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Abstract. We prove the exactness of the Nisnevich Gersten complex over a Noetherian irreducible

base of finite type under some conditions. We also obtain, as a consequence, a Nisnevich analogue

of the Bloch-Ogus theorem for étale cohomology in this setting.

1. Introduction

Given a smooth algebraic varietyX over a field, the classical Bloch-Ogus theorem says that the Gersten
complex is exact for étale cohomology with coefficients in the twisted sheaf µ⊗in of n-th roots of unity.
Originally proved by Bloch and Ogus in [2], it was extended by Gabber [8] to any torsion sheaf on
Xét which comes from the base field. In fact, the methods in [8] could be applied to any cohomology
theory with supports that has the same properties as étale cohomology. This was done in [3] by
Colliot-Thélène, Hoobler and Kahn. Using the ideas of Gabber, they were able to show that for any
A1-invariant cohomology theory E for smooth varieties over a field, the associated Gersten complex is
exact. The essence of their methods lies in a geometric presentation lemma due to Gabber [3, Theorem
3.1.1].

In [12], Strunk and Schmidt prove a Nisnevich local analog of the Bloch-Ogus theorem for discrete
valuation rings with only infinite residue fields. They adapt the results in [3] to the mixed characteristic
setting using a Nisnevich local version of the geometric presentation lemma for discrete valuation rings
with only infinite residue fields (see [11, Theorem 2.1]). In this approach to the Bloch-Ogus theorem
over more general base schemes, the geometric presentation lemma plays a crucial role. The geometric
presentation lemma has been extended to all Noetherian domains with only infinite residue fields in [4].
A generalisation with no restriction on residue fields has been proved in [6]. While the version in [6]
has no restriction on the base scheme, the conclusion obtained is slightly less general in comparison
(see Remark 3.2). However, it turns out to be sufficient in the present context.

In this note, we extend the theorems in [12] to Noetherian irreducible base of finite type using the
presentation lemma as in [6]. Our main result is the following Nisnevich local generalisation of the
Bloch-Ogus theorem (see Section 4 for notation):

Theorem 1.1. Let S be a J-2 Noetherian irreducible regular scheme of finite type. Fix a point s ∈ S.
Let X/S be smooth of finite type, d = dim(X) and C• an l.c.c. complex in Dbc(Set,Λ). Let x be a
point of X lying over s and Y = Xh

x the Nisnevich local scheme at x. Then there is an exact sequence

(1) 0→ Hn(Yet, C
•|Y )

e−→
⊕
z∈Y (0)

Hn(k(z), z∗C•|Y )
d0−→ · · ·

· · · d
d−1

−−−→
⊕
z∈Y (d)

Hn−d(k(z), z∗C•|Y (−d))→ 0.

In fact, we prove a more general result about the Gersten resolution of a cohomology theory
(Theorem 1.2). To that end, we follow the methods in [12]. The important distinction is that we
replace the presentation lemma [11, Theorem 2.1] with the more general result [6, Remark 3]. We
prove the following theorem (see Section 2 for notation):
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Theorem 1.2. Let S be a Noetherian irreducible scheme of finite type of dimension p and let E ∈
SptS1(SmS) be a A1-Nisnevich local fibrant spectrum and X ∈ SmS of dimension d. Then the complex

(2) 0→ (EnX)∼
e−→

⊕
z∈X(0)

j∗j
∗EnZ/X

d0−→
⊕

z∈X(1)

j∗j
∗En+1

Z/X

d1−→ · · ·

· · · d
d−2

−−−→
⊕

z∈X(d−1)

j∗j
∗En+d−1

Z/X

dd−1

−−−→
⊕

z∈X(d)

j∗j
∗En+d

Z/X → 0

is exact with possible exceptions at (EnX)∼ and
⊕

z∈X(i) j∗j
∗En+i

Z/X for 1 ≤ i ≤ p. Furthermore, the

above complex is exact everywhere if for each x ∈ X which lies over s ∈ S and for any irreducible
closed subset Z ⊂ X of codimension k satisfying either

(1) Xx ⊆ Z ⊂ X or
(2) Z is an irreducible component of Xx

there exists Z ′ ⊃ Z of codimension k − 1 such that following (forget support) map is trivial

EZ/X(Xh
x )→ EZ′/X(Xh

x ).

