
GROMOV–WITTEN INVARIANTS OF A CLASS OF TORIC
VARIETIES

ANDREW KRESCH

Dedicated to William Fulton

1. Introduction

1.1. Background. Toric varieties admit a combinatorial description, which allows
many invariants to be expressed in terms of combinatorial data. Batyrev [Ba2] and
Morrison and Plesser [MP] describe the quantum cohomology rings of certain toric
varieties, in terms of generators (divisors and formal q variables) and relations (linear
relations and q-deformed monomial relations). The relations are easily obtained from
the combinatorial data. Unfortunately, the relations alone do not tell us how to
multiply cohomology classes in the quantum cohomology ring QH∗(X), or even how
to express ordinary cohomology classes in H∗(X,Q) in terms of the given generators.
In this paper, we give a formula that expresses any class inH∗(X,Q)—as a polynomial
in divisor classes and formal q variables—for anyX belonging to a certain class of toric
varieties. These expressions, along with the presentation of QH∗(X) via generators
and relations, permit computation of any product of cohomology classes in QH∗(X).

Let X be a complete toric variety of dimension n over the complex numbers (all
varieties in this paper are over the complex numbers). This means X is a normal
variety with an action by the algebraic torus (C∗)n and a dense equivariant embedding
(C∗)n → X. By the theory of toric varieties (cf. [F]), such X are characterized by
a fan ∆ of strongly convex polyhedral cones in N ⊗Z R, where N is the lattice Zn.
The cones are rational, that is, generated by lattice points. In particular, to every ray
(1-dimensional cone) σ there is a unique generator ρ ∈ N such that σ ∩N = Z>0 · ρ.
There is a one-to-one correspondence between such ray generators ρ and toric (i.e.,
torus-invariant) divisors of X. Given toric divisors D1, . . . , Dk, with corresponding
ray generators ρ1, . . . , ρk, we have D1 ∩ · · · ∩Dk 6= ∅ if and only if ρ1, . . ., ρk span a
cone in ∆. Hypotheses on X translate as follows into conditions on ∆:

(i) X is nonsingular if and only if every cone is generated by a part of a Z-basis
of N ;

(ii) given that X is nonsingular: X is Fano (i.e., X has ample anticanonical class)
if and only if the set of ray generators is strictly convex.

We need the following terminology from [Ba1].

Definition 1.1. Let X be a complete nonsingular toric variety. {D1, . . . , Dk} is then
a primitive set for X if D1 ∩ · · · ∩Dk = ∅ but D1 ∩ · · · ∩ D̂j ∩ · · · ∩Dk 6= ∅ for all j.
Equivalently, this means that 〈ρ1, . . . , ρk〉 /∈ ∆ but 〈ρ1, . . . , ρ̂j , . . . , ρk〉 ∈ ∆ for all j

Date: 22 March 2000.
The author was partially supported by an NSF Postdoctoral Research Fellowship.

1



2 ANDREW KRESCH

If S := {D1, . . . , Dk} is a primitive set then the element ρ := ρ1 + · · ·+ ρk lies in the
relative interior of a unique cone of ∆, say the cone generated by ρ′1, . . ., ρ

′
r. Then

ρ1 + · · ·+ ρk = a1ρ
′
1 + · · ·+ arρ

′
r (ai > 0, i = 1, . . . , r) (1)

is the corresponding primitive relation. Correspondingly there is a unique curve class
β ∈ H2(X,Z) such that

∫
β
Di = 1 for i = 1, . . ., k, and

∫
β
D′
j = −aj for j = 1, . . .,

r, with
∫
β
D = 0 for all other toric divisors of X. This is called the primitive class

associated to the primitive set S.

We provide more details in Section 2, in particular regarding the fact that on any
nonsingular projective toric variety, every primitive class is effective.

Theorem 1.2. Let X be a nonsingular Fano toric variety of dimension n, with
corresponding fan ∆ of cones in N ⊗Z R, with N = Zn. Let M = Hom(N,Z). Let
C be the cone of effective curve classes on X, with Q[C] the semigroup algebra on C.
Let D1, . . ., Dm denote the toric divisors on X, with corresponding ray generators
ρ1, . . ., ρm. Then

QH∗(X) = (Q[C])[D1, . . . , Dm]/I, (2)
where I is the ideal generated by

ϕ(ρ1)D1 + · · ·+ ϕ(ρm)Dm (3)

for all ϕ ∈M and by
D1 · · ·Dk − qβ(D′

1)
a1 · · · (D′

r)
ar (4)

for every primitive set {D1, . . . , Dk}, with corresponding primitive relation (1) and
primitive curve class β.

A general primitive set should perhaps be denoted {Di1 , . . . , Dik} with {i1, . . . , ik} ⊂
{1, . . . ,m}; this gets cumbersome, so we let there be an implied shuffling of indices in
(4). The element of Q[C] indexed by β ∈ C is denoted qβ ; these, for nonzero β, are
the quantum correction terms of the quantum cohomology ring. Note that when all
the variables qβ for 0 6= β ∈ C are set to 0, we recover the presentation of the usual
cohomology ring of X. In fact, the cohomology ring with integer coefficients of any
complete nonsingular toric variety has, as generators, the toric divisor classes, and as
relations, the linear relations (3) and the monomial terms (4) (with no q terms).

Theorem 1.2 was stated in [Ba2] and also discussed in [MP]. A suggestive argument
was given in [Ba2], but the first proof was supplied by Givental in [Gi], where complete
intersections in toric varieties were considered, with the toric varieties themselves as a
trivial first case. The argument of [Gi] relied upon a collection of axioms of equivari-
ant Gromov–Witten invariants. For these, the later-supplied equivariant localization
theorem of Graber and Pandharipande [GP] is needed. A recently announced for-
mula [Sp] reduces computation of any Gromov–Witten invariant on a nonsingular
projective toric variety to a certain sum over a finite set of graphs, although deducing
the relations (4) from this would be a formidable combinatorial task. Also, [CK, pp.
393–395] and [Sp] exhibit nonsingular projective (but non-Fano) toric varieties X for
which (4) fails to vanish in QH∗(X).

When X is Fano, one can identify QH∗(X) ' Q[C]⊗QH
∗(X,Q) as Q[C]-modules,

where C denotes the semigroup of effective curve classes on X. A cohomology class
α ∈ H∗(X,Q) is identified with 1 ⊗ α ∈ QH∗(X). To “know” QH∗(X) means to
know how to compute α1 · α2 in QH∗(X), for any α1, α2 ∈ H∗(X,Q). The structure
constants in the expression for α1·α2 as a linear combination of elements qβ⊗α′ are the
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three-point Gromov–Witten invariants. The three-point Gromov–Witten invariants
in turn determine all the Gromov–Witten invariants, by the inductive procedure of the
first reconstruction theorem of Kontsevich and Manin [KM] (the needed hypothesis
of H∗(X,Q) being generated by divisor classes is satisfied for toric varieties). All
the Gromov–Witten invariants are thus determined from having (i) a presentation for
QH∗(X) in terms of generators and relations and (ii) an expression for α in QH∗(X),
for any α ∈ H∗(X,Q). This second piece of data, in the context of homogeneous
spaces, is referred to as a quantum Giambelli formula (see, e.g., [Ber]). So the ring
presentation of Batyrev and of Morrison and Plesser needs to be supplemented by a
quantum Giambelli formula before we can say we “know” QH∗(X).

1.2. Main result. In this paper, we provide a quantum Giambelli formula for a class
of toric varieties. We first need some new terminology.

Definition 1.3. An exceptional set is a set of toric divisors {D1, . . . , Dk} such that
the corresponding ray generators ρ1, . . ., ρk are linearly independent and such that
ρ1 + · · ·+ρk is equal to some ray generator ρ̃. Then ρ1 + · · ·+ρk = ρ̃ is the associated
exceptional relation. There is the corresponding exceptional divisor D̃ and exceptional
class β ∈ H2(X,Z), with

∫
β
Di = 1 for i = 1, . . ., k,

∫
β
D̃ = −1, and

∫
β
D′ = 0 for all

other toric divisors D′.

Definition 1.4. Let a cone σ ∈ ∆ be fixed. Then an exceptional set {D1, . . . , Dk}
is called special (for σ) if some (k − 1) of ρ1, . . ., ρk, as well as ρ̃, lie in σ.

