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Abstract. We study the density of integral points on punctured abelian sur-

faces. Linear growth rates are observed experimentally.

1. Introduction

Let V be a smooth projective algebraic variety over a number field K. We now
ask whether there exists a finite extension K ′ of K such that K ′-rational points are
Zariski dense. This property is called potential density of rational points, and is
known to hold, e.g., for abelian varieties, certain classes of Fano varieties, and certain
K3 surfaces (see [6], [1] and the references therein). Potential density is conjecturally
related to global geometric invariants of V , such as the Kodaira dimension [10].

An analogous question can be asked about integral points. Let (V,Z) be a pro-
jective variety and a proper subvariety, both defined over K. Choose models (V,Z)
over the ring of integers oK . Let S be a finite set of non-archimedean places of K.
A rational point Q on V determines a section sQ of the structure map from V to
Spec(oK). We say that the point Q is S-integral (with respect to Z) if the section sQ

does not meet Z outside S. We say that integral points are potentially dense for the
pair (V,Z) if there exists a finite extension K ′ of K, a finite set S′ of non-archimedean
places of K ′, and models (V ′,Z ′) over Spec(oK′) of the base-changed (V ′, Z ′) such
that S′-integral points on (V ′,Z ′) are Zariski dense in V ′. Concretely, this means that
after a finite extension of the base field, and allowing for a finite set of bad places, a
given system of integral equations for V has a Zariski dense set of integral solutions
such that their reductions, outside the fixed bad places, are away from the reduction
of Z (given also by integral equations).

Conjecture 1 ([7]). Let V be a smooth algebraic variety whose rational points are
potentially dense. Then integral points are potentially dense with respect to any
codimension ≥ 2 subvariety Z ⊂ V .

This conjecture holds, e.g., for toric varieties and Del Pezzo surfaces [7]. Conversely,
knowing potential density of integral points for certain varieties, we may deduce
potential density of rational points in many new cases. For instance, Conjecture 1
implies potential density for rational points on general K3 surfaces (see [7]). An
important test of the above conjecture is the case of punctured abelian varieties (that
is, pairs (J, Z), where J is an abelian variety and Z ⊂ J a codimension≥ 2 subvariety).

For punctured abelian surfaces potential density is only known when the abelian
surface is special (e.g., isogenous to products of elliptic curves, or admitting extra
endomorphisms, see [7]). Here we study the case of simple abelian surfaces J over Q,
punctured at one rational point (which we may as well take to be the identity) and
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having a pointQ ∈ J(Q) of infinite order. We carry out a simple numerical experiment
which strongly suggests that integral points on punctured abelian surfaces are not
only Zariski dense, but moreover constitute a positive proportion of the multiples of
Q. It would be interesting to have a conceptual interpretation of the proportionality
constant.
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2. Divison polynomials in genus 2

Let f ∈ Z[X] be a polynomial of degree 2g + 1 with no multiple factors and C the
hyperelliptic curve (over Z), defined by the equation

Y 2 = f(X).

Let (x, y) be a Q-rational point on C, with y 6= 0, and let Q := [(x, y) −∞] be the
corresponding point on the Jacobian J = J(C). Denote by Θ = Θ(J) the Θ-divisor.
Cantor [2] has described a convenient algorithm for generating division polynomials
ψr(x) which vanish if and only if r · Q ∈ Θ. Moreover, r · Q = 0 in J if and only if
ψr′(x) = 0 for all r′ with |r′−r| ≤ g−1. These polynomials give an efficient means of
testing at which primes a given multiple of Q reduces to the identity in (the reduction
modulo some prime of) the Jacobian.

Before stating basic facts about division polynomials, let us recall how to represent
a point on a Jacobian. From now on we specialize to the case g = 2. Every point on
J is expressible in the form D− 2 ·∞ for an effective degree 2 cycle D on C, and D is
unique except in the case of the zero element of J . The point r ·Q can be put into this
form by solving for polynomials A(X) and B(X) such that A(X)−B(X)y vanishes to
order r at Q, subject to degree bounds degA ≤ b(r+ 2)/2c and degB ≤ b(r− 3)/2c.
Then r ·Q ∈ Θ is equivalent to the vanishing of the leading coefficient of A in the case
r is even, or of B in the case r is odd. Cantor shows that one can produce universal
polynomials A and B, whose coefficients are integer polynomials in the coefficients of
f and in x (and y).