Here x is the closed point of the henselisation of S at s. In fact, this gives us a resolution of (EnX)∼

by flabby Nisnevich sheaves, which implies the following isomorphism

Hk(Y, (EnX)∼) ∼= Hk(G•(E,n)(Y ))

for Y ∈ XNis, which vanishes for k > d.

Specialising Theorem 1.2 to étale cohomology gives us the Bloch-Ogus Theorem for Nisnevich local
schemes (Theorem 1.1). Note that both Theorem 1.1 and Theorem 1.2 generalise to higher dimensions
the dimension one case of S a Dedekind scheme proved in [12, Corollary 6.10 and Theorem 5.12],
respectively.

While Theorem 1.2 is a fairly straightforward generalisation of [12, Theorem 5.12], concluding
Theorem 1.1 from this is a bit subtle compared to the dimension one case in [12]. Indeed, it requires
the full strength of Gabber’s absolute purity theorem [7] in contrast with [12], where only absolute
purity for closed subschemes in the special fiber suffices. This is where the regular and J-2 hypotheses
on S come in. These are two technical conditions needed to employ Gabber’s absolute purity theorem.
These assumptions on S are not unreasonable as they are implicit in the dimension one case in [12] (a
Dedekind local ring is regular and J-2). Note, however, that Theorem 1.2 holds for any Noetherian
irreducible scheme S of finite dimension.

A scheme S is said to be J-2 if for any finite type scheme X over S the regular locus of X is open.
All fields, Z, Noetherian complete local rings, or schemes of finite type over these rings are J-2. All
(quasi-)excellent schemes are J-2.

The regularity of S ensures that X is regular (in the absolute sense) while J-2 ensures that for any
irreducible closed subscheme Z of X the regular locus is open in Z. As the cohomology groups in
the Gersten resolution (1) are defined as colimits over open neighborhoods of the generic point of Z,
to prove Theorem 1.1 it suffices to have absolute purity for the regular locus of Z. The argument is
developed in Section 4.

Outline. We begin with some preliminaries in Section 2 about model structures on spectra over
smooth schemes, and set up the notation and terminology. In Section 3, we prove Theorem 1.2 as well
as discuss some examples where the theorem fails to hold. Finally, we prove Theorem 1.1 in Section
4.
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2. Preliminaries and Notation

We will briefly review the set-up required to prove Theorem 1.2. There is no claim at originality
of content or presentation and most of the material can be found in [12]. We reproduce it here to
introduce the notation and for the sake of clarity of exposition.
Let S be a Noetherian base scheme of finite type. Denote by SmS the category of smooth schemes of
finite type over S and by SptS1(SmS) the category of presheaves of spectra on SmS . For X ∈ SmS ,
SptS1(XNis) is the category of presheaves of spectra on the small Nisnevich site of X. We will work
with the object-wise model structures on these categories.
A morphism f : X → Y in SmS induces a morphism of the corresponding sites, f : SmY → SmX by
pullback. This gives rise to a Quillen adjunction,

f∗ : SptS1(SmY ) � SptS1(SmX) : f∗

and on the small Nisnevich sites,

SptS1(XNis)
f#

�
f∗
SptS1(YNis)

f∗

�
f∗

SptS1(XNis)

where for the first one we have to assume that f is an object of YNis while the second one always exists.
Given an E ∈ SptS1(SmS), we denote by EX its restriction to SptS1(XNis) and En(X) := π−n(E(X))
(see [12, Definition 2.3]). Let Z ⊆ X be a closed subset and consider the open immersion j : X\Z → X.
Then the unit of adjunction associated to the map j induces a canonical map

