nodal curve and if x € X is a split

node, then there is an isomorphism

ﬁQ,x = ﬁé‘\’f (%) [[M, V]]/(MV — I’l)


https://stacks.math.columbia.edu/tag/0CBX
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for some & € my (). If moreover G acts on X leaving X — § invariant, then since 4 comes from §
it is G-invariant, so if # and v are weight vectors for the G ,-action they must have inverse weights.

In other words, a smoothable split node must be balanced.

Remark 5. The analytically minded reader may replace conditions (iii) and (iv) on strict henseliza-
tions in Definition 1 by the corresponding conditions on completions. This will follow from

Lemma 57 below.

Roadmap of the proof. One standard approach to proving a theorem like Theorem A is to use
Artin’s axioms [SP21, Tag 07SZ]. We provide a proof that is logically independent of Artin’s
axioms by constructing 27dm(G) as a locally closed substack of a certain Hom-stack $.

To construct £y, we begin with the stacks I and N of connected prestable curves and (possibly
disconnected) prestable curves, respectively. Algebraicity of these stacks is proved in [Hall3] by
finding explicit presentations in terms of Hilbert schemes of projective spaces. From these we
construct universal curves €gy and Cg, as well as the stack of marked connected prestable curves
M, (Definition 17), and we explain why they are algebraic (Lemma 16 and Lemma 18).

To finish the construction of $)y, we construct the stack of prestable curves with balanced G-action
9N We first define the stack 9 (G) of prestable curves with G-action and exhibit it as a locally
closed substack of the |G|-fold product [ ] -# of the inertia stack .# of 9t (Lemma 59). An analysis
of the local picture at the nodes reveals that the balancedness of the G-action is an open condition on
the base, so 9t is an open substack of 9t(G) and hence also algebraic (Lemma 62). Finally we set
$Ho = Homgpa,qn, (Cgoa, Cap, ). It is algebraic by a general argument about Hom-stacks (Lemma
19.

After constructing $, we realize &/dm(G) as a locally closed substack in the following way. A
general element of $, over a scheme S defines a morphism of prestable curves f: X — Y over §
such that G acts on X and Y has markings. We prove that the family f: X — Y is in &/dm(G) if
and only if Y is the (coarse) quotient of X by G and f maps smooth G-fixed points to marked points
(Theorem 77). Since these conditions are locally closed and closed (Lemma 68, Lemma 69, and

Lemma 70), respectively, Theorem A is proven.

Outline of the contents. Section 2 provides some of the prerequisites that are necessary in the
proof of Theorem A and are interesting in their own right. Namely, in 2.1, we review and extend
results of [SP21] on prestable curves. Then, we recall some general algebraicity criteria for stacks
in 2.2. Finally, we explain many basic facts about finite group actions on algebraic spaces (2.3),
including coarse quotients by those actions (2.4).

Section 3 contains a discussion of the objects of Theorem A and its proof. We begin in 3.1 by
introducing balanced group actions on prestable curves and their complete local pictures. In 3.2, we
study the deformation theory of these objects, which we use in 3.3 to show that balanced prestable
G-curves form the algebraic stack :t*. We conclude our analysis of the substack .«7dm(G) c $

as outlined above in 3.4.

Notation and conventions. We adopt the following notation and conventions, listed in order of
appearance:
e For x € X apoint of a scheme, Ox , is the local ring of X at x, m, is the maximal ideal
of Ox x and k(x) := Ox /my is the residue field of X at x.

e L is the algebraic closure of a field .


https://stacks.math.columbia.edu/tag/07SZ
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e A geometric point of a scheme X is a map Spec(k) — X from an algebraically closed
field k = k ([SP21, Tag 0486]).
| X| is the topological space of an algebraic space ([SP21, Tag 03BY])

Homy (X, Y) is the set of morphisms of algebraic spaces over T.

£~ will refer to the scheme theoretic inverse image ([SP21, Tag 01JV]).

A is the diagonal morphism.

1 is the identity element of a group. ([SP21, Tag 03BU]).

[X/G] denotes the stack quotient ([SP21, Tag 044Q)]), while X/G denotes the coarse
quotient (Def. 31).

e Z[1/|G]] is the smallest subring of Q containing Z and 1/|G]|.
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2. SETUP

2.1. Prestable curves. We recall some definitions leading up to that of a family of prestable curves.
The following is [SP21, Tags 0C47, 0CBV].

Definition 6. Let X be a 1-dimensional scheme locally of finite type over a field k.

(i) A closed point x € X is a split node if there exists an isomorphism &gy =~ k[u, v]/(uv).
(ii) A closed point x € X is a node if there is a split node ¥ € X; mapping to x.
(iii) The scheme X has at-worst-nodal singularities if every closed point of X is either

contained in the smooth locus of X — Spec(k) or is a node of X.

Observe that by definition a split node of X — Spec(k) has residue field k. By [SP21, Tag 0C4D],
one may equivalently demand in Definition 6.(ii) that all X € Xz mapping to x are split nodes.

We will need some properties of (split) nodes beyond what is currently in the stacks project, so
we write these out in Lemmas 7 and 8 below. The proofs of these lemmas both use the very general
statement of Lemma 14. Since Lemma 14 applies to more schemes than just nodal curves we defer

it to the end of this subsection.

Lemma 7. Let X be a 1-dimensional scheme locally of finite type over a field k, let x € X be a split
node, and let K | k be a field extension. Then there is a unique y € Xg mapping to x and y is a split

node.

Proof. We note that the lemma does not immediately follow from Lemma 14 because our field
extension K /k may not be finite. However, since x € X is k-rational, we can at least use Lemma 14
to say that there is a unique point y € Xx mapping to x and that y has residue field K. By [SP21,
Tag OCBW], the fiber of the normalization X” — X over x has precisely two points. By [SP21,
Tag OC3N] and surjectivity of the map Spec(K) — Spec(k) the fiber of X} — Xg over y has at


https://stacks.math.columbia.edu/tag/0486
https://stacks.math.columbia.edu/tag/03BY
https://stacks.math.columbia.edu/tag/01JV
https://stacks.math.columbia.edu/tag/03BU
https://stacks.math.columbia.edu/tag/044Q
https://stacks.math.columbia.edu/tag/0C47
https://stacks.math.columbia.edu/tag/0CBV
https://stacks.math.columbia.edu/tag/0C4D
https://stacks.math.columbia.edu/tag/0CBW
https://stacks.math.columbia.edu/tag/0C3N
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least two points, and by [SP21, Tag OCBT] and [SP21, Tag 0C56] it has exactly two points. By
another application of [SP21, Tag 0OCBW], the node y is split. O

General nodes have a complete local description similar to that of split nodes.

Lemma 8. Let X be a 1-dimensional scheme locally of finite type over a field k and let x € X be a

closed point. The following are equivalent:

(i) The point x is a node.
(ii) The extension k(x)/k is separable, and ﬁ’)’},x =~ k(x)[u,v]/(q) for some nondegenerate
quadratic form q = au® + buv + cv? over k(x).
(iii) There exists a finite separable field extension k' of k and a split node y € X, mapping to

X.

Proof. The equivalence of (i) and (ii) is in [SP21, Tag 0C4D], and that (iii) implies (i) is immediate
from the definitions and Lemma 7.

Now assume (ii). Set x := x(x) and

, K if g is a split quadratic form
k' =

k[t]/(a + bt + ct*) if g is not a split quadratic form.
The latter is the splitting field of ¢g: when ¢ is not split over «, it factors over x’ as g = (v —tu)(cv +
(b + ct)u). Since « is finite separable over k and ¢ is nondegenerate, «’/k/k must be a tower of
finite separable field extensions.

First, we construct a closed point ¥ € X, («) lying over x. By the Primitive Element Theorem
[SP21, Tag 030N], there is a polynomial P € k[¢] such that x = k[¢]/(P). Then x ®; k =~ «[t]/(P)
has a factor « because P has a zero in k. The prime ideal given as the kernel of the associated
surjection k ® k — k determines the point X over x with residue field « [SP21, Tag 01JT]. By [SP21,
Tag 0C50, Tag 0OAGX], we have an isomorphism Oy =~ Oy .. Finally, by Lemma 14, there is a
unique y € X,» with residue field «” and complete local ring

0%,y =08 @K =0% &K =k[u.v]/(q) & &

~ &' [u,v]/(q) = K[, v]/ (uv)

of the desired form. O

75y

Definition 9. A morphism 7: X — § from an algebraic space X to a scheme S is a nodal curve if ©
is flat and of finite presentation and every geometric fiber has pure dimension 1 and at-worst-nodal
singularities. We say r is a connected prestable curve if in addition 7 is proper and every geometric
fiber is connected. A prestable curve is a finite disjoint union L; X; — S where each X; — Sis a

connected prestable curve.

Remark 10. Definition 9 is a compilation of [SP21, Tags 0D4Z, ODSE, 0C54, 0C56, OE6S] with

some important differences in nomenclature:

e A nodal curve in our sense is a morphism that is at-worst-nodal of relative dimension 1
in the sense of the Stacks Project [SP21, Tag OC5A]; this recovers the notion of nodal
curves from [SP21, Tag 0C46] when S is the spectrum of a field.

e A prestable curve in our sense is a nodal family of curves in the sense of the Stacks Project
[SP21, Tag ODSX] (noting that families of curves are by definition always proper in the
Stacks Project [SP21, Tag 0D4Z])


https://stacks.math.columbia.edu/tag/0CBT
https://stacks.math.columbia.edu/tag/0C56
https://stacks.math.columbia.edu/tag/0CBW
https://stacks.math.columbia.edu/tag/0C4D
https://stacks.math.columbia.edu/tag/030N
https://stacks.math.columbia.edu/tag/01JT
https://stacks.math.columbia.edu/tag/0C50
https://stacks.math.columbia.edu/tag/0AGX
https://stacks.math.columbia.edu/tag/0D4Z
https://stacks.math.columbia.edu/tag/0DSE
https://stacks.math.columbia.edu/tag/0C54
https://stacks.math.columbia.edu/tag/0C56
https://stacks.math.columbia.edu/tag/0E6S
https://stacks.math.columbia.edu/tag/0C5A
https://stacks.math.columbia.edu/tag/0C46
https://stacks.math.columbia.edu/tag/0DSX
https://stacks.math.columbia.edu/tag/0D4Z
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e A connected prestable curve in our sense is a prestable curve in the sense of the Stacks
Project [SP21, Tag OE6T].

In the next definition, recall from [SP21, Tag 03BU] that |X| is the set of points of an algebraic

space, and elements of this set are equivalence classes of morphisms from fields.

Definition 11. Let 7: X — S be a nodal curve. A point x € |X| is a node in its fiber if it is the

image of a node in Xy (y).

Definition 12. If 7 : X — S is a nodal curve, the smooth locus X*™ C X is the maximal open
subspace such that 7|xsm : X5 — S is smooth (see [SP21, Tag 0DZI]).

Remark 13. If X — S is a nodal curve, the smooth locus X*" — S is precisely the complement
of the points in X that are nodes in their fibers. In particular, X*™ commutes with arbitrary base
change by [SP21, Tag 0C56].

Define MM and N to be the moduli stacks over Sch g, (see [SP21, Tag 021R]) whose groupoid

fibers over a scheme S are given by

P (S) = {connected prestable curves X — S}
N(S) = {prestable curves X — S}.

By [SP21, Tag OD5A] and [SP21, Tag ODSQ)] there is a larger moduli stack Curves over Sch s
with a diagonal that is separated and of finite presentation. By [SP21, Tag OE6U] and [SP21,
Tag ODSY], respectively, the stacks Mt and N are open substacks of Curves, and hence algebraic
stacks with diagonals that are separated and of finite presentation. The proof of algebraicity in
[SP21, Tag OD5A] uses Artin’s axioms; for a proof using only Hilbert schemes of projective spaces,
see [Hall3].

We used the following general lemma to prove Lemmas 7 and 8 in this section.

Lemma 14. Let X be a k-scheme of locally finite type. Let K [k be a field extension and let x € X
be a rational point. Then there is a unique point y € Xk lying over x with residue field k(y) = K.