Concretely, let us continue to assume that f has coefficients in Z. Cantor’s algo-
rithm generates polynomials Pr(x) and ψr(x) such that:

(i) Pr(x) = 0 if and only if r · Q ∈ Θ (for all x in the algebraic closure Q of
Q), degPr = r2 − 4 when r is even, and degPr = r2 − 9 when r is odd (this
specifies Pr uniquely, up to a scalar multiple).

(ii) Define ψr(x) to be proportional to Pr(x) when r is even and to f(x)Pr(x)
when r is odd, and to have leading coefficient

(
r+1
3

)
; then ψr(x) is an integer-

coefficient polynomial of degree r2 − 4.
(iii) The ψr satisfy the following recurrence relation:

ψrψsψs+rψs−r = det

 ψs−2ψr ψs−1ψr+1 ψsψr+2

ψs−1ψr−1 ψsψr ψs+1ψr+1

ψsψr−2 ψs+1ψr−1 ψs+2ψr

 (1)
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Table 1. The universal ψ4(x)

f(X) = X5 + αX4 + βX3 + γX2 + δX + ε,

ψ4(x) = 10x12 + 24αx11 + (26β + 16α2)x10 + 20(2αβ + γ)x9

+ 10(4αγ + 3β2 − δ)x8 + 80(βγ − ε)x7

+ (−112αε+ 68βδ + 64γ2 + 8αβγ − 2β3 − 16α2δ)x6

+ (−4β2γ − 8βε− 64α2ε− 8αβδ + 16αγ2 + 152γδ)x5

+ 10(−8αβε+ 4αγδ + 11δ2 + 12γε− β2δ)x4

+ 40(αδ2 − β2ε+ 6δε)x3 + 10(βδ2 + 16ε2 − 4βγε+ 8αδε)x2

+ (8βδε− 16γ2ε+ 64αε2 + 4γδ2)x+ 16βε2 − 8δγε+ 2δ3.

for any s ≥ r.

The recurrence (1) determines ψr for all r ≥ 8, given ψ1 = 0, ψ2 = 1, . . ., ψ7.
One can effectively determine the universal polynomials ψ3, . . ., ψ7 by solving for
the coefficients of the polynomials A(X) and B(X) mentioned previously, for each
r ≤ 7. This is achieved economically by introducing a new variable v given by
vf(x) = x −X. Then

√
f(X)/f(x) is a power series in v which is easily computed

(for reason of convention, the branch −1+ · · · of the square root is chosen for g = 2).
Then one is reduced to solving

vr | a(v)− b(v)
√
f(X)/f(x) (2)

for polynomials a(v) and b(v) satisfying the same degree bounds as above (a differs
from A by the change of variable, and b differs from B by the change of variable and
multiplication by y). In particular, a(0)+ b(0) = 0. We have a(0) = 0 for given x ∈ Q
if and only if Pr−1(x) = 0, and we can take −a(0) = b(0) = Pr−1. This means that
for r ≤ 6, (2) reduces to solving at most one equation for one unknown coefficient,
and this is easily solved. For instance, ψ4 is displayed in Table 1. For r = 7, the two
unknown coefficients of the quadratic polynomial b(v) must be solved for.

3. Results

We performed the following numerical experiment. Start with a curve C of genus
2 defined by Y 2 = f(X), where f(X) is a monic degree-5 polynomial with integral
coefficients. Assume that the Jacobian J is simple, has Mordell-Weil rank 1 (over Q),
and that there is an integral point (x, y) such that Q = [(x, y)−∞] has infinite order
in J .

Let S be the set of prime divisors of 2 y disc(f). Now the curve reduces well modulo
all primes not in S, and we have an integral model for J over Spec(Z) r S, with an
S-integral point Q disjoint from the zero section. We count positive integers r such
that r ·Q is as well disjoint from the zero section (again, over the complement of S);
such r will be called good. For r · Q to be disjoint from zero outside S is equivalent
to ψr−1(x), ψr(x), and ψr+1(x) having no common prime factors outside S. A table
is made of the density of the good integers r. Amazingly, we observe linear growth.
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Table 2. Densities of S-integral points on Ji

range of r density(J1) density(J2) density(J3) density(J4)
1– 100 0.77 0.62 0.74 0.67

101– 200 0.69 0.63 0.70 0.67
201– 300 0.71 0.61 0.74 0.66
301– 400 0.74 0.62 0.69 0.70
401– 500 0.72 0.62 0.69 0.68
501– 600 0.72 0.63 0.74 0.67
601– 700 0.73 0.60 0.70 0.64
701– 800 0.70 0.64 0.72 0.70
801– 900 0.72 0.59 0.73 0.68
901–1000 0.72 0.63 0.69 0.67

Remark 1. The significance of any sort of growth is that the set of good integers being
infinite implies Zariski density of S-integral points on the punctured J (here we use
the fact that J is simple).