ηj : EX → j∗j
∗EX

in SptS1(XNis). We denote by EZ/X , the homotopy fiber of ηj in SptS1(XNis). Moreover,if Z ⊆
Z ′ ⊆ X are closed subsets of X, we have a canonical map EZ/X → EZ′/X called forget support map
(see [12, Lemma 3.7]).
Recall from [10], that a Nisnevich distinguished square is a pullback square

V Y

U X

f

i

such that i : U → X is an open immersion, f is an étale morphism of finite type and (X \ i(U))red×X
Y → X \ i(U))red is an isomorphism. A spectrum E ∈ SptS1(SmS) is called Nisnevich local fibrant
if and only if E(∅) = ∗ and for each Nisnevich distinguished square P , E(P ) is a homotopy pull-
back square. Furthermore by [12, Lemma 3.11] an objectwise fibrant spectrum E ∈ SptS1(SmS) is
Nisnevich local fibrant if and only if for all Nisnevich distinguished squares as above, the induced
morphism

EZ/X → f∗f
∗EZ/X ' f∗Ef−1(Z)/Y

is an equivalence, where, Z = X \ U .
For a sprectrum EX ∈ SptS1(XNis) recall from [12, Definition 3.1],

EX(p) := hocolim
Z⊂Xclosed

codim(Z,X)≥p

EZ/X

in SptS1(XNis), for p ≥ 0. The structure maps are given by forget support maps described in preceding
paragraph.
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For a smooth scheme X of relative dimension d, by the universal property of colimits and the definition
of codimension, we automatically have a filtration,

EX(d) → EX(d−1) → . . .→ EX(0) = EX

of presheaves of spectra on XNis. We denote by EX(p/p+1) , the homotopy cofiber of the map EX(p+1) →
EX(p) . This cofiber sequence gives rise to a long exact sequence of homotopy groups for each p. Using
these long exact sequences for each p, we can construct a chain complex of presheaves of abelian
groups on XNis,

(3) 0→ EnX
e→ EnX(0/1)

d0→ En+1
X(1/2)

d1→ . . .
dd−2

→ En+d−1
X(d−1/d)

dd−1

→ En+d
X(d) → 0

The complex is exact if following morphisms are all zero

En
X(1) → En

X(0)

En+k
X(k) → En+k

X(k−1)

En+k+1
X(k+2) → En+k

X(k+1)

we refer the reader to [12, §4]. One can obtain similar conditions after sheafifying the above complex.
This observation leads to [12, Proposition 4.6], which will be used in the proof of Theorem 1.2. In the
interest of brevity we don’t state the proposition here.
Using [12, Proposition 3.19, Corollary 3.20](See also [3, Lemma 1.2.2]), for a Nisnevich local fibrant
spectrum E ∈ SptS1(SmS), we may rewrite (3) as

0→ EnX →
⊕

z∈X(0)

j∗j
∗EnZ/X →

⊕
z∈X(1)

j∗j
∗En+1

Z/X → . . .

. . .→
⊕

z∈X(d−1)

j∗j
∗En+d−1

Z/X →
⊕

z∈X(d)

j∗j
∗En+d

Z/X → 0

where z ∈ X(p) is a point, Z := {z} and j is the canonical morphism Spec (OX,z)→ X. In fact more is
true. One can also show that these sheaves of abelian groups are flabby [12, Corollary 3.23]. This leads
us to the following definition of Nisnevich Gersten complex of E, denoted as G•(E,n) [12, Definition
4.3] where,

Gp(E,n) :=
⊕

z∈X(p)

j∗j
∗EnZ/X .

We call G•(E,n) as the Nisnevich Gersten complex of E and homotopical degree n.