Moreover, if K[k is finite, then Ox & K ~ Ox y and 0% ® K =~ ﬁ’QK >

Proof. By [SP21, Tag 01JT], y corresponds to the unique prime ideal in k ®, K =~ K which has
residue field equal to K.

Now assume K/k is a finite extension. By [SP21, Tag 0C4Y], we have Ox, y = (Ox x ® K)p,
where p is the kernel of Ox » ® K — k(x) ® K ~ K. Since K is flat over k, there is an exact
sequence

0->merK— Ox Q% K—>K—0.
This shows that p = m ®; K and that this ideal is maximal.

In fact, we claim that it is the unique maximal ideal, so (Ox x ®k K)p = Ox x ® K as desired.
To see this, let 1 € Ox « ® K be a maximal ideal. Since K/k is finite, Ox » ®k k C Ox x ® K is
integral, so (Ox x®rk)/(MNOx x®kk) — (Ox x®r K)/nisalsointegral. However, (Ox x®xK)/n
is a field, so [SP21, Tag 00GR] implies that (Ox x ®x k)/(n N Ox x ® k) is a field as well. Hence
n N Ox_x ® k is maximal and thus equals m ®; k. In particular, n contains m ®g k, so 1 contains
m ® K, so n must equal m ®; K because we already knew the latter was maximal.

Finally, the natural map ﬁ’)’}’x ®r K — (Ox x® K)" is an isomorphism by [SP21, Tag 00MA(3)].

O


https://stacks.math.columbia.edu/tag/0E6T
https://stacks.math.columbia.edu/tag/03BU
https://stacks.math.columbia.edu/tag/0DZI
https://stacks.math.columbia.edu/tag/0C56
https://stacks.math.columbia.edu/tag/021R
https://stacks.math.columbia.edu/tag/0D5A
https://stacks.math.columbia.edu/tag/0DSQ
https://stacks.math.columbia.edu/tag/0E6U
https://stacks.math.columbia.edu/tag/0DSY
https://stacks.math.columbia.edu/tag/0D5A
https://stacks.math.columbia.edu/tag/0C4Y
https://stacks.math.columbia.edu/tag/00GR
https://stacks.math.columbia.edu/tag/00MA
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2.2. Some algebraic stacks. We will use the following lemma to construct algebraic stacks. Let S
be a scheme in Sch g,,r (see [SP21, Tag 021R]).

Lemma 15. Let % — (Sch/S)pppr and X~ — % be categories fibered in groupoids, and assume
X — X is representable by algebraic spaces. If % is an algebraic stack then so is Z .

Proof. This is [SP21, Tag 0OWW] and [SP21, Tag O5UN]. O

Define the universal curve € — I to be the category whose groupoid fiber over an object
S € Schpppr is
CS) ={(X—>S,9) | (X —S) € PM(S) and g € Homg(S, X)}
together with the apparent forgetful morphism to 9. The universal curve € — 9 is defined
similarly.

Lemma 16. The morphisms € — M and € — N are representable morphisms of algebraic stacks.

Proof. We prove the statement for € — 9t; the argument for € — 9 is identical. Let T — M be
a map from a scheme T corresponding to a connected prestable curve X — 7. By Lemma 15 it
suffices to show that T’ xgy; € is representable. Using the construction of [SP21, Tag 0040], objects

of T xgp € over a scheme S are given by quadruples
(S,S—>T,(Y =S, feHoms(S,Y)), ¢: Y =S xr X)

where Y — § is a connected prestable curve and arrows are unique when they exist. The data of

such a triple is equivalent to an element of Homr (S, X), so X — T represents T xgy €. O

If 7: X — § is a connected prestable curve, let X* c X be the open subspace where r is
smooth. We will use this notation even when S is an algebraic stack (see [SP21, Tag 0DZR]). Define

M, — Schyypr to be the category fibered in groupoids whose objects over S are

wtn(s) = {(X - Sv ‘Zl’ e 7qI’L)

(X > S) e M, ¢; € Homg(S, X*™) }

are disjoint sections

Definition 17. A marked connected prestable curve is an object of I, for some n > 0. We set
My = Lnezoo Mn-

Lemma 18. The category M, is an algebraic stack.

Proof. We prove that I, is an algebraic stack. Let €, denote the n-fold fiber product of € over
M. The category IM,, naturally a full subcategory of €,,. We show that the inclusion M, — €, is
representable and apply Lemma 15.

Let T — @, be an arbitrary map from a scheme, and let (X — T, g;) be the corresponding
prestable curve and sections. The fiber product M, X¢, T is the full subcategory of 7 whose objects
over S are maps f: S — T such that the pullback (Xg — S,q; : § = Xs5) of (X — T,gq;) is an
object of M,,; that is, the g; are pairwise disjoint and land in (Xs)*™. Let U; C T be the intersection
of the finitely many open sets qi‘l (Xs™). Since X — T is separated, the equalizer of any two of the
q; is a closed subspace (see e.g. [SP21, Tag 01KM]; let U, be the open subspace of T equal to the
complement of the union of the equalizers. Now U; N U, is an open subscheme of T representing
M, xg, T. m|


https://stacks.math.columbia.edu/tag/021R
https://stacks.math.columbia.edu/tag/09WW
https://stacks.math.columbia.edu/tag/05UN
https://stacks.math.columbia.edu/tag/0040
https://stacks.math.columbia.edu/tag/0DZR
https://stacks.math.columbia.edu/tag/01KM
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Let ' — 2 and % — 2 be representable morphisms of algebraic stacks. The Hom stack
Hom . (2, %) is the category fibered in groupoids over 2 whose objects over a scheme T — 2
are

Hom . (2", %)(T) = Homy (27, %71 ).

Lemma 19. If 2" — % is representable, of finite presentation, flat, and proper, and % — % is

representable, of finite presentation, and separated, then Hom ,. (2", %) is an algebraic stack.

Proof. LetT — 2 be a scheme. By [SP21, Tag OD1C], the fiber product T’ X o> Hom . (2", %) is

representable by an algebraic space, so the lemma follows from Lemma 15. O

Remark 20. The proof of representability in [SP21, Tag OD1C] uses Artin’s axioms. If 2~ — %
and % — % are families of curves (as they will be in our applications), one may alternatively use an
étale base change of T to reduce to the case where the families are H-projective ([SP21, Tag OE6F]),
and then use the more classical [AK80, Thm. 2.6].

2.3. Finite group actions on algebraic spaces. Let G be a finite group and let S be a scheme. A
G-space (resp. scheme) over S is an algebraic space (resp. scheme) X — S equipped with a group
homomorphism G — Autg(X). If X — § is a morphism of affine schemes Spec(A) — Spec(B),

then it is equivalent to give a homomorphism from G to the automorphisms of A as a B-algebra.

Definition 21. For g € G the fixed locus X5 is the fiber product of the diagram
X8 —X
(D ! 1
x &y o x
If X is separated, then X8 is a closed subspace of X. We define the fixed locus of G to be
X6 = NgeGX8.

For any scheme 7', G acts on X(T') and we have X8(T) = (X(T))8, where the right hand side is
the subset fixed by g.

Remark 22. If X — SandY — S are G-spaces over S, then the fiber product X Xg Y has a unique
structure of a G-space over S such that the projection maps to X and Y are G-equivariant. In terms of

functors of points, this action is given by the diagonal action of G on (XxsY)(T) = X(T)Xs) Y (T).

Lemma 23. Let X be a G-space over S. If S — S is an S-scheme with trivial G-action then
X8 x5S ~(XxgS")8forallg € G.

Proof. We argue using functors of points. If 7 — S’ is a scheme, then an element of (X Xgs Y)$ is
given by a pair (¢, ¢y) € X(T) Xs(ry S'(T) such that g o ¢ = ¢ and g o ¢, = ¢,,. An element of
X8 xg 8" is apair (¢, ¢y) € X(T) Xs(ry S'(T) such that g o ¢, = ¢. Since G acts trivially on S’

these are the same set. O

In the next lemma, recall that | X| is the set of points of an algebraic space [SP21, Tag 03BU],

and elements of this set are equivalence classes of morphisms from fields.

Lemma 24. Let X be a G-space over S. Let x € |X| and g € G. The following are equivalent:

(i) For every field K and morphism a: Spec(K) — X representing x, we have g o a = a.

(ii) For some field K and morphism «: Spec(K) — X representing x, we have g o a = a.


https://stacks.math.columbia.edu/tag/0D1C
https://stacks.math.columbia.edu/tag/0D1C
https://stacks.math.columbia.edu/tag/0E6F
https://stacks.math.columbia.edu/tag/03BU
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(iii) We have x € | X8|.

The subset of elements g € G satisfying conditions (i)—(iii) is a subgroup of G.

Proof. For the equivalence of (i) and (ii), observe that if Q/L is a field extension then the induced
map B : Spec(2) — Spec(L) is an epimorphism. So if v : Spec(L) — X represents x, we have
goy=vyifandonlyif g oy o 8 =7y o 8. This means that the representative vy is fixed by g if and
only if the representative y o 3 is fixed by g. For the equivalence of (ii) and (iii), use (1). For the

last assertion, it is clear that the set of elements satisfying (ii) is a subgroup. O

Definition 25. If X is a G-space over S, the stabilizer of a point x € |X| is the subgroup G, C G

of elements satisfying the equivalent conditions of Lemma 24.

The next definition is a generalization of the fact that, for any open subspace U of a G-space X,

there is a natural G-action on Ngeg (g - U).

Definition 26. Let X be a G-space over S and let u: U — X be a morphism of algebraic spaces.
Define ug to be the composition g o u: U — X. The equivariantization of U, denoted u®: U® — X,
is the fiber product U Xx - -- Xx U — X of all the u, (see [SP21, Tag 02XC]).

Lemma 27. Let X be a G-space over S and let u: U — X be a morphism of algebraic spaces.
Then U® has a natural G-action making u® equivariant. Furthermore, if i is an open immersion or

étale, then so is u®.
Note that the equivariantization U® is nonempty if the image of u has a fixed point of X.

Proof. LetT — X be an X-scheme. An element u = (ug)geG € US(T) C [Igeq U(T) is given by
morphisms of X-schemes ug: T — U such that g o y oug = u o uy for all g € G, where 1 denotes
the identity of G. Given h € G, set h - (ug)geG ‘= (Up-15)geG- One checks that this defines the
desired action. The last assertion of the lemma follows from the stability of open immersions and

étale morphisms under pullback. O

Example 28. Recall from [SP21, Tag 02LE] that if X is a scheme, an elementary étale neighborhood
u: (U,u) — (X,x) is an étale morphism u: U — X of schemes such that (#) = x and the induced
morphism k(x) — «(u) on residue fields is an isomorphism. If X is moreover a G-space over S and

x € X¢ with an elementary étale neighborhood u: (U, u) — (X, x), then define
) uteU® by (uf)g:=u.

Note that ® € (U®)° and that x®: (U®,u®) — (X,x) is an elementary étale neighborhood by
Lemma 27 and [SP21, Tag 01JT].

Lemma 29. Let X be a G-space over S and let u: U — X be an open morphism of algebraic
spaces. Any x € | X 0 u(U)| has an open neighborhood V such that for any h € G the restriction
of u to ((ye)‘l(V))h — V" is surjective.

Proof. Let V = (Ngei(g © 1)(U); this is an open neighborhood of x. The equivariant map u®
necessarily sends ((u®)~! (V))h to V. Letv € V", and let g1,...,g, € G be a set of right coset
representatives for the subgroup (/) of G and write [g;] for the coset of g;. Choose u[,,; € U
such that u(upg,)) = gl._lv and define (ug)geg by ug = ujg). Since v € V" one checks that


https://stacks.math.columbia.edu/tag/02XC
https://stacks.math.columbia.edu/tag/02LE
https://stacks.math.columbia.edu/tag/01JT
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gu(ug)) = u(upy)) = v and hence (ug)gec defines a point of U® mapping to v. Likewise we

compute

(h-(ug)geG)e = Up-tg = Ulp-1g] = U[g] = Ug. O

Lemma 30. Let y: U — X be an equivariant morphism of G-algebraic spaces over S. If u is a
monomorphism in the category of algebraic spaces over S, then the equivariantization U® of U is

canonically isomorphic to U.

