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Abstract. In this paper, we associate, to any submartingale of class (Σ), defined on a
filtered probability space (Ω,F , P, (Ft)t≥0), which satisfies some technical conditions, a σ-
finite measure Q on (Ω,F), such that for all t ≥ 0, and for all events Λt ∈ Ft:

Q[Λt, g ≤ t] = EP[1Λt
Xt]

where g is the last hitting time of zero of the process X . This measure Q has already been
defined in several particular cases, some of them are involved in the study of Brownian
penalisation, and others are related with problems in mathematical finance. More precisely,
the existence of Q in the general case solves a problem stated by D. Madan, B. Roynette and
M. Yor, in a paper studying the link between Black-Scholes formula and last passage times
of certain submartingales. Moreover, the equality defining Q remains true if one replaces
the fixed time t by any bounded stopping time. This generalization can be viewed as an
extension of Doob’s optional stopping theorem.

1. Introduction

This work finds its origin in a recent paper by Madan, Roynette and Yor [7] and a set of
lectures by Yor [4] where the authors are able to represent the price of a European put option
in terms of the probability distribution of some last passage time. More precisely, they prove
that if (Mt)t≥0 is a continuous nonnegative local martingale defined on a filtered probability
space (Ω,F , (Ft)t≥0, P) satisfying the usual assumptions, and such that limt→∞ Mt = 0, then

(K − Mt)
+ = KP(gK ≤ t|Ft) (1.1)

where K ≥ 0 is a constant and gK = sup{t ≥ 0 : Mt = K}. Formula (1.1) tells that it is
enough to know the terminal value of the submartingale (K − Mt)

+ and its last zero gK to
reconstruct it. Yet a nicer interpretation of (1.1) is suggested in [4] and [7]: there exists a
measure Q, a random time g, such that the submartingale Xt = (K − Mt)

+ satisfies

Q [Ft 1g≤t] = E [FtXt] , (1.2)

for any t ≥ 0 and for any bounded Ft-measurable random variable Ft. Indeed it easily
follows from (1.1) that in this case Q = K.P and g = gK . It is also clear that if a stochastic
process X satisfies (1.2), then it is a submartingale. The problem of finding the class of
submartingales which satisfy (1.2) is posed in [4] and [7] and is the main motivation of this
paper:
Problem 1 ([4] and [7]): for which submartingales X can we find a σ-finite measure Q
and the end of an optional set g such that

Q [Ft 1g≤t] = E [FtXt]? (1.3)
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Identity (1.3) is reminiscent of the stopping theorem for uniformly integrable martingales.
Indeed, if M is a càdlàg, uniformly integrable martingale, then it can be represented as
Mt = E[M∞|Ft], and hence the terminal value of M , i.e. M∞, is enough to obtain the
martingale M . But we also note that if we write g = sup{t ≥ 0 : Mt = 0}, then

Mt = E[M∞1g≤t|Ft],

since E[M∞1g>t|Ft] = 0. Thus (1.3) holds for M , where the measure Q is the signed measure
Q = M∞.P. Consequently, the stopping theorem can also be interpreted as the existence of
a (signed) measure and the end of an optional set from which one can recover the uniformly
integrable martingale M . But (1.3) does not admit a straightforward generalization to
martingales which are not uniformly integrable: indeed, such a measure Q would be real
valued and infinite. We hence propose the following problem:
Problem 2: given a continuous martingale M , can we find two σ-finite measures Q(+) and
Q(−), such that for all t ≥ 0 and for all bounded Ft-measurable variables Ft:

Q(+) [Ft 1g≤t] −Q(−) [Ft 1g≤t] = E [FtMt] , (1.4)

with g = sup{t ≥ 0 : Mt = 0}?
Identities (1.3) and (1.4) can hence be interpreted as an extension of Doob’s optional stopping
theorem for fixed times t.
It is also noticed in [7] that other instances of formula (1.2) have already been discovered:
for example, in [3], Azéma and Yor proved that for any continuous and uniformly martingale
M , (1.3) holds for Xt = |Mt|, Q = |M∞|.P and g = sup{t ≥ 0 : Mt = 0}, or equivalently

|Mt| = E[|M∞|1g≤t|Ft].

Here again the measure Q is finite. Recently, other particular cases where the measure
Q is not finite were obtained by Najnudel, Roynette and Yor in their study of Brownian
penalisation (see [9]). For example, they prove the existence of the measure Q when Xt =
|Wt| is the absolute value of the standard Brownian Motion. In this case, the measure Q is
not finite but only σ-finite and is singular with respect to the Wiener measure: it satisfies
Q(g = ∞) = 0, where g = sup{t ≥ 0 : Wt = 0}.

In the special case where the submartingale X is of class (D), Problem 1 was recently
solved1 in [6] in relation with the study of the draw-down process. In this case, the measure
Q is finite. The relevant family of submartingales is the class (Σ):

Definition 1.1 ([10, 12]). Let (Ω,F , (Ft)t≥0, P) be a filtered probability space. A nonnega-
tive (local) submartingale (Xt)t≥0 is of class (Σ), if it can be decomposed as Xt = Nt + At

where (Nt)t≥0 and (At)t≥0 are (Ft)t≥0-adapted processes satisfying the following assumptions:

• (Nt)t≥0 is a càdlàg (local) martingale;
• (At)t≥0 is a continuous increasing process, with A0 = 0;
• The measure (dAt) is carried by the set {t ≥ 0, Xt = 0}.