3. Proofs of Theorems

In this section, we prove our theorems. We first prove Theorem 1.2, which is a general result about
A1-Nisnevich local fibrant spectrum E providing conditions for exactness of the Nisnevich Gersten
complex defined in previous section. As an application of this result, when E is taken to be Nis-
nevich sheafification of étale cohomology, we prove Theorem 4.4. The Bloch-Ogus theorem for étale
cohomology of Nisnevich local schemes immediately follows (Theorem 1.1).
Throughout this section let S be a Noetherian irreducible scheme of finite type.

3.1. Gersten complex for A1-Nisnevich local fibrant spectrum. In this section, we establish
Theorem 1.2. This theorem gives the exactness condition for the Nisnevich Gersten complex associ-
ated to an A1-invariant cohomology theory with Nisnevich descent for smooth schemes over S.

For E ∈ SptS1(SmS) and a morphism f : Y → X in SmS , induces the map

ηf : EX → f∗EY

in SptS1(XNis). Furthermore, for a closed subset Z ⊂ X, pullback Z̃ of Z along f and a pullback
diagram
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Y \ Z̃ Y

X \ Z X

j̃

f̃ f

j

we can define the morphism

ηf : EZ/X → f∗EZ̃/Y

for details see [12, Constuction 5.3].

The following lemma is essentially [6, Corollary 3 and Remark 3]. This lemma provides the required
Nisnevich distinguished square, which usually is a consequence of Gabber’s presentation lemma.

Lemma 3.1. [6, Remark 3] Let X be an essentially smooth henselian local scheme over a scheme
S and let Z ⊂ X be a closed subscheme of positive relative codimension. Then there is a map

p : X → A1
V , where V = (AdimX−1)

h

0 is the henselisation at the point 0, such that p is étale, p induces
an isomorphism Z ' p(Z), and p(Z) is finite over V . Consequently, giving the following Nisnevich
distinguished square:

X \ Z X

A1
V \ p(Z) A1

V

f

Remark 3.2. Note that in the Nisnevich distinguished square in the above lemma V is a limit of
Nisnevich neighborhood of AdimX−1, whereas in [11] and [4] it is a Zariski neighborhood in AdimX−1.

The following proposition generalises [12, Proposition 5.9] to a more general base. The proof is exactly
the same, except for the input from the presentation lemma.

Proposition 3.3. Let E ∈ Spt1S(Sms) be a A1-Nisnevich local fibrant spectrum. Let X ∈ SmS be
irreducible scheme, Z ↪→ X be a closed subscheme and x be a point in Z lying above s ∈ S, such that
dim(Zs) < dim(Xs). Then Nisnevich-locally around x there exist

(1) V ∈ SmS a smooth relative curve p : X → V with Z finite over V
(2) a closed subscheme Z ′ ↪→ X containing Z such that codim(Z ′, X) = codim(Z,X)− 1.

and the forget support map induces the trivial morphism

p∗EZ/X → p∗EZ′/X

in the homotopy category. In particular EZ/X(X)→ EZ′/X(X) is trivial.

Proof. From Lemma 3.1 (and using a standard limiting argument, see [5] IV §8) we can find a Nisnevich
distinguished square

X \ Z X

A1
V \ f(Z) A1

V

f

such that Z ↪→ X
f−→ A1

V
π−→ V is finite, after possibly shrinking X Nisnevich locally around x.

Let p = π ◦ f , Z = p(Z)red and Z ′ = p−1(Z). Since π and f are flat, so is p hence it follows that
codim(Z ′, X) = codim(Z,X)−1. By the excision [12, Lemma 3.11] it follows that the upper horizontal
morphism in the following diagram
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Ef(Z)/A1
V

f∗EZ/X

EA1
Z/A1

V
f∗EZ′/X

'

f

is an equivalence. In the above diagram the vertical maps are respective forget support maps and
f−1f(Z) = Z. Applying π∗ to the above diagram we get the following diagram:

π∗Ef(Z)/A1
V

p∗EZ/X

π∗EA1
Z/A1

V
p∗EZ′/X

'

f

From [12, Lemma 5.8], the left vertical map is trivial. Hence the right vertical map is also trivial
thereby proving the proposition. �

Corollary 3.4. Under the assumptions of the previous proposition, the forget support map

EZ/X(Xh
x,η)→ EX(Xh

x,η)

is trivial, Xh
x,η is the generic fiber of the Henselian local scheme at x and EX(Xh

x,η) denotes stalk of
E at x of X.

