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On some properties of a universal sigma-finite measure
associated with a remarkable class of submartingales

By

Joseph NAJNUDEL and Ashkan NIKEGHBALI ∗

Abstract

In a previous work, we associated with any submartingale X of class (Σ), defined on
a filtered probability space (Ω,F ,P, (Ft)t≥0) satisfying some technical conditions, a σ-finite
measureQ on (Ω,F), such that for all t ≥ 0, and for all events Λt ∈ Ft:

Q[Λt, g ≤ t] = EP[1ΛtXt],

where g is the last hitting time of zero by the process X . The measureQ, which was previously
studied in particular cases related with Brownian penalisations and problems in mathematical
finance, enjoys some remarkable properties which are detailed in this paper. Most of these
properties are related to a certain class of nonnegative martingales, defined as the local densities
(with respect to P) of the finite measures which are absolutely continuous with respect to Q.
In particular, we obtain a decomposition of any nonnegative supermartingale into three parts,
one of them being a martingale in the class described above. If the initial supermartingale is a
martingale, this decomposition corresponds to the decomposition of finite measures on (Ω,F)
as sums of three measures, such that the first one is absolutely continuous with respect to P,
the second one is absolutely continuous with respect to Q and the third one is singular with
respect to P and Q. From the properties of the measure Q, we also deduce a universal class of
penalisation results of the probability measure P with a large class of functionals: the measure
Q appears to be the unifying object in these problems.

Notation

In this paper, (Ω,F , (Ft)t≥0,P) will denote a filtered probability space. C(R+,R)
is the space of continuous functions from R+ to R. D(R+,R) is the space of càdlàg
functions from R+ to R. If Y is a random variable, we denote indifferently by P[Y ] or
by EP[Y ] the expectation of X with respect to P. If (At)t≥0 is an increasing process,
as usual, the increasing limit of At, when t→∞, is denoted A∞.
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§1. Introduction

In a paper by Madan, Roynette and Yor [7], and a set of lectures by Yor [3], the
authors prove that if (Mt)t≥0 is a continuous nonnegative local martingale defined on
a filtered probability space (Ω,F , (Ft)t≥0,P) satisfying the usual assumptions, and
such that limt→∞Mt = 0, then for any K ≥ 0 and any bounded Ft-measurable
variable Ft:

K P [Ft 1gK≤t] = P [Ft(K −Mt)+] , (1.1)

where gK = sup{t ≥ 0 : Mt = K}. The formula (1.1), which represents the price
of a European put option in terms of the probability distribution of some last passage
time gives, in a particular case, a positive answer to the following problem, also stated
in [3] and [7]: for which submartingales X can we find a σ-finite measure Q and the
end of an optional set g such that

Q [Ft 1g≤t] = P [FtXt] , (1.2)

for any bounded Ft-measurable variable Ft.? This problem was previously encoun-
tered in the literature in different situations. In [2], Azéma and Yor prove that for
any continuous and uniformly integrable martingale M , (1.2) holds for Xt = |Mt|,
Q = |M∞|.P and g = sup{t ≥ 0 : Mt = 0}, or equivalently

|Mt| = P[|M∞|1g≤t|Ft].

Here again the measureQ is finite. A particular case where the measureQ is not finite
was obtained by Najnudel, Roynette and Yor in their study of Brownian penalisations
(see [11]). For example, they prove the existence of the measure Q when Xt = |Wt|
is the absolute value of the standard Brownian Motion. In this case, the measure Q
is not finite but only σ-finite and is singular with respect to the Wiener measure: it
satisfies Q(g = ∞) = 0, where g = sup{t ≥ 0 : Wt = 0}. Now, the existence
of Q in all the examples cited above is a consequence of a general result proved by
the authors of the present paper in [10]. The relevant class of submartingales is called
(Σ), it was first introduced by Yor in [17] and some of its main properties were further
studied in [12]. Let us recall its definition.

Definition 1.1 [12, 17]. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space.
A nonnegative submartingale (resp. local submartingale) (Xt)t≥0 is of class (Σ), iff it
can be decomposed asXt = Nt+At where (Nt)t≥0 and (At)t≥0 are (Ft)t≥0-adapted
processes satisfying the following assumptions:

• (Nt)t≥0 is a càdlàg martingale (resp. local martingale);
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• (At)t≥0 is a continuous increasing process, with A0 = 0;

• The measure (dAt) is carried by the set {t ≥ 0, Xt = 0}.

One notes that a process of class (Σ) is "almost" a martingale: outside the zeros of
X , the process A does not increase. In fact many processes one often encounters
fall into this class, e.g. Xt = |Mt| where (Mt)t≥0 is a continuous local martingale,
Xt = (Mt−K)+ where (Mt)t≥0 is a càdlàg local martingale with only positive jumps
and K ∈ R is a constant, Xt = St −Mt where (Mt)t≥0 is a local martingale with
only negative jumps and St = supu≤tMu. Other remarkable families of examples
consist of a large class of recurrent diffusions on natural scale (such as some powers
of Bessel processes of dimension δ ∈ (0, 2), see [10]) or of a function of a symmetric
Lévy process; in these cases, At is the local time of the diffusion process or of the
Lévy process.

Note that in the case where A∞ = ∞, P-almost surely (this condition holds if
(Xt)t≥0 is a reflected Brownian motion), and (Ω,F , (Ft)t≥0,P) satisfies the usual
conditions, the measure Q cannot exist: otherwise, we would have for all t ≥ 0,

P[Xt] = P[Xt1g>t] = Q[g ≤ t, g > t] = 0,

since the event {g > t} is P-almost sure, and then in Ft. Hence, X would be indis-
tinguishable from zero, which contradicts the fact that A∞ = ∞. This issue explains
why usual conditions are not assumed in the sequel of this paper. On the other hand,
we also encounter some problems if we do not complete the probability spaces: for
example, if Ω = C(R+,R), Ft is the σ-algebra generated by the canonical process X
up to time t, and P is Wiener measure, then there does not exist a càdlàg and (Ft)t≥0-
adapted version of the local time which is well-defined everywhere (and not only P-
almost surely). In order to avoid also this technical problem, we assume that the fil-
tration satisfies some particular conditions, intermediate between the right-continuity
and the usual conditions. These assumptions, called "natural conditions", were first
introduced by Bichteler in [5], and then rediscovered in [8] (there they are also called
N-usual conditions) where it is proved that most of the properties which generally hold
under the usual conditions remain valid under the natural conditions (for example, ex-
istence of càdlàg versions of martingales, the Doob-Meyer decomposition, the début
theorem, etc.). Let us recall here the definition.

Definition 1.2. A filtered probability space (Ω,F , (Ft)t≥0,P), satisfies the
natural conditions iff the two following assumptions hold:

• The filtration (Ft)t≥0 is right-continuous;
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• For all t ≥ 0, and for every P-negligible set A ∈ Ft, all the subsets of A are
contained in F0.

This definition is slightly different from the definitions given in [5] and [8] but one
can easily check that it is equivalent. The natural enlargement of a filtered probability
space can be defined by using the following proposition:

Proposition 1.1 [8]. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space. There
exists a unique filtered probability space (Ω, F̃ , (F̃t)t≥0, P̃) (with the same set Ω),
such that:

• For all t ≥ 0, F̃t contains Ft, F̃ contains F and P̃ is an extension of P;

• The space (Ω, F̃ , (F̃t)t≥0, P̃) satisfies the natural conditions;

• For any filtered probability space (Ω,F ′, (F ′t)t≥0,P′) satisfying the two items
above, F ′t contains F̃t for all t ≥ 0, F ′ contains F̃ and P′ is an extension of P̃.