The definition of the class (Σ) goes back to Yor ([12]) when X is continuous and some
of its main properties which we shall use frequently in this paper were studied in [10]. It

1In fact, as mentioned in [6], the solution is essentially contained and somehow hidden in [1].
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is shown in [1] and [6] that if X is of class (Σ) and of class (D), then it satisfies (1.2) with
g = sup{t ≥ 0 : Xt = 0} and Q = X∞.P, or equivalently

Xt = E[X∞1g≤t|Ft].

Now, what happens if X is of class (Σ) but satisfies A∞ = ∞ almost surely? If we work on the
space C(R+, R) of continuous functions endowed with the filtration (Ft)t≥0 generated by the
coordinate process (Yt)t≥0 and with the Wiener measure W, and if Xt = |Yt|, then, as it was
already mentioned, the existence of the measure Q, which is singular with respect to W, was
established in [9]. Note that in this case, the submartingale (Xt)t≥0 is not rigorously of class
(Σ), because the local time of the canonical process can only be defined almost everywhere.
More precisely, it is impossible to construct a continuous, (Ft)t≥0-adapted process (Lt)t≥0,
defined everywhere, and such that for all t ≥ 0, Lt is almost surely the local time at zero
of (Xs)s≤t (this fact is discussed in a detailed way in [8]). In order to avoid this technical
problem, and to be able to define the local time everywhere (or, more generally, the process
(At)t≥0 for more general submartingales), one needs to complete, in a sense which has to be
made precise, the filtration (Ft)t≥0. However, one cannot prove the exitence of Q in the most
general case if one considers the standard completion. Indeed, let X be a submartingale of
class (Σ), let us assume that in the filtration (Ft)t≥0, F0 contains all the P-negligible sets
(i.e. the filtration is complete), and let us suppose that under P, A∞ = ∞ almost surely,
and then g = ∞ a.s. (this property is satisfied, for example, if X is the absolute value of a
Brownian motion). For all t ≥ 0, the event {g > t} has probability one (under P) and then,
is in F0 and, a fortiori, in Ft. If one assumes that Q exists, one has

Q[g > t, g ≤ t] = EP[1g>t Xt],

and then:

EP[At] ≤ EP[Xt] = 0

which is absurd.
Because of these technical issues, one needs to introduce some special conditions on the
filtrations which are considered. These conditions were first introduced by Bichteler in [5]
and rediscovered independently by the authors of the present paper in [8]: let us recall them
shortly.

Definition 1.2. A filtered probability space (Ω,F , (Fs)s≥0, P), satisfies the natural condi-
tions if and only if the two following assumptions hold:

• The filtration (Fs)s≥0 is right-continuous;
• For all s ≥ 0, and for every P-negligible set A ∈ Fs, all the subsets of A are contained

in F0.

This definition is slightly different from the definitions given in [5] and [8] but one can easily
check that it is equivalent. The natural enlargement of a filtered probability space can be
defined by using the following proposition:

Proposition 1.3. Let (Ω,F , (Fs)s≥0, P) be a filtered probability space. There exists a unique

filtered probability space (Ω, F̃ , (F̃s)s≥0, P̃) (with the same set Ω), such that:

• For all s ≥ 0, F̃s contains Fs, F̃ contains F and P̃ is an extension of P;

• The space (Ω, F̃ , (F̃s)s≥0, P̃) satisfies the natural conditions;
3



• For any filtered probability space (Ω,F ′, (F ′
s)s≥0, P

′) satisfying the two items above,

F ′
s contains F̃s for all s ≥ 0, F ′ contains F̃ and P′ is an extension of P̃.

The space (Ω, F̃ , (F̃s)s≥0, P̃) is called the natural enlargement of (Ω,F , (Fs)s≥0, P).

Intuitively, the natural enlargement of a filtered probability space is its smallest extension
which satisfies the natural conditions. Let us now define a class of filtered measurable space
on which it is always possible to extend compatible families of probability measures.

Definition 1.4. Let (Ω,F , (Ft)t≥0) be a filtered measurable space, such that F is the σ-
algebra generated by Ft, t ≥ 0: F =

∨
t≥0 Ft. We say that the property2 (P) holds if and

only if (Ft)t≥0 enjoys the following properties:

• for all t ≥ 0, Ft is generated by a countable number of sets;
• for all t ≥ 0, there exists a Polish space Ωt, and a surjective map πt from Ω to Ωt,

such that Ft is the σ-algebra of the inverse images, by πt, of Borel sets in Ωt, and
such that for all B ∈ Ft, ω ∈ Ω, πt(ω) ∈ πt(B) implies ω ∈ B;

• if (ωn)n≥0 is a sequence of elements of Ω, such that for all N ≥ 0,

N⋂

n=0

An(ωn) 6= ∅,

where An(ωn) is the intersection of the sets in Fn containing ωn, then:
∞⋂

n=0

An(ωn) 6= ∅.

A fundamental example of a filtered measurable space (Ω,F , (Ft)t≥0) satisfying the property
(P) can be constructed as follows: we take Ω to be equal to C(R+, Rd), the space of continuous
functions from R+ to Rd, or D(R+, Rd), the space of càdlàg functions from R+ to Rd (for
some d ≥ 1), and for t ≥ 0, we define (Ft)t≥0 as the natural filtration of the canonical
process, and we set

F :=
∨

t≥0

Ft.