Definition 1.5. Let {S1, . . . , St} be a collection of exceptional sets. We say this set
of exceptional sets has a cycle if there exists {i1, . . . , ij} ⊂ {1, . . . , t} such that the
exceptional divisor for Siν+1 is in Siν for ν = 1, . . ., j − 1 and the exceptional divisor
for Si1 is in Sij . Otherwise, we say the set of exceptional sets has no cycles.

Theorem 1.6. Let X be a nonsingular projective toric variety. Assume X is Fano,
and assume further that every toric subvariety of X is Fano and that, for every
nonsingular toric variety X ′ dominated by X such that X → X ′ is the blow-up of an
irreducible toric subvariety, X ′ is Fano.

(i) Every primitive relation of X is either of the form

ρ1 + · · ·+ ρk = 0

or
ρ1 + · · ·+ ρk = ρ′1.

(ii) If {D1, · · · , Dj} is a set of toric divisors such that D1 ∩ · · · ∩Dj is nonempty
and if α denotes the cohomology class Poincaré dual to [D1 ∩ · · · ∩Dj ], then
we have

α =
∑

{S1,...,St}

qβ1+···+βt

∏
16i6j

Di /∈S1∪···∪St

Di (5)

in QH∗(X), where the sum is over sets of exceptional sets {S1, . . . , St} that
are special for the cone associated to D1 ∩ · · · ∩Dj, have distinct exceptional
divisors, and have no cycles; for the sum in (5), βi denotes the exceptional
class associated to Si, for each i.

Remark 1.7. It is not obvious yet, but the hypotheses in Theorem 1.6 guarantee that
for any {S1, . . . , St} in the sum (5), the sets Si are pairwise disjoint. This means that
the degrees work out correctly: it is a general fact that, if {D1, . . . , Dm} is the set of
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all toric divisors on X, then we have −KX = D1 + · · ·+Dm and, in general, QH∗(X)
is a graded ring with deg qβ =

∫
β
(−KX) and degα = i for α ∈ H2i(X,Q).

After setting up notation in Section 2, we study the class of toric varieties indicated by
Theorem 1.6 in Section 3. These toric varieties are all iterated blow-ups of products
of projective spaces, along irreducible toric subvarieties, such that the exceptional
divisors of the blow-up can be blown down in any order; see the characterization in
Theorem 3.9. This is a convenient class of toric varieties, since it is closed under blow-
downs and under inclusions of toric subvarieties. In fact, it is the largest category
of nonsingular Fano toric varieties that is closed under these operations. Also, it
has the nice feature of admitting a neatly presentable quantum Giambelli formula in
terms of the given combinatorial data only. And, unlike in the case of products of
projective spaces, there are some q correction terms in the quantum Giambelli. Still,
it is a limited class of toric varieties; the author has no idea what sort of shape a
general quantum Giambelli formula might take (say, for arbitrary nonsingular Fano
toric varieties).

The class of toric varieties includes products of projective spaces themselves, for
which the results are known, as well as blow-ups of points, which were studied in [Ga].
This class also includes some of the projective bundles over projective spaces [Ma; QR]
and over products of projective spaces [CM]. Such toric varieties are generally not
convex varieties, so in the theory of quantum cohomology (cf. [FP] and references
therein) one needs virtual fundamental classes [B; BF; LT].

The proof of Theorem 1.6 uses no computations of intersection numbers on moduli
spaces, but only the following facts regarding QH∗(X): it is a ring (commutative
and associative), graded (see Remark 1.7), presented by (2), with multiplicative rule
governed by the three-point Gromov–Witten invariants. For α1, α2 ∈ H∗(X,Q), the
pairing (via the usual cup product) of α1 · α2 with α3 ∈ H∗(X,Q) is∫

X

(α1 · α2) ∪ α3 =
∑

β∈H2(X,Z)

〈α1, α2, α3〉β qβ .

The number 〈α1, α2, α3〉β is a Gromov–Witten invariant; it counts the (virtual) num-
ber of rational curves in class β passing through cycles which represent Poincaré duals
to α1, α2, and α3. So, for instance, 〈α1, α2, α3〉β = 0 if there are no curves in ho-
mology class β satisfying such incidence conditions. The Gromov–Witten invariant
also vanishes if one of the αi is a divisor class whose intersection number with β is 0,
assuming β 6= 0 (divisor axiom). These facts let us deduce Theorem 1.6 from Theo-
rem 1.2, using some combinatorial reasoning (Section 4). The reader needs to grant
that Theorem 1.2 is proved in [Gi], or else work through Exercise 4.13, which derives
relations (4) from scratch (for a class of varieties which includes those indicated in
Theorem 1.6).

As a valuable exercise, the reader may list all 5 isomorphism classes of 2-dimensional
toric varieties satisfying the hypotheses of Theorem 1.6, and write down the quantum
Giambelli. Note there are often several pairs of divisors intersecting in a point, giving
several different expressions for the point class in QH∗(X). Any two such expressions
must be equal, via the linear relations and deformed monomial relations in QH∗(X).
Unlike in the case of homogeneous spaces, there is no canonical basis for H∗(X,Q).

1.3. Acknowledgment. The author would like to thank Victor Batyrev, Barbara
Fantechi, Bill Fulton, and Harry Tamvakis for helpful discussions and encouragement.
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2. Preliminaries

2.1. Conventions. We use the following notation:
N = finite-dimensional integer lattice, NR = N ⊗ R;
M = dual lattice, MR = M ⊗ R;
X = nonsingular projective toric variety;
∆ = corresponding fan of cones in NR;
n = dimension of the lattice (hence also the dimension

of X);
m = number of 1-dimensional rays in ∆ (equal to the

number of toric divisors of X);
D1, . . . , D

′
1, . . . = toric divisors;

ρ1, . . . , ρ
′
1, . . . = corresponding ray generators;
∆(σ) = star of the cone σ ∈ ∆: a fan in N/〈σ〉 whose

cones are in one-to-one correspondence with the
cones of ∆ containing σ;

X(σ) = corresponding toric subvariety;
QH∗(X) = the small quantum cohomology ring of X.

2.2. Divisors and curve classes. We let X be an arbitrary nonsingular projective
toric variety, with notation as just listed. Some standard exact sequences are

0 →M → Zm → Pic(X) → 0

and the dual sequence

0 → H2(X,Z) → Zm → N → 0.

The dual exact sequence indicates that any linear relation among ray generators, such
as (1), determines a class in H2(X,Z).

It is known (cf. [O]) that the set of effective curve classes on X is equal to the
cone generated by the toric curves on X (simply let an arbitrary curve degenerate
by means of the torus action). Shortly we shall see this is also equal to the cone
generated by the primitive classes.

We first recall the characterization of ample divisors. Let the toric divisors on X be
denoted D1, . . ., Dm. Then a divisor

∑m
i=1 aiDi is ample if and only if the piecewise

linear function ψ : NR → R, linear on every cone of ∆ and defined by ψ(ρi) = −ai, is
strictly convex. Linearly equivalent divisors correspond to piecewise linear functions
which differ by a global linear function. To every such ψ there corresponds a convex
polytope in MR:

Pψ = {v ∈MR | 〈v, x〉 > ψ(x) for all x ∈ NR}
Translation of ψ by a global linear function corresponds to translation of Pψ by an
element of M . There is a unique translation sending a given vertex of Pψ to the
origin. Correspondingly, for a fixed ample divisor D, to every maximal cone µ there
is a unique representative for D of the form

∑m
i=1 aiDi with ai > 0 for all i and ai = 0

if and only if ρi ∈ µ. This implies the following proposition.

Proposition 2.1. If β ∈ H2(X,Z) is nonzero and if the toric divisors that β in-
tersects negatively have nonempty common intersection, then β must have positive
intersection with every ample divisor.

Corollary 2.2. Any β ∈ H2(X,Z) that intersects every ample divisor positively must
satisfy: {Di |

∫
β
Di > 0 } contains a primitive set.
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Proof. Apply Proposition 2.1 to −β. �

Proposition 2.3. Suppose β ∈ H2(X,Z). If the Di for which
∫
β
Di < 0 have

nonempty common intersection, then β is equal to a linear combination, with non-
negative integer coefficients, of primitive curve classes.