The space (Ω, F̃ , (F̃t)t≥0, P̃) is called the natural enlargement of (Ω,F , (Ft)t≥0,P).

Intuitively, the natural enlargement of a filtered probability space is its smallest ex-
tension which satisfies the natural conditions. We also introduce a class of filtered
measurable spaces (Ω,F , (Ft)t≥0) such that any compatible family (Qt)t≥0 of prob-
ability measures, Qt defined onFt, can be extended to a probability measure Q defined
on F .

Definition 1.3. Let (Ω,F , (Ft)t≥0) be a filtered measurable space, such that
F is the σ-algebra generated by Ft, t ≥ 0: F =

∨
t≥0 Ft. We say that the property1

(P) holds if and only if (Ft)t≥0 enjoys the following properties:

• for all t ≥ 0, Ft is generated by a countable number of sets;

• for all t ≥ 0, there exists a Polish space Ωt, and a surjective map πt from Ω to
Ωt, such that Ft is the σ-algebra of the inverse images, by πt, of Borel sets in Ωt,
and such that for all B ∈ Ft, ω ∈ Ω, πt(ω) ∈ πt(B) implies ω ∈ B;

• if (ωn)n≥0 is a sequence of elements of Ω, such that for all N ≥ 0,

N⋂
n=0

An(ωn) 6= ∅,

where An(ωn) is the intersection of the sets in Fn containing ωn, then:
∞⋂
n=0

An(ωn) 6= ∅.

1(P) stands for Parthasarathy since such conditions where introduced by him in [13].
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A fundamental example of a filtered measurable space (Ω,F , (Ft)t≥0) satisfying the
property (P) can be constructed as follows: we take Ω to be equal to C(R+,Rd), the
space of continuous functions from R+ to Rd, or D(R+,Rd), the space of càdlàg
functions from R+ to Rd (for some d ≥ 1), and for t ≥ 0, we define (Ft)t≥0 as the
natural filtration of the canonical process, and we set

F :=
∨
t≥0

Ft.

The combination of the property (P) and the natural conditions gives the following
definition:

Definition 1.4. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space. We say
that it satisfies the property (NP) if and only if it is the natural enlargement of a fil-
tered probability space (Ω,F0, (F0

t )t≥0,P0) such that the filtered measurable space
(Ω,F0, (F0

t )t≥0) enjoys property (P).

In [8] the following result on extension of probability measures is proved (in a slightly
more general form):

Proposition 1.2. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space, satis-
fying property (NP). Then, the σ-algebra F is the σ-algebra generated by (Ft)t≥0,
and for all coherent families of probability measures (Qt)t≥0 such that Qt is defined
on Ft, and is absolutely continuous with respect to the restriction of P to Ft, there
exists a unique probability measure Q on F which coincides with Qt on Ft for all
t ≥ 0.

By using all the results and definitions above, one can state rigorously the main result
of [10] in its most general form:

Theorem 1.1. Let (Xt)t≥0 be a submartingale of the class (Σ) (in particular
Xt is integrable for all t ≥ 0), defined on a filtered probability space (Ω,F ,P, (Ft)t≥0)
which satisfies the property (NP). In particular, (Ft)t≥0 satisfies the natural conditions
and F is the σ-algebra generated by Ft, t ≥ 0. Then, there exists a unique σ-finite
measure Q, defined on (Ω,F ,P), such that for g := sup{t ≥ 0, Xt = 0}:

• Q[g =∞] = 0;

• For all t ≥ 0, and for all Ft-measurable, bounded random variables Ft,

Q [Ft 1g≤t] = P [FtXt] . (1.3)
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Note that before being proved in its general form in [10], Theorem 1.1 was shown
(under usual assumptions) by Cheridito, Nikeghbali and Platen in [6], in the particular
case where the submartingale X is of class (D) (in fact, as mentioned in [6], the
solution is essentially contained and somehow hidden in [1]). In this case, the measure
Q is finite an satisfies:

Q = X∞.P.

Moreover, Theorem 1.1 has already been obtained in some special cases (but not under
the most rigorous formulation with the correct assumption on the underlying filtered
probability space) such as the case where Xt is the absolute value of the canonical
process on the Wiener space or when Xt = |Yt|α−1 where Y is a symmetric stable
Lévy process of index α ∈ (1, 2), although in this latter case the property (1.3) was not
noticed ([16]). In fact, almost all our results will apply to a large class of symmetric
Lévy processes including the symmetric stable Lévy processes of index α ∈ (1, 2).
We shall now detail a little more this last example since it provides natural examples
of processes with jumps, living on the Skorokhod space. Let us define, one the space
D(R+,R) of càdlàg functions from R+ to R, (Ft)t≥0 as the natural filtration of the
canonical process (Yt)t≥0, and let us set

F :=
∨
t≥0

Ft.

We consider onD(R+,R) the probability P under which (Yt)t≥0 is a symmetric Lévy
process with exponent Ψ:

P[exp(iξYt)] = exp(−tΨ(ξ)).

Moreover, we assume that 0 is regular for itself and that (Yt)t≥0 is recurrent, or equiv-
alently (see Bertoin [4]):∫ ∞

−∞

dξ

1 + Ψ(ξ)
<∞ and

∫
0

dξ

Ψ(ξ)
=∞.

In the case where (Yt)t≥0 is a symmetric α-stable Lévy process of index α ∈ (1, 2),
Ψ(ξ) = |ξ|α and the above conditions on Ψ are satisfied (see [4]). Salminen and Yor
[15] have proved that if for some x ∈ R:

v(x) =
1
π

∫ ∞
0

1− cos(ξx)
Ψ(ξ)

dξ,

then
v(Yt − x) = v(x) +Nx

t + Lxt ,



ONE SOME PROPERTIES OF A UNIVERSAL SIGMA-FINITE MEASURE... 7

where Nx
t is a martingale and where (Lxt )t≥0 is the local time at level x of the Lévy

process (Yt)t≥0. Since (Lxt )t≥0 is continuous, increasing, adapted and only increases
when Yt = x (see Bertoin [4] Chapter V), the process (v(Yt − x))t≥0 is of class
(Σ), moreover, (Yt)t≥0 is recurrent and 0 is regular for itself, which implies that
limt→∞ Lxt = ∞, P-almost surely. Hence Theorem 1.1 applies, and for any x ∈ R,
there exists a σ-finite measure Qx, singular to P and such that all the properties of
Theorem 1.1 are satisfied with Xt = v(Yt − x) and g ≡ gx = sup{t : Yt = x}. In
the special case of symmetric α-stable Lévy processes of index α ∈ (1, 2), v(x) =
c(α)|x|α−1 for some explicit constant c(α) (see [15]). In the sequel, all our results
which do not require any assumptions on the sign of the jumps will apply to this fam-
ily of examples as well.