Now, if we combine the natural enlargement with the property (P), we obtain the following
definition:

Definition 1.5. Let (Ω,F , (Fs)s≥0, P) be a filtered probability space. We say that it satisfies
the property (NP) if and only if it is the natural enlargement of a filtered probability space
(Ω,F0, (F0

s )s≥0, P
0) such that the filtered measurable space (Ω,F0, (F0

s )s≥0) enjoys property
(P).

The interest of spaces satisfying property (NP) is that they both satisfy natural conditions
and the following proposition, which concerns the extension of compatible families of prob-
ability measures:

Proposition 1.6. Let (Ω,F , (Ft)t≥0, P) be a filtered probability space, satisfying property
(NP). Then, the σ-algebra F is the σ-algebra generated by (Ft)t≥0, and for all coherent
families of probability measures (Qt)t≥0 such that Qt is defined on Ft, and is absolutely

2(P) stands for Parthasarathy since such conditions where introduced by him in [11].
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continuous with respect to the restriction of P to Ft, there exists a unique probability measure
Q on F which coincides with Qt on Ft for all t ≥ 0.

The main goal of this paper is to show that Problem 1 can be solved for all submartingales
of the class (Σ) defined on a space satisfying property (NP). The extension of families of
probabilities is involved in a crucial way. The measure Q is constructed explicitly. Since for
continuous martingales, M+ and M− are of class (Σ), we shall be able to solve Problem 2
and hence interpret our results as an extension of Doob’s optional stopping theorem. Our
approach is based on martingale techniques only and we are hence able to obtain the measure
Q for a wide range of processes which can possibly jump, thus including the generalized
Azéma submartingales in the filtration of the zeros of Bessel processes of dimension in (0, 2)
and the draw-down process Xt = St − Mt where M is a martingale with no positive jumps
and St = supu≤t Mu. In particular, the existence of Q does not require any scaling or Markov
property for X. More precisely, the paper is organized as follows:

• in Section 2, we state and prove our main theorem about the existence and the
uniqueness of the measure Q for submartingales of the class (Σ). We then deduce
the solution to Problem 2, hence interpreting (1.3) and (1.4) together as an extension
of Doob’s optional stopping theorem. We also give the image of the measure Q by
the functional A∞;

• in Section 3, we give several examples of such a measure Q in classical and less
classical settings.

2. Construction of the σ-finite measure

2.1. The main theorem. We can now state the main result of the paper:

Theorem 2.1. Let (Xt)t≥0 be a (true) submartingale of the class (Σ) (in particular Xt

is integrable for all t ≥ 0), defined on a filtered probability space (Ω,F , P, (Ft)t≥0) which
satisfies the property (NP). In particular, (Ft)t≥0 is right-continuous and F is the σ-algebra
generated by Ft, t ≥ 0. Then, there exists a unique σ-finite measure Q, defined on (Ω,F , P),
such that for g := sup{t ≥ 0, Xt = 0}:

• Q[g = ∞] = 0;
• For all t ≥ 0, and for all Ft-measurable, bounded random variables Ft,

Q [Ft 1g≤t] = EP [FtXt] .

Remark 2.2. If g < ∞, then A∞ = Ag < ∞. Hence, the first condition satisfied by Q implies
that:

Q[A∞ = ∞] = 0.

In other words, A∞ is finite, Q-almost everywhere.

Proof. Let f be a Borel function from R+ to R+, bounded and integrable, and let, for x ≥ 0:

G(x) :=

∫ ∞

x

f(y) dy.

By [10] (Theorem 2.1), one immediately checks that the process

(Mf
t := G(At) + f(At)Xt)t≥0,
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where A is the increasing process of X, is a nonnegative local martingale. Moreover, for all
t ≥ 0, if N is the martingale part of X and Tt is the set containing all the stopping times
bounded by t, then the family (NT )T∈Tt

is uniformly integrable (it is included in the set of
conditional expectations of Nt, by stopping theorem), and (AT )T∈Tt

is bounded by At (A is
increasing), which is integrable (it has the same expectation as Xt − X0). Hence, (XT )T∈Tt

is uniformly integrable, which implies, since f and G are uniformly bounded, that (Mf
T )T∈Tt

is also uniformly integrable. Hence, Mf is a true martingale. Therefore, by Proposition 1.6,
it is possible to construct a finite measure Pf on (Ω,F , P), uniquely determined by:

Pf [Λs] = EP[1Λs
Mf

s ]

for all s ≥ 0 and for all events Λs ∈ Fs. Let us now prove that:

Pf [A∞ = ∞] = 0.

Indeed, for u ≥ 0, let us consider, as in [10], the right-continuous inverse of A:

τu := inf{t ≥ 0, At > u}.

It is easy to check that for t, u ≥ 0, the event {τu ≤ t} is equivalent to {∀t′ > t, At′ > u},
which implies that τu is a stopping time (recall that (Ft)t≥0 is right-continuous). Moreover,
if τu < ∞, then Aτu

= u and Xτu
= 0. Indeed, for all t > τu, At > u, and for all t < τu,

At ≤ u, which implies the first equality by continuity of A, for 0 < τu < ∞ (if τu = 0 then
u = 0 and the equality is also true). Moreover, if Xτu

> 0, by right-continuity of X, there
exists a.s. ε > 0 such that X > 0 on the interval [τu, τu + ε], which implies that A is constant
on this interval, and then Aτu

= Aτu+ε > u, which is a contradiction. Now, for all t, u ≥ 0,

Pf [At > u] = EP [(G(At) + f(At)Xt) 1At>u]

≤ EP [(G(At) + f(At)Xt) 1τu≤t]

= EP [(G(Aτu∧t) + f(Aτu∧t)Xτu∧t) 1τu≤t]

by applying stopping theorem to the stopping time τu ∧ t. Therefore:

Pf [At > u] ≤ EP [(G(Aτu
) + f(Aτu

)Xτu
) 1τu≤t]

= G(u) P [τu ≤ t] .