Proof. By Lemma 3.1, we can find a cofinal family of Nisnevich neighbourhoods (W,w) of x each
admitting a Nisnevich distinguished square as in Proposition 3.3. Since, E(Xh

x,η) is colim(W,w)E(Wη),
where Wη is the generic fiber it is sufficient show that for such neighbourhoods the forget support
map is trivial. So we assume W = X. As Xη = colim

Xη⊂T⊂X
T and Zη = colim

Xη⊂T⊂X
T ∩ Z, where T is open

subscheme of X, we have the following distinguished square

T \ Z ∩ T T

A1
V \ f(Z ∩ T ) A1

V

Now by previous proposition EZ/X(T ) → EX(T ) is trivial. Hence EZ/X(Xη) → EX(Xη) is trivial ,

as EX(Xη) = colimT EX(T ). In a similar fashion EZ/X(Xh
x,η)→ EX(Xh

x,η) is trivial.
�

We now prove Theorem 1.2.

Proof of Theorem 1.2. As we can check exactness stalkswise, we assume S to be spectrum of a
Henselian local ring. Let σ be the closed point. By [12, Proposition. 4.6(2)(ii,iii)] the theorem follows
by showing for a given closed subscheme Z ⊂ X of codimension ≥ p + 1, there exists Z ⊆ Z ′ ⊆ X
with codim(Z ′, X) < codim(Z,X), such that forget support map En+s

Z/X(Xh
x )→ En+s

Z′/X(Xh
x ) is trivial.

We can assume X to be a Henselian local scheme.
If Z does not contain the special fibre Xσ, then by Proposition 3.3 we are done. So now suppose Z

contains the special fibre. If Z is irreducible, then by hypothesis there is a Z ′ such that codim(Z ′, X) <
codim(Z,X) and the forget support map EZ/X(X) → EZ′/X(X) is trivial. If Z is not irreducible,
then we can write Z = ∪iZi where Zi’s are the irreducible components of Z. Without loss of generality
assume i = 2. Hence, by hypothesis (and in case one of the irreducible component doesn’t entirely
lie over the closed point of S, by Proposition 3.3) there exist Z1 ⊂ T1 and Z2 ⊂ T2 such that forget
support maps EZ1/X(X)→ ET1/X(X) and EZ2/X(X)→ ET2/X(X) are trivial.

Writing T = T1 ∪ T2 we prove the forget support map EZ/X(X)→ ET/X(X) is trivial. Note that
as EZi/X(X) → ETi/X(X) is trivial so is the composition EZi/X(X) → ETi/X(X) → ET/X(X), for
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i = 1, 2. Since we have the triangle EZ/X(X)
f−→ ET/X(X)

g−→ E(T\Z)/(X\Z)(X \ Z), by a general
fact about triangulated categories, proving f is trivial is equivalent to proving g is a monomorphism.
Now using the isomorphism EZ/X(U) ∼= E(U∩Z)/U (U) for any open subscheme U in X, we have
ET/X(X \ Z) ∼= E(T\Z)/(X\Z)(X \ Z). This implies that g factors as ET/X(X) → ET/X(X \ Z1) →
E(T\Z)/(X\Z)(X \ Z). We will prove that both these morphisms are monomorphisms.

We have the following exact triangle for Z1

EZ1/X(X)→ ET/X(X)→ E(T\Z1)/(X\Z1)(X \ Z1)

Therefore, ET/X(X)→ E(T\Z1)/(X\Z1)(X \ Z1) ∼= ET/X(X \ Z1) is a monomorphism.
Observing the triangle corresponding to Z2

EZ2/X(X \ Z1)→ ET/X(X \ Z1)→ E(T\Z2)/(X\Z2)(X \ Z)

we conclude that ET/X(X \ Z1) → E(T\Z2)/(X\Z2)(X \ Z) ∼= E(T\Z)/(X\Z)(X \ Z) is a monomor-
phism. This proves that composition g : ET/X(X) → ET/X(X \ Z1) → E(T\Z)/(X\Z)(X \ Z) is a
monomorphism.