Let us now shortly recall the general construction of Q given in [10]. For a
Borel, integrable, strictly positive and bounded function f from R to R, one defines
the function G as

G(x) =
∫ ∞
x

f(y) dy,

and then one proves that the process(
Mf
t := G(At)− P[G(A∞)|Ft] + f(At)Xt

)
t≥0

, (1.4)

is a martingale with respect to P and the filtration (Ft)t≥0. Since (Ω,F ,P, (Ft)t≥0)
satisfies the natural conditions and since G(At) ≥ G(A∞), one can suppose that this
martingale is nonnegative and càdlàg, by choosing carefully the version of P[G(A∞)|Ft].
In this case, since (Ω,F ,P, (Ft)t≥0) satisfies the property (NP), there exists a unique
finite measureMf such that for all t ≥ 0, and for all bounded, Ft-measurable func-
tionals Γt:

Mf [Γt] = P[ΓtM
f
t ].

Now, since f is strictly positive, one can define a σ-finite measure Qf by:

Qf :=
1

f(A∞)
.Mf .

It is proved in [10] that if the function G/f is unformly bounded (this condition is,
for example, satisfied for f(x) = e−x), then Qf satisfies the conditions defining Q in
Theorem 1.1, which implies the existence part of this result. The uniqueness part is
proved just after in a very easy way: one remarkable consequence of the uniqueness
is the fact that Qf does not depend on the choice of f .

One of the remarkable features of the measureQ, in the special case of the Wiener
space and when (Xt)t≥0 is the absolute value of the Wiener process, is that it allows
a unified view of some penalisation problems related with Wiener measure. More
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precisely, Roynette, Vallois and Yor ([14]) consider W, the Wiener measure on the
space C(R+,R) endowed with its canonical filtration (Fs)s≥0 (not completed), and
then they define the σ-algebra F by

F :=
∨
s≥0

Fs.

They consider (Γt)t≥0, a family of nonnegative random variables on the same space,
such that

0 < W[Γt] <∞,

and for t ≥ 0, they define the probability measure

Qt :=
Γt

W[Γt]
.W.

Then they are able to prove that for many examples of families of functionals (Γt)t≥0,
there exists a probability measure Q∞ which can be considered as the weak limit of
(Qt)t≥0 when t goes to infinity, in the following sense: for all s ≥ 0 and for all events
Λs ∈ Fs,

Qt[Λs] −→
t→∞

Q∞[Λs].

Finding the measure Q∞ amounts to solving the penalisation problem associated with
the functional (Γt)t≥0. The functional Γt is typically some function of the local time
or the running supremum of the Wiener process, or some Feynman-Kac functional of
the Wiener process. In the monograph [11], Najnudel, Roynette and Yor have proved
that the measure Q associated with the absolute value of the Wiener process allows
a unified approach to many of the examples dealt with separately in the literature:
under some technical conditions on the functionals (Γt)t≥0, they show that the mea-
sure Q∞ is absolutely continuous with respect to Q with an explicit density. In this
paper, we shall completely solve the penalisation problem (under the assumptions of
Theorem 1.1) with functionals of the form Γt = FtXt, where Ft is some functional
satisfying some not so restrictive condition. In particular we need no assumption on
the continuity of the paths of (Xt), nor any Markov or scaling properties.

More precisely, throughout this paper, we establish some of the fundamental
properties of the measure Q (which also prepare the ground for a forthcoming work
on penalisation of diffusion paths). A remarkable class of martingales defined as local
densities (with respect to P) of finite measures, absolutely continuous with respect to
Q, is involved in a crucial way. The precise definition of these martingales is given
in Section 2, and they are explicitly computed in some particular cases. In Section 3,
we study their behaviour when t goes to infinity, in the most interesting case where
A∞ = ∞, P-almost surely, and we deduce some information about the behaviour of
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(Xt)t≥0 under the measureQ. We shall then naturally deduce the announced universal
penalisation results from our study of the asymptotic behaviour of these martingales
and of (Xt)t≥0 under Q. In Section 4, we give a new decomposition of any nonneg-
ative supermartingale into the sum of three nonnegative terms, such that the first one
is a uniformly integrable martingale, and the second is a martingale in the class de-
scribed above. If the initial supermartingale is a martingale, this decomposition can be
interpreted as the decomposition of a finite measure on (Ω,F) as the sum of a three
measures, one of them being absolutely continuous with respect to P, the second one
being absolutely continuous with respect to Q, and the last one being singular with
respect to P and Q. On our way we shall also establish the following remarkable fact:
if X is of class (Σ), with only positive jumps, and if A∞ = ∞, then for any a ∈ R,
(Xt − a)+ is of class (Σ) and the measure Qa associated with it is the same as the
measure Q associated with X . This invariance property was observed in [11] in the
special case where X is the absolute value of the Wiener process.

§2. A remarkable class of martingales related to the measure Q

Let us first remark that since Q[g =∞] = 0, one has

Q[A∞ =∞] = 0,

i.e. A∞ is finite Q-almost everywhere. Let us state a useful result which was proved
in [10]:

Proposition 2.1. Let f be an integrable function from R+ to R+. Then under
the assumptions of Theorem 1.1, the measure

Mf := f(A∞).Q

is the unique positive, finite measure such that for all t ≥ 0, and for all bounded,
Ft-measurable functionals Γt:

Mf [Γt] = P[ΓtM
f
t ], (2.1)

where the process (Mf
t )t≥0 is given by:

Mf
t := G(At)− P[G(A∞)|Ft] + f(At)Xt

for

G(x) :=
∫ ∞
x

f(y)dy.
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In particular, (Mf
t )t≥0 is a martingale, càdlàg if one chooses a suitable version of

the conditional expectation of G(A∞) given Ft. Moreover, (Mf
t )t≥0 is uniquely de-

termined by f in the following sense: two càdlàg martingales satisfying (2.1) are
necessarily indistinguishable.

Proposition 2.1 gives a relation between a finite measure which is absolutely continu-
ous with respect to Q (Mf ), and a càdlàg martingale (Mf

t )t≥0. This relation can be
generalized as follows:

Proposition 2.2. We suppose that the assumptions of Theorem 1.1 hold and we
take the same notation. Let F be a Q-integrable, nonnegative functional defined on
(Ω,F). Then, there exists a càdlàg P-martingale (Mt(F ))t≥0 such that the measure
MF := F.Q is the unique finite measure satisfying, for all t ≥ 0, and for all bounded,
Ft-measurable functionals Γt:

MF [Γt] = P[ΓtMt(F )].

The martingale (Mt(F ))t≥0 is unique up to indistinguishability.

Proof. Let t ≥ 0, Γt be a nonnegative, Ft-measurable functional such that:

P[Γt] = 0,

and let f be an integrable, strictly positive function from R+ to R+. One has:

P[Mf
t Γt] = 0,

and by Proposition 2.1,
Q[f(A∞) Γt] = 0.

Since f is supposed to be strictly positive, one deduces that

Q[Γt] = 0,

and finally,
Q[F Γt] = 0.

Therefore, the restriction of the finite measureMF toFt is absolutely continuous with
respect to P, and there exists a nonnegative,Ft-measurable random variableM (0)

t such
that for all Ft-measurable, bounded variables Γt:

MF [Γt] = P[M (0)
t Γt].
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This equality, available for all t ≥ 0, implies that (M (0)
t )t≥0 is a P-martingale. Since

the underlying probability space satisfies the natural conditions, (M (0)
t )t≥0 admits a

càdlàg modification (Mt)t≥0, and one has the equality:

MF [Γt] = P[Mt Γt].