Proof. Forany g € G, let pr,: U® — U be the projection to the copy of U whose given map to X
is p1g; note that pg o pr, = p o pr; where 1 € G is the identity. Let A: U — U® be the unique map
such that pr, o A= g ! forall g € G. Clearly, pr, o A is the identity on U. Conversely, Ao pr; is
the identity on U® if and only if pr, o A o pr; = pr, for each g € G, and this holds if and only if

3) Mg © pry © Ao pr| = Hg © pry foreach g € G

since i (and hence f1¢) is a monomorphism. Using the identities po opr, = popr; and pr, oA =idy,
we see that (3) holds. O

2.4. Quotients by finite group actions on algebraic spaces. Let G be a finite group acting on an

algebraic space X over a base scheme S.

Definition 31. The coarse quotient of X by G is a morphism X — X /G to an algebraic space X/G
with the following universal property: every G-invariant morphism X — Y of algebraic spaces

factors uniquely through X — X/G.

The universal property of X /G implies that it is canonically an algebraic space over S and that if

X /G exists, it is unique up to unique isomorphism.

Lemma 32. If X is a G-space over S such that X — S is separated and locally of finite type, then

X /G exists and its formation commutes with flat base change on S.

The construction of X/G and the proof of Lemma 32 use the quotient stack [ X/G]. This stack
is defined in [SP21, Tag 044Q(2)] to be the quotient stack associated to a certain groupoid [SP21,
Tag 0444] in algebraic spaces, which in particular has U = X and relations R = G X X. Note that the
definition of [ X/G] is independent of the base S (notated B in [SP21, Tag 044Q(2)]). One may also
describe [X/G] as the moduli stack parametrizing G-torsors together with maps to X (see [SP21,
Tag 04U V]).

Remark 33. Formation of [X/G] commutes with arbitrary base change on S. More precisely,
let S’ — S be a map of schemes and X’ := X Xg §’; we claim that the natural 1-morphism
[X'/G] — [X/G] xs S’ is an equivalence. Indeed, X’ = X Xg " — [X/G] Xs S’ is a smooth
cover, and the associated relations R (in the sense of [SP21, Tag 04T4]) are precisely the pullback
of the relations associated with the smooth cover X — [X/G], which in turn are given by G X X
with the maps defining the group action (using [SP21, Tag 04M9]). So a computation shows that
R is G X X’ with the maps defining the G-action on X’. Now use [SP21, Tag 04T4, Tag 04T5] to
conclude that [X’/G] is F.

Proof of Lemma 32. We consider the stack quotient 2 := [X/G] as in [SP21, Tag 044Q(2)],
noting that this operation commutes with arbitrary base change (as follows from Remark 33) and

then observe that our definition of X/G agrees with the definition of categorical moduli space for


https://stacks.math.columbia.edu/tag/044Q
https://stacks.math.columbia.edu/tag/0444
https://stacks.math.columbia.edu/tag/044Q
https://stacks.math.columbia.edu/tag/04UV
https://stacks.math.columbia.edu/tag/04T4
https://stacks.math.columbia.edu/tag/04M9
https://stacks.math.columbia.edu/tag/04T4
https://stacks.math.columbia.edu/tag/04T5
https://stacks.math.columbia.edu/tag/044Q
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Z in the sense of [SP21, Tag ODUG] (this need not exist, in general). So it suffices to show that
we can apply the Keel-Mori theorem [SP21, Tag ODUT]; i.e., we need to show that 2 has finite
inertia.! From the description of the inertia stack as the fiber product of diagonal morphisms [SP21,
Tag 034H], it suffices to show that the diagonal A: 2" — 2 Xg & is finite.

By [SP21, Tag 02XE] and [SP21, Tag 04M9] there is a fiber square

GXX — XXs X

| l

X —L s rxe X

where the top horizontal morphism is given by the action map (g,x) — (g.x,x). By [SP21,
Tag 04X0] the projection X — 2 is smooth, hence X xg X — 2 Xxg 2 is also smooth since it
factors as a composition of smooth maps X xs X — X X & — 2 xs 2. By [SP21, Tag 04XD],
we have reduced to showing that G X X — X Xg X is finite, or equivalently that it is proper and
locally quasi-finite ([SP21, Tag 0A4X]). This follows if the composition

pry
GXX > XXsX—>X

is proper and locally quasi-finite (this uses [SP21, Tags 04NX, 03XN] and the fact that X — § is

separated). These properties hold since the composition is just pr,: G X X — X and G is finite. O

Lemma 34. If X is a G-space over S such that X — S is separated and locally of finite type, then
X — X/G is finite and surjective.

Proof. We recall from the proof of Lemma 32 the factorization
“) X - [X/G] - X/G

of the map X — X/G. We will show that each of the maps in (4) is proper, locally quasi-finite, and
surjective, hence the composition is as well, and by [SP21, Tag 0A4X] it is finite and surjective.
By [SP21, Tag 04M9] there is a fiber square

Gxx —2 v x

| l

X —— [X/G],
where the left vertical arrow is given by the action of G on X. By [SP21, Tag 04X0], the (vertical)
map X — [X/G] is smooth, so by [SP21, Tag 04XD] the (horizontal) map X — [X/G] is proper,
locally quasi-finite, and surjective since pr,: G X X — X has those properties.

Since X — S is locally of finite type, the morphism [X/G] — S is also locally of finite type, and
hence [X/G] — X/G is as well (using [SP21, Tag 06FM] and [SP21, Tag 06U9] respectively). By
the Keel-Mori theorem [SP21, Tag ODUT], the morphism [X/G] — X/G is also separated, quasi-
compact, and a universal homeomorphism, hence proper and surjective. Since [X/G] — X/G is a

universal homeomorphism it has discrete fibers, so by [SP21, Tag 06RW] it is locally quasi-finite. O

Lemma 35. Let X be a G-space over S such that X — S is separated and locally of finite type. Let
Spec C — X /G be an étale morphism from an affine scheme. Then X Xx ;c Spec C ~ Spec B is an

INote that the final assertion of Lemma 32, namely that X /G commutes with flat base change, also follows from the
Keel-Mori theorem [SP21, Tag ODUT]. This is because the cited tag asserts that X /G exists and is a uniform categorical

moduli space, meaning that its formation commutes with flat base change.


https://stacks.math.columbia.edu/tag/0DUG
https://stacks.math.columbia.edu/tag/0DUT
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https://stacks.math.columbia.edu/tag/04XD
https://stacks.math.columbia.edu/tag/0A4X
https://stacks.math.columbia.edu/tag/04NX
https://stacks.math.columbia.edu/tag/03XN
https://stacks.math.columbia.edu/tag/0A4X
https://stacks.math.columbia.edu/tag/04M9
https://stacks.math.columbia.edu/tag/04X0
https://stacks.math.columbia.edu/tag/04XD
https://stacks.math.columbia.edu/tag/06FM
https://stacks.math.columbia.edu/tag/06U9
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affine G-scheme étale over X, and the projection Spec B — Spec C is induced by the inclusion of

the invariant ring C ~ B¢ < B.

Proof. By Lemma 34 the map X — X/G is finite, hence affine, so the fiber product X Xy, Spec C
is isomorphic to an affine scheme Spec B. By Remark 22, the ring B has a G-action and C — B
factors through the invariant subring B¢. In fact, by Remark 33 with S = X/G and S” = Spec C, we

have
(%) [X/G] Xx/G Spec C = [(Spec B)/G].

Since formation of the coarse space commutes with flat base change ([SP21, Tag ODUT]), the map
[(Spec B)/G] — Spec C is a coarse moduli space. In the parlance of [SP21, Tag 0DUK], the stack
[(Spec B)/G] is well-nigh affine, so its coarse moduli space is constructed in [SP21, Tag ODUP];

as explained there, C < BY is an isomorphism. O
The following is a special case of [AOV0S, Cor. 3.3].

Lemma 36. Let X be a G-space over S such that X — § is separated and locally of finite type,
where S is a scheme over Spec(Z[1/|G|]).

(1) The formation of X|/G commutes with arbitrary base change on S. That is, for any
morphism of schemes T — S the natural map (X Xs T)/G — (X/G) xs T is an
isomorphism.

(ii) If X — S is flat, then X/G — S is flat.

Proof. If A is a G-module on which |G| € Z acts as a unit (so A is also a Z[1/|G|]-module),
then we may define the Reynolds operator R4 = (1/|G|) Xgeg &: A — A% a projection onto
the submodule A® c A. The existence of this operator has two important applications: (a) taking
G-invariants is an exact functor from Z[1/|G|]-modules with G-action to Z[1/|G|]-modules (use
functoriality of R4), and (b) if R is an algebra with a homomorphism R — A%, then for any
R-module N the inclusion A® ® N c (A ®g N)C is an equality, where G acts on A ® N by the
rule g - (a ®@n) = (g -a) ® n (show that R4 ®g idy = Ragen)-

To prove (i) we may take S = X/G. Since the property of being an isomorphism is étale local
on the target [SP21, Tag 041Y] and formation of X/G commutes with flat base change, we reduce
to the case when S = Spec B, T = Spec B’, and hence by Lemma 35 we have X = Spec A with
B =A%. Now A® ®p B’ — (A ®p B’)Y is an isomorphism by (b) above.

For (ii) we may check flatness locally, so assume S = Spec B and X = Spec A are affine. By (b)
above, the functor A® ®p (-) is isomorphic to (A ®g (-))%, but A ® (-) and taking G-invariants

are both exact functors, by assumption and (a) above. O

The next lemma is similar to [SP21, Tag 0DUZ] but we remove the hypothesis that the base is

locally Noetherian.

Lemma 37. Let X be a G-space over a Z[1/|G|]-scheme S. If f: X — S is proper and of finite

presentation, then so is X/G — S.

Proof. Since the properties of being finitely presented and proper are local on the base ([SP21,
Tag 041V] and [SP21, Tag 0422]), we may assume S = Spec A is affine. Write A = colim;¢; A;
as the filtered colimit of its finitely generated (hence Noetherian) Z[1/|G|]-subalgebras and set
S; = Spec A;. By [SP21, Tag 07SK], we can find i € I and a G-space X; over S; with f;: X; — §;


https://stacks.math.columbia.edu/tag/0DUT
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of finite presentation, such that f is the base change of f;. By [SP21, Tag 08K1] we can increase
i and assume f; is still proper. By Lemma 32 the coarse quotient X;/G — §; exists. Since S;
is Noetherian, X;/G — S; is proper (using [SP21, Tag 0DUZ]) and of finite presentation (using
[SP21, Tag 06G4(2)]). Lastly, X/G ~ (X;/G) Xs; S by Lemma 36, so X/G — § is proper and of

finite presentation. O

3. ADMISSIBLE G-COVERS

3.1. Balanced group actions on nodal curves. Let G be a finite group.

Definition 38. A nodal G-curve is a G-space X over a scheme S where
(i) SisaSpec(Z[1/|G|])-scheme
(ii) X — S is anodal curve and
(iii) for every geometric fiber X; and g € G with g # 1, the locus le does not contain any
irreducible component of X;
A prestable G-curve is a nodal G-curve where we replace (ii) with the condition that X — Sis a

prestable curve.
We observe that the notation X ]f is well-defined by Lemma 23.

Remark 39. Unlike our definition of a G-space X over S, our definitions of nodal and prestable
G-curves X — S require S to be a Spec(Z[1/|G|])-scheme.

Remark 40. The pullback of a nodal (resp. prestable) G-curve is a nodal (resp. prestable) G-curve.

