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Abstract. Let V be a symplectic vector space and LG be the Lagrangian Grass-

mannian which parametrizes maximal isotropic subspaces in V . We give a pre-
sentation for the (small) quantum cohomology ring QH∗(LG) and show that its

multiplicative structure is determined by the ring of Q̃-polynomials. We formu-

late a ‘quantum Schubert calculus’ which includes quantum Pieri and Giambelli
formulas, as well as algorithms for computing the structure constants appearing

in the quantum product of Schubert classes.

1. Introduction

The multiplicative structure of the quantum cohomology ring QH∗(X) of a pro-
jective complex manifold X encodes the enumerative geometry of rational curves in
X, in the form of Gromov–Witten invariants. The ring QH∗(X) is a deformation of
the cohomology ring H∗(X) which first appeared in the work of string theorists (see
e.g. [V], [W]). The exposition in [FP], following the work of Kontsevich and Manin
[KM], gives an algebro-geometric approach to this theory when X is a homogeneous
space G/P , where G is a complex Lie group and P a parabolic subgroup, which is our
main interest here (see also [LT]). We will work throughout with the small quantum
cohomology ring (terminology from [FP, §10]).

The cohomology rings of homogeneous spaces X = G/P have been studied exten-
sively; see [Bo], [BGG], [D1], [D2]. We would like to have an analogous description of
the multiplicative structure of QH∗(X), which we refer to as quantum Schubert calcu-
lus. As in the classical case, there are three main ingredients necessary for the latter
theory: (i) a presentation of QH∗(X) in terms of generators and relations, (ii) a quan-
tum Giambelli formula which identifies the polynomials that represent the Schubert
classes in this presentation, and (iii) algorithms for computing the structure constants
in the multiplication table of QH∗(X) (the latter include quantum Pieri rules).

Currently we have a fairly complete understanding of these questions when X =
SLn/P is a partial flag variety of SLn(C). Since the theory is not functorial, a
separate analysis must be done for the various parabolic subgroups P . For work
(in the SLn case) on the quantum cohomology of (i) Grassmannians, see [W], [ST],
[Be], [BCF], (ii) complete flag varieties, see [GK], [C-F1], [FGP], and (iii) partial flag
varieties, see [AS], [K1], [K2], [C-F2], [C].

In contrast to the SLn situation, much less is understood for the other families of
Lie groups. For an arbitrary complex semisimple Lie group G, with Borel subgroup B,
Kim [K3] found the quantum D-module structure for the flag variety X = G/B, and
thus determined a presentation of QH∗(X). To the authors’ knowledge one still lacks
a presentation of the quantum ring for the other parabolic subgroups and a quantum
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Giambelli formula to compute the Gromov–Witten invariants, if G is not of type A.
Our aim in this paper is to answer all three questions when the Lie group G = Sp2n is
the symplectic group and P = Pn is the maximal parabolic subgroup associated with
a ‘right end root’ in the Dynkin diagram for the root system of type Cn. In this case
X = G/P is the Lagrangian Grassmannian described below. In a companion paper
to this one [KT2], we describe the corresponding story for the orthogonal groups.

All cohomology classes in this paper occur in even degrees. To avoid unnecessary
factors of two, we adopt the following convention: a class α in the cohomology of a
complex variety X has degree k when α lies in H2k(X,Z).

Let V be a complex vector space of dimension 2n, equipped with a symplectic
form. The variety of Lagrangian (i.e., maximal isotropic) subspaces of V is the
Lagrangian Grassmannian LG = LG(n, 2n) = Sp2n/Pn. The integral cohomology
ring H∗(LG,Z) has a Z-basis of Schubert classes σλ, one for each strict partition
λ = (λ1 > λ2 > · · · > λr) with λ1 6 n. Each σλ is the class of a Schubert variety
Xλ of codimension |λ| =

∑
λi in LG. Of particular importance are the classes σi,j ,

determined by two Schubert conditions, and the special Schubert classes σi = σi,0,
defined by a single Schubert condition. This terminology is reviewed in §3.1.

To describe the multiplicative structure of the classical and quantum cohomology
ring of LG we will use the Q̃-polynomials of Pragacz and Ratajski [PR]. These
symmetric polynomials are modeled on Schur’s Q-functions [S], and are the geometric
analogues of Schur’s S-functions in type C. Let Xk = (x1, . . . , xk) be a k-tuple of
variables, let X = Xn, and for i > 0 let Q̃i(X) be the i-th elementary symmetric
polynomial ei(X). For any nonnegative integers i, j with i > j, let

Q̃i,j(X) = Q̃i(X)Q̃j(X) + 2
j∑

k=1

(−1)kQ̃i+k(X)Q̃j−k(X), (1)

and for any partition λ = (λ1 > λ2 > · · · > λr > 0), define

Q̃λ(X) = Pfaffian[Q̃λi,λj
(X)]16i<j6r, (2)

if r is even; we may always assume this is the case by setting λr = 0 if necessary. For
each positive integer n we denote by Dn the set of strict partitions λ with λ1 6 n.