By the monotone class theorem this determines uniquely the measureMF . Moreover,
if (M ′t)t≥0 is a càdlàg martingale satisfying:

MF [Γt] = P[M ′t Γt],

then for all t ≥ 0, Mt = M ′t almost surely, and since M and M ′ are càdlàg, they are
indistinguishable.

By Proposition 2.2, one can define a particular family of nonnegative, càdlàg P-
martingales: the martingales of the form (Mt(F ))t≥0, where F is a nonnegative,
Q-integrable functional F . By construction, these martingales correspond to the local
densities, with respect to P, of the finite measures which are absolutely continuous
with respect to Q. The situation is similar to the case of nonnegative, uniformly in-
tegrable martingales, which are the local densities of the finite measures, absolutely
continuous with respect to P. Proposition 2.2 does not give any explicit formula for
the martingale Mt(F ). However, from Proposition 2.1, one deduces immediately the
following result:

Corollary 2.1. Under the assumptions of Theorem 1.1, for all integrable func-
tions f from R+ to R+, f(A∞) is integrable with respect to Q, and the martingale(
Mt(f(A∞))

)
t≥0

is indistinguishable with the martingle (Mf
t )t≥0 defined in Propo-

sition 2.1.

Remark. Let f be an integrable function from R+ to R+. The martingale

(P[G(A∞)|Ft])t≥0

admits a càdlàg version. If it is denoted by (Gt)t≥0, one has:

Mt(F ) = G(At)−Gt + Yt,

where (Yt)t≥0 is a càdlàg modification of (f(At)Xt)t≥0, which then exists for any
choice of f (recall that G(At) is continuous with respect to t). If f is bounded, one
easily proves that f(At)Xt is càdlàg with respect to t: in this case, (Yt)t≥0 is indistin-
guishable with (f(At)Xt)t≥0. However, for unbounded f , the existence of Y is not
trivial.
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Another case for which one can give a simple expression for the martingale (Mt(F ))t≥0

is the case where (Xt)t≥0 is of class (D). More precisely, one has the following result:

Proposition 2.3. Let us suppose that the assumptions of Theorem 1.1 are sat-
isfied, and that the process (Xt)t≥0 is of class (D). Then Xt tends a.s. to a limit X∞
when t goes to infinity, and the measure Q is absolutely continuous with respect to
P, with density X∞. Moreover, a nonnegative measurable functional F is integrable
with respect to Q if and only if FX∞ is integrable with respect to P, and in this
case, (Mt(F ))t≥0 is a càdlàg version (unique up to indistinguishability) of the con-
ditional expectation (P[FX∞|Ft])t≥0. In particular, it is uniformly integrable, and it
converges a.s. and in L1 to FX∞ when t goes to infinity.

Proof. The equalityQ = X∞.P is contained in [10], [1] and [6]. Let us shortly
reprove it here. Since (Xt)t≥0 is of class (D), the expectation of At is bounded, and
then A∞ is integrable, which implies that (Nt)t≥0 is a uniformly integrable, càdlàg
martingale. It admits an a.s. limit N∞ for t going to infinity, and then X∞ is well-
defined. Moreover, if dt is the infimum of u > t, such that Xu = 0, by the version of
the début theorem given in [8], dt is a stopping time. Moreover, dt =∞ if and only if
g ≤ t, and by right-continuity of X , Xdt

= 0 for dt <∞. One deduces:

P[X∞1g≤t|Ft] = P[X∞1dt=∞|Ft] = P[Xdt |Ft].

Now, since (Nt)t≥0 is a uniformly integrable, càdlàg martingale,

P[X∞1g≤t|Ft] = P[Ndt
+Adt

|Ft] = Nt +At = Xt,

or equivalently, for all bounded, Ft-measurable functionals Γt:

P[ΓtX∞ 1g≤t] = P[ΓtXt].

Moreover, under X∞.P, X∞ > 0 almost everywhere and then g < ∞. One deduces
that X∞.P is equal to Q. For any nonnegative functional F , it is then trivial that F is
integrable with respect to Q iff FX∞ is integrable with respect to P, in this case, the
finite measureMF has density FX∞ with respect to P. By taking the restriction to
Ft, one deduces that the martingale (Mt(F ))t≥0 is a càdlàg version of the conditional
expectation of FX∞.

It is also possible to describe explicitly Q and (Mt(F ))t≥0 if (Xt)t≥0 is a strictly
positive martingale:

Proposition 2.4. Let us suppose that the assumptions of Theorem 1.1 are sat-
isfied, and that P-almost surely, (Xt)t≥0 does not vanish: in particular, (At)t≥0 is
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indistinguishable from zero, and (Xt)t≥0 is a martingale. Then, Q is finite and it is
the unique measure, such that for t ≥ 0, the restriction of Q to Ft has density Xt

with respect to the restriction of P to Ft. Moreover, for any nonnegative,Q-integrable
functional F , the martingale (Mt(F ))t≥0 can be given by:

Mt(F ) = Xt Q̃[F |Ft],

where Q̃[F |Ft] is a càdlàg version of the conditional expectation of F given Ft, with
respect to the probability measure Q̃ obtained by dividingQ by its total mass (different
from zero). In particular, the functional identically equal to one is Q-integrable and
(Mt(1))t≥0 is indistinguishable from (Xt)t≥0.

Proof. Let T0 := inf{t ≥ 0, Xt = 0}. By the début theorem (under natural
conditions), T0 is an (Ft)t≥0-stopping time. By assumption, for all t ≥ 0, the event
{T0 > t}, which is in Ft, holds P-almost surely. Now, by the construction of Q
given in [10] and described above, Q is absolutely continuous with respect to a finite
measure, which is locally absolutely continuous with respect to P. One deduces that
for all t ≥ 0, the event {T0 > t} holds Q-almost everywhere. Hence, Q-almost
everywhere, T0 is infinite and (Xt)t≥0 does not vanish, which implies

Q[Γt] = P[ΓtXt]. (2.2)

By the monotone class theorem, Q is the unique measure satisfying (2.2): it is finite
since X0 is integrable, its total mass is different from zero since X0 > 0. Hence, Q̃ is
well-defined. Moreover, if F is integrable with respect to Q, it is also integrable with
respect to Q̃, and the Q̃-martingale:(

Q̃[F |Ft]
)
t≥0

is well-defined and admits a càdlàg version (Yt)t≥0. Indeed, (Ω,F , (Ft)t≥0,P) sat-
isfies the natural conditions, and then it is also the case for (Ω,F , (Ft)t≥0, Q̃), since
for all t ≥ 0, the restriction of Q̃ to Ft is equivalent to the restriction of P (recall that
Xt > 0, P-almost surely). Therefore, for all bounded, Ft-measurable functionals Γt:

Q[F Γt] = Q[1] Q̃[F Γt]

= Q[1] Q̃
[
Γt Q̃[F |Ft]

]
= Q [ΓtYt]

= P [ΓtXtYt]

Now, one has:
Q[F Γt] =MF [Γt] = P[ΓtMt(F )],
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with the notation of Proposition 2.2. Hence, (Mt(F ))t≥0 is a modification of (XtYt)t≥0,
and since these two processes are càdlàg, they are indistinguishable. Moreover, the
functional equal to one is Q-integrable, since Q is finite. In this case, one can take
Yt = 1 for all t ≥ 0, and (Mt(F ))t≥0 is indistinguishable from (Xt)t≥0.