Lemma 41. Let X be a nodal G-curve over a field k and x € X be a smooth point with residue field
k and stabilizer G. Then Gy is cyclic, and there is a faithful character ¢ : Gx — k™ such that we

have a G x-equivariant isomorphism
O = k[ul. g-u=£&(guforg € Gy

: A
sending u to an element of my C ﬁX,x'

Proof. Letm C ﬁ’)’}’x be the maximal ideal and let r := |G|. Note that char(k) { r. Since x is a
smooth point of X, we have ﬁ)A(’x ~ k[u] for any u € m ~. m? by the proof of [SP21, Tag 0C0S].
Since x is a G x-fixed point, the action of G, on X induces an action on O  and thus a character
£: Gy — Autg(m/m?) =~ kX. We show that ¢ is faithful. Let g¢ € G such that £(g) = 1. Then
g also acts trivially on ﬁf(’x ~ k[u]. Indeed, otherwise we can choose £ > 2 minimal and a € k*

¢

such that g - u = u + au’ mod m‘*!. An inductive argument then shows that

u=g" -u=v+rau’ 2v mod m*!

because r # 0 in k, a contradiction. Further, if ¥ denotes the irreducible component of X containing
x, then g must act trivially on k(Y) C Frac ﬁ}?,x and thus on Y by [SP21, Tag OBY1]. Hence g = 1
as desired.

Next, the finiteness of G, guarantees that ¢ identifies G, with the r-th roots of unity u, (k).
Thus, G is cyclic ([SP21, Tag 09HX]). To finish the proof, it suffices to exhibit a uniformizer ¢t € m
with g - t = £(g)t because the natural map

k[u] = O% «» uwst
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will then be a G ,-equivariant isomorphism with the requested properties. Pick v € m ~. m? arbitrary
andset 7 := Y, €(g) 7 (g-v). Since g-v = £(g)v mod m?, wehaves = rv # 0 mod m? (again
2.

using that r € k™) and thus ¢ is not in m=; i.e., it is a uniformizer of m. On the other hand,

g -t =£&(g)t, sot does the job. O

Lemma 42. Let X be a nodal G-curve over a field k and x € X be a split node with stabilizer G .
If XY — X is the normalization let x|, x, be the two preimages of x in X" (see [SP21, Tag 0CBW])
and assume that Gy, = Gy. Then Gy is cyclic and there exist faithful characters £1,&,: Gx — k*

such that we have a G x-equivariant isomorphism

©) O x =k[uv]/(uv), g-u=¢&(gu, g-v==E(g)v forge Gy

identifying u and v with elements of m, C ﬁ)?’x.

Proof. Let A = ﬁ;},x and let A’ be the integral closure of A in its total ring of fractions. By [SP21,
Tag 0C3V], we have Spec(A”) = X xx Spec(A). Since the node is split, the §-invariant of A (as
defined in [SP21, Tag OC3T]) is 1 and there are two maximal ideals m;, m; in A’ lying over m, C A:
indeed, these properties hold by definition and [SP21, Tag 0C4A] when A is replaced with Ox ,
and they pass to the completion by [SP21, Tag 0C3W] and the fact that Spec(A’) = X Xx Spec(A).

We observe that (A”)y,, is by definition the local ring of X” Xx Spec(A) at x;, and this is in turn
equal to ﬁAv,xi by [SP21, Tag 07N9]. Our assumptions guarantee that G, acts on the branch of
XY containing x; and hence ﬁ;}v,xi has a description as in Lemma 41 for some character &;. (In
particular, G = G, is cyclic.)

We are in the situation of [SP21, Tag 0C4A(2)], in fact of Case I of the proof. There it is
shown that k(m;) = k(my) = x(x) and A is equal to the subring of A’ given by the wedge ([SP21,
Tag 0C411) of (A")m, and (A")m,; i.e. (using the explicit description of (A")m, = 0%, . = k[u] in

the previous paragraph),

(7 Oy = {(fi(u), L(v)) € k[u] X k[v] | £1(0) = f2(0)}.
We observe that G acts on A and on A’ and that the identification (7) as given in [SP21, Tag 0C4A(2)]

is completely G -equivariant. Thus, we get a G (-equivariant isomorphism 0% = k[u,v]/(uv)

with the desired properties. O

Definition 43. Let X be a nodal G-curve over a field k.

(i) If k is algebraically closed, a split node x € X with stabilizer G is balanced if G is
cyclic and for some faithful character ¢ of G, there is a G y-equivariant isomorphism as
in (6) with & = &,

(ii) For general k, a node x € X is balanced if there is a balanced split node in X that maps

to x.

We say X is balanced if every node is balanced, and a nodal G-curve X — S is balanced if every

geometric fiber is balanced.

Remark 44. Let x be a split node of a nodal G-curve X over a field k with cyclic stabilizer G, = (g)
and G y-equivariant trivialization % . = k[u,v]/(uv) as in (6). The induced action of g on the
tangent space Ty := (m/m?)" of x is identified with an endomorphism of k -u @ k - v. Then &, = 51’1
if and only if detg = 1. In particular, & = & 1_1 is independent of the choice of trivialization in (6)

because the condition det g = 1 is independent of the choice of basis of the vector space (m/m?)V.
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Lemma 45. Let X be a nodal G-curve over a field k and x € X a node.

(i) If x is a split node, then x is balanced if and only if ﬁf(’ . may be described as in (6) with
&H=¢&"N
(ii) IfK/k is a field extension and y € Xk has image x, then x is a balanced node if and only
if y is one.
(iii) IfY — X is an G-equivariant étale morphism of nodal G-curves over k and 'y € Y has

image x with Gy = G, then x is a balanced node if and only if y is one.

Proof. Let x be a split node and K/k be a field extension. If y € Xx maps to x, then y is a split
node by Lemma 7. If x; (resp. y;) is a preimage of x (resp. y) in the normalization of X (resp.
Xk), then Gy = G, and G4, = Gy, by Lemma 23. Hence G = Gy, if and only if G, = G,,,
and if this is the case, then by Lemma 42 the rings ﬁ}/gy , and ﬁ}’}m y admit trivializations as in (6)
with characters &1, & and 51, 52, respectively. Moreover, the G c-equivariant map ﬁ)ﬁ’x - ﬁ)’}K’y
induces a G x-equivariant morphism of tangent spaces T, — Tx ®; K. Now Remark 44 shows that
& =& if and only if & = £;'. In the special case K = k, this implies (i).

Next, we prove (ii). If y is balanced, then by definition we have a balanced split node y’ € X
mapping to y. The inclusion k < K factors through k < k, so we getamap Xg — Xj;letx’ € X
be the image of y’ under this map. It is a (necessarily split) node by [SP21, Tag 0C56]. Moreover it
is balanced by the first paragraph of this proof. Since x” maps to x we see that x is balanced.

Conversely, assume x is balanced. By [SP21, Tag 0C56], y is a node. Let k%%’ cC k denote the
separable algebraic closure of k. To prove that y is balanced, we may assume K is algebraically
closed. Since such K contains k D k5, by the first paragraph it suffices to prove that if y € Xzep
has image x, then y is a balanced split node. Let y € Xjs., have image x € X. By Lemma 8.(iii) and
Lemma 7 we know there is a split node y’ € Xjs, mapping to x. By [SP21, Tag 04KP] there is an
automorphism in Gal(k*? /k) C Auty (Xfsep) that maps y to y’; hence y is split (as is every node in
the preimage of x). Since x is balanced the discussion in the first paragraph shows that there is some
balanced split node y”’ € X, mapping to x. There is an element of Gal(k*% /k) C Auty (Xgsep)
sending y to y”/, and moreover this automorphism is are G-equivariant (consider the action in terms
of the functor of points). From the characterization of balanced split nodes in Lemma 42 it follows
that y is balanced.

To prove (iii), let y* € Y be a node mapping to y and let x” € X} be its image. By (ii), x (resp.
y) is balanced if and only if x” (resp. y’) is balanced. Both x" and y” are split nodes; let x|, x, and
Yy}, ¥4 be the two preimages in the respective normalizations indexed so that the G-equivariant map
of normalizations sends x; to y;. Note that Gy, C Gy C G = G (the equality is our hypothesis).
So Gy = Gy implies Gy, = G, and conversely if g € Gy \ Gy then gy| = y5 implies gx| = xJ,
so in fact Gy{ = Gy if and only if G ) = G . In the situation Gx; = Gy; = Gy = Gy, the local
rings of x” and y’ can be trivialized as in (6) and the nodes are balanced if and only if the characters
é1 and &; are inverse. On the other hand since ﬁ%,x, — ﬁ?}z’y, is G-equivariant and k-linear, the

characters for 2, and &) _, must be the same. O
Xk,x ka)’

3.2. Families of balanced nodal curves. In this section we study the deformation theory of balanced
nodal G-curves. This problem is simplest when we work over a base ring that contains the |G|-th
roots of unity because the group homomorphisms G, — k(s)* of Lemmas 41 and 42 can be lifted

to morphisms of group schemes (see Remark 49).
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Remark 46. If X is a balanced nodal G-curve over k and x € X has residue field k, it follows from

Lemmas 41 and 42 that k contains all the |G x|-th roots of unity.

Definition 47. Let r >

1 be an integer, and define the ring of cyclotomic integers is Z[{,] =
Z[x]/(®,(x)), where @, (x) denotes the r-th cyclotomic polynomial. This is the integral closure of
Z in the r-th cyclotomic field Q(¢;), and it is also equal to the smallest subring of C containing Z
and ;.

Remark 48. If S = Spec(Z[1/r, {,]), then there is an isomorphism of group schemes (Z/rZ)s —
HUr.s. In terms of functors of points, for any S-scheme 7 this morphism is given by group homo-
morphisms (Z/rZ)(T) — u,(T) sending the generator 1 € Z/rZ to ¢, € T'(T, Or). One checks it

is an isomorphism by noting that as a morphism of affine schemes it is given by the ring map
8) Z(1/r, 2] /("= 1) — 1‘[2 1/, ¢

sending x to (1, {p, ..., ¢~ ). The homomorphism (8) is an isomorphism by the Chinese Remainder
Theorem ([SP21, Tag 00DT]) if each pair of ideals (x — ¢7) and (x — ﬁ ) are coprime (for i # j).
To show that these ideals are coprime it is enough to show that £ — ¢ f is invertible in Z[1/r, £, ],

or equivalently that 1 — Z¥ is invertible in Z[1/r, £, for each integer k. To see this, observe that

r—1
l_[(x—g’f)z1+)c+...+)cr_1
k=1

and then set x = 1.

Remark 49. Let S be a scheme over Spec(Z[1/r, 1), lets € S, and let G be a group of order r with
¢ 1 G — k(s)* a group homomorphism. Then there is a morphism of group schemes Gs — G, s
such that the map on sections over Spec(k(s)) is given by &: one may see this as follows. Since
G has order r, the homomorphism & factors through w,-(k(s)) C k(s)*. By Remark 48 we have
a group homomorphism G — Z/rZ. This defines a morphism Gs — (Z/rZ)s of constant group
schemes, and by Remark 48 again this yields the desired Gs — u, 5. (Note that Gs — Gy, s is

uniquely determined by & on the connected component of s.)
The following lemma is the analog of [SP21, Tag 0CBX].

Lemma 50. Let X and S be schemes over Z[1/|G|, {|G|] with X — S a nodal G-curve, and choose
x € X with Gx = G. Let s € S be the image of x and assume «(x) = k(s) and that Os s is
Noetherian. Let £: G — k(s)* be defined as in Lemma 41 or 42. Then the morphism of group

schemes in Remark 49 defines a group homomorphism & : G — (0§ ) such that

(i) If x is a smooth point of X, then there is a G-equivariant isomorphism of ﬁé\,s-algebms
) O% = 0g [u], g-u=£&(gu forgeG.
(ii) If x is a balanced split node of X, then there exists h € mg C ﬁé\,s and a G-equivariant
isomorphism of ﬁSA’S-algebras
(10) O% =08 Juv]/(uv=h), g-u=¢&@u, g-v=¢"(gv forgeG.

Proof. We replace S by Spec(0s ) and X by Spec(0s s) Xs X. Let A = O0¢ ~and B = 0y  and
let m := my4 be the maximal ideal of A. Then 05 3 — Ox  is a flat homomorphism of Noetherian
rings and by [SP21, Tag 0C4G] the map A — B is also flat (we will use this at the end of the proof).


https://stacks.math.columbia.edu/tag/00DT
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Note that ﬁ)Acs,x = B/mB. By Remark 49 ¢ defines a faithful character G — G, s that identifies

Gs with y1)| s. Hence, any Os ;-module R with a G-action may be written as a direct sum

|G|

(11) R=PDRe
i=1

of Os ¢-modules such that for g € G and r € R, we have g - r = £(g)ir. We say that r € R
has weight &. To see (11), set r; := ﬁ Yeec £71(g)g - r and check that 3, r; = r and that r; has
weight &°.