Proof. By Corollary 2.2, { i |
∫
β
Di > 0 } contains a primitive set. Let β0 be the

primitive curve class corresponding to this primitive set, and write β = β0 + β′. Now
{ i |

∫
β′ Di < 0 } ⊂ { i |

∫
β
Di < 0 }, so we are done, by induction on the degree of β

(with respect to a fixed projective embedding of X). �

Consider a toric curve P1 ' C ⊂ X. Any toric divisor having negative intersection
with [C] must contain C. So, by Proposition 2.3, the cone of effective curve classes
on X is contained in the cone spanned by primitive curve classes on X. This is one
half of the following known result [O; OP; Re].

Theorem 2.4. Let X be a nonsingular projective toric variety. The cone of effective
curve classes on X is equal to the cone spanned by primitive curve classes on X.

It is not hard to obtain a proof of Theorem 2.4 by constructing explicitly a tree of
toric P1’s representing a given primitive curve class. This is an easy consequence of
some combinatorial results that are needed in this paper (see Exercise 4.3).

Batyrev’s approach [Ba2] to QH∗(X) is to study the moduli space of rational
curves on X in a curve class which has nonnegative intersection with every toric
divisor. Moduli of rational curves in such a homology class is much like that of
curves on a homogeneous space, although the situation at the boundary is a bit more
complicated. Nevertheless, if one can get relations in QH∗(X) involving such curve
classes, then one can deduce the ring presentation (2).

Definition 2.5. A class β ∈ H2(X,Z) is said to be very effective if β 6= 0 and∫
β
D > 0 for every toric divisor D.

Batyrev predicted that, if β is a very effective curve class onX and if we set ai =
∫
β
Di

for each i, then the relation
Da1

1 · · ·Dam
m = qβ (6)

holds in QH∗(X). The enumerative interpretation is that given a general point x0 on
X and distinct points z0, z1,1, . . ., z1,a1 , . . ., zm,1, . . ., zm,am

in general position on
P1, then there is precisely one morphism ϕ : P1 → X, with ϕ∗([P1]) = β, such that
ϕ(z0) = x0 and ϕ(zi,j) ∈ Di for all i and j with 1 6 i 6 m and 1 6 j 6 ai (and that
there are no curves in other homology classes that contribute q-terms).

Proposition 2.6. Given a nonsingular projective toric variety X, assume relation
(6) for every very effective curve class β. Then the deformed monomial relations (4)
hold. If, moreover, X is Fano, then QH∗(X) has the claimed presentation (2).

Proof. Let β be a primitive curve class, and write β = β2 − β1 with β1 and β2 very
effective. Then

qβ1
∏

∫
β
Di=1

Di =
[ ∏

∫
β
Di=1

Di

]
D

∫
β1
D1

1 · · ·D
∫

β1
Dm

m

=
[ ∏

∫
β
Dj<0

D
(−

∫
β
Dj)

j

]
D

∫
β2
D1

1 · · ·D
∫

β2
Dm

m = qβ2
∏

∫
β
Dj<0

D
(−

∫
β
Dj)

j ,
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and (4) follows since qβ1 is a nonzero divisor in QH∗(X).
If X is Fano, then a presentation for QH∗(X) is obtained by starting with a

presentation for H∗(X,Q) in terms of generators and relations and then replacing
each relation by a q-deformed relation which holds in QH∗(X) ([ST], or cf. [FP]).
The presentation (2) is of this form. �

Remark 2.7. The proof shows that, for any effective β with associated relation

c1ρ1 + · · ·+ ckρk = a1ρ
′
1 + · · ·+ arρ

′
r

in N (
∫
β
Di = ci > 0 and −

∫
β
D′
j = aj > 0), the relation

Dc1
1 · · ·Dck

k = qβ(D′
1)
a1 · · · (D′

r)
ar (7)

holds in QH∗(X) (assuming relations (6) hold for X).

3. A class of Fano toric varieties

3.1. Fano conditions. We relate the shape of the relations among ray generators
corresponding to primitive sets of a fan, on the one hand, to a series of increasingly
restrictive conditions on the associated toric variety, on the other. We arrive at the
following dictionary. We recall the primitive relation associated to a primitive set:

ρ1 + · · ·+ ρk = a1ρ
′
1 + · · ·+ arρ

′
r (ai > 0, 〈ρ′1, . . . , ρ′r〉 ∈ ∆). (8)

The dictionary reads:∑
ai < k for all relations (8) ⇐⇒ X is Fano;∑
ai 6 1 for all relations (8) ⇐⇒ X is Fano, and every

toric subvariety of X is Fano;∑
ai 6 1, and every ρ′ appears

on the right-hand side of
at most one relation (8)

⇐⇒ X is Fano; every toric subvariety
and blow-down of X is Fano.

The first of these conditions is known (cf. [O]). The others are Theorems 3.1 and 3.9.

3.2. Conditions for every toric subvariety to be Fano. Part (i) of Theorem 1.6
is a consequence of the following characterization.

Theorem 3.1. Let X be a complete nonsingular toric variety, and let ∆ be the
associated fan. Then the following are equivalent.

(i) X is Fano, and every toric subvariety of X is Fano.
(ii) For every primitive set {D1, . . . , Dk} we have either ρ1 + · · · + ρk = 0 or

ρ1 + · · ·+ ρk = ρ′, where ρ′ is a ray generator of ∆.
(iii) For every maximal cone µ = 〈ρ1, . . . , ρn〉 in ∆, and for every ray generator

ρ, if we write ρ = b1ρ1 + · · ·+ bnρn, then we have −1 6 bj 6 1 for j = 1, . . .,
n, with bj = 1 for at most one j.

Proof. For (i) ⇒ (ii), we induct on the dimension n. The case n = 1 is trivial, and the
base case n = 2 is easily verified. For the inductive step, let us suppose X satisfies (i)
but that (ii) fails to hold. Then there is a primitive set {D1, . . . , Dk} whose associated
primitive relation (8) satisfies

∑
ai > 2.

Let µ be a maximal cone containing ρ′1, . . ., ρ
′
r, and let us denote the remaining

generators of µ by ρ1, . . ., ρh, ρ′r+1, . . ., ρ
′
s (suitably rearranging indices). We insist

that the sets {ρ1, . . . , ρk} and {ρ′1, . . . , ρ′s} be disjoint. Now µ is the cone spanned by

T := {ρ1, . . . , ρh, ρ
′
1, . . . , ρ

′
s}. (9)
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Let ϕ ∈ M be the point corresponding to µ (so ϕ(ρ) = 1 for all ρ ∈ T ). We have
ϕ(ρ1 + · · ·+ ρk) =

∑
ai > 2.

Since X is Fano, we have ϕ(ρ) 6 1 for every ray generator ρ, with equality if and
only if ρ ∈ T . So, for h + 1 6 j 6 k we have ϕ(ρj) = −cj , for some nonnegative
integer cj . Now

ϕ(ρ1 + · · ·+ ρk) = h−
k∑

j=h+1

cj > 2.

In particular, h > 2 and so k > 3. Consider the fan ∆(ρ1) in N/〈ρ1〉. Let us
give N coordinates by identifying the elements of T (in the order listed in (9)) with
the standard basis elements. Then ∆(ρ1) consists of all cones of ∆ containing ρ1,
projected by forgetting the first coordinate. The divisors associated to the projections
of ρ2, . . ., ρk form a primitive set for X(ρ1). Note that ρ1+· · ·+ρk has first coordinate
equal to zero; so, if we define ϕ̄ ∈ Hom(N/〈ρ1〉,Z) by ϕ̄(ρ̄) = 1 for all ρ ∈ T r {ρ1},
then we have ϕ̄(ρ̄2 + · · · + ρ̄k) = ϕ(ρ1 + · · · + ρk) > 2. We are assuming every toric
subvariety of X is Fano. The induction hypothesis applies to the toric subvariety
X(ρ1) implies ϕ̄(ρ̄2 + · · ·+ ρ̄k) 6 1, so we have a contradiction.