After giving these simple examples for which one can explicitly compute Q and
Mt(F ), it is natural to ask what happens in a more general situation. In Section 3,
we study the case where A∞ = ∞, P-almost surely (this case occurs, in particular,
when (Xt)t≥0 is a reflected Brownian motion). Unfortunately, we are not able to give
explicit expressions for the martingales of the form (Mt(F ))t≥0 in this case, but we
obtain some information about their behaviour when t goes to infinity.

§3. The case A∞ =∞

As it was proved in [10], the measure Q is infinite if one supposes that A∞ =
∞, P-almost surely. More precisely, the image of Q by the functional A∞ is the
infinite measure: P[X0].δ0 + λ, where λ is Lebesgue measure on R+. Moreover,
again for A∞ = ∞, the martingale (Mt(F ))t≥0 tends P-almost surely to zero for
anyQ-integrable functional F . In particular, it cannot be uniformly integrable, except
for F = 0, Q-almost everywhere. More precisely, one has the slightly more general
result:

Proposition 3.1. Let us suppose that the assumptions of Theorem 1.1 are sat-
isfied. Then on the set {A∞ = ∞}, the martingale Mt(F ) tends P-almost surely to
zero when t goes to infinity.

Proof. Let us use the notation of Proposition 2.2. For all u > 0, v ≥ t > 0:

MF [At > u] = P[Mv(F )1At>u].

Moreover, P-almost surely:

Mv(F )1At>u −→
v→∞

M∞(F )1At>u,

where M∞(F ) is the a.s. limit of Mt(F ) for t going to infinity. By Fatou’s lemma,
one deduces:

P[M∞(F )1At>u] ≤MF [At > u] ≤MF [A∞ > u].

Now, M∞(F )1A∞>u is the almost sure limit of M∞(F )1At>u. Since M∞(F ) is
integrable by Fatou’s lemma, one has, by dominated convergence:

P[M∞(F )1A∞>u] ≤MF [A∞ > u].
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By taking u going to infinity, we are done, sinceA∞ is finiteMF -almost everywhere.

Once the behaviour of (Mt(F ))t≥0 under P is known, it is natural to ask what happens
under Q. The following result implies that the behaviour of (Mt(F ))t≥0 is not the
same. Moreover, it gives some information about the behaviour of (Xt)t≥0 under Q:

Proposition 3.2. Let us suppose that the assumptions of Theorem 1.1 are sat-
isfied, and that A∞ = ∞, P-almost surely. Then Q-almost everywhere, Xt tends to
infinity with t, and

Mt(F )
Xt

−→
t→∞

F

for all nonnegative, Q-integrable functionals F .

Remark. As we have seen in Proposition 2.2, two versions of (Mt(F ))t≥0 are
indistinguishable with respect to P. Since Q is absolutely continuous with respect
to a finite measure which is locally absolutely continuous with respect to P, the two
versions are also indistinguishable with respect to Q. Hence, (Mt(F ))t≥0 can be
considered to be well-defined for all the problems concerning its behaviour under the
measure Q.

Proof. The functional H := e−A∞ is Q-integrable and one has:

Mt(H) = e−At(1 +Xt)

(recall that P-almost surely, e−A∞ = 0, since A∞ = ∞). One deduces, for all
bounded, Ft-measurable random variables Γt:

MH [Γt] = P
[
e−At(1 +Xt) Γt

]
.

This implies:
P[Γt] =MH [YtΓt],

where

Yt =
eAt

1 +Xt
.

Now, (Yt)t≥0 is a nonnegative, càdlàg martingale, with respect to the probability mea-
sure M̃H := MH/MH(1), and then, convergesMH -almost everywhere to a limit
random variable Y∞. Now, since for all u > 0, v ≥ t > 0,

P[At ≤ u] =MH [Yv 1At≤u],
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one has, by taking v →∞ and by using Fatou’s lemma:

MH [Y∞ 1At≤u] ≤ P[At ≤ u],

which implies
MH [Y∞ 1A∞≤u] ≤ P[At ≤ u].

Now, since A∞ =∞, P-almost surely, one has

P[At ≤ u] −→
t→∞

0.

Hence,
MH [Y∞ 1A∞≤u] = 0,

and finally (by taking u going to infinity):

MH [Y∞ 1A∞<∞] = 0.

Since A∞ <∞,Q-almost everywhere, Y∞ = 0,MH -almost everywhere, which im-
plies that Xt tends to infinity with t. On the other hand, for all nonnegative, integrable
functionals F , and for all bounded, Ft-measurable functionals Γt, one has:

MH

[
Γt

Mt(F )
Mt(H)

]
= Q

[
ΓtH

Mt(F )
Mt(H)

]
= P

[
ΓtMt(H)

Mt(F )
Mt(H)

]
= P[ΓtMt(F )]

= Q[Γt F ]

=MH

[
Γt

F

H

]
=MH

[
Γt M̃H

[
F

H
|Ft
]]
.

Note that all the equalities above are meaningful since Mt(H) and H never vanish.
Therefore, for all t ≥ 0, one has almost surely:

Mt(F )
Mt(H)

= M̃H

[
F

H
|Ft
]
,

which implies that
Mt(F )
Mt(H)

−→
t→∞

F

H
,

M̃H -almost surely, and then, Q-almost everywhere. Now, since Xt → ∞, Q-almost
everywhere, Xt > 0 for t large enough and:

Mt(H)
Xt

= e−At

(
1 +

1
Xt

)
−→
t→∞

e−A∞ .

One deduces:

Mt(F )
Xt

=
Mt(F )
Mt(H)

Mt(H)
Xt

−→
t→∞

F

H
e−A∞ = F.
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In the case where (Xt)t≥0 is a reflected Brownian motion, Proposition 3.2 is essen-
tially proved in [11] and whenXt is a symmetric α-stable process of index α ∈ (1, 2),
it is proved in [16]. In the particular case of the reflected Brownian motion, the mea-
sure Q is strongly related to the last passage time at any level and not only at zero.
This relation can be generalized as follows:

Proposition 3.3. Let us suppose that the assumptions of Theorem 1.1 are sat-
isfied, and that the submartingale (Xt)t≥0 has only positive jumps and that A∞ =∞
almost surely under P. For a ≥ 0, let g[a] be the last hitting time of the interval [0, a]:

g[a] = sup{t ≥ 0, Xt ≤ a}.

Then for all t ≥ 0, and for all Ft-measurable, bounded variables Γt, the measure Q
satisfies

Q
[
Γt 1g[a]≤t

]
= P [Γt(Xt − a)+] . (3.1)

Moreover, ((Xt − a)+)t≥0 is a submartingale of class (Σ) and the σ-finite measure
obtained by applying Theorem 1.1 to it is equal to Q.

Proof. Let:

d
[a]
t := inf{v > t,Xv ≤ a}.

By the début theorem (for natural conditions), d[a]
t is a stopping time. Now, for all

u > t:

Q
[
Γt 1g≤u,d[a]

t >u

]
= P

[
Γt 1d[a]

t >u
Xu

]
.