To prove (i), observe that by Lemma 41 there is an isomorphism
(A/m)[u] — B/mB.

where u maps to some element of mp/mB of weight £. Since the map B — B/m respects
the decompositions (11), we can choose a lift f € mp of weight £&. This defines a morphism
f: Afu] — B of Noetherian rings that is an isomorphism modulo m. We conclude by [SP21,
Tags 0315, 00ME] using flatness of A — B that f is an isomorphism.

To prove (ii) observe that by Lemma 45.(i) there is an isomorphism
(A/m)[u,v]/(uv) - B/mB U X, vy

where ¥ (resp. 7) has weight & (resp. £€~') and A/m maps to (B/mB)zo. Letx; and y; be lifts of X
and ¥ of weights £ and €71, respectively, and observe that x;y; € mB has weight £°.

Set hy = 0 and 6; = x1y;. For n > 1 we recursively construct elements x, € Bg,y, € Be1,
hn € A,and 6, € (M"B)go such thatx, —Xp+1, Yn—Yn+1 € M"B, hy—hyey € M, and x,y, = hy+6,.
To define the (n + 1)%" collection of elements, write 5, = >, f;b; with f; € m" and b; € B. Since
5, and f; have weight £°, we can replace each summand of 3 f;b; with its weight-£° part and thus
assume b; has weight £°. Since A/m ~ B/mp and mp = x| B+ y|B+mB = x,B + y,B + mB, we
can write b; = a; + x,b; 1 + ynbi 2+ 6; , Wwhere a; € A; b; 1,b; 2 € B;and 6; ,, € mB. The element
b; already has weight £°, so by replacing every summand of the right side with its weight-£° part
we can choose ¢; , of weight fo and b; 1, b; » of weight f‘l and &, respectively.

Define x,,11 := x, — ), bi o fi and y,41 := yn — 2, bi 1 f;; note that these have the desired weights.
One checks that

Xni1Ynel = hp + Z fia; + Z fidin+ Z cijfif;
for some c¢;; € Bgo. Thus, hpy1 = hy + X fiai and 0pv1 = 2 fidin + X cijfifj satisty the
recursive assumptions. Since A and B are complete, we can define x := limx,, yo := limy,, and
heo := lim h,,, noting that Xeye = heo and that x., and y., have weights & and £7!, respectively. We
define f: Afu,v]/(uv — he) — B to send u to xe and v to y«. Since f is an isomorphism modulo

m, it is an isomorphism as in the proof of (i). O

Lemma 51. Let X — S be a nodal G-curve and a morphism of schemes, and choose x € X with
image s such that k(x) = «(s) and Os s is Noetherian. Assume x is either a smooth point or a
balanced split node of its fiber. After passing to an elementary étale neighborhood of s € S we can

arrange that the hypotheses of Lemma 50 are satisfied.

Proof. By restricting the G-action to G, we obtain the hypothesis that G = G . We may assume S =
Spec(A). Let r := |G| and set S” := Spec(A[t]/(D,(¢)). Since r is invertible in A by Definition 38,
the map S — S is étale and S’ is defined over Spec(Z[1/r,{,;]). Let x’ € Xg be any point


https://stacks.math.columbia.edu/tag/0315
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mapping to x and let s’ be its image in S’. As s’ lies in the fiber x(s) Xs S’ =~ Spec(«(s)[t]/D, (1))
and r is invertible in x(s), we have «(s) = «(s’), so (§8’,s’) — (S, s) is even an elementary étale
neighborhood. Moreover, if x is a smooth rational point (resp. balanced split node) of its fiber, then

so is x” by Lemma 7 and Lemma 45.(ii). By Lemma 23 and Lemma 24, we have G = G. O

The remainder of this section is dedicated to “spreading out” the description of ﬁ’;},x in Lemma
50.(ii) to an étale neighborhood of x. That is, we prove the following equivariant analog of [SP21,
Tag OCBY] (recall from [SP21, Tag 03BU] that | X| is the topological space of an algebraic space
X).

Proposition 52. Let X — S be a nodal G-curve over S. Let x € |X| be a point which is a balanced
node of the fiber X,. Then the stabilizer G of x € Xy is a cyclic group of order r, and there exists

a commutative diagram of G x-spaces and equivariant morphisms

X4—U— W — Spec(Z[u,v,a,1/r, ]/ (uv — a)

u

1" N S !

S < > Spec(Z[a,1/r,{r])

u , . )
such that the arrows X «— U, S «— V, and U — W are étale morphisms, the right hand square
cartesian, the G x-action on the top right is given by g - u = (lu, g - v = {;'v for some integer i, the
G x-action on'V is trivial, and there exists a point u € U mapping to x € X with G,, = G . Moreover

U8 surjects onto u(U) N X8 forall g € G.

Remark 53. Since the description of complete local rings in Lemma 50 may be read as a kind
of flat-local description of nodal G-curves, one may wonder why the étale-local description on
Proposition 52 is necessary. The reason is that flat maps do not preserve smooth and nodal points
of curves. A naive observation is that flat maps need not preserve dimension, so the notion “x € X
is a node in its fiber” does not make sense after replacing X with an arbitrary flat cover. However,
even flat maps of relative dimension zero need not preserve nodes and smooth points: for example,

the ring map
ku,v]/(u - V) — k[[ul/z,v]]/(u ) = k[[u‘/z,vﬂ/((ul/Z _ v)(u”z +v))

induces a flat morphism of schemes that sends a node to a smooth point. On the other hand, by
[SP21, Tag OC57] (resp. Lemma 45.(iii)), étale covers do preserve nodes and smooth points (resp.
balanced split nodes). Looking at the proof of [SP21, Tag OC57], one sees that the additional

condition that f is unramified (hence étale) is precisely what is needed to make the tag work.

Our proof of Proposition 52 uses Artin approximation and closely follows the proof of [SP21,
Tag OCBY]. Before proving Proposition 52, we state and prove a version of Artin approximation for
limit preserving functors from [Art69] as well as equivariant analogs of many of the tags used to
prove [SP21, Tag OCBY].

Following [SP21, Tag 049]], a contravariant functor F': (Sch/X)°PP — Sets is limit preserving
if for every directed inverse system of affine schemes 7; in (Sch/X) with affine inverse limit 7', the
natural map (colim; F(7;)) — F(T) is a bijection. The following is [Art69, Cor. 2.2].

Proposition 54. Let X be a locally Noetherian scheme and x € X such that Ox  is a G-ring in
the sense of [SP21, Tag 07GH]. Let F: (Sch/X)°PP — Sets be a limit preserving contravariant

SJunctor and ¢ € F (Spec(ﬁ}?,x)). Then for any natural number N, there exists an elementary étale
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neighborhood (U,u) — (X, x) and an element ® € F(U) such that ¢ and ® map to the same
element in F (Spec(&y) , /m}))).

Proof. We may assume that N > 2. By [SP21, Tag 02Y2], F corresponds to a category fibered in
sets p: .S — (Sch/X). Under this correspondence, the fact that F is limit preserving translates to
the fact that p is limit preserving on objects in the sense of [SP21, Tag 06CT]. Now [SP21, Tag 07XB]
(applied to & = .YF and R = ﬁ)’}’x) gives a ring A, a morphism U := Spec(A) — X of finite type,
a closed point u € U lying over x and an object ® € .¥F(U) such that the map U — X induces
an isomorphism ﬁ)’}’x /m¥ — Oy, /ml. Over this isomorphism, it guarantees the existence of
an isomorphism ¢|Spec(ﬁ§’x mtyy = Plgpec(a,, ., /mn)- Lastly, there exists an isomorphism of graded
Ox x/My-algebras Gry, (0% ) — Grm, (Oy ), where Gr(B) = @5 m’ /m*! denotes the
graded ring attached to alocal ring B with maximal ideal m; note that this graded algebra is generated
in degree 1.

The natural map Ox » — Oy, induces isomorphisms Grf;x (ﬁ}’},x) - Grf;lu (Oy.) fort=0,1
because N > 2. Since the graded algebras are generated in degree 1 and their graded pieces have the
same dimension (by the existence of the abstract isomorphism), Ox x — Oy, must in fact induce
isomorphisms Grﬁu(ﬁ)’g,x) — Grfnu(ﬁU,M) for all £. For £ = 1, we see that x(x) — «(u) is an
isomorphism. Via induction and repeated application of the five lemma on the diagram of natural

morphisms

0 — Gra(ﬁX,x) — ﬁX,x/mf;H e ﬁX,x/mi — 0

| l l L

0 — Gl (Ou u) — Oy u/mit — Oy u/ml — 0,

the middle map Ox ,/m§ — Oy, /mf is an isomorphism for all £. Hence, €% . — O is
an isomorphism, and U — X is étale at u by [SP21, Tag 039N, Tag 039M]. After shrinking U if
necessary, (U,u) — (X, x) is an elementary étale neighborhood. Finally, under the correspondence
of S with F, the isomorphism ¢]g,..( o ) = Dlgpec o7 /miY) translates to the statement that

¢ and ® map to the same element in F (Spec(&7}) , /m2')), so we win. m]

,u

Now we add group actions to many of the tags used in the proof of [SP21, Tag OCBY]. The
following is an equivariant analog of [SP21, Tag 0CAU] and [SP21, Tag 0CAV].

Lemma 55. Let G be a finite group and let S be a locally Noetherian scheme. Let X and Y be
G-schemes with G-invariant maps X — S, Y — S locally of finite type. Choose x € X andy € Y©
lying over the same point s € S with Os s a G-ring in the sense of [SP21, Tag 07GH]. Suppose we

are given a G-equivariant local Uy s-algebra map
(2 ﬁy’y — ﬁ)/},x'

Then for each N > 1, there is a G-equivariant elementary étale neighborhood p: (U,u) — (X, x),
withu € UY, such that U8 surjects onto u(U) N X8 for all g € G, and a G-equivariant S-morphism

f: U — Y mapping u to y such that the following diagram commutes modulo mY :
ﬁ)/},x 1 ﬁl/},u

T

Oy y —— Oy
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Moreover, if ¢ induces an isomorphism O y = 0% , then we can choose f so that (U,u) — (Y,y)

X,x’
is an elementary étale neighborhood.

Proof. Define a contravariant functor ' on X-schemes as follows. For U — X let
F(U) = Hom§ (U®,Y)

be the set of G-equivariant morphisms of S-schemes from the equivariantization U® (see Defini-
tion 26) to Y. If U — V is a morphism of X-schemes, the induced map of equivariantizations
U® — V® defines a restriction map F (V) — F(U) by precomposition. We check that F' is limit
preserving; that is, if {U;} is a directed inverse system of affine X-schemes, we show that the

canonical map
(13) lim Hom$ (UZ,Y) — Hom§ ((limU;)®,Y)

is a bijection. First observe that equivariantization is a type of limit and hence commutes with limits.

Next observe that (13) is the G-invariant part of the canonical morphism
(14) lim Homg (U7 ,Y) — Homg(lim U}, Y),

where to commute the G-invariants and the colimit on the left side we use that finite limits commute
with filtered colimits ([SP21, Tag 002W]). But (14) is a bijection since the functor U — Homg (U, Y)
is locally finitely presented by [SP21, Tag 01TX] and [SP21, Tag 01ZC].

The given morphism ¢ defines an element of Homsc(Spec(ﬁ)A(’x), Y). We compute

e
Spec(O% ,)° = lim Spec(Ox x/m’)

= lim Spec(Ox . /m%)°®
(15) -
= lim Spec(Ox /m’)

= Spec(Oy )

where the first and last equalities are the definition of completion,? the second again uses [SP21,
Tag 002W], and the third is Lemma 30 together with [SP21, Tag 01L6]. Hence ¢ produces an
element of F (Spec(ﬁf(’x)). Now Proposition 54 produces for any N > 1 an elementary étale
neighborhood u: (U,u) — (X,x) and an element ® € F(U) such that ¢ and ® map to the same
element of F(Spec(&)) , /m})).