For (ii) ⇒ (iii), we let µ = 〈ρ1, . . . , ρn〉 be a maximal cone, and we give N the
coordinates thus dictated. Suppose some ray generator ρ, when written in coordinates
as (b1, . . . , bn), satisfies b1 6 −2. If the P1 on X corresponding to the (n − 1)-
dimensional cone 〈ρ2, . . . , ρn〉, has fixed pointsX(µ) andX(µ′), then in the coordinate
system of µ′ we find that ρ has first coordinate −b1. Hence, if (iii) fails then, for some
µ and ρ, the coordinates (b1, . . . , bn) for ρ satisfy b1 > 2 or b1 = b2 = 1 (after shuffling
indices). Among all such pairs µ and ρ we may assume b1 + · · · + bn is as large as
possible. Now ρ, ρ1, . . ., ρn fail to generate a cone and so, by (ii), the sum ρ′ of ρ and
some nonempty subset of {ρ1, . . . , ρn} is also a ray generator. But ρ′ must have either
some coordinate > 2 or at least two coordinates = 1, and the sum of the coordinates
of ρ′ is strictly larger than b1 + · · ·+ bn. This is a contradiction.

Statement (iii) implies that X is Fano; for any cone σ, statement (iii) for ∆ implies
statement (iii) for ∆(σ) and hence that the toric subvariety X(σ) is Fano. Thus every
toric subvariety of X is Fano, and we have (iii) ⇒ (i). �

3.3. Blow-downs of Fano toric varieties. We show that, for toric varieties satis-
fying the conditions of Theorem 3.1, the blow-downs of toric divisors are in one-to-one
correspondence with primitive relations with nonzero right-hand side. The property
that every blow-down is Fano then becomes that every ray generator appears on the
right-hand side of at most one primitive relation. Such varieties then enjoy the prop-
erty of possessing a collection of exceptional divisors that can be blown down in any
order, at every stage producing a nonsingular Fano toric variety, and yielding finally
a product of projective spaces.

Definition 3.2. If X satisfies the conditions of Theorem 3.1, we say a toric divisor
D̂ is exceptional if ρ1 + · · ·+ ρk = ρ̂ is a primitive relation for X for some ρ1, . . ., ρk.

Lemma 3.3. Suppose X satisfies the conditions of Theorem 3.1. If a ray generator
ρ is equal to a nonnegative linear combination of ray generators other than ρ, then
the toric divisor D associated to ρ is exceptional.

Proof. Induct on the sum of the coefficients, and apply Theorem 3.1(ii). �
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Lemma 3.4. Assume X satisfies the conditions of Theorem 3.1. Let 〈ρ′1, . . . , ρ′k〉 be
a cone of ∆, and let w = a1ρ

′
1 + · · · + akρ

′
k, with ai > 1 for each i, and a1 > 2. If

{ρ1, . . . , ρj} is any linearly independent set of ray generators, then ρ1 + · · ·+ ρj 6= w.

Proof. We induct on j. Suppose ρ1 + · · ·+ ρj = w. Then {D1, . . . , Dj} must contain
a primitive set. The set {D1, . . . , Dj} itself cannot be a primitive set, since w is
not a ray generator in ∆. Hence, we may suppose that {D1, . . . , Dh} is primitive
with h < j. Then we have ρ1 + · · · + ρh = ρ for some ray generator ρ, and now
ρ+ ρh+1 + · · ·+ ρj = w, with ρ, ρh+1, . . ., ρj linearly independent. This contradicts
the induction hypothesis. �

Proposition 3.5. Assume X satisfies the conditions of Theorem 3.1. Let D̂ be an
exceptional divisor with primitive relation ρ1 + · · · + ρk = ρ̂. Then there exists a
morphism of nonsingular toric varieties X → X ′ such that σ := 〈ρ1, . . . , ρk〉 is a cone
of the fan ∆′ corresponding to X ′ and such that X → X ′ is the blowing up of X ′

along X ′(σ).

Proof. We need to show that for all h (1 6 h 6 k) and every cone σ ∈ ∆ with ρ̂ ∈ σ,

ρh /∈ σ =⇒ 〈ρ1, . . . , ρ̂h , . . . , ρk, σ〉 ∈ ∆. (10)

Suppose (10) fails for σ = 〈ρ̂〉. We may suppose 〈ρ1, . . . , ρk−1, ρ̂〉 /∈ ∆, and in fact, that
{D1, . . . , Dr, D̂} is a primitive set with 1 6 r 6 k − 1. Hence ρ1 + · · · + ρr + ρ̂ = ρ′

for some ρ′. Now ρ′, ρr+1, . . ., ρk are linearly independent and ρ′ + ρr+1 + · · · +
ρk = 2ρ̂, so we have a contradiction to Lemma 3.4. Suppose that (10) fails for
σ ) 〈ρ̂〉; that is, we have 〈ρ̂, ρ′1, . . . , ρ′j〉 ∈ ∆ but 〈ρ1, . . . , ρk−1, ρ̂, ρ

′
1, . . . , ρ

′
j〉 /∈ ∆.

Then (rearranging indices further) there is a primitive set composed of D1, some
subset of {D2, . . . , Dk−1, D̂}, and (without loss of generality) all of {D′

1, . . . , D
′
j}

with j positive. Therefore,

ρ1 + c2ρ2 + · · ·+ ck−1ρk−1 + ĉ ρ̂+ ρ′1 + · · ·+ ρ′j = ρ̃

for some ρ̃ and some c2, . . . , ck−1, ĉ ∈ {0, 1}. We now have

ρ̃+ (1− c2)ρ2 + · · ·+ (1− ck−1)ρk−1 + ρk + (1− ĉ)ρ̂ = 2ρ̂+ ρ′1 + · · ·+ ρ′j .

This contradicts Lemma 3.4. �

Exercise 3.6. Produce a 3-dimensional toric variety X, satisfying the conditions
of Theorem 3.1, such that there is a blow-down of an exceptional divisor X → X ′

with X ′ nonsingular and projective but not Fano. For a characterization of when the
blow-down of a Fano toric variety fails to be Fano, see [Sa].

Lemma 3.7. Assume X satisfies the conditions of Theorem 3.1. Let {D1, . . . , Dj}
and {D̂1, . . . , D̂k} be distinct primitive sets, and suppose ρ1 + · · · + ρj = ρ′ and
ρ̂1 + · · ·+ ρ̂k = ρ̂′ are the corresponding primitive relations. If ρ′ and ρ̂′ are equal or
span a cone of ∆, then {ρ1, . . . , ρj} ∩ {ρ̂1, . . . , ρ̂k} = ∅.

Proof. Suppose not: ρ1 = ρ̂1, say. In the case ρ′ = ρ̂′, then we find ρ2 + · · · + ρj =
ρ̂2 + · · · + ρ̂k; a contradiction. If ρ′ 6= ρ̂′ then, by Proposition 3.5, the fact that
〈ρ′, ρ̂′〉 ∈ ∆ implies that {ρ2, . . . , ρj} ∪ {ρ′, ρ̂′} and {ρ̂2, . . . , ρ̂k} ∪ {ρ′, ρ̂′} are two sets
of cone generators. Now

ρ2 + · · ·+ ρj + ρ̂′ = ρ′ + ρ̂′ − ρ1 = ρ̂2 + · · ·+ ρ̂k + ρ′,

and we have a contradiction. �
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Proposition 3.8. Assume X satisfies the conditions of Theorem 3.1. Then the
following statements are equivalent.

(i) Every blow-down of X along an exceptional divisor produces a nonsingular
Fano toric variety.

(ii) Every blow-down of X along an exceptional divisor produces a nonsingular
toric variety which (a) is Fano, (b) satisfies the condition that all of its toric
subvarieties are Fano, and (c) is such that every blow-down of an exceptional
divisor is nonsingular Fano.

(iii) Every ray generator of ∆ appears on the right-hand side of at most one prim-
itive relation of X.

Proof. Since a Fano toric variety is determined uniquely by the set of ray generators,
we have (i) ⇒ (iii), and (ii) ⇒ (i) is clear. We obtain (iii) ⇒ (ii) from the charac-
terization of how primitive relations behave under blow-down. By [Sa, Cor. 4.9], if
X → X ′ is the blow-down corresponding to the primitive relation ρ1 + · · ·+ ρk = ρ̂,
then the primitive sets of X ′ are precisely the primitive sets of X not containing D̂
(other than {D1, . . . , Dk}), plus the sets S′ := (S r {D̂}) ∪ {D1, . . . , Dk} (disjoint
union, by Lemma 3.7) for some (though perhaps not all) primitive sets S containing
D̂. For such S and S′ (primitive sets for X and X ′, respectively), the respective prim-
itive relations have the same right-hand sides. Given (iii), then, every blow-down of
an exceptional divisor is a toric variety which satisfies condition (ii) of Theorem 3.1
and, additionally, condition (iii) of this proposition, and hence, by induction on the
number of toric divisors, is a Fano toric variety all of whose toric subvarieties and
toric blow-downs along divisors are Fano. �

Let X be a toric variety satisfying the conditions of Theorem 3.1, and suppose that
each exceptional divisor can be blown down in at exactly one way. Then, by Propo-
sition 3.8, we can perform a sequence of blow-downs

X = Xr → Xr−1 → · · · → X1 → X0,

and so finally obtain the toric varietyX0, which satisfies the conditions of Theorem 3.1
and has no exceptional divisors. Now, by Theorem 3.1(ii), the absence of exceptional
divisors implies that every linearly independent set of ray generators spans a cone of
∆. It is apparent, then, that X0 is isomorphic to a product of projective spaces.