�

We can greatly simplify the condition for exactness of the Nisnevich Gersten complex in Theorem
1.2 when S is J-2. In this case, it suffices to check the triviality of the forget support maps for regular
irreducible closed subschemes. The following is the precise statement:

Proposition 3.5. In the setting of Theorem 1.2 assume S to be a J-2 ring. Then if for every regular
irreducible closed subscheme Z ⊂ X of codimension k satisfying either

(1) Xσ ⊆ Z ⊂ X or
(2) Z is an irreducible component of Xσ

there exists Z ′ ⊃ Z of codimension k − 1 such that the forget support map EZ/X(Xh
x )→ EZ′/X(Xh

x )
is trivial, the complex (2) of Theorem 1.2 is exact at all places.

Proof. As S is J-2, every closed subschme z = Z has an open neighbourhood U contanining z such
that U ∩Z = Zreg is regular. Further EZ/X(Xh

x ) ∼= EZreg/X(Xh
x ) and we proceed in the same manner

as in the proof of previous theorem. �

Remark 3.6. Note that as [12] deals with the case where the base is regular of dimension one, the
condition for exactness becomes the triviality of forget support maps EZ/X → EX , with Xσ ⊆ Z ⊂ X,
for Z of codimension one. Moreover, such a Z can not be irreducible as it contains Xσ and so can be
written as a union of its irreducible components which are either contained in Xσ or not (in that case
Corollary 3.4 applies). Hence, for a regular dimension one base (say, a DVR), we can further simplify
the condition for exactness of the Nisnevich Gersten complex to the condition that the forget support
map EXσ/X → EX is trivial.

3.2. Some Examples. We now discuss some examples where forget support condition stated in
Theorem 1.2 fails.

Example 3.7. It’s easy to come up with E ∈ SptS1(SmX) which do not satisfy the triviality of forget
support maps. Let j : Z ↪→ X be an irreducible regular closed subscheme of codimension 1 in X. Let
E′ be a A1-Nisnevich local fibrant spectrum in SptS1(SmZ). Then E := j∗E

′ is A1-Nisnevich local
fibrant spectrum in SptS1(SmX), supported on Z and it follows from definitions that forget support
map EZ/X → E is not trivial.

However if the Gersten resolution of (E
′n)∼ is exact, then by exactness of j∗, pushforward of such a

Gersten resolution is exact. Moreover by Leray spectral sequence, such a pushforward is an acyclic
resolution. Hence Gersten resolution of (En)∼ is also exact. This shows that the hypothesis of forget
support map being trivial is sufficient but not necessary.
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Example 3.8. We now give an example of a spectrum E′ ∈ SptS1(SmS) for which the Gersten
resolution (2) is not exact. In fact, Ayoub’s counterexample to Morel’s conjecture on A1-connectivity
[1] works for us. We give a brief description here.
Fix a perfect field k. Let KM1 denote the Nisnevich sheaf (on smooth schemes over k) respresenting
Milnor K-theory. This sheaf, in fact, has transfers and hence belongs to DMeff(k). Let S be a normal
surface in P3 given by equation w(x3 − y2z) + f(x, y, z) = 0 with f a general homogeneous degree
4 polynomial. Then S is non singular outside the point [0 : 0 : 0 : 1]. Denote by i : S ↪→ P3

k the
inclusion map and by π : P3

k → Spec k the structure map of P3
k.