Since Oy, is Noetherian, by [SP21, Tag 031C] we have & , /m}y =~ Oy, /m} . Unwinding
the definition of F, we see that we have an equivariant map U® — Y fitting into the black part of the

following G-equivariant commutative diagram:

Spec(O% ) —— Spec(O))e . /mD) ——> Spec(Oye ye/ml)

(15)

(16) Spec(0 )° 4—— Spec(8}) ,/mN)® — 3 Spec(y . /mN)°

| l

Y < U®

2These direct limits are taken in the category of schemes (not locally ringed spaces). In fact, they can be computed in
the category of affine schemes since a map from Spec(Ox . /m’) an arbitrary scheme Y factors through every affine open

neighborhood of the image of m. See e.g. [Emel0].
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We have u® € U® defined as in (2) and u®: (U®, u®) — (X, x) is an elementary étale neighborhood.
Note that the black part of (16) implies that u® maps to y. For the elementary étale neighborhood of
the lemma, we take ((u®)~'(V), u®) as constructed in Lemma 29.

To show that (12) commutes, we claim that we can construct the entire diagram in (16) to be
commutative, such that the composition of the vertical arrows on the right is the canonical map
Spec(ﬁue,ue/m%) — U®. Granting this, (12) is obtained from (16) by taking the induced maps on
local rings.

We derive (16). First, we have a commutative diagram

Spec(}) ,/m) —— Spec(Oy u/mY)

) — 1

Spec(O% ) <— Spec(ﬁAe’ue/m%) — Spec(Oye e /mlY,)
induced by the map pr;: (U®,u®) — (U, u) of elementary étale neighborhoods over (X, x), where
pr; was defined in Lemma 30. In this diagram, the left vertical map is an isomorphism by [SP21,
Tag 0AGX] and the right vertical map is an isomorphism because the other three are. Next, the
equivariantization of (17) maps to (17) under pr;, and we call the resulting three-dimensional
commuting diagram D.

The map pr; : Spec(ﬁUe,ue/mft\g)e — Spec(Oye e /m’i\ﬁ) in the diagram D is an isomorphism
by Lemma 30 (using the factorization Spec(Jye e /mf;é) — Spec(Ox /mY) — X, where the
first map is an isomorphism by the same reasoning we used for the right vertical map of (17), and
the second is a monomorphism by [SP21, Tag 01L6]).

From D, one may extract the gray part of (16). Specifically, the bottom line of (17) is the top
(gray) line of (16), and the equivariantization of the top line of (17) is the middle line of (16). By
contemplating D, one may also check that the composition of the vertical arrows on the right side

of (16) is equal to the composition
N A N e PIi e
Spec(Oye ue /M) — |Spec(Oye ye /M) — U — U

where the notation [—]® means we have applied the equivariantization functor to the canonical maps
in the square brackets, and A was defined in Lemma 30. After replacing X and U with affine
schemes one can write down the corresponding ring map and see that it induces the canonical map
Spec(ﬁye,ue/m%) — UC.

For the “moreover,” we first note that by taking N > 2 we can choose f to induce an isomorphism
on residue fields. Next, the proof of [SP21, Tag 0CAV] shows that when ¢ induces an isomorphism
of completed local rings, the morphism f is étale at u. Hence there is an open subset U’ of U

containing u where f is étale, and we replace U with (U’)®. O
The next lemma is the analog of [SP21, Tag 0GDX].

Lemma 56. Let G be a finite group acting on schemes X and Y. Moreover, let S,T,x,y,s,t,0,Yo,

and ¢ be given as follows: we have G-invariant morphisms of schemes

X Y X y
l l with G-fixed points l l
S T s t

such that S is locally Noetherian, T is of finite type over Z, the morphisms X — S andY — T are
locally of finite type, and Oy s is a G-ring in the sense of [SP21, Tag 07GH].
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The map
o Or = Og g

is a local homomorphism. SetY, =Y X1 o Spec(ﬁé\ o). The point y » is a point of Y, mapping to
y and the closed point of Spec(0g ). Finally,

. A ~ A
¥ ﬁx,x - ﬁYrr’y(r

is an isomorphism of ﬁé\ ;-algebras. In this situation there exists a commutative diagram

X<—Ww > Y xr . V—Y
S < V/ - > T

with W a G-scheme, V a scheme, and all morphisms G-equivariant, together with points w € WC
and v €V such that
i) (V,v) — (S,s) is an elementary étale neighborhood
(i) u: (W,w) — (X, x) is an elementary étale neighborhood and W8 surjects onto u(W) N
X8 forallg € G
(i) T(v) =t
Let yr € Y X7 . V correspond to y » via the identification (Yo )s = (Y Xr V),. Then

@iv) (W,w) = (Y X7+ V,y7) is an elementary étale neighborhood.

Proof. The proof of [SP21, Tag 0GDX] works equivariantly. We will outline that proof here
(omitting critical details that are checked in the original!) and explain what changes in the equivariant
setting.

One initially constructs the black part of the diagram

X 4 X xg Spec(6) ) <— U —» Y x7 Spec(0} ) —

T T

(18) S ¢ Spec(ﬁg’s) 5
Si

with U — X X5 Spec(0% ) and U — U Xr Spec(0y ) étale, using Lemma 55 for the existence

smooth

of U—in particular, the top row of (18) consists of G-schemes and equivariant homomorphisms,
u € US mapstox € X and y € Y, and U? surjects onto the image of U in (X xg Spec(ﬁgs))g.
Next one uses our hypothesis that s g is a G-ring to write Spec(& .é\,s) as the limit of smooth affine
S-schemes S;; after increasing i, by [SP21, Tag 01ZC], we may assume we have the gray part of the
diagram (18). By [SP21, Tags 01ZM, 07RP] we can, after increasing i, find a diagram of G-schemes

over S;

XXsSi — U ——= Y X7 §;
(19) \l/
Si

with U; — X Xg S;, U; — Y X7 §; étale, such that this diagram pulls back to the relevant part of (18)
and the map U — U; is G-equivariant. (To see that we can choose U; to have a G-action, observe

that by [SP21, Tag 01ZM], for each g € G, we can increase i to find an automorphism g; of U;
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that restricts to g. After further increasing i we can assume that all necessary diagrams relating to
group actions and equivariance of maps commute.) After increasing i again, using Lemma 23 and
[SP21, Tag 07RR] we can ensure that Uf surjects onto the image of U in (X Xg S;)8. Setu; € U;
to be the image of u € U; since u was G-fixed so is u;. Finally we use [SP21, Tag 057G] to find a
closed subscheme V C S; containing the image of u; such that V. — S is étale. We replace (19) with
its pullback to V to get the desired diagram of the lemma. In particular, we set W := V Xg, U; and
wi=u; € Ul.G is contained in this closed subscheme. The restriction to V preserves surjections and

g-fixed loci by Lemma 23, so for all g € G, W8 surjects onto (W) N X8 in the final diagram. O

Proof of Proposition 52. We follow the proof of [SP21, Tag OCBY], so we will be brief here.
Replace S with an affine open neighborhood Spec(R) of s and replace X with X’, where X’ is the
G -equivariantization of an affine étale neighborhood of the pullback, so X is a G-scheme. By
Lemma 29 we can after shrinking X’ assume that (X’)8 surjects onto the image of X’ in X8. Now
use absolute Noetherian approximation: write R as a filtered colimit of finite type Z-algebras R;.
By [SP21, Tags 01ZM, OC5F] we can find i and a nodal G-curve X; — Spec(R;) whose pullback to
Sis X — S. By [SP21, Tag OC3I] the image of x in X; is a node and by Lemma 45 it is balanced.
Hence (using Lemma 23 for the properties of X8) it suffices to prove the lemma for X; — Spec(R;).

We have reduced to the case where S is affine and of finite type over Z. By Lemma 8 and [SP21,
Tag 02LF] there is an affine étale neighborhood (V,v) — (S, s) such that, if X,, denotes the base
change of X to v, there is a split node x, € X, with image x. By Lemma 45, x, is balanced since x
was.

We have reduced to the situation where x is a balanced split node of its fiber and G = G.

By Lemma 51 we can after another étale base change assume that X — § satisfies all the
assumptions of Lemma 50. We conclude the argument as in the proof of [SP21, Tag 0CBY], using
Lemma 50 in place of [SP21, Tag 0OCBX] and Lemma 56 in place of [SP21, Tag 0GDX]. O

We give a first application of Lemma 56 and Proposition 52 to the étale local structure of nodal

G-curves.

Lemma 57. Let X be a nodal G-curve over an algebraically closed field k and let x € X (k).
(1) The point x is smooth if and only if there is a G x-equivariant isomorphism O ;h o = klu] f};)
with the G x-action on the target given by g - u = £(g)u for some faithful £: G, — k*.
(ii) The point x is a balanced node if and only if there is a G y-equivariant isomorphism
ﬁ;h’x = (k[u, v]/(uv))?l;’v), with the G x-action on the target given by g - u = £(g)u and
g - v =EY(g)v for some faithful & : G — k*.

Proof. (i). If x is a smooth point, Lemma 41 gives a faithful character ¢ : G, — k* and a G-
equivariant isomorphism Oy =~ k[u]. LetY = Speck[u] with k-linear G -action given by &
on u. Lemma 56 applied to X and Y over k (together with the fact that Spec k has no nontrivial
connected étale covers) then guarantees the existence of a pointed G ,-scheme (W, w) together with
G .-equivariant étale morphisms (W, w) — (X,x) and (W,w) — (Y, (u)). Since étale morphisms
induce isomorphisms on strict henselizations, we get the desired description of ﬁ)sfh’ .- Conversely,
assume O3 has the form given in (i) above. Since A, is smooth and &% ~ k[u]f};) =~ % o
[SP21, Tag 00TV] and [SP21, Tag 06LN] show that x is a smooth point of X.

(ii). If x is a node, then an argument similar to that used in (i) above shows that ﬁ)s(l"x has

the desired form (use Proposition 52 in place of Lemmas 41 and 56). Conversely, assume ﬁ)s(hx
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has the form given in (ii) above. Completing the isomorphism ﬁ;h’x =~ (k[u,v]/ (uv))?};’v) yields
a G y-equivariant isomorphism ﬁ)@’x =~ kfu,v]/(uv), by [SP21, Tag 06LJ(b)] and the fact that
henselizations and strict henselizations coincide for local rings whose residue fields are algebraically
closed (follows from [SP21, Tag OBSL]). This shows that x is a balanced node in the sense of
Definition 43. O

3.3. The stack of prestable balanced curves. Let G be a finite group. Recall that if X — S
is a prestable G-curve then S is a Spec(Z[1/|G|])-scheme. In this section we construct a locally
closed substack of Rspec(z[1//G|]) parametrizing balanced prestable G-curves. We will repeatedly
use Proposition 52 to work étale-locally (see Remark 53 for a discussion of why a flat local picture

is not enough).

Remark 58. As a warmup for the next lemma, recall from [SP21, Tag 034H] the definition of the
inertia stack .# of an algebraic stack 2. An element of . (S) is a pair (x, @) with x € Z°(S)
and @ € Autg(x) (by definition, @ is an arrow x — x lying over id : § — S). A morphism

(x1,a1) = (x2, @) between objects of .#(S) is an arrow f : x; — xp such that foa; =ap o f.

Lemma 59. Let 2 be an algebraic stack with separated diagonal. Let . be the inertia stack of
X and let []g & be the fiber product ¥ X g ... X & of |G| copies of F. Then there is a closed
substack 2 (G) C [1g & given on S-valued points by

(20) Z(G)(S) :={(x,0) | x € Z(5), 6 € HomT (G5, Autg (x))}
where Homip(GS, Autg(x)) is the set of homomorphisms of group algebraic spaces over S.