By Lemma 3.3, for any iterated blow-down X ′ of X dominating X0, every toric
divisor D′ on X ′ with 〈ρ′〉 /∈ ∆0 must be exceptional. Hence, starting with X, the
divisors {D | 〈ρ〉 /∈ ∆0 } can be blown down in any order to yield a succession of
birational morphisms of toric varieties, with each variety satisfying the conditions of
Proposition 3.8 and terminating with X0. The results of this section are summarized
in the following statement.

Theorem 3.9. Let X be a complete nonsingular toric variety. Then the following
are equivalent.

(i) X is Fano, every toric subvariety of X is Fano, and every nonsingular toric
variety X ′ dominated by X, such that X → X ′ is the blow-down of a toric
divisor, is Fano.

(ii) The fan associated to X satisfies: for every primitive set {D1, . . . , Dk} we
have either ρ1 + · · ·+ ρk = 0 or ρ1 + · · ·+ ρk = ρ′ for some ray generator ρ′,
with every ρ′ equal to ρ1 + · · ·+ρj for at most one primitive set {D1, . . . , Dj}.
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Moreover, if X satisfies (i) and (ii), then X is an iterated blow-up of a product of
projective spaces, along irreducible toric subvarieties, such that the exceptional divisors
of the blow-up can be blown down in any order, and every intermediate blow-up is a
toric variety satisfying (i) and (ii).

4. Rational curves on toric varieties

4.1. Curves joining a point and a divisor. We need the following result, which
characterizes the lowest possible degree of a stable, torus-invariant genus-0 curve
joining a toric point to a toric divisor. Degree of a curve refers to degree under the
anticanonical embedding: deg β =

∫
β
(−KX).

Proposition 4.1. Let X be a toric variety satisfying the conditions of Theorem
3.1. Let µ = 〈ρ1, . . . , ρn〉 be a maximal cone of ∆ corresponding to the toric point
x = X(µ), and let us give N coordinates so that ρi is the ith standard basis vector for
each i. Let D be a toric divisor with corresponding ray generator ρ = (ρ(1), . . . , ρ(n))
in coordinates. Then there is a tree of toric P1’s joining x to a point of D and having
degree 1−

∑n
i=1 ρ

(i) and homology class β given by


β = 0 if ρ ∈ {ρ1, . . . , ρn},∫
β
D = 1,

∫
β
Di = −ρ(i) ∀i,∫

β
D′ = 0∀D′ /∈ {D1, . . . , Dn, D}

otherwise.
(11)

Any tree of toric P1’s that joins x to a point of Di having homology class not equal
to β must have degree larger than 1−

∑n
i=1 ρ

(i).

Proof. For a maximal cone µ′, let Σµ′ denote the affine span of the generators of µ′,
and let dist(−,Σµ′) denote (signed) integer distance to Σµ′ in N . Then the quantity
1 −

∑n
i=1 ρ

(i) appearing in the statement is dist(ρ,Σµ). We prove the statement by
induction on the degree d of a tree of P1’s. The induction hypothesis is: (i) that,
given any tree C of P1’s of total degree < d meeting D, the toric point X(µ′) lies in C
only if dist(ρ,Σµ′) 6 degC for any maximal cone µ′; (ii) if dist(ρ,Σµ′) = degC < d
and X(µ′) ∈ C then the homology class of C is that indicated in (11); and (iii) for
any maximal cone µ′ with dist(ρ,Σµ′) < d, there exists a tree of P1’s that join the
corresponding toric point to a point of D and have degree equal to dist(ρ,Σµ′).

Let C be a tree of P1’s, of total degree d, joining x to a point of D. It suffices to
assume that C = C0∪C1, where C0 is a toric P1 joining x to y for some toric point y,
and that C1 is a tree of P1’s joining y to a point of Di. Shuffling coordinates, we may
suppose C0 = X(σ), where σ = 〈ρ2, . . . , ρn〉. Denote the additional generator of the
maximal cone µ′ corresponding to y by ρn+1 (i.e., µ′ = 〈σ, ρn+1〉), and let us write
ρn+1 = (−1, a(2), . . . , a(n)) in coordinates. Then C0 has intersection numbers 1 with
D1 and withDn+1 and −a(i) withDi for 2 6 i 6 n. Hence, degC0 = dist(ρn+1,Σµ) =
2−

∑n
i=2 a

(i). We claim

dist(ρ,Σµ) 6 dist(ρ,Σµ′) + dist(ρn+1,Σµ), (12)
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with equality if and only if ρ(1) = −1. This is a computation: dist(ρ,Σµ′) = 1+ρ(1)−∑n
i=2(ρ

(i) + a(i)ρ(1)), so the right-hand side minus left-hand side of (12) equals

1 + ρ(1) −
n∑
i=2

(ρ(i) + a(i)ρ(1)) + 2−
n∑
i=2

a(i) −
(

1−
n∑
i=1

ρ(i)

)

= (ρ(1) + 1)
(

2−
n∑
i=2

a(i)

)
,

and by Theorem 3.1(iii) we have ρ(1) + 1 > 0. By the induction hypothesis, then,
we have degC > dist(ρ,Σµ) with equality only if ρ(1) = −1 and the homology class
β1 = [C1] satisfies satisfies β1 = 0 if ρ = ρn+1; otherwise

∫
β1
D = 1,

∫
β1
Dn+1 = −1,∫

β1
Di = −ρ(i) + a(i) for 2 6 i 6 n, and

∫
β1
D′ = 0 for all other D′. Therefore,

β = [C] = [C0] + [C1] satisfies (11).
For the existence portion of the inductive step, if dist(ρ,Σµ) > 0 then ρ must have

some coordinate equal to −1 and so, without loss of generality we have ρ(1) = −1.
We can now take C to be the union of C0 (as defined in the previous paragraph)
and a tree C1 of P1’s joining y to a point of D satisfying degC1 = dist(ρ,Σµ′) (the
existence of such C1 follows from the induction hypothesis). �

Corollary 4.2. Assume X satisfies the conditions of Theorem 3.1. Suppose β ∈
H2(X,Z), and suppose the toric divisors that β intersects negatively have nonempty
common intersection. Then β is represented by a tree of toric P1’s.

Proof. Let { ρ |
∫
β
D < 0 } = {ρ1, . . . , ρj}, and let µ be a maximal cone containing

ρ1, . . ., ρj with x = X(µ). For each ray generator ρ, let Cρ be a tree of P1’s that join
x to a point of D and with degCρ = dist(ρ,Σµ). For each ρ /∈ µ, let aρ =

∫
β
D; we

have aρ > 0 for all ρ /∈ µ. Now the sum over all ρ /∈ µ of aρ copies of Cρ has homology
class β. �

Exercise 4.3. Prove Corollary 4.2 for an arbitrary nonsingular projective toric va-
riety X. (The trees Cρ are constructed as in the existence portion of the inductive
step in the proof of Proposition 4.1, except that the P1 joining toric points x and y
is given multiplicity −ρ(1), where ordering of coordinates is chosen so that ρ(1) < 0.)
In particular, every primitive homology class is represented by a tree of P1’s; see
Theorem 2.4.