Let Λn denote the ring Z[X]Sn of symmetric polynomials inX; as an abelian group,
Λn is spanned by the polynomials Q̃λ(X) for all partitions λ. From the analysis
in [P, Sect. 6] and [PR] we obtain that the map which sends Q̃λ(X) to σλ for all
λ ∈ Dn extends to a surjective ring homomorphism φ : Λn → H∗(LG,Z) with kernel
generated by the relations Q̃i,i(X) = 0 for 1 6 i 6 n; the morphism φ is evaluation
on the Chern roots of the tautological rank n quotient bundle over LG. From this
statement one gets a presentation for the cohomology ring of LG; moreover, equations
(1) and (2) become Giambelli-type formulas, expressing the Schubert classes in terms
of the special ones.

The quantum cohomology QH∗(LG) of the Lagrangian Grassmannian LG(n, 2n)
is an algebra over Z[q], where q is a formal variable of degree n+ 1; one recovers the
classical cohomology ring by setting q = 0. For the SLn-Grassmannian, Bertram [Be]
proved the remarkable fact that the classical and quantum Giambelli are identical;
note that this is in contrast to the other SLn-flag varieties ([FGP], [C-F2], [C]).
Strictly speaking, the quantum Giambelli formulas for LG do not coincide with the
classical ones. Let X+ := Xn+1, and define Λ̃n+1 to be the subring of Λn+1 generated
by the polynomials Q̃i(X+) for i 6 n together with the polynomial 2 Q̃n+1(X+); the
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latter will play the role of q in the quantum cohomology ring. Equations (1) and (2)
imply that Q̃λ(X+) ∈ Λ̃n+1 for all partitions λ with λ1 6 n.

Theorem 1. The map sending Q̃λ(X+) to σλ for all λ ∈ Dn and 2 Q̃n+1(X+) to q
extends to a surjective ring homomorphism Λ̃n+1 → QH∗(LG) with kernel generated
by the relations Q̃i,i(X+) = 0 for 1 6 i 6 n. The ring QH∗(LG) is presented as a
quotient of the polynomial ring Z[σ1, . . . , σn, q] by the relations

σ2
i + 2

n−i∑
k=1

(−1)kσi+kσi−k = (−1)n−iσ2i−n−1 q, (3)

where it is understood that σj = 0 for j < 0. The Schubert class σλ in this presentation
is given by the Giambelli formulas

σi,j = σiσj + 2
n−i∑
k=1

(−1)kσi+kσj−k + (−1)n+1−iσi+j−n−1 q (4)

for i > j > 0, and
σλ = Pfaffian[σλi,λj ]16i<j6r, (5)

where quantum multiplication is employed throughout. In other words, the quantum
Giambelli formula for LG(n, 2n) coincides with the classical Giambelli formula for
LG(n+ 1, 2n+ 2), when the class 2σn+1 is identified with q.

Our proof of Theorem 1 is similar to [Be] in that we use the Lagrangian Quot scheme
LQd to compactify the moduli space of degree d maps P1 → LG. However, unlike the
Quot scheme in type A, the scheme LQd is singular in general. More significantly, in
[KT1] we showed that there is no direct analogue of the Kempf–Laksov formula [KL]
for isotropic morphisms in type C. Thus the key intersection-theoretic ingredient
used by Bertram [Be] to prove quantum Giambelli in type A is no longer available.
Instead, we first show how to evaluate any three-term Gromov–Witten invariant in
degree 1 (i.e., one that counts lines on LG satisfying three incidence conditions); this
provides the quantum Giambelli formula (4) for the Schubert classes σi,j , as well as
the ring presentation for QH∗(LG) (§3.3). The Pfaffian formula (5) then follows from
a relation in the Chow group of Lagrangian Quot schemes, which is proved using a
careful analysis of the boundary of LQd and some remarkable Pfaffian identities for
certain symplectic Schubert polynomials (§2.3). The latter objects were introduced in
[PR] and represent the Schubert classes in the complete symplectic flag variety.

In QH∗(LG) there are formulas

σλ · σµ =
∑

eν
λµ(n)σν q

d,

the sum over d > 0 and strict partitions ν with |ν| = |λ|+ |µ|−d(n+1). The quantum
structure constant eν

λµ(n) is equal to a Gromov–Witten invariant 〈σλ, σµ, σν′〉d, which
is a non-negative integer. The integer 〈σλ, σµ, σν′〉d counts the number of rational
curves of degree d that meet three Schubert varieties Xλ, Xµ and Xν′ in general
position. Here ν′ is the dual partition of ν, defined so that the classes σν and σν′ are
Poincaré dual to each other in H∗(LG,Z).

Using Theorem 1, we give formulas and algorithms to compute the quantum num-
bers eν

λµ(n); our approach was inspired by the second author’s study [T] of Arakelov
theory on Lagrangian Grassmannians. The resulting ‘quantum Schubert calculus’ is
a natural extension of the classical formulas of Boe and Hiller [BH], Stembridge [St]
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and Pragacz [P]. In particular we obtain a ‘quantum Pieri rule’ (Proposition 8) for
multiplying by a special Schubert class in QH∗(LG), and some cases of a general
‘quantum Littlewood-Richardson rule’ in type C, which we obtain by relating some
of the higher degree quantum structure constants with classical ones (Theorem 7 and
Corollary 7).