One deduces, by using the decomposition of the submartingale (Xt)t≥0, and by ap-
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plying martingale property to (Nt)t≥0:

Q
[
Γt 1g≤u,d[a]

t >u

]
= P

[
Γt 1d[a]

t >u
(Nu +Au)

]
= P

[
Γt 1d[a]

t >u
(Nu +At)

]
= P

[
Γt 1d[a]

t >u
At

]
+ P [ΓtNu]− P

[
Γt 1d[a]

t ≤u
Nu

]
= P

[
Γt 1d[a]

t >u
At

]
+ P [ΓtNt]− P

[
Γt 1d[a]

t ≤u
N
d
[a]
t

]
= P

[
Γt 1d[a]

t >u
At

]
+ P [ΓtNt]

− P
[
Γt 1d[a]

t ≤u
X
d
[a]
t

]
+ P

[
Γt 1d[a]

t ≤u
At

]
= P [ΓtXt]− P

[
Γt 1d[a]

t ≤u
X
d
[a]
t

]
.

Now, by right continuity, d[a]
t = t if Xt < a, and since X has only positive jumps, for

Xt ≥ a and d[a]
t <∞, X

d
[a]
t

= a. One deduces that

Q
[
Γt 1g≤u,d[a]

t >u

]
= P [ΓtXt]− P

[
Γt 1d[a]

t ≤u
(Xt ∧ a)

]
.

When u tends to infinity, the event {g ≤ u, d
[a]
t > u} tends to the event {g[a] ≤ t}.

Moreover, the event {d[a]
t ≤ u} tends to {d[a]

t < ∞}, which is almost sure under P,
since A∞ =∞. One deduces:

Q
[
Γt1g[a]≤t

]
= P [ΓtXt]− P [Γt(Xt ∧ a)] = P [Γt(Xt − a)+] .

Now, from Lemma 2.1 in [6], ((Xt − a)+)t≥0 is also nonnegative submartingale of
class (Σ). The supremum of its hitting times of zero is g[a]. The formula (3.1) and the
fact that {g[a] <∞} holds Q-almost everywhere (recall that Xt →∞ when t→∞,
since A∞ =∞, P-almost surely), imply that Q is the σ-finite measure obtained from
the submartingale ((Xt − a)+)t≥0.

In their study of Brownian penalisations, Najnudel, Roynette and Yor ([11]) introduce
a particular class of nonnegative processes which converge Q-almost everywhere to a
Q-integrable functional. Let us state a similar definition in our general framework:

Definition 3.1. Let us suppose that the assumptions of Theorem 1.1 are sat-
isfied. We say that a process (Ft)t≥0 belongs to the class (C) if it is nonnegative,
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uniformly bounded, nonincreasing, càdlàg and adapted with respect to (Ft)t≥0, if
there exists a > 0 such that for all t ≥ 0, Ft = Fg[a] on the set {t ≥ g[a]}, and if its
decreasing limit at infinity, denoted F∞, is Q-integrable.

For example, the process (Ft)t≥0 given by

Ft = ϕ(At),

where ϕ : R+ → R+ is integrable and decreasing, is in the class (C), as well as

Ft := exp
(
−λAt −

∫ t

0

q(Xs)ds
)
,

where λ > 0 and where q is a measurable function from R+ to R+, with compact
support. When a process (Ft)t≥0 is in the class (C), the following proposition gives
the behaviour of P[FtXt] when t goes to infinity.

Proposition 3.4. Let us suppose that the assumptions of Theorem 1.1 are sat-
isfied, and that A∞ = ∞, P-almost surely. Let (Ft)t≥0 be a process in the class (C).
Then, if Fg is integrable with respect to Q, one has:

P[FtXt] −→
t→∞

Q[F∞].

Proof. It is sufficient to prove:

Q[Ft1g≤t] −→
t→∞

Q[F∞].

Now, since the set {g[a] ≤ t} is included in the set {g ≤ t}, one can write:

Q[Ft1g≤t] = Q[Ft1g[a]≤t] +Q[Ft1g≤t<g[a] ].

Moreover:

Q[Ft1g[a]≤t] = Q[F∞1g[a]≤t] −→
t→∞

Q[F∞1g[a]<∞] = Q[F∞].

The last equality is due to the fact that in the case whereA∞ =∞, P-almost surely, the
process (Xt)t≥0 tends Q-almost everywhere to infinity with t. Hence, it is sufficient
to prove that

Q[Ft1g≤t<g[a] ] −→
t→∞

0.

Now, Ft1g≤t<g[a] is dominated by Fg , integrable with respect toQ, and tends to zero,
Q-almost surely, for t going to infinity. By dominated convergence, we are done.
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Remark. Let (Xt)t≥0 be the absolute value of the Wiener process and letFt :=
exp(−λLt), where Lt is the local time of (Xt)t≥0 at level 0. The process (Ft)t≥0 is
in the class (C) and it is known (see [10]) that L∞ follows the Lebesgue measure on
R+ under Q. Consequently,

P[exp(−λLt)Xt] −→
t→∞

1/λ,

although
exp(−λLt)Xt −→

t→∞
0,

P-almost surely. Of course, due to the general feature of our results, the same result
holds if one replaces Xt by |Yt|α−1, where Y is a symmetric α-stable Lévy process
with index α ∈ (1, 2), and Lt would then stand for the local time of Y .

Here is another version of the same result (which does not involve the class (C)) and
which is in fact more powerful and useful:

Proposition 3.5. Let us suppose that the assumptions of Theorem 1.1 are sat-
isfied and that A∞ = ∞, P-almost surely. Let (Ft)t≥0 be a càdlàg, adapted, non-
negative process such that its limit F∞ exists Q-almost everywhere. We suppose that
there exists a Q-integrable, nonnegative functional H , such that for all t ≥ 0, one
has:

FtXt ≤Mt(H)

P-almost surely. Then, F∞ is Q-integrable and:

P[FtXt] −→
t→∞

Q[F∞].

Proof. For all t ≥ 0, one has Q-almost everywhere

FtXt ≤Mt(H). (3.2)

Indeed, the event {FtXt > Mt(H)} is Ft-measurable and P-negligible, and then,
Q-negligible. One deduces that P-almost surely and Q-almost everywhere, (3.2) is
satisfied for all rationals t ≥ 0, and then for all t ≥ 0, since (Ft)t≥0, (Mt(H))t≥0

and (Xt)t≥0 are càdlàg. By adding e−A∞ to H , one can now suppose that H > 0 and
Mt(H) > 0 for all t. Hence:

P[FtXt] =MH

[
FtXt

Mt(H)

]
.

Now, one has, uniformly in t:

FtXt

Mt(H)
≤ 1 +∞.1∃t≥0,FtXt>Mt(H),
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which isMH -integrable, sinceMH is a finite measure and the event {∃t ≥ 0, FtXt >

Mt(H)} is Q, and thenMH -negligible. In particular:

P[FtXt] ≤MH
[
1 +∞.1∃t≥0,FtXt>Mt(H)

]
= Q[H] <∞.

Moreover, Q-almost everywhere:

FtXt

Mt(H)
−→
t→∞

F∞
H

.

By dominated convergence:

P[FtXt] −→
t→∞

MH

[
F∞
H

]
= Q[F∞].

Since for all t ≥ 0,
P[FtXt] ≤ Q[H],

one deduces that
Q[F∞] ≤ Q[H] <∞.

We now illustrate how the above result can be used. Let f : R+ → R+ be an integrable
function. From the identity (1.4) defining the martingale (Mf

t )t≥0, and using the fact
that A∞ =∞, P-almost surely, we have that

f(At)Xt ≤Mf
t .