We will consider KM1,S := i!π∗(KM1 ) ∈ DMeff(k). It follows from Section 3 of op. cit that the Nisnevich

sheafifcation(denoted clS) of the presheaf U 7→ H1
Nis(U,KM1,S) on SmS is not strictly A1-invariant. In

particular, it cannot be zero. Therefore, the Gersten resolution of KM1,S is not exact.

Next we construct an A1-local fibrant spectrum with (E
′0)∼ ∼= i!π∗KM1 . As KM1 is an A1-invariant

sheaf with transfers, it is also strictly A1-invariant. This implies that the associated Eilenberg-Maclane
spaces K(KM1 , n) are A1-local for all n ≥ 0. Therefore, the spectrum E with En := K(KM1 , n) is an
A1- Nisnevich local fibrant spectrum in SptS1(Smk) with (E0)∼ ∼= KM1 . Moreover, E′ := i!π∗(E) is
also an A1-Nisnevich local fibrant spectrum in SptS1(SmS) because i! and π∗ both preserve fibrant

objects in our situation. Finally (E
′0)∼ ∼= i!π∗KM1 .

Remark 3.9. While S defined in the previous example is not regular, the same example shows ex-
actness of Gersten resolution fails for i∗(E

′) in SptS1(SmP3
k
). This provides us with a counterexample

over a regular base.

4. Bloch-Ogus Theorem

In this section, we specialise to the étale cohomology and prove Theorem 1.1. The idea is to verify
the conditions stated in Proposition 3.5 about the vanishing of forget support maps. To verify these
conditions we use Gabber purity for étale cohomology. As Gabber purity requires the schemes to be
regular, we have to put some extra hypothesis on our base scheme such as regularity and J-2. Note
that [12] assume their base to a DVR, hence the condition of regularity and J-2 is implicit in their
hypothesis.

All cohomology groups in this section, unless specified otherwise, are étale cohomology groups. We
fix the following notation

(1) Let X be an irreducible, smooth scheme of finite dimension over S.
(2) Let Λ the group Z/n for n an integer co-prime to p = char F and µn be the sheaf of n-th roots

of unity. Then given any constructible sheaf F of Λ module, F(c) denotes F ⊗ µ⊗cn , for any
c ∈ Z.

(3) Let Dbc(Xet,Λ) be the derived category of bounded(above and below) complexes for which all
the cohomology sheaves are constructible sheaves of Λ-module.

(4) For convenience we will call a complex C• ∈ Dbc(Xet,Λ) with locally constant cohomology
sheaves Hq(C•) for all q an l.c.c. complex.

Given a closed immersion i : Z ↪→ X of regular Noetherian schemes, of pure codimension c. Gabber
purity tells us when the following morphism of étale cohomology groups , for any sheaf F of locally
constant Λ modules

Hr−2c(Z,F(−c))→ Hr
Z(X,F)

is an isomorphism. See [7] for details. In particular if c = 1 (i.e Z is of codimesnion 1 in X), we

have Λ ∼= H0(Z,Λ)
∼=−→ H2

Z(X,Λ(1))→ H2(X,Λ(1)). We thus obtain a morphism clZ/X : H0(Z,Λ)→
H2(X,Λ(1)). Moreover clZ/X(1) = c1(Z) where c1 : Pic(X) → H2(X,Λ(1)) comes from Kummer
exact sequence. See chapter 23 of [9] for details.

Remark 4.1. Observe the isomorphism HomDb(Xet,Λ)(Λ[−2],Λ(1)) ∼= H2(X,Λ). Therefore if a

cohomology class [c] ∈ H2(X,Λ) is trivial then the corresponding morphism Λ[−2] → Λ(1) is trivial
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in Db(Xet,Λ). For instance if X is a local scheme then Pic(X) is trivial and so clZ/X(1) will be zero

in H2(X,Λ). We will use this in proof of Lemma 4.2.

Since i! is a left exact functor, it induces a right derived functor Ri! : Db(Xet,Λ)→ Db(Zet,Λ) on
the derived categories. Then Gabber purity implies the following quasi-isomorphism

Ri!C• ∼= i∗C•(−c)[−2c]

of chain complexes in Db(Zet,Λ) for any C• ∈ Db(Xet,Λ).