4.2. Quantum Giambelli. Here we prove Theorem 1.6(ii). Let D1, . . ., Dk be toric
divisors such that ρ1, . . ., ρk span a cone of ∆. Recall the two facts about quantum
cohomology we use. First, for 0 6= β ∈ H2(X,Z) and ω ∈ H∗(X,Q), if D is a toric
divisor satisfying

∫
β
D = 0 then the coefficient of qβ in D · ω is 0. Second, if—in

the fiber of the moduli space of stable maps M0,k+1(X,β) over a general point of
M0,k+1 (via the morphism which forgets the map of the curve to X and stabilizes;
cf. [FP] for notation and definition)—the intersection ev−1

1 (D1) ∩ · · · ∩ ev−1
k (Dk) ∩

ev−1
k+1(T ) is empty for every T among a collection of cycles representing a basis of

H2(k−deg β)(X,Q), then the coefficient of qβ in D1 · · ·Dk is 0. If the cycles T are toric
subvarieties then, to deduce that the intersection is empty, it suffices to verify that
the intersection contains no fixed points for the torus action on M0,k+1(X,β).

Definition 4.4. We say a collection of exceptional sets {S1, . . . , St} has an overlap
if the exceptional divisor for Si is an element of Sj , for some i and j in {1, . . . , t}.
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Otherwise, we say the set of exceptional sets has no overlaps. We also refer of a set of
exceptional curves as having an overlap or not having overlaps, depending on whether
the associated set of exceptional sets has or does not have overlaps.

Remark 4.5. Fixing a cone σ, the exceptional classes which are special for σ are
linearly independent. Indeed, it suffices to consider σ = 〈ρ1, . . . , ρn〉, a maximal cone.
Let us enumerate the toric divisors as {D1, . . . , Dn, Dn+1, . . . , Dm}. Then Dn+1,
. . ., Dm are linearly independent in H2(X,Q). Each special exceptional class has
intersection number 1 with exactly one of Dn+1, . . ., Dm and 0 with all the rest.

Remark 4.6. Every exceptional curve class meets the conditions of Proposition 2.3
and hence is effective and is a nonnegative integer combination of primitive classes.
Suppose now X satisfies the conditions of Theorem 3.9. Let σ = 〈ρ1, . . . , ρn〉 be a
maximal cone, and let us enumerate the divisors ofX as {D1, . . . , Dn, Dn+1, . . . , Dm}.
The following observations are immediate. First, no effective curve class has negative
intersection pairing with Dn+1 + · · · +Dm. Second, any effective curve class having
zero intersection with Dn+1 + · · ·+Dm must have nonnegative intersection with each
of D1, . . ., Dn. Consequently, if S is a special exceptional set for σ with exceptional
divisor Di (1 6 i 6 n), then (a) the (unique) primitive set S′ with exceptional divisor
Di is a special exceptional set for σ and (b) S′∩{D1, . . . , Dn} ⊂ S. In particular, any
two special exceptional sets with same exceptional divisor must have some elements
in common. Also, the reader should verify (by inductive application of Proposition
3.5 and Lemma 3.7), that any two special exceptional sets with different exceptional
divisors and no cycle must be disjoint.

We first need a technical lemma.

Lemma 4.7. Let σ = 〈ρ1, . . . , ρk〉 be a cone of ∆. Suppose {β′1, . . . , β′s} is a set of
special exceptional classes for σ. Let {β1, . . . , βt} be a set of exceptional classes such
that each associated exceptional set Si satisfies |Si ∩ {D1, . . . , Dk}| = |Si| − 1, and
suppose that

∫
β1
D1 = −1. If

β1 + · · ·+ βt = β′1 + · · ·+ β′s,

then at least one of the β′i has nonzero intersection pairing with D1.

Proof. Suppose not. Since |S1 ∩ {D1, . . . , Dk}| = |S1| − 1 and
∫
β1
D1 = −1, it follows

that β1 is special for σ. By Remark 4.5, then, if D̃1 denotes the unique element of
S1 not in {D1, . . . , Dk}, then

∫
β′

i
D̃1 = 0 for every i. So

∑t
j=1

∫
βj
D̃1 = 0, and hence

some βj has intersection number −1 with D̃1. It follows without loss of generality
that

∫
β2
D̃1 = −1. Then β1 + β2 is special exceptional or very effective, with (say)

D̃2 the unique element of the associated exceptional set not in {D1, . . . , Dk}. As
before,

∫
β′

i
D̃2 = 0 for every i, and we may iterate this process. We eventually reach

a contradiction. �

The quantum Giambelli formula follows quickly from the following pair of proposi-
tions, whose proofs occupy the bulk of this section.

Proposition 4.8. Let X be a toric variety satisfying the conditions of Theorem 3.9.
Let D1, D2, . . ., Dk be toric divisors such that corresponding ray generators ρ1, . . .,
ρk span a cone σ ∈ ∆. Then a term qβ appears with nonzero (H∗(X,Q)-valued)
coefficient in the quantum product D1 ·D2 · · ·Dk only if β = β1 + · · ·+βt, for some t,
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such that the βi are special (for σ) exceptional classes which have distinct exceptional
divisors and no overlaps.

Proposition 4.9. Let X be a toric variety satisfying the conditions of Theorem
3.9. Then the quantum Giambelli formula (5) of Theorem 1.6(ii) holds in QH∗(X).
Moreover, we have the formula in QH∗(X):

D1 ·D2 · · ·Dk =
∑

{β1,...,βt}

(−1)t qβ1+···+βtD{ 16i6k |
∫

β1+···+βt
Di 6=1 }, (13)

where the sum is over sets of special exceptional classes {β1, . . . , βt} that have distinct
exceptional divisors and no overlaps and where DI , for an index set I, denotes the
cohomology class Poincaré dual to

⋂
i∈I Di.

We prove Propositions 4.8 and 4.9 jointly, by induction on k. For each k > 1,
Proposition 4.8 is proved assuming the statements of Propositions 4.8 and 4.9 for
smaller k. Then, for each k, we deduce Proposition 4.9 for the case of products of k
divisors.

Let the maximal cones of ∆ be µ1, . . ., µs, with corresponding points y1, . . .,
ys ∈M . Let ρ be a nonzero vector of N . Let ρ′ be a small perturbation of ρ, so that
y1(ρ′), . . ., ys(ρ′) are all distinct, and let the indices be assigned so that

y1(ρ′) > y2(ρ′) > · · · > ys(ρ′). (14)

For each i, let τi = µi ∩
(⋂

j>i
dim(µj∩µi)=n−1

µj

)
.

Lemma 4.10 ([F, Sec. 5.2]). If X is a nonsingular Fano toric variety, the classes
[X(τi)] (1 6 i 6 s) form a Z-basis for H∗(X,Z). Moreover, for any i and j, if τi ⊂ µj
then i 6 j.

This is the basis for homology that we use to detect which qβ terms occur in a quan-
tum product of divisors. In using this basis, it is convenient to perform computations
in coordinates. Given a maximal cone µi, we giveN coordinates so that the generators
of µi are the n standard basis elements. Then, in dual coordinates, yi = (1, 1, . . . , 1).
Now suppose µj is a neighboring maximal cone; that is, σ := µj ∩ µi has dimension
n−1. Hence µj is generated by n−1 of the generators of µi, say all except the νth stan-
dard basis element; there is one additional generator, (a(1), . . . , a(ν) = −1, . . . , a(n)).
It follows that yj = (1, . . . , 1,

∑n
`=1 a

(`), 1, . . . , 1) in the dual coordinates we are using,
where the entry

∑n
`=1 a

(`) appears in the νth position. Thus,

yi − yj = (0, . . . , 0,degX(σ), 0, . . . , 0)

in coordinates. The degree of X(σ) is positive. Hence, for any i, the cone τi has
dimension equal to the number of negative entries in the coordinate expression for ρ′

with respect to the coordinates dictated by µi.
We are interested in knowing how large dim τj − dim τi can be.

Lemma 4.11. Suppose X is a toric variety satisfying the conditions of Theorem
3.9. Let the maximal cones {µi} be ordered with respect to pairings with ρ′ as in
(14). Suppose cones µi and µj intersect in an (n − 1)-dimensional cone σ. Then
dim τj − dim τi 6 degX(σ); equality implies that X(σ) is an exceptional curve, spe-
cial for µi, and the following condition on coordinates of ρ′ must be satisfied. Let
coordinates for N be assigned such that the generators of µi are the standard basis
vectors, the generators of µj are the second through nth standard basis vectors, and
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(−1,−1, . . . ,−1, 1, 0, . . . , 0); the number of −1’s is equal to d := degX(σ). Then, the
first d coordinates of ρ′ must be positive, with the first coordinate larger than any of
the second through dth coordinates; moreover, the (d+ 1)th coordinate must either be
positive or else negative and larger in absolute value than the first coordinate. The
change of coordinates to the coordinate system of µj has the effect of negating the first
coordinate, making the second through dth coordinates negative, preserving the sign
of the (d+ 1)th coordinate and leaving the remaining coordinates unchanged.