We describe the procedure in detail for one curve, and then present tables giving
the data from several curves.

The curve C1 given by

y2 = x5 − 14x4 + 65x3 − 112x2 + 60x

has rational point (3, 6), and its Jacobian J1 satisfies J1(Q) = Z⊕ (Z/2Z)4 (see [4]).
Here S = {2, 3, 5}. Then we have (at x = 3)

ψ3 = 144, ψ4 = −41472, ψ5 = 585252864,
ψ6 = −35588725014528, ψ7 = 5004999490025816064.

Notice that 7 is a common factor of ψ5, ψ6, and ψ7, so that 6 · Q is not S-integral
on the punctured J1. Hence 6 and all its multiples are not good. The next integer,
besides multiples of 6, which fails to be good is 22. The third is 38:

gcd(ψ37, ψ38, ψ39) = 2854 · 3344 · 17.

The first two columns of Table 2 show integer ranges (1–100, . . ., 901–1000) and the
density of good r in each range.

We performed a similar experiment with the following curves:

C2 : f(X) = X5 + 9X4 + 14X3 − 18X2 − 15X + 9, (x, y) = (0, 3),
C3 : f(X) = X5 + 2X4 − 3X3 − 2X2 + 2X, (x, y) = (2, 6),
C4 : f(X) = X5 + 11X4 + 7X3 − 89X2 + 2X + 88, (x, y) = (−7, 54).

By a computation in [3], these are curves having Jacobians of Mordell-Weil rank 1
over Q. It is easy to see that the Jacobians we are considering are simple over Q (e.g.,
by factoring the number of Fp-points for suitable p). The corresponding columns of
Table 2 indicate the experimentally observed densities for these Jacobians.

4. Heuristics

Let J be an abelian variety over Q, and let Γ be the Mordell-Weil group J(Q). Fix
an integral model of J , and let S be the set of primes of bad reduction. Then, for p a
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Table 3. Values of Euler products for Ji

J1 J2 J3 J4

ρ̃(J) 0.576 0.404 0.538 0.516

prime not in S, let us denote by gp the order of the subgroup of J(Fp) generated by
Γ. The quantity

ρ(J) =
∏
p/∈S

(1− 1/gp). (3)

is a lower bound for the density of S-integral points on the punctured Jacobian. We
do not know whether this product converges.

Conjecture 2. If J is simple of dimension ≥ 2 and has positive Mordell-Weil rank,
then the product (3) converges.

Remark 2. Replacing Γ by a finite-index subgroup does not change the convergence
of (3). Also, note that the conclusion of Conjecture 2 may fail if J is isogenous to a
product of elliptic curves.

We computed the Euler products using the first 400 primes of good reduction,
for the Jacobians J considered above. In our computation we used the subgroup
generated by our point Q in place of the full Mordell-Weil group to obtain a quantity
ρ̃(J) for each Jacobian J . Numerically we observe convergence. The results are
presented in Table 3.

Remark 3. For J of dimension 2, a positive answer to Conjecture 2 would imply the
density of integral points.

One can ask, for some abelian variety, how often the reduction of the cyclic group
generated by a given point is the full group J(Fp); for elliptic curves, this question was
raised by Lang and Trotter in [8]. Assuming the Generalized Riemann Hypothesis
(GRH), Serre showed that for elliptic curves E, the number of primes p ≤ B such
that E(Z/pZ) is cyclic is ∼ cB/log(B) (as B → ∞ and for some c). Again, under
GRH, the density is ∑

n≥1

µ(n)/[Kn : Q],

where µ(n) is the Möbius function and Kn is the field generated by n-torsion points
on E (see [9]). An unconditional lower bound � B/log(B)2 (for elliptic curves with
no rational 2-torsion points) has been proved by Gupta and Murty [5].
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