By taking the increasing limit for t going to infinity, one deduces:

Pf [∃t ≥ 0, At > u] ≤ G(u)P [τu < ∞] .

This implies:

Pf [A∞ > u] ≤ G(u),

and by taking u → ∞,

Pf [A∞ = ∞] = 0.

Let us now suppose that f(x) > 0 for all x ≥ 0, and that G/f is uniformly bounded on R+

(for example, one can take f(x) = e−x). Since Pf [A∞ = ∞] = 0 and f(A∞) > 0, one can
define a measure Qf by the following equality:

Qf [Λ] = Pf

[
1Λ

f(A∞)

]
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for all events Λ ∈ F . This measure is σ-finite, since for all ε > 0:

Qf [f(A∞) ≥ ε] ≤
1

ε
Pf (1) < ∞.

Now, for t ≥ 0, and Ft, bounded, Ft-measurable:

Qf [Ft 1g≤t] = Pf

[
Ft

f(At)
1g≤t

]

= Pf

[
Ft

f(At)
1dt=∞

]

since A∞ = At on the event {g ≤ t}, which is equivalent to {dt = ∞}, where dt = inf{v >
t, Xv = 0}. By the début theorem, proved in [8] under natural conditions, dt is a stopping
time with respect to the filtration (Fs)s≥0. One deduces, by applying stopping theorem to
the stopping time dt ∧ u,

Pf

[
Ft

f(At)
1dt≤u

]
= EP

[
Ft

f(At)
Mf

u 1dt≤u

]

= EP

[
Ft

f(At)
Mf

dt
1dt≤u

]

= EP

[
FtG(At)

f(At)
1dt≤u

]

By taking u going to infinity, one obtains:

Pf

[
Ft

f(At)
1dt<∞

]
= EP

[
FtG(At)

f(At)
1dt<∞

]

Moreover,

Pf

[
Ft

f(At)

]
= EP

[
FtG(At)

f(At)
+ FtXt

]

Therefore,

Pf

[
Ft

f(At)
1dt=∞

]
= EP[FtXt] + EP

[
FtG(At)

f(At)
1dt=∞

]

= EP[FtXt] + EP

[
FtG(A∞)

f(A∞)
1dt=∞

]

and then:

Qf [Ft 1g≤t] = EP[FtXt] + EP

[
FtG(A∞)

f(A∞)
1g≤t

]

Now, let us define the measure:

Pf
1 := G(A∞) .P.

and the unique measure Pf
2 such that for all t ≥ 0, its restriction to Ft has density:

Nf
t := G(At) − EP[G(A∞)|Ft] + f(At)Xt

with respect to P (note that Nf
t ≥ 0, P-a.s.). It is easy to check that the measures Pf and

Pf
1 + Pf

2 have the same restriction to Ft, and by monotone class theorem, they are equal.
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Under Pf
1 and Pf

2 , the measure of the event {A∞ = ∞} is zero, since these two measures
are dominated by Pf . Then, one can define the σ-finite measures:

Qf
1 :=

1

f(A∞)
.Pf

1

and

Qf
2 :=

1

f(A∞)
.Pf

2 .

The measure Qf is the sum of Qf
1 and Qf

2 . Now, we have:

Qf
1 [Ft 1g≤t] = EP

[
FtG(A∞)

f(A∞)
1g≤t

]
,

by using directly the definition of Qf
1 . Moreover, let us recall that:

Qf [Ft 1g≤t] = EP[FtXt] + EP

[
FtG(A∞)

f(A∞)
1g≤t

]
.

In particular, since G/f is assumed to be uniformly bounded:

Qf [Ft 1g≤t] < ∞,

This implies that the following equalities are meaningful, and then satisfied, since Qf =
Qf

1 + Qf
2 :

Qf
2 [Ft 1g≤t] = Qf [Ft 1g≤t] −Qf

1 [Ft 1g≤t]

=

(
EP[FtXt] + EP

[
FtG(A∞)

f(A∞)
1g≤t

])

− EP

[
FtG(A∞)

f(A∞)
1g≤t

]

= EP[FtXt]

Hence, the measure Qf
2 satisfies the second property given in Theorem 2.1. By applying this

property to Ft = f(At) (which is bounded, since f is supposed to be bounded) and by using
the fact that At = A∞ on {g ≤ t}, one deduces:

Pf
2 [g ≤ t] = EP[f(At)Xt]

and then (by using the fact that for all t ≥ 0, Nf
t has an expectation equal to the total mass

of Pf
2 ):

Pf
2 [g > t] = EP[G(At) − G(A∞)].