Lemma 4.2. Let X/S be a Henselian regular local ring with σ : k(x)→ X, the closed point. Assume
σZ : Z ↪→ X, σZ′ : Z ′ ↪→ X be regular closed subschemes (containing special fiber) such that Z ⊂ Z ′

and c = codim(X,Z ′) = codim(X,Z)− 1. Then the following morphism

σ∗σZ∗((Rσ!
Z)(Λ))→ σ∗σZ′∗((Rσ!

Z′)(Λ))

is trivial in Db(k(x)et,Λ))

Proof. We reduce the question to Z ′ (which is Henselian local because X is) and its codimension

1 closed subscheme Z. Denote Rσ!
Z′(Λ) by F and consider the closed point σ : k(x)

σ′−→ Z ′ ↪→
X. Then purity for the closed immersion σZ/Z′ : Z ↪→ Z ′ implies that Rσ!

Z/Z′F ∼= Rσ!
Z(Λ) ∼=

F(−1)[−2]. Now by Lemma 6.6 of [12] and Remark 4.1 σ′∗σZ/Z′∗((Rσ!
Z)(Λ)) → σ′∗((Rσ!

Z′)(Λ)) is

trivial in Db(k(x)et,Λ)) .
We finish the proof by noting the isomorphisms σ∗σZ′∗ ∼= σ′∗ and σ∗σZ∗ ∼= σ′∗σZ/Z′∗. �

Since étale cohomology is invariant for Henselian pairs, the previous lemma immediately yields the
following corollary.

Corollary 4.3. In the setting of Lemma 4.2, the canonical morphism RΓZ(Xet,Λ) → RΓZ′(Xet,Λ)
is trivial.

Now we are in a position to prove the next theorem which will yield Bloch-Ogus theorem as its
corollary. The key ingredients for the proof are Theorem 1.2 (and Proposition 3.5) and Lemma 4.2.
We will merely sketch the proof as it follows the one given in [12], once all the essential ingredients
are in place.

Theorem 4.4. Let S be a J-2 Noetherian irreducible regular scheme of finite type. Let X/S be
smooth, dim(X) = d and C• an l.c.c. complex in Dbc(Set,Λ). Then the Nisnevich Gersten complex
G•(E(C•), n) is a flasque resolution of the Nisnevich sheafification Rnε∗C•|X of étale cohomology with
coefficients C•. In particular, we get the exact sequence

0→ Rnε∗C•|X →
⊕

z∈X(0)

j∗H
n(k(z), C•|k(z))→ . . .

· · · →
⊕

z∈X(d)

j∗H
n−d(k(z), C•|k(z)(−d))→ 0.

Proof. First we need to say E(K•) is A1-local to be able to use Proposition 3.5. This follows from
Lemma 6.3 of [12]. Next we extend Lemma 4.2 to any complex C• ∈ Dbc(Set,Λ), that is, the morphism
σ∗σZ∗((Rσ!

Z)(C•|X)) → σ∗σZ′∗((Rσ!
Z′)(C

•|X)) is trivial. Hence by Proposition 3.5, G•(E(C•), n) is
a flasque resolution of Rnε∗C•|X . This proves the first part of the theorem.

Then one proves j∗E(C•)n+s
Z/X
∼= Hn−s(k(z), C•|k(z)(−s)) (See [12, Proof of Theorem 6.8] for details).

As Gs(E(C•), n) =
⊕

z∈X(s) j∗j
∗E(C•)n+s

Z/X , this concludes the proof.

�

Theorem 4.4 immediately yields Theorem 1.1 after taking the Nisnevich stalks of the spectrum.

Remark 4.5. In fact, Theorem 1.1 holds for any A1-invariant cohomology theory that satisfies pu-
rity and admits a reasonable notion of Chern classes. The details and precise formulation of this
observation will be developed in a future work.
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