Remark 60. An object of [[g-#(S) may be written as (x, (ag)geg) Where x € Z'(S) and
g € Autg(x) for each g € G. Thus, in Lemma 59, the groupoid fiber 27 (G)(S) is viewed
as a full subcategory of []5 #(S) by identifying an object (x,0) € 2 (G)(S) with the ob-
ject (x,(0(8))gec) € [1g #(S). In particular, an arrow (x1,6;) — (x2,6>) between objects of
Z(G)(S) is given by a “G-equivariant arrow” x; — x; i.e., for each g € G, the arrow x| — x;

commutes with the automorphisms specified by 6;(g) and 6>(g).

Proof of Lemma 59. For an object x of Z°(S), a morphism § € Homg(Gs, Autg(x)) is equivalent
to sections g : § — Autg(x) forevery g € G. Let 1 € G be the identity and let 15: S — Autg(x) be
the identity section, ¢: Autg(x) — Autg(x) the involution, and ¢: Autg(x) X Autg(x) — Autg(x)

the composition. That the map 6 is a homomorphism translates to the identities (finite in number)

6, =1g Og-1 =100, foreachg € G

2D
Ogn = c(0g,0y) foreach (g,h) € G xG.

Since the diagonal of .2 is separated, the algebraic space Auty (x) — T is separated, and its diagonal
is a closed embedding. So the proof of [SP21, Tag 01KM] shows that the locus where any one of
the equalities in (21) holds is represented by a closed subscheme of S. Intersecting these, we get a

closed subscheme of S representing the property that 6 restricts to a group homomorphism. O

Setting 2" = Nspec(z[1//G|)) in Lemma 59 we obtain the following corollary.

Corollary 61. There is an algebraic stack Rspec(z(1/1G|]) (G) whose objects over a scheme S are
prestable G-curves over S, and whose arrows are given by G-equivariant morphisms of G-curves

over S.
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Define " € Ngpec(z[1//G/)) (G) to be the full subcategory whose objects are balanced prestable

G-curves.

Lemma 62. The subcategory R C Rspec(z(1/1G11) (G) is an open substack. In particular, R*¥ is

algebraic.

Proof. We show that %% ¢ NRspec(z[1//G1)) (G) is an open substack by using the discussion in
[SP21, Tag OEOE]. That is, we show thatif 7: X — S is G-space over S and a prestable curve, there
is a largest open subscheme S* c § such that the pullback X xs S* is a balanced G-curve, and
formation of S® commutes with arbitrary base change. Define S| c |S] to be the locus of points
s € S such that X; is a balanced prestable G-curve. By Remark 40 and Lemma 45 the locus |S*¥|
is preserved by arbitrary base change, so it remains to show that |S®| is open.

Note that each composition X8 — X — S is proper. By [SP21, Tag 0D4Q)], there is an open
subscheme S’ c S whose underlying set consists of points s € S such that X§ has dimension < 0 for
each 1 # g € G, i.e., X; is a prestable G-curve. If s € S’ is contained in |Sba]|, Lemma 45.(iii) and
Proposition 52 gives for each node x € X an etale map f,: Uy — X such that f(Uy) — mo f(Uy)
is a balanced nodal G-curve. Let X" = X*™ U (|, fx(Uy)) where the union is over nodes x of X;
andlet Z := X\ X"”. Now §” := 8"~ n(Z) C S’ is open (because 7 is proper) and it is the maximal

subscheme over which the restriction of X to 77! (§”’) is balanced prestable. O

Lemma 63. Let X — S be a balanced prestable G-curve with coarse quotient f: X — X /G and
let x € |X|. If x is a smooth point (resp. node) of its fiber, then f(x) is also a smooth point (resp.
node) of its fiber.

Proof. Since the question may be checked on geometric fibers of X — X/G — S (using Remark
13) and since the map X — X /G commutes with arbitrary base change (Lemma 36), we reduce to
the case where S = Spec(k) is the spectrum of an algebraically closed field k = k. Let V = Spec(C)
be an affine étale neighborhood of f(x) € X/G. Let U =V Xx,c X and let u € U be a closed point
mapping to x. Let v € V be the image of u.

Note that U is also affine, so U = Spec(B) for some ring B and C = B¢ by Lemma 35. By
Lemma 36 we have

oy, =0}, &cBE°.

Let uy,...,u, be the points in the fiber of v, numbered so that u = u;, and note that G acts

transitively on these points. By [SP21, Tag 07N9] we have
Oy ,®cB=0p,®...00), .
Moreover, the projection
(O ®...005,)° - (0),)°
is an isomorphism. Since Lemmas 23 and 24 show that G,,, =~ G, we conclude
(22) oy, = (0} ).

Set n := |G,|. Assume x is a (necessarily balanced) node of its fiber. By Lemma 45.(iii), u
is also a balanced node, and by [SP21, Tag 0C57] f(x) is a node if and only if v is. By (22) we
have ﬁ\A/,v > (@Aj,u Gx ﬁﬁ’u, and hence by Lemma 45 we have ﬁ"),v =~ k[, s"]/(t"s"). In

particular, ﬁ‘A, ,, is of the form in Definition 6.(i) and hence v is a node.
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Now assume x is a smooth point of its fiber. Since U — X is étale, u is a smooth point of its fiber.
)@ = k[t"]. This implies
that v is smooth ([SP21, Tag 00TV, Tag 07NY]) and so by [SP21, Tag 05AX] f(x) is smooth. O

Using Lemma 41 and arguing as in the nodal case, we get ﬁQ’V = (0}

Lemma 64. If X — S is a balanced prestable G-curve, then the coarse quotient X/G — S is a

prestable curve.

Proof. The map X/G — S is flat, proper and of finite presentation by Lemma 36.(ii) and Lemma 37.
The remaining conditions may be checked on geometric fibers so by Lemma 36.(i) we may assume
S = Spec(k) for some algebraically closed field k = k. Now X /G is a nodal curve by Lemma 63 and
it has finitely many connected components because X does and X — X /G is surjective (Lemma 34).
Finally, X /G has pure dimension 1 because X does and X — X /G is finite and surjective; cf. [SP21,
Tag OECG]. O

The following technical lemma will be used to analyze the geometry of X8.

Lemma 65. Let X — S be an algebraic space over a scheme S with X1, X» C X closed subspaces
that are finite étale over S. Assume |X|| C |X3|. Foreachx € |X1| there exists an open neighborhood
VcXofxsuchthat VNX =VNX,.

Proof. Since X; — § is finite, the subspace X; is representable by a scheme (by definition [SP21, Tag
03ZP]). Applying [SP21, Tag 04HN] twice, we find an étale map S’ — S such that the fibers (X )s/
and (X;)ss are both isomorphic to disjoint unions of schemes isomorphic to S’ by the projection
maps. The point x is in one of these. Removing the other ones from X, we get an open neighborhood
U of x in Xg such that U N (X;)sr = U N (Xy)s . If two closed subspaces of an algebraic space agree
on an étale cover, then (by descent) they agree. Hence the desired neighborhood is the image of U

in X. m}

Lemma 66. Let X — S be a balanced prestable G-curve.

(i) For every non-identity g € G, the map (X8 N X*™) — S is finite étale.

(ii) For each x € |X*™| there is an open neighborhood of x where

(Xg N Xsm) — Xh N xsm
ge(G~A{1})

for a generator h of G . In particular Jgyc(g- (11) (X8 N X*™) — S is finite étale.

Proof. (i) We claim there is an open X’ C X containing the points of X that are nodes in their fibers
such that the stabilizer of any smooth point in X’ is trivial. Granting this, the complement of X’
is a closed set containing X& N X*™ and contained in X*". This shows that for g # 1 the map
(X8 N X™) — § is proper; moreover it is finite because its fibers are closed subsets of X*'" that do
not contain any irreducible component; cf. [SP21, Tag 0A4X].

We construct X’. For a pointx € |X| thatis anode in its fiber, we have a diagram as in Proposition
52, where in particular U# surjects onto u(U) N X8 for all g € G,. On the right hand side of the
diagram we may directly compute that for any g € (G, ~\ {1}) the fixed locus contains no smooth
point, so by Lemma 23 and Remark 13, the locus (W*™)8 is empty. This forces (U*")8 to be empty
as well (since the smooth locus is preserved by étale covers), and hence the image of U contains no
g-fixed point of X*™.
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Intersecting these images for all nonidentity g € G, gives a neighborhood of x that contains no
smooth g-fixed point for each g € (G, ~ {1}), and furthermore, by removing X" for ¢ G, we
get an open neighborhood of x whose intersection with X8 N X is empty for each g € (G ~\ {1}).
Let X’ C X be the union of these open sets (one for each node of X).

Finally, we show that (X8 N X*™) — § is étale. We may assume S = Spec(R). As in the proof
of Proposition 52 we can find a subring R; C R finitely generated over Z and a prestable G-curve
X; — Spec(R;) whose base change to S is X — S. Since base change preserves X8 N X*™ by
Remark 13 and Lemma 23 and smoothness can be checked locally on the target [SP21, Tag 02VL],
we have reduced to the case where S is Noetherian.

By [SP21, Tag 056U], it suffices to prove that the morphism is étale at every closed point x € X
with image s € S such that the induced field extension x(s) C «(x) is finite separable. Let x € X be
of that form. By [SP21, Tag 02LF, Tag 01JT], we can find an étale neighborhood (S’, s") — (S, s)
and x” € X¢ closed such that k(s”) = x(x’) = «(x). We thus reduce to the case where k(x) = «(s).
Similarly, by Lemma 51, we can assume that the hypotheses of Lemma 50 are satisfied; taking G -
invariants in (9) and using [SP21, Tag 00MA(2)] this implies that the natural map ﬁé‘\,s - ﬁ)A(g’x is
an isomorphism.

One may now apply [SP21, Tag 039N, Tag 039M] to see that X — S is étale at x.

(ii) It suffices to consider the case X = X*. Fix x € |X| and let (G \. Gx) C G be the subset
equal to the complement of Gy. Then U = X ~ (UgEG\GX X8 ) is an open subset containing x.
Now let / be a generator of G. Foreveryn =1,...,(|Gy| — 1) we have X" c X" a containment
of finite étale spaces over S with x € |X"|. By Lemma 65 we have an open set V,, ¢ X where
X" NV, = X" NV,. The desired open neighborhood is U N (ﬁ‘c_;"l_l V,,). m]

n=1
3.4. Construction of the moduli stack of admissible covers. For the rest of this document we fix
a finite group G and work over Spec(Z[1/|G|]). Recall the moduli of marked connected prestable

curves M, from Definition 17. For the rest of this document we will write M. for (M )spec(z[1/1G]])-
We observe that )% is already defined over Spec(Z[1/|G|]). Set

$Ho = Hommbalxgﬁ* (Q:inﬂ' > Q:EIR*)9

where Hom denotes the Hom stack from Lemma 19. Let S be a scheme over Spec(Z[1/|G|]). An
object in P4 x M, over S is a morphism § — N4 x M., or equivalently a pair of morphisms
S — R and § — M,.. Set

X = (Cgpa)s := Copoa Xgpoa S and Y := (Cgp, )s := Cop, Xom, S.

An object of $g over this pair is a morphism X — Y of S-algebraic spaces. The stack $) is algebraic
by Lemmas 18, 62, 16, and 19. Note that if f : X — Y is an admissible G-cover as defined in
Definition 1, then X is a balanced nodal G-curve by Lemma 57.(ii). Hence we may define the stack

of admissible covers as a full subcategory of $.

Definition 67. The stack of admissible covers o7dm(G) is the full subcategory of $, whose objects

over a scheme S are given by
Adm(G)(S) ={(f: X = Y) € H9(S) | f is an admissible G-cover}.

We now define a sequence of full subcategories $; C $o and show that each is an algebraic stack,

in fact a locally closed substack, of §. Briefly, if f : X — Y is an object of £, then
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e itisin $; if f is G-invariant,
e itisin $, if Y is the coarse quotient X /G, and

e itisin $3 if f sends smooth points of X with nontrivial stabilizer to marked points of Y.

In Theorem 77 we show that 3 is equal to «/dm(G), thus proving Theorem A that <Zdm(G) is
algebraic.
Let $; C $Ho be the full subcategory of G-invariant morphisms. The S-valued points of £, are
given by
D18 =A{(f: X >Y)eHo| fog=[florallg € G}.

Lemma 68. The full subcategory $ is an algebraic stack and the inclusion $ — o is a closed

immersion.