Since G(At) − G(A∞) ≤ G(0) tends P-a.s. to zero when t goes to infinity, one obtains:

Pf
2 [g = ∞] = 0,

and

Qf
2 [g = ∞] = 0

since Qf
2 is absolutely continuous with respect to Pf

2 . Therefore, the measure Q exists: let

us now prove its uniqueness (which implies, in particular, that Qf
2 is in fact independent of

8



the choice of f). If Q′ and Q′′ satisfy the conditions defining Q, one has, for all t ≥ 0 and
all events Λt ∈ Ft:

Q′[Λt, g ≤ t] = Q′′[Λt, g ≤ t]

Now let u > t ≥ 0, and let Λu be in Fu. One can check that:

Q′[Λu, g ≤ t] = Q′[Λu, dt > u, g ≤ u]

One then deduces, by setting Λ′
u := Λu ∩ {dt > u} (this event is in Fu):

Q′[Λu, g ≤ t] = Q′[Λ′
u, g ≤ u]

= Q′′[Λ′
u, g ≤ u]

= Q′′[Λu, g ≤ t].

By monotone class theorem, applied to the restrictions of Q′ and Q′′ to the set {g ≤ t}, one
has for all Λ ∈ F :

Q′[Λ, g ≤ t] = Q′′[Λ, g ≤ t].

By taking the increasing limit for t going to infinity,

Q′[Λ, g < ∞] = Q′′[Λ, g < ∞].

Now, by assumption:

Q′[g = ∞] = Q′′[g = ∞] = 0,

which implies:

Q′[Λ] = Q′′[Λ].

This completes the proof of Theorem 2.1. �

A careful look at the proof of Theorem 2.1 shows that the result is valid if t is replaced
by a bounded stopping time T . Moreover, for submartingales of the class (Σ) which are also
of class (D), we can take a filtration (Ft)t≥0 which satisfies the usual assumptions. More
precisely, the following result holds:

Corollary 2.3. Let (Xt)t≥0 be a submartingale of the class (Σ), defined on a filtered proba-
bility space (Ω,F , P, (Ft)t≥0).

(1) If (Ω,F , P, (Ft)t≥0) satisfies the property (NP), then there exists a unique σ-finite
measure Q, defined on (Ω,F , P), such that for g := sup{t ≥ 0, Xt = 0}:

• Q[g = ∞] = 0:
• For any bounded stopping time T , and for all FT -measurable, bounded random

variables FT ,

Q [FT 1g≤T ] = EP [FT XT ] .

(2) If X is of class (D) and (Ω,F , P, (Ft)t≥0) satisfies the usual assumptions or the
property (NP), then for any stopping time T

XT = E[X∞1g≤T |FT ],

where as usual g := sup{t ≥ 0, Xt = 0}.

Remark 2.4. Part (2) of Corollary 2.3, under the usual assumptions, is proved in [6].
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Let us note that, in the proof of Theorem 2.1, if f does not vanish, is bounded and if G/f

is also bounded then the finite measure Pf
2 has density f(A∞) with respect to Q. Now, one

can prove that, in fact, these conditions on f are not needed. More precisely, one has the
following:

Proposition 2.5. Let us suppose that the assumptions of Theorem 2.1 are satisfied, and
let f be an integrable function from R+ to R+. Then, there exists a unique finite (positive)
measure Mf such that:

Mf [Ft] = EP[FtN
f
t ]

for all t ≥ 0, and for all bounded, Ft-measurable functionals Ft, where the process (Nf
t )t≥0

is given by:

Nf
t := G(At) − EP[G(A∞)|Ft] + f(At)Xt

for

G(x) :=

∫ ∞

x

f(y)dy.

In particular, (Nf
t )t≥0 is a nonnegative martingale. Moreover, the measure Mf is absolutely

continuous with respect to Q, with density f(A∞).

Proof. In the proof of Theorem 2.1, we have shown this result if f is strictly positive,
bounded, and if G/f is also bounded (recall that G(x) is the integral of f between x and
infinity). One can now prove Proposition 2.5 for any measurable, bounded, nonnegative
functions f with compact support. Indeed, if f is such a function, one can find f1 and f2,
bounded, strictly positive, integrable, such that, with obvious notation, G1/f1 and G2/f2 are
bounded, and f = f1 − f2 (for example, one can take f1(x) := f(x) + e−x and f2(x) := e−x).
One has, for all t ≥ 0, and for all bounded, Ft-measurable random variables Ft:

Mf1[Ft] = EP[FtN
f1

t ],

and

Mf2[Ft] = EP[FtN
f2

t ].

Now Nf is the difference of Nf1 and Nf2 , and then, it is a (nonnegative) martingale. By
Proposition 1.6, there exists a unique finite measure M such that:

M[Ft] = EP[FtN
f
t ].

Therefore Mf exists, is unique, and since Mf1 and Mf2 + Mf coincide on Ft for all t ≥ 0:

Mf [Ft] = Mf1 [Ft] −Mf2 [Ft]

(this equality is meaningful because all the measures involved here are finite). Since Propo-
sition 2.5 is satisfied for f1 and f2:

Mf [Ft] = Q[Ftf1(A∞)] −Q[Ftf2(A∞)],

which implies

Mf [Ft] = Q[Ftf(A∞)].
10



By monotone class theorem, f satisfies Proposition 2.5. Now, let us only suppose that f
is nonnegative and integrable. There exists nonnegative, measurable, bounded functions
(fk)k≥1 with compact support, such that:

f =
∑

k≥1

fk.