Consequently the above Proposition applies to the case Ft = f(At), with f : R+ →
R+ an integrable function. It also obviously applies to any function Ft which satisfy-
ing Ft ≤ f(At), for some integrable f : R+ → R+. For instance, the result would
apply to any Ft = Gtf(At) whereGt is a bounded càdlàg Ft-measurable process and
f : R+ → R+ is integrable; in particular if Ft = f(At) exp

(
−
∫ t

0
q(Xs)ds

)
, where

q is a measurable function from R+ to R+, then the above proposition applies.
We are now able to state two universal penalisation results:

Proposition 3.6. Let us suppose that the assumptions of Theorem 1.1 are sat-
isfied, and that A∞ = ∞, P-almost surely. Let (Ft)t≥0 be a process in the class
(C) such that Fg is integrable with respect to Q and F∞ is not Q-almost everywhere
equal to zero. Then, for t sufficiently large, 0 < P[FtXt] < ∞, and one can define a
measure Qt by

Qt =
FtXt

P[FtXt]
.P.
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Moreover, there exists a probability measure Q∞ which can be considered as the weak
limit of Qt when t goes to infinity, in the following sense: for all s ≥ 0 and for all
events Λs ∈ Fs,

Qt[Λs] −→
t→∞

Q∞[Λs].

The measure Q∞ is absolutely continuous with respect to Q:

Q∞ =
F∞
Q[F∞]

.Q,

where 0 < Q[F∞] <∞.

Proof. The integrability of F∞ under Q is an immediate consequence of the
integrability of Fg , and Q[F∞] > 0 because F∞ is not Q-almost everywhere equal to
zero. Moreover, for all t ≥ 0, Ft is uniformly bounded and Xt is P-integrable, which
implies that P[FtXt] is finite. On the other hand, by Proposition 3.4,

P[FtXt] −→
t→∞

Q[F∞] > 0, (3.3)

and then P[FtXt] > 0 for t large enough. Now, one has, for t > s:

P[Ft1Λs
Xt] = Q[Ft1Λs

1g≤t],

where, by the arguments in the proof of Proposition 3.4,

Q[Ft1Λs
1g≤t] −→

t→∞
Q[F∞1Λs

].

Combining this with (3.3) completes the proof of the proposition.

Proposition 3.7. Let us suppose that the assumptions of Theorem 1.1 are sat-
isfied and that A∞ =∞, P-almost surely. Let (Ft)t≥0 be a càdlàg, adapted, nonneg-
ative process such that its limit F∞ exists Q-almost everywhere and is not Q-almost
everywhere equal to zero. We suppose that there exists a Q-integrable, nonnegative
functional H , such that for all t ≥ 0, one has:

FtXt ≤Mt(H)

P-almost surely. Then, for t sufficiently large, 0 < P[FtXt] < ∞ and one can define
a measure Qt by

Qt =
FtXt

P[FtXt]
.P.

Moreover, there exists a probability measure Q∞ which can be considered as the weak
limit of Qt when t goes to infinity, in the following sense: for all s ≥ 0 and for all
events Λs ∈ Fs,

Qt[Λs] −→
t→∞

Q∞[Λs].
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The measure Q∞ is absolutely continuous with Q:

Q∞ =
F∞
Q[F∞]

.Q,

where 0 < Q[F∞] <∞.

Proof. Since for all t ≥ 0, FtXt ≤Mt(H), P-almost surely, one has

P[FtXt] ≤ P[Mt(H)] = Q[H] <∞.

On the other hand, by Proposition 3.5,

P[FtXt] −→
t→∞

Q[F∞] ∈ (0,∞), (3.4)

which implies that P[FtXt] > 0 for t large enough. Moreover, by applying Proposi-
tion 3.5 to the family of functionals (Ft1Λs

1t≥s)t≥0, one deduces:

P[Ft1ΛsXt] −→
t→∞

Q[1ΛsF∞].

Combining this with (3.4) completes the proof of the proposition.

Remark. The results above give the behaviour of the quantity P[FtXt]. In
order to obtain penalisation results which do not necessarily involve Xt, e.g. of the
form Ft = f(At), we need to find an equivalent for P[Ft]. Unfortunately, we are not
able to give such an estimate in the general case, however, if (Xt)t≥0 is a diffusion
satisfying some technical conditions, this problem is solved in the companion paper
[9], and we deduce a penalisation theorem, generalizing results given in [11].

§4. A new decomposition of nonnegative supermartingales

The following proposition gives a general decomposition of any nonnegative,
càdlàg supermartingale, involving a uniformly martingale and a martingale of the
form (Mt(F ))t≥0. This decomposition generalizes a result obtained in [11] (Theo-
rem 1.2.5).

Proposition 4.1. Let us suppose that the assumptions of Theorem 1.1 are sat-
isfied, and that A∞ = ∞, P-almost surely. Let Z be a nonnegative, càdlàg P-
supermartingale. We denote by Z∞ the P-almost sure limit of Zt when t goes to
infinity. Then, Q-almost everywhere, the quotient Zt/Xt is well-defined for t large
enough and converges, when t goes to infinity, to a limit z∞, integrable with respect
to Q, and (Zt)t≥0 decomposes as

(Zt = Mt(z∞) + P[Z∞|Ft] + ξt)t≥0 ,

where (P[Z∞|Ft])t≥0 denotes a càdlàg version of the conditional expectation of Z∞
with respect toFt, and (ξt)t≥0 is a nonnegative, càdlàg P-supermartingale, such that:
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• Z∞ ∈ L1
+(F ,P), hence P[Z∞|Ft] converges P-almost surely and in L1(F ,P)

towards Z∞;

• P[Z∞|Ft]+ξt

Xt
−→
t→∞

0, Q-almost everywhere;

• Mt(z∞) + ξt −→
t→∞

0, P-almost surely.

Moreover, the decomposition is unique in the following sense: let z′∞ be aQ-integrable,
nonnegative functional, Z ′∞ a P-integrable, nonnegative random variable, (ξ′t)t≥0 a
càdlàg, nonnegative P-supermartingale, and let us suppose that for all t ≥ 0,

Zt = Mt(z′∞) + P[Z ′∞|Ft] + ξ′t.

Under these assumptions, if for t going to infinity, ξ′t tends P-almost surely to zero
and ξ′t/Xt tends Q-almost everywhere to zero, then z′∞ = z∞, Q-almost everywhere,
Z ′∞ = Z∞, P-almost surely, and ξ′ is P-indistinguishable with ξ.

Proof. Let H := e−A∞ . Since Z is a càdlàg P-supermartingale, it is easy to
deduce that (

Zt
Mt(H)

)
t≥0

is a càdlàg supermartingale with respect to M̃H := MH/MH(1). Hence, it con-
verges M̃H -almost surely to a limit ζ. Since Mt(H)/Xt converges M̃H -a.s. to H ,
Zt/Xt converges M̃H -a.s., and then Q-almost everywhere, to z∞ = ζ H . Moreover,
since ζ is the M̃H -a.s. limit of the M̃H -supermartingale (Zt/Mt(H))t≥0, one has:

Q[z∞] =MH [ζ] ≤MH [Z0/M0(H)] <∞.