Proof. Let S be ascheme and let f: X — Y be an object of §y. We find a closed subscheme S” c §
with the following universal property: a morphism 7 — S factors through S’ if and only if the
restriction of f to X Xg T is G-invariant. Granted this, the statement is a consequence of Lemma 15
and [SP21, Tag 04YL].

DefinemapsI',T"": § — []g Homg(X,Y) givenby I" = (fog)gec andI"” = (f)gec. The desired
locus S’ is the equalizer of I" and I"". This is closed as in [SP21, Tag 01KM] since Homg(X,Y) is
separated ([SP21, Tag ODPN]). O

If f: X — Y is an object of $;(S), then f is G-invariant and therefore factors through the coarse
moduli space X /G of Definition 31. Define $, C £, to be the full subcategory whose objects over

a scheme § are given by

M(S) = {(fi X —=7Y)en(s)

the induced map f: X/G — Y }

is an isomorphism

Lemma 69. The full subcategory $), is an algebraic stack and the inclusion $; — £ is an open

immersion.

Proof. Let S be an arbitrary scheme and f: X — Y be an object of $;(S). We need to show
that there exists an open subscheme S’ C § with the following universal property: a morphism
a: T — § factors through S’ if and only if the morphism X7 /G — Y7 induced by ar: Xy — Yr
is an isomorphism.

This morphism factors through X7 /G — X/G Xs T, which is always an isomorphism by
Lemma 36. Thus, it suffices to find an open S’ C S such that @: T — S factors through S’ if and
only if the natural morphism X /G X5 T — Y Xg T is an isomorphism. Since X/G — S is a family
of prestable curves by Lemma 64 and Y — S is a family of prestable curves by assumption, the
existence of S’ follows from [SP21, Tag 05XD].

Now the statement is a consequence of Lemma 68, Lemma 15, and [SP21, Tag 04YL]. O

If Y — S is a marked connected prestable curve, we define Y, C Y to be the locus of marked
points (the union of the images of the sections). Likewise if X — § is a balanced prestable G-curve,
let Xy = Uge(gq1y) X8 N X*™. This is a closed subspace of X by the proof of Lemma 66.(i).

Define $)3 C £, to be the full subcategory whose objects over a scheme S are

H:3(8) ={(f: X = Y) € 52(8) [ [ (I1Xu]) < [Yil}-
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Lemma 70. The full subcategory $3 is an algebraic stack and the inclusion $3 — £, is a closed

immersion.

Proof. Let S be ascheme and f: X — Y be an object of £,(S). We need to show that there exists a
closed subscheme S’ C § with the following universal property: a morphism 7" — S factors through
S’ if and only if f7 (|Xr,|) C |Yr |- This is equivalent to the condition that fr (Xr ) C Yr 4 by
Lemma 66.(ii) and Lemma 65 (note that Y7  is finite étale over T since it is the union of the images
of some disjoint sections of Yr — T'). Since (X4 )r = X7 « by Remark 13 and Lemma 23, this is in
turn equivalent to the condition that the closed immersion j : (X,)r < X factors through £~ (¥,).

Let .7 be the ideal sheaf of £~ (Y,) inside X. By [SP21, Tag 03MB] the condition is equivalent
to the composition j*.% — O\(x,), = j*Ox, being zero. By Lemma 66, the &’x-module Oy, is flat
and proper over S. Therefore, [SP21, Tag 083M] shows that this locus is represented by a closed
subscheme S’ C S. Now the statement is a consequence of Lemma 69, Lemma 15, and [SP21,
Tag 04YL]. O

All that remains is to show that the algebraic stack $3 is isomorphic to the category «7dm(G) of
admissible G-covers. Observe that both $3 and .&/dm(G) are full subcategories of §, so it suffices
to prove that the objects of $3(S) and &Zdm(G)(S) give the same subset of $(S). To that end, we

first clarify what is meant by a G-torsor in Definition 1.

Definition 71. Let X be an algebraic space with an action by G and let ¢ a Deligne-Mumford

stack. A G-invariant morphism X — % is a G-torsor if

(i) the map (act,pr,): G Xo X — X Xg X is an isomorphism, and

(ii) there is an étale cover Y — % such that the pullback X X& Y — Y admits a section.

Remark 72. A G-torsor in our sense defines a G-torsor on the small étale site of % in the sense of
[SP21, Tag 03AH].

Remark 73. By [SP21, Tag 03AI], a G-torsor X — ¢ is isomorphic to G X % — % with the
natural left G-action if and only if it admits a section. In particular, Definition 71.(ii) guarantees

that a G-torsor X — % is an étale morphsim.

Example 74. If X is an algebraic space with an action by G then X — [X/G] is a G-torsor.
Condition (i) is [SP21, Tag 04M9]. Condition (ii) also follows from [SP21, Tag 04M9] using Remark
73 and the fact that X — [X/G] is étale. This last fact may be deduced from [SP21, Tag 04M9]
using [SP21, Tag 0CIQ(3)] and the fact that X — [X/G] is smooth by [SP21, Tag 04XO0].

The next couple of lemmas show that an admissible cover X — Y over S belongs to $3(5).

Lemma 75. Let S be a scheme. Let X — S andY — S be two prestable curves and f: X — Y a
morphism over S. Assume that for every x € |X|, if x is smooth (resp. nodal) in its fiber, then f(x)
is smooth (resp. nodal) in its fiber. Finally, suppose there is an open subset U C Y such that, for
every geometric point 5 of S, the fiber Us is dense in every irreducible component of the fiber Y5,
and f~'(Us) is dense in every component of Xs. If f: f~'(U) — U is an isomorphism, then f is

an isomorphism.


https://stacks.math.columbia.edu/tag/03MB
https://stacks.math.columbia.edu/tag/083M
https://stacks.math.columbia.edu/tag/04YL
https://stacks.math.columbia.edu/tag/03AH
https://stacks.math.columbia.edu/tag/03AI
https://stacks.math.columbia.edu/tag/04M9
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Proof. By [SP21, Tag 05XD], there is an open subscheme S’ C S such that a map 7 — S factors
through S’ if and only if fr: Xy — Yr is an isomorphism. We want to prove that S’ contains all
points of S. Thus, it suffices to show that f is an isomorphism on every geometric fiber, so we may
assume that S = Spec k for an algebraically closed field k.

Let vx : X¥ — X and vy : YV — Y denote the normalization maps. Then f induces a map
fY: X” — Y” between disjoint unions of integral, normal curves using [SP21, Tag 035Q(4)] and
the fact that every component of X dominates a component of Y.

We first show that f” is an isomorphism. Since f gives a bijection between irreducible com-
ponents of f~1(U) and U (or equivalently X and Y by density), f” induces a bijection between
connected components. Moreover, our assumptions imply that /¥ defines birational maps on the
various connected components, hence isomorphisms by [SP21, Tag OBY 1], and we see that f is an
isomorphism as desired. Since vx and vy become isomorphisms after restriction to X* and Y*™,
respectively, we see that f restricts to an isomorphism X*" — Y*'.

Next we show that f induces a bijection on points. Surjectivity follows since f* and vy are both
surjective. For injectivity, since f preserves nodes and smooth points and f*"" is an isomorphism,
we only need to show that anode y € Y has a unique node in X mapping to it. By [SP21, Tag 0CBW]
applied to Y, and the fact that ¥ is an isomorphism, there are exactly two points in X* mapping to
y. By [SP21, Tag 0CBW] applied to X, there can only be one node in X mapping to y. So fisa
bijection on points, as desired.

Now letxy, . . ., x, be the points of X that are nodes in their fibers and let yy, . . ., y,, be their images
inY. Since f is surjective and using [SP21, Tag 00MB], we have that Y*"" Li| |, Spec(ﬁ?»yi) —-Y
is an fpqc covering of Y (see [SP21, Tag 03NW]). By [SP21, Tag 02L4] and [SP21, Tag 07N9], the
fact that f*" is an isomorphism, and the fact that f is injective on points, to complete the proof of
the lemma we only have to show that the map ﬁ{,\,y'_ — ﬂ)/},x,; induced by f is an isomorphism.
For this last step, let A = ﬁ;}’ x, and B = ﬁl’,\, i and let A’ (resp. B’) be the integral closure of A
(resp. B) in its total ring of fractions. By [SP21, Tag 0C3V] and the fact that f” is an isomorphism,
we have that f induces an isomorphism f*: B’ = A’. The proof of Lemma 42 describes A (resp.
B) as the explicit subring of A’ (resp. B’) equal to the wedge (A )m, A (A" ), (tesp. (B )n, A (B')n,)
where my, my (resp. ny, n) are the two maximal ideals lying over the maximal ideal m,, C A (resp.
1y, C B). Since f #is an isomorphism, it sends the maximal ideals m;, m, of A’ to the maximal

ideals 111, 1, of B’, and hence induces an isomorphism of subrings B — A. O

Lemma 76. If f: X — Y is an admissible G-cover in the sense of Definition 1, then the induced

morphism q: X|/G — Y is an isomorphism.

Proof. Let Y8¢" C Y be the complement of the nodes and markings in Y. It is an open subset.

Lemma 36 gives the following pullback diagram of open immersions:

f—l(Ygen) }f—l(Yge")/G qgen> ygen

l ) [

X s X/G > Y

We claim ¢%°" is an isomorphism. Indeed, by assumption f~!(Y&¢") — Y& is a G-torsor.
By Definition 71.(i) and Remark 73, after passing to an étale cover of Y4 we may assume that
FH(Y8e") ~ G x Y8", s0 f~1(Y8¢") /G ~ Y& in this situation. Now ¢%¢" is an isomorphism by

[SP21, Tag 04ZP] and [SP21, Tag 04XD].


https://stacks.math.columbia.edu/tag/05XD
https://stacks.math.columbia.edu/tag/035Q
https://stacks.math.columbia.edu/tag/0BY1
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The locus f~!(Y#") is dense in every irreducible component of every geometric fiber X;: if not,
some irreducible component of Xz would map to a node or marking of Y5, contradicting finiteness
of f [SP21, Tag 0397]. Now we apply Lemma 64 and Lemma 75. O

Theorem 77. As full subcategories of 9, we have $3 = Zdm(G). In particular, <Zdm(G) is an

algebraic stack.

Proof. Let S be a test scheme. We show that $3(S) = @Zdm(G)(S) as full subcategories of $o(S).
Since an admissible G-cover f: X — Y is G-invariant it belongs to $;(S). By Lemma 76, it is in
$:(S). Lastly, let x € X,. As G acts freely on a G-torsor, x cannot be contained in an open subset
of X that is a G-torsor over its image. Thus, f(x) is a node or marked point of ¥ by Definition 1.(i).
Lemma 63 rules out that f(x) is a node, hence f(x) € Y4. In other words, f is in £3(S), showing
“2”.

Conversely, assume that f: X — Y is an object of $3(S). Then f is finite by Lemma 34. If
x € X mapstoy €Y, then by Lemma 63, x is a node (resp. smooth) if and only if y is a node (resp.
smooth). In particular part (ii) of Definition 1 holds. By Lemma 36 the map X; — Y is still a

coarse quotient, so by Lemma 35 and [SP21, Tag 05WR] we have

sh  _ sh sh G
Oy y=(O% o %X Ox )

where x, . . . x,, are the points in the fiber of y. Since the right hand side is canonically isomorphic
to (ﬁ;’% . )C=i for any i by the proof of Lemma 63, parts (iii) and (iv) follow from Lemma 57.
Finally, let U := f~1(Y*™ \_Y,) be the locus of X away from the markings and nodes of Y. By
Lemma 36 and the condition defining $),, the restriction f|y: U — Y™ \ Y, can be identified
with U — U/G. Moreover, the condition defining $3 guarantees that G acts freely on the locus U.
Therefore, the map from the inertia stack #|;7/g|] — [U/G] is an isomorphism [SP21, Tag 06PB]
so that [U/G] is an algebraic space [SP21, Tag 04SZ] and [U/G] =~ U/G by the universal property
of coarse moduli spaces. In particular, by Example 74 the map U — U/G is a G-torsor, giving part
(i) and “C”. |
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