With obvious notation, one has:

G =
∑

k≥1

Gk,

and then, for all t ≥ 0:

G(At) =
∑

k≥1

Gk(At)

and
EP[G(A∞)|Ft] =

∑

k≥1

EP[Gk(A∞)|Ft],

P-a.s., where the two sums are uniformly bounded by G(0). This boundedness implies that
one can substract the second sum from the first, and obtain:

G(At) − EP[G(A∞)|Ft] =
∑

k≥1

(Gk(At) − EP[Gk(A∞)|Ft])

almost surely. Moreover:

f(At)Xt =
∑

k≥1

fk(At)Xt,

and then, P-a.s.:

Nf
t =

∑

k≥1

Nfk

t .

We know that Mfk is well-defined for all k ≥ 1, hence, one can consider the measure:

M :=
∑

k≥1

Mfk .

Now, for t ≥ 0 and Ft, bounded, Ft-measurable:

M[Ft] =
∑

k≥1

Mfk [Ft]

=
∑

k≥1

EP[FtN
fk

t ]

= EP[FtN
f
t ].

Hence, the measure Mf is well-defined, unique by monotone class theorem, and is equal to
M. Now, one has, for all k ≥ 1:

Mfk = fk(A∞) .Q.

Since Mf is the sum of the measures Mfk ,

Mf =

[
∑

k≥1

fk(A∞)

]
.Q = f(A∞).Q

11



which completes the proof of Proposition 2.5. �

Another question which is quite natural to ask is the following: since Q[A∞ = ∞] = 0,
what is the image of Q by the functional A∞ (in other words, what is the ”distribution of
A∞ under Q”)? This question can be solved in any case:

Proposition 2.6. Let us suppose the assumptions of Theorem 2.1. Then, if (At)t≥0 is the
increasing process of (Xt)t≥0, the image by the functional A∞ of the measure Q is a measure
on R+, equal to the sum of EP[X0] times Dirac measure at zero, and another measure,
absolutely continuous with respect to Lebesgue measure, with density P[A∞ > u] at any u ∈
R+. In particular, if A∞ = ∞, P-almost surely, then this image measure is EP[X0]δ0 +1R+

λ,
where λ is Lebesgue measure on R+, and δ0 is Dirac measure at zero.

Proof. Let f be an integrable function from R+ to R+. By taking the notation of Proposition
2.5, one has:

Mf = f(A∞) .Q.

Therefore, Q[f(A∞)] is the total mass of Mf , and then, the expectation of

Nf
0 = G(0) − EP[G(A∞)|F0] + f(0)X0.

By applying this result to f = 1[0,u], one deduces, for any u ≥ 0:

Q[A∞ ≤ u] = u − EP[(u − A∞)+] + f(0)EP[X0]

= EP[A∞ ∧ u] + f(0)EP[X0]

=

∫ u

0

P[A∞ > v] dv + f(0)EP[X0].

which implies Proposition 2.6. �

Remark 2.7. When X is also of class (D), P[A∞ > v] is computed in [10], Theorem 4.1.

2.2. An extension of Doob’s optional stopping theorem. We shall now see how The-
orem 2.1 and Corollary 2.3 can be interpreted as an extension of Doob’s optional theorem
to continuous martingales which are not necessarily uniformly integrable on the one hand,
and to the larger class of processes of the class (Σ).

Let M be a continuous martingale; then M+ and M− are both of class (Σ). If g = sup{t ≥
0 : Mt = 0}, then under the assumptions of Theorem 2.1, there exist two σ-finite measures
Q(+) and Q(−) such that

• Q(±)[g = ∞] = 0;
• For all t ≥ 0, and for all Ft-measurable, bounded random variables Ft,

Q(±) [Ft 1g≤t] = EP

[
FtM

±
t

]
.

Now since M = M+ − M−, we deduce from Theorem 2.1 and Corollary 2.3 the following
solution to Problem 2:

Proposition 2.8. Let M be a continuous martingale defined on a filtered probability space
(Ω,F , P, (Ft)t≥0) which satisfies the property (NP). Then there exist two σ-finite measures
Q(+) and Q(−), such that for any bounded stopping time T and any bounded FT -measurable
variable FT ,

Q(+) [FT 1g≤T ] −Q(−) [FT 1g≤T ] = E [FT MT ] ,
12



with g = sup{t ≥ 0 : Mt = 0}. The measures Q(+) and Q(−) are obtained by applying
Theorem 2.1 to the submartingales M+ and M−.

Remark 2.9. If the martingale M is uniformly integrable, then following Corollary 2.3, one
can also work with a filtration satisfying the usual assumptions and take any stopping time
T , not necessarily bounded. Consequently, Proposition 2.8 can be viewed as an extension of
Doob’s optional stopping theorem: the terminal value of the martingale M has to be replaced
by

(
Q(+) −Q(−)

)
which is a signed measure when restricted to the sets 1g≤t. Theorem 2.1

and Corollary 2.3 can in turn be interpreted as an extension of the stopping theorem to the
larger class of submartingales of the class (Σ).

3. Some examples

Now, let us study in more details several consequences of Theorem 2.1.

3.1. The case of a the absolute value, or the positive part, of a martingale. We
suppose that Xt = M+

t , Xt = M−
t or Xt = |Mt|, where (Mt)t≥0 is a continuous martingale,

defined on a space satisfying the property (NP). In this case, X is a submartingale of class
(Σ), and its increasing process is half of the local time of M at level zero in the two first
cases, and the local time of M in the third case. Therefore, one can apply Theorem 2.1.
In particular, if (Xt)t≥0 is a strictly positive martingale, then it is a submartingale of class
(Σ), with increasing process identically equal to zero. One deduces that for any nonnegative,

integrable function f , Nf
t = f(0)Xt, which implies that for all t ≥ 0, the restriction of Mf

to Ft has density f(0)Xt with respect to P. Hence, since f(A∞) = f(0), the restriction of Q
to Ft has density Xt with respect to P. In particular, Q is a finite mesure, and X does not
vanish under Q, i.e.