Since z∞ is Q-integrable, (Mt(z∞))t≥0 is well-defined. Now, for all nonnegative,
Ft-measurable functionals Γt:

Q[Γtz∞] = Q
[
Γt lim

u→∞

Zu
Xu

]
= Q

[
Γt lim

u→∞

Zu
Xu

1g≤u

]
≤ lim inf

u→∞
Q
[
Γt

Zu
Xu

1g≤u

]
= lim inf

u→∞
P
[
Γt

Zu
Xu

Xu

]
≤ lim inf

u→∞
P[ΓtZu] ≤ P[ΓtZt].
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One deduces that for all t ≥ 0,Mt(z∞) ≤ Zt, P-a.s., which implies that (Mt(z∞) ∧ Zt)t≥0

is a càdlàg and adapted modification of (Mt(z∞))t≥0. Since (Mt(z∞))t≥0 is only
defined up to càdlàg modifications (which are indistinguishable from each other), one
can replace (Mt(z∞))t≥0 by (Mt(z∞) ∧ Zt)t≥0, and then suppose that for all t ≥ 0,
Mt(z∞) ≤ Zt everywhere. Note that if (Zt)t≥0 is supposed to be uniformly inte-
grable, (Mt(z∞))t≥0 is also uniformly integrable, and since it tends P-almost surely
to zero, it is P-almost surely identically zero. This implies that z∞ = 0, Q-almost
everywhere. Now, going back to the general case, let us define, for all t ≥ 0:

Z̃t := Zt −Mt(z∞).

Since (Mt(z∞))t≥0 is a càdlàg P-martingale, the process (Z̃t)t≥0 is a càdlàg, non-
negative P-supermartingale. Moreover, Mt(z∞) tends P-almost surely to zero when t
goes to infinity, hence:

Z̃t −→
t→∞

Z∞,

P-almost surely. Now, since (Z̃t)t≥0 is a nonnegative supermartingale and Z∞ ≥ 0,
P-almost surely, we obtain, for all t ≥ 0:

0 ≤ P[Z∞|Ft] ≤ Z̃t, (4.1)

P-almost surely. Hence,
(

(P[Z∞|Ft])+ ∧ Z̃t
)
t≥0

is a càdlàg version of (P[Z∞|Ft])t≥0

and one can suppose that (4.1) holds everywhere. Now, let us write, for all t ≥ 0:

ξt := Z̃t − P[Z∞|Ft].

This is a nonnegative, càdlàg supermartingale tending P-a.s. to zero when t goes to
infinity. On the other hand, Q-almost everywhere:

lim
t→∞

ξt
Xt

= lim
t→∞

Z̃t
Xt

= z∞ − z∞ = 0.

Here, the first equality is due to the fact that (P[Z∞|Ft]/Xt)t≥0 tends to zero Q-
almost everywhere, by the remark made above on the case where (Zt)t≥0 is uniformly
integrable. The uniqueness of the decomposition is very easy to check: since Mt(z′∞)
and ξ′t tend P-almost surely to zero when t→∞, Zt tends P-almost surely to Z ′∞ and
then Z ′∞ = Z∞. Similarly, since ξ′t/Xt and any càdlàg version of P[Z ′∞|Ft]/Xt tend
to zero, Q-almost everywhere, Zt/Xt tends to z′∞, which is Q-almost everywhere
equal to z∞. One now deduces that for all t ≥ 0, ξ′t = ξt, P-almost surely, and since
ξ and ξ′ are càdlàg, they are indistinguishable, which proves the uniqueness of the
decomposition.

As in [11], we can deduce, from Proposition 4.1, the following characterization
of the martingales of the form (Mt(F ))t≥0:
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Corollary 4.1. Let us suppose that the assumptions of Theorem 1.1 are satis-
fied, and that A∞ = ∞, P-almost surely. Then, a càdlàg, nonnegative P-martingale
(Zt)t≥0 has the form (Mt(F ))t≥0 for a nonnegative, Q-integrable functional F , if
and only if:

P[Z0] = Q
(

lim
t→∞

Zt
Xt

)
. (4.2)

Note that, by Proposition 4.1, the limit above necessarily existsQ-almost everywhere.

Proof. By Proposition 4.1, one can write the decomposition:

Zt = Mt(z∞) + P[Z∞|Ft] + ξt.

Note that in this situation, (ξt)t≥0 is a nonnegative martingale. One has:

P[Z0] = P[M0(z∞)] + P[ P[Z∞|F0] ] + P[ξ0] = Q[z∞] + P[Z∞] + P[ξ0].

Now, the equation (4.2) is satisfied iff

P[Z0] = Q[z∞].

If this condition holds, one has

P[Z∞] = P[ξ0] = 0,

and then, for all t ≥ 0,
P[Z∞|Ft] + ξt = 0

almost surely. Hence, the martingale (Zt)t≥0 is a càdlàg modification of (Mt(z∞))t≥0.
Since (Mt(z∞))t≥0 is only defined up to càdlàg modification, one can suppose that
(Zt)t≥0 coincides with (Mt(z∞))t≥0. On the other hand, if (Zt)t≥0 has the form
(Mt(F ))t≥0, by uniqueness of the decomposition given in Proposition 4.1, F = z∞,
Q-almost everywhere, which implies that P[Z0] = Q[z∞], and then (4.2) is satis-
fied.

Remark. Let us suppose that, in Proposition 4.1, (Zt)t≥0 is a nonnegative mar-
tingale. Since the space satisfies the property (NP), there exists a unique finite measure
QZ on (Ω,F), such that for all t ≥ 0, its restriction to Ft has density Zt with respect
to P. If one writes the decomposition

Zt = Mt(z∞) + P[Z∞|Ft] + ξt,

one deduces:
QZ = z∞ .Q+ Z∞ .P + Qξ,
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where the restriction of Qξ toFt has density ξt with respect to P. By Radon-Nykodym
theorem, one has a decomposition:

Qξ = ξ′.P + Q′ξ,

where Q′ξ is singular with respect to P. Now, if for t ≥ 0, ξ′t is the density, with
respect to P, of the restriction of ξ′.P to Ft, then for all t ≥ 0, ξ′t ≤ ξt, P-almost
surely. Moreover, if (ξ′t)t≥0 is supposed to be càdlàg, then almost surely, ξ′t ≤ ξt for
all t ≥ 0. By taking the P-almost sure limit for t going to infinity, one deduces that
ξ′ = 0, P-almost surely, therefore, Qξ = Q′ξ is singular with respect to P. One can
also decompose Qξ as:

Qξ = ξ′′.Q+ Q′′ξ ,

where Q′′ξ is singular with respect to Q. Now, for all t ≥ 0, one has, P-almost surely,
and then Q-almost everywhere, Mt(ξ′′) ≤ ξt. Since (Mt(ξ′′))t≥0 and (ξt)t≥0 are
right-continuous, one deduces that Q-almost everywhere, Mt(ξ′′) ≤ ξt for all t ≥ 0.
SinceQ-almost everywhere,Mt(ξ′′)/Xt tends to ξ′′ when t goes to infinity, and ξt/Xt

tends to zero, one has ξ′′ = 0, Q-almost everywhere and Qξ = Q′′ξ is singular with
respect to t. Hence, we have obtained a decomposition of QZ into three parts:

• A part which is absolutely continuous with respect to P.

• A part which is absolutely continuous with respect to Q.

• A part which is singular with respect to P and Q.

This decomposition is unique, as a consequence of uniqueness of Radon-Nykodym
decomposition (recall that P and Q are mutually singular, since A∞ = ∞, P-almost
surely, and A∞ <∞, Q-almost everywhere). This uniqueness can be compared with
the uniqueness of the decomposition of the martingale (Zt)t≥0 given in Proposition
4.1.
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