Proof. We know that, in the coordinate system dictated by µi, dim τi is the number
of negative entries in the coordinate expression for ρ′. Let us suppose µj is generated
by the second through nth standard basis elements plus one additional vector. By
Theorem 3.1(iii) there are two possibilities. First, the additional generator can be of
the form (−1, . . . ,−1, 0, . . . , 0); the number of −1’s is d− 1 and in this case X(σ) is
not exceptional. The change of coordinates to the coordinate system of µj preserves
the last n− d+ 1 entries of ρ′. Hence |dim τj − dim τi| 6 d− 1.

In the remaining case, the additional generator of µj is

(−1, . . . ,−1, 1, 0, . . . , 0),

where the number of −1’s is d. In this case, X(σ) is exceptional. If, in the coordinates
of µi, ρ′ is

(a(1), . . . , a(d+1), a(d+2), . . . , a(n))
then, in the coordinates of µj , the coordinate expression is

(−a(1), a(2) − a(1), . . . , a(d) − a(1), a(d+1) + a(1), a(d+2), . . . , a(n)).

So dim τj−dim τi 6 d, with equality only if a(1) > 0, with additionally 0 < a(`) < a(1)

for 2 6 ` 6 d and either a(d+1) > 0 or a(d+1) < −a(1). �

We can now prove Proposition 4.8 for the case of k divisors, assuming the statements
of Propositions 4.8 and 4.9 for fewer than k divisors. Let D1, . . ., Dk be toric divisors,
such that σ := 〈ρ1, . . . , ρk〉 is in ∆. Let ρ = ρ1 + · · · + ρk. Let ρ′ be a perturbation
of ρ, and let the maximal cones µi be ordered as in (14).

Suppose β ∈ H2(X,Z). Define Tβ,j = Tβ,j(D1, . . . , Dk) to be the set of stable
maps

(ϕ : C → X; p1, . . . , pk+1 ∈ C) ∈M0,k+1(X,β),
invariant for the torus action, with the ith marked point mapping into Di for i = 1,
. . ., k and the (k + 1)th marked point mapping into X(τj) and such that, when
we forget the map to X and stabilize C, all the marked points collapse to a single
distinguished irreducible component C0 of C. The important thing is that we know
the coefficient of qβ in the quantum product D1 · · ·Dk is zero unless

dim τj = n− k + deg β for some j such that Tβ,j 6= ∅.

Lemma 4.12. Suppose X satisfies the hypotheses of Theorem 3.9. Let D1, . . ., Dk

be toric divisors with D1 ∩ · · · ∩Dk 6= ∅ and, for β ∈ H2(X,Z) and j ∈ {1, . . . , s}, let
Tβ,j be as defined above. Then we have

dim τj 6 n− k + deg β

for every β and j such that Tβ,j 6= ∅. Moreover, given (ϕ : C → X) ∈ Tβ,j such that
dim τj = n−k+deg β, there exists a chain of exceptional curves X(σi) (i = 1, . . ., t) on
X, for some t, joining a point on D1∩· · ·∩Dk to the point ϕ(pk+1) ∈ X(τj) with total
homology class β (by “chain” we mean a tree with each irreducible component joined to
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at most two others; a chain joins two points if removing the indicated points preserves
the connectedness of the chain) and such that each X(σi) has positive intersection with
exactly di := degX(σi) of the divisors D1, . . ., Dk and such that each of divisors in
{D1, . . . , Dk} has positive intersection with at most one of the exceptional curves in
the chain.

Proof. Let ϕ : C → X be a torus-invariant genus-0 stable (k+1)-pointed map, which
stabilizes (upon forgetting the map toX) to k+1 distinct points on a single irreducible
component C0 ⊂ C, such that the ith marked point maps into Di for 1 6 i 6 k and
such that the image of the (k + 1)th point is X(µj′) ∈ X(τj). By Lemma 4.10,
j 6 j′ and, in fact (exercise) there exist j = j0 < j1 < · · · < j` = j′ for some `
such that dim(µjν ∩ µjν+1) = n − 1, yjν (ρ′) > yjν+1(ρ

′), and dim τjν 6 dim τjν+1 for
each ν (for the last assertion, use (iii) of Theorem 3.1). Hence it suffices to prove
dim τj′ 6 n− k + deg β.

We induct on degree of β. The base case is the inequality k 6 dimX(τj) for
every j such that 〈ρ1, . . . , ρk〉 ⊂ µj . This is immediate from the characterization of
dim τj as the number of negative entries in the corresponding coordinate expression
for ρ′. Equality holds only when the coordinate expression for ρ′ has exactly k positive
entries, each close to 1, and n− k negative entries, each small in magnitude.

We divide the inductive step into two cases. Suppose (ϕ : C → X) ∈ Tβ,j . For the
first case, assume the (k + 1)th marked point pk+1 does not lie on the distinguished
component C0. Let C ′ denote the connected component of C r {pk+1} containing
C0, with the P1 terminating in pk+1 deleted. Assume that this P1 maps to the toric
curve X(ω) with

ω = µi ∩ µj′ ; X(µi) 6= evk+1(C), X(µj′) = evk+1(C).

Let β′ denote the homology class of C ′. Then, by induction, dim τi 6 n− k + deg β′.
By Lemma 4.11, dim τj′ 6 n − k + deg β′ + degX(ω) 6 n − k + deg β and so the
inequality is established. If equality holds, then X(ω) is exceptional and C is equal
to the union of C ′ and a P1 mapping with degree one to X(ω). By induction, C ′ is
equivalent in homology to a chain C̃ ′ of toric curves, each exceptional, joining a point
on D1 ∩ · · · ∩Dk to the point X(µi). Also, equality implies that there are precisely
d := degX(ω) divisors Dν ∈ {D1, . . . , Dk} having positive intersection with X(ω),
and for any of these, the corresponding ρν is a generator of µi whose corresponding
entry in the coordinate expression of ρ′ is positive. It follows that each of these Dν

has nonpositive intersection with every component of C̃ ′.
The second case is when pk+1 ∈ C0. As before, let X(µj′) denote the image of the

(k + 1)th marked point. Choose coordinates on N so that the generators of µj′ are
the standard basis elements, and order these so that ρ has negative first coordinate,
ρ(1) = −c, with c > 1. Let ω be the cone generated by the second through nth
basis elements; we have ω = µj′ ∩ µi for some (unique) i. Let d = degX(ω). Then
yi(ρ)− yj′(ρ) = cd, so in particular yi(ρ)− yj′(ρ) > d. Let C ′ = C ′

1 ∪ · · · ∪C ′
k, where

C ′
ν is the tree of P1’s joining X(µi) to Dν , as given in Proposition 4.1. The degree

of C ′ is k− yi(ρ). Hence, the union of C ′ and X(ω) is (more precisely, determines) a
torus-invariant genus-0 (k + 1)-pointed stable map whose homology class β′ satisfies
deg β′ = k−yi(ρ)+d 6 k−yj′(ρ) 6 deg β, by Proposition 4.1. Moreover, the (k+1)th
marked point now does not lie on the distinguished component. By the previous case,
we have dim τj 6 n − k + deg β′, and the desired equality holds. In case of equality
we must have c = 1 and β′ equal to the sum of the homology classes of the curves
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joining X(µj′) to D1, . . ., Dk of Proposition 4.1, and then we find β′ = β. Thus, we
are reduced to the pervious case. �

Suppose now that the coefficient cβ of qβ in the quantum productD1 · · ·Dk is nonzero.
By Lemma 4.12, then, β is a sum of exceptional curve classes, β = β1 + · · ·+βt, such
that each corresponding primitive set Si satisfies |Si ∩ {D1, . . . , Dk}| = |Si| − 1. It
remains to show that whenever i 6= j we have (

∫
βi
Dν)(

∫
βj
Dν) = 0 for all 1 6 ν 6 k.