Q[∃t ≥ 0, Xt = 0] = 0.

3.2. The case of the draw-down of a martingale. Let (Mt)t≥0 be a càdlàg martingale,
starting at zero, without positive jumps, again defined on a space satisfying the property
(NP). This assumption implies that its supremum

St := sup
s≤t

Ms

is a.s. continuous with respect to t. The process

(Xt := St − Mt)t≥0

is then a submartingale of class (Σ) with martingale part −M and increasing process S. One
obtains, for all t ≥ 0 and Ft bounded, Ft-measurable:

Q [Ft 1g≤t] = EP [Ft(St − Mt)]

where, in this case, g is the last time when M reaches its overall supremum.

3.3. The uniformly integrable case. Let us suppose that, in Theorem 2.1, the family of
variables (Xt)t≥0 is uniformly integrable. In this case, (EP[Xt])t≥0, and then (EP[At])t≥0 are
uniformly bounded. By monotone convergence, A∞ is integrable, and in particular finite
a.s. Since (At)t≥0 and (Xt)t≥0 are uniformly integrable, (Nt)t≥0 is a uniformly integrable
martingale, which implies that there exists N∞ such that for all t ≥ 0, Nt = E[N∞|Ft] and
Nt tends a.s. to N∞ for t going to infinity. One deduces that Xt tends a.s. to X∞ :=

13



N∞ + A∞. Now, for all nonnegative, bounded, integrable functions f , the martingale Nf is
uniformly inegrable. Moreover, if f is continuous, G(At) + Xtf(At) tends a.s. to G(A∞) +
X∞f(A∞) when t → ∞, and any càdlàg version of the uniformly integrable martingale
(E[G(A∞)|Ft])t≥0 tends a.s. to G(A∞) (such a càdlàg version exists since the underlying
space satisfies natural conditions, see [8]). Therefore, the terminal value of any càdlàg
version of Nf is X∞f(A∞), which implies that Mf has density X∞f(A∞) with respect to
P, and finally:

Q = X∞ .P.

This case was essentially obtained by Azéma, Meyer and Yor in [1] and in [6] in relation with
problems from mathematical finance. The particular case where Xt = |Mt|, where (Mt)t≥0

is a continuous uniformly integrable martingale, starting at zero, and for which the measure
Q has density |M∞| with respect to P, was studied in [2], [3].

3.4. The case where A∞ is infinite almost surely. In this case, for any nonnegative,
integrable function f , one has:

Nf
t = G(At) + f(At)Xt.

Moreover, if X0 = 0 a.s., then the image of Q by A∞ is simply Lebesgue measure. There are
several interesting examples of this particular case.

1) It Xt = M+
t , Xt = M−

t or Xt = |Mt|, where M is a continuous martingale, then
we are in the case: A∞ = ∞ if and only if and only if the total local time of M is a.s.
infinite, or, equivalently, if and only if the overall supremum of |M | is a.s. infinite. This
condition is satisfied, in particular, if M is a Brownian motion. More precisely, let us suppose
that (Ω,F , P, (Ft)t≥0) is the natural augmentation of the space C(R+, R), equipped with its
canonical filtration and the Wiener measure. If Xt = |Yt|, Xt = Y +

t or Xt = Y −
t , where

(Yt)t≥0 denotes the canonical process, the σ-finite measure Q described in Theorem 2.1 was
essentially studied in [9], Chapter 1. This measure satisfies a slightly more general result
than what is written in Theorem 2.1. Indeed, in their monograph, Najnudel, Roynette and
Yor prove (up to the technicalities on the choice of filtration which are discussed above and
in [8]) that there exists a unique σ-finite measure W on Ω such that for all t ≥ 0, for all
bounded, Ft-measurable functionals Ft, and for all a ∈ R:

W[Ft1ga≤t] = P[Ft |Yt − a|],

W[ga = ∞] = 0

where

ga := sup{t ≥ 0, Yt = a}.

Moreover W can be decomposed (in unique way) as the sum of two σ-finite measures W+

and W−, such that:

W+[Ft1ga≤t] = P[Ft (Yt − a)+],

W−[Ft1ga≤t] = P[Ft (Yt − a)−],

W+[E−] = W−[E+] = 0

where E− is the set of trajectories which do not tend to +∞, and E+ is the set of trajectories
which do not tend to −∞. With these definitions, the measure Q is equal to W+ if Xt = Y +

t ,
W− if Xt = Y −

t and W if Xt = |Yt|.
14



2) Let (Mt)t≥0 be a càdlàg martingale, starting at zero, without positive jumps. The
process

(Xt := St − Mt)t≥0

is a submartingale of class (Σ) with martingale part −M and increasing process S, and one
has A∞ = ∞ a.s., if and only if the overall supremum of M is a.s. infinite. A particular case
where this condition holds is, again, when M is a Brownian motion. More precisely, if one
takes the same filtered probability space as in the previous example, and if Xt = (sup

s≤t

Ys)−Yt,

then the σ-finite measure exists and is in fact equal to W−. Note that the image of this
measure by X is equal to the image of W by the absolute value.

3) Another interesting example is studied in Chapter 3 of [9]. We assume that (Ω,F , P, (Ft)t≥0)
is the natural augmentation of the space C(R+, R), equipped with its canonical filtration and
a probability measure under which the canonical process (Yt)t≥0 is a recurrent, homogeneous
diffusion with values in R+, starting at zero, and such that zero is an instantaneously re-
flecting barrier. Moreover, we suppose that the infinitesimal generator G of Y satisfies (for
x ≥ 0):

Gf(x) =
d

dm

d

dS
f(x)

where S is a continuous, strictly increasing function such that S(0) = 0 and S(∞) = ∞,
and m is the speed measure, satisfying m({0}) = 0. There exists a jointly continuous family
(Ly

t )t,y≥0 of local times of Y , satisfying:
∫ t

0

h(Ys) ds =

∫ ∞

0

h(y)Ly
t m(dy)

for all borelian functions h from R+ to R+. If we define the process (Xt)t≥0 by:

Xt = S(Yt)

then (Xt −L0
t )t≥0 is a (Ft)t≥0-martingale. Hence, if F is the σ-algebra generated by (Ft)t≥0,

the assumptions of Theorem 2.1 are satisfied, and L0
∞ is infinite, since the diffusion Y is

recurrent. The σ-finite measure Q is given by the formula:

Q =

∫ ∞

0

dl Ql,

where Ql is the law of a process (Z l
t)t≥0, defined in the following way: let τl be the inverse

local time at l (and level zero) of a diffusion R, which has a law equal to the distribution

of Y under P, and let (R̃u)u≥0 be an homogeneous diffusion, independent of R, starting at
zero, never hitting zero again, and such that for 0 ≤ u < v, x, y > 0:

P [R̃v ∈ dy |R̃u = x] =
S(y)

S(x)
P [Rv ∈ dy, ∀w ∈ [u, v], Rw > 0 |Ru = x]

(intuitively, the law of (R̃u)u≥0 is the law of (Ru)u≥0, conditioned not to vanish), then Z l

satisfies

Z l
t = Rt

for t ≤ τl, and

Z l
τl+u = R̃u
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for u ≥ 0. Theorem 2.1 applies, in particular, if Y is a Bessel process of dimension d ∈ (0, 2).
If d = 2(1 − α) (which imples 0 < α < 1), one obtains:

Xt = (Yt)
2α = (Yt)

2−d.

In this case, the process (R̃u)u≥0, involved in an essential way in the construction of Q, is
a Bessel process of dimension 4 − d = 2(1 + α). For d = 1 (α = 1/2), (Xt = Yt)t≥0 is the

absolute value of a Brownian motion, and R̃ is a Bessel process of dimension 3.
4) Let (Ω,H, P, (Ht)t≥0) be the natural augmentation of the space C(R+, R), equipped

with its canonical filtration and a probability measure under which the canonical process
(Yt)t≥0 is a Bessel process of dimension d := 2(1 − α) for 0 < α < 1. For t ≥ 0, let us take
the notation:

g(t) := sup{u ≤ t, Yu = 0},

and let (Ft)t≥0 be the filtration of the zeros of Y, i.e. Ft = Hg(t). One defines the σ-algebra
F as the σ-algebra generated by (Ft)t≥0, i.e. by the zeros of Y . Now, the process

(Xt := (t − g(t))α)t≥0

is a (Ft)t≥0-submartingale of class (Σ), and its increasing process (At)t≥0 is given by:

At =
1

2αΓ(1 + α)
Lt(Y )

where Lt(Y ) is the local time of Y at zero, defined as the increasing process of the sub-
martingale (Y 2α

t )t≥0, which is of class (Σ) with respect to the space (Ω,H, P, (Ht)t≥0). (see
[10], and the previous example). Since Y is recurrent, A∞ = ∞ a.s. Now, let R be the
σ-finite measure on (Ω, (Ht)t≥0,H) which is equal to the measure Q of example 3). Because
of this example, one has, for all bounded, Ht-measurable functions Ft:

R[Ft 1g≤t] = EP[FtY
2α
t ]

where g is the last zero of Y , equal to the last zero of X. Now, if Ft is Ft-measurable, then
one obtains

R[Ft 1g≤t] = EP[FtEP[Y
2α
t |Ft]]

which implies:
R[Ft 1g≤t] = 2αΓ(1 + α) EP[FtXt]

Therefore, the measure Q satisfying the conditions given in Theorem 2.1 is the restriction
of the measure

Q̃ :=
1

2αΓ(1 + α)
R

to the σ-algebra F . Moreover, the image of Q by X is:

S :=
1

2αΓ(1 + α)

∫ ∞

0

dl Sl

where Sl is the law of a process (V l
t )t≥0, defined in the following way: let τl be the inverse

local time at l (and level zero) of a diffusion R, with the same law as Y under P, and let
γ(t) be the last zero of R before time t, for all t ≥ 0, V l satisfies

V l
t = (t − g(t))α

for t ≤ τl, and
V l

τl+u = uα
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for u ≥ 0. Note that in this case, we have not checked that the filtered probability space has
property (NP). However, we have proved that the conclusion of Theorem 2.1 holds in this
case.
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[2] J. Azéma and M. Yor, En guise d’Introduction (to the volume of: Local times). Astérisque 52-53 (1978).
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