We must also show β is a sum of special exceptional classes. Suppose, first, that for
some ν (1 6 ν 6 k) we have (

∫
βi
Dν)(

∫
βj
Dν) 6= 0 for some i 6= j. We cannot have

(
∫
βi
Dν)(

∫
βj
Dν) > 0 (the sets Si∩{D1, . . . , Dk} are pairwise disjoint, and Remark 4.6

rules out Dν being exceptional for both βi and βj). Thus, without loss of generality,∫
βi
D1 = 1 and

∫
βj
D1 = −1. It follows that

∫
β
D1 = 0. Applying quantum Giambelli

to the k − 1 divisors D2, . . ., Dk, we find

D2 · · ·Dk = D{2,3,...,k} −
∑

∅6={S′
1,...,S

′
t′}

qβ
′
1+···+β′

t′
∏

26i′6k, Di′ /∈S′
1∪···∪S′

t′

Di′

(notation similar to that of (5)). The coefficient of qβ in D1 ·D{2,3,...,k} is zero because∫
β
D1 = 0. The coefficient of qβ in each additional term is zero because no sum of

special exceptional classes, each having intersection number 0 with D1, can be equal
to β (Lemma 4.7).

We show by induction on t that β = β1 + · · ·+βt can be written as a sum of special
exceptional classes (then, by the previous paragraph, the set of special exceptional
classes in this sum has no overlaps). Write β1 + · · · + βt−1 = β′1 + · · · + β′s with
each β′j special. If the exceptional divisor of βt is in {D1, . . . , Dk}, then βt is special.
Otherwise, the exceptional divisor intersects some β′j positively; in this case, β′j + βt
is special. By Remark 4.5, the expression of β as a sum of special exceptional classes
is unique, and by Remark 4.6, the β′j have distinct exceptional divisors and pairwise
disjoint exceptional sets.

We complete the proof of Proposition 4.9 for the case of k divisors by demonstrating
(13) and then deducing quantum Giambelli from (13). Let β = β1 + · · ·+βt be a sum
of special exceptional classes with distinct exceptional divisors and no overlaps. We
need to show that the coefficient of qβ1+···+βt in D1 · · ·Dk is (−1)tD{ 16i6k |

∫
β
Di 6=1 }.

(We assume the result known for products of smaller numbers of divisors.) If β has
zero intersection with some Di, say with D1, then we write

D1 ·D2 · · ·Dk = D1 ·
[ ∑
{β′

1,...,β
′
s}

(−1)s qβ
′
1+···+β′

sD{ 26i6k |
∫

β′
1+···+β′

s
Di 6=1 }

]
.

Note that, on the right-hand side, the curve class β − (β′1 + · · · + β′s) has zero in-
tersection with D1 for every term. Therefore, the coefficient of qβ in D1 · · ·Dk is
the classical product of D1 with the coefficient of qβ inside the brackets, and this is
(−1)tD{ 16i6k |

∫
β1+···+βt

Di 6=1 }.

If
∫
β
Dν 6= 0 for all 1 6 ν 6 k and if t > 2, then we separate off the divisors

meeting β1, apply (13), and use linear relations (3) to conclude that no term from
(13) (save that with maximal q term) contributes anything to the coefficient of qβ in
D1 · · ·Dk.

For the remaining case, where (with suitable indices) {D1, D2, . . . , Dk−1, D̃} is an
exceptional set with ρ1 + · · ·+ ρk−1 + ρ̃ = ρk, we apply a linear relation (3) followed
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by a q-deformed monomial relation (7): D1 · · ·Dk−1 ·Dk = D1 · · ·Dk−1 ·(−D̃+ · · · ) =
−qβDk + · · · .

Finally, quantum Giambelli (5) follows from the formula (13) as follows. Applying
known cases of quantum Giambelli to (13) we obtain

D{1,2,...,k} = D1 · · ·Dk −
∑

∅6={β′
1,...,β

′
s}

(−1)s qβ
′ ∑
{S1,...,St}

qβ
∏

∫
β′ Di 6=1

Di /∈S1∪···∪St

Di

= D1 · · ·Dk −
[ ∑
{β′

1,...,β
′
s}

(−1)s
∑

{S1,...,St}

qβ
′+β

∏
∫

β′ Di 6=1

Di /∈S1∪···∪St

Di

]
+ (∗),

where β′ (resp. β) denote β′1 + · · ·+ β′s (resp. β1 + · · ·+ βt) with βj the exceptional
class associated to Sj ; where the sums are over sets of exceptional classes, special
for 〈ρ1, . . . , ρk〉, with distinct exceptional divisors and no overlaps (resp. sets of ex-
ceptional sets, special for 〈 ρi |

∫
β′ Di 6= 1 〉, with distinct exceptional divisors and

no cycles); and where (∗) denotes the expression on the right-hand side of (5) from
Theorem 1.6(ii). We thus need to show that the quantity in brackets in the right-
hand side has no q-terms. Fix some curve class β∗ 6= 0, and consider decompositions
β∗ = β′ + β that occur in this term. We may choose a special exceptional class γ,
which is a summand of β∗, such that if

∫
γ
Dν = 1 (1 6 ν 6 k) then Dν is not excep-

tional for any of special exceptional classes that are summands of β∗. But now the
terms that contribute to the coefficient qβ

∗
can be paired off according to whether γ

is among the β′i or is the exceptional curve class of some Sj . Corresponding pairs of
terms add with opposite sign, so the total coefficient of qβ

∗
is zero in this term, and

we have established the quantum Giambelli formula.

4.3. Elementary derivation of quantum cohomology ring presentation. By
Proposition 2.6, to prove relations (4) hold for a given nonsingular projective toric
variety X it suffices to establish (6) for every very effective curve class β; Theorem 1.2
then follows. As promised, we outline here an elementary derivation (not relying upon
equivariant localization techniques) of Theorem 1.2 for toric varieties X satisfying the
hypotheses of Theorem 3.1. This is essentially the approach outlined in [Ba2].

Exercise 4.13. SupposeX satisfies the hypotheses of Theorem 3.1. Let β ∈ H2(X,Z)
be a very effective curve class. Let D1, . . ., Dm denote the toric divisors of X, and
set ai =

∫
β
Di for i = 1, . . ., m. Obtain the relation

Da1
1 · · ·Dam

m = qβ

in QH∗(X) by the following four steps.
(i) If we write Da1

1 · · ·Dam
m =

∑
β′ cβ′qβ

′
with cβ′ ∈ H∗(X,Q), then cβ′ = 0 unless

β′ = β. (Use Proposition 4.1 to see that there are no torus-invariant genus-0 stable
maps ϕ : C → X whose marked points collapse to distinct points on a distinguished
component of C—and that satisfy the required incidence conditions—unless β′ = β).

(ii) cβ can be computed by counting maps P1 → X; precisely, if

π : M0,r(X,β) →M0,r
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denotes the forgetful map with r = (
∑
ai) + 1, and if z ∈ M0,r ⊂ M0,r is a general

point and x ∈ X a general point, then with

Mz := {z} ×M0,r
M0,r(X,β),

Mz := Mz ∩M0,r(X,β),

M◦
z :=

{
(ϕ : P1 → X) ∈Mz

∣∣∣ ϕ(P1) ∩
( ⋃

σ∈∆
dimσ>2

X(σ)
)

= ∅
}
,

we have( ⋂
16i6a1

ev−1
i (D1)

)
∩ · · · ∩

( ⋂
r−am6i6r−1

ev−1
i (Dm)

)
∩ ev−1

r (x) ⊂M◦
z

in Mz. (Hint: let ϕ : C → X be in Mz and consider separately the cases where the
distinguished component of C maps into a boundary divisor, or into the open torus
orbit.)

(iii) Identify M◦
z with the space of m-tuples of homogeneous polynomials(

p1(s, t), . . . , pm(s, t)
)

such that deg pi = ai for each i and, for i 6= j, pi and pj have no common roots among
[s : t] ∈ P1 modulo (p1, . . . , pm) ∼ (p′1, . . . , p

′
m) if there exists g ∈ H2(X,Z) ⊗Z C∗

such that p′i = (
∫
g
Di)pi for each i (see [C, Thm. 3.1]).

(iv) Compute

cβ =
∫
Mz

ev∗1(D1) · · · ev∗r−1(Dm) · ev∗r ({x}) = 1.

(Note that Mz is smooth of the expected dimension for z general, and by (ii) there
are no contributions from virtual moduli cycle classes supported on boundary com-
ponents.)
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