This paper is organized as follows. In Section 2 we study the Q̃-polynomials and
symplectic Schubert polynomials, and prove the Pfaffian identities we need for the
latter family. The Lagrangian and isotropic Grassmannians are introduced in Section
3, which includes our proof of the easier part (4) of the quantum Giambelli formula
for LG. We complete the proof of Theorem 1 in Sections 4 and 5, by studying
intersections on the Lagrangian Quot scheme LQd. Finally, in Section 6 we formulate
a ‘quantum Schubert calculus’ for LG which extends the classical one.

The authors thank Anders Buch and Bill Fulton for helpful correspondence. Both
authors were supported in part by National Science Foundation postdoctoral research
fellowships. We also wish to thank the Institut des Hautes Études Scientifiques for
its hospitality during the final stages of this work.

2. Q̃-polynomials and symplectic Schubert polynomials

2.1. Basic definitions and properties. We begin by recalling some basic facts
about partitions and their Young diagrams; the main reference is [M]. A partition is
a sequence λ = (λ1, λ2, . . . , λr) of nonnegative integers in decreasing order; the length
`(λ) is the number of (nonzero) parts λi, and the weight |λ| =

∑
λi. Set λk = 0 for

any k > `(λ). We identify a partition with its associated Young diagram of boxes;
the relation λ ⊃ µ is defined by the containment of diagrams. When λ ⊃ µ the
set-theoretic difference is the skew diagram λ/µ. A skew diagram α is a horizontal
strip if it has at most one box in each column. Two boxes in α are connected if they
share a vertex or an edge; this defines the connected components of α.

Let En denote the set of all partitions λ with λ1 6 n. A partition is strict if all its
parts are different. Let ρn = (n, n − 1, . . . , 1) and recall that Dn denotes the set of
strict partitions λ with λ ⊂ ρn. We use the notation λ r µ to denote the partition
with parts given by the parts of λ which are not parts of µ.

Our references for the polynomials in this section are [PR] and [LP]; we will follow
the notational conventions of [KT1] throughout most of the paper. Recall from the
introduction the definitions of the polynomials Q̃λ(X) and the ring Λn of symmetric
polynomials in X = Xn. These polynomials enjoy the following properties [PR, Sect.
4]:

(a) If λ1 > n, then Q̃λ(X) = 0.

(b) The set {Q̃λ(X) | λ ∈ En} is a Z-basis for Λn.

(c) Q̃i,i(X) = ei(X2
1 , . . . , X

2
n) for all i.

(d) Q̃n(X)Q̃λ(X) = Q̃(n,λ)(X) for all λ ∈ En.

(e) If λ = (λ1, . . . , λr) and λ+ = λ ∪ (i, i) = (λ1, . . . , i, i, . . . , λr) then

Q̃λ+(X) = Q̃i,i(X)Q̃λ(X).

Define a composition ν to be a sequence of nonnegative integers with finitely many
nonzero parts; we set |ν| =

∑
νi. The Q̃-polynomials make sense when indexed by a

composition ν (in fact, the index can be an arbitrary finite-length sequence of integers,
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following [LP, Rmk. 5.3] — we will not need this here). For any composition ν the
polynomial Q̃ν(X) is equal to ±Q̃λ(X), where λ is the partition obtained from ν by
reordering the parts of ν. The sign is determined by the following rule:

Q̃(...,i,j,...)(X) = −Q̃(...,j,i,...)(X)

for any two adjacent indices i, j with i 6= j. In other words, for any composition ν

we have Q̃ν(X) = sgn(σ)Q̃λ(X), where σ ∈ S∞ is the permutation of minimal length
such that νσ(k) = λk for all k. The polynomials defined in this way satisfy Pfaffian
relations such as

Q̃ν(X) =
r−1∑
j=1

(−1)j−1Q̃νj ,νr (X) · Q̃νr{νj ,νr}(X), (6)

where r is an even number such that νi = 0 for i > r; this follows e.g. from the
Laplace-type expansion for Pfaffians displayed in [FPr, (D.1)]. Using this convention,
we have the following extension of [PR, Prop. 4.1]:

Proposition 1. For any partition λ (not necessarily strict) we have

Q̃λ(X) =
`(λ)∑
k=0

xk
1

∑
µ

Q̃µ(X ′), (7)

where the inner sum is over all compositions µ such that |λ| − |µ| = k and λi − µi ∈
{0, 1} for each i, while X ′ = (x2, . . . , xn).

Proof. One notices the proof of [PR, Prop. 4.1] carries over to this more general
situation. In particular we have the relation

Q̃a,b(X) = Q̃a,b(X ′) + x1(Q̃a−1,b(X ′) + Q̃a,b−1(X ′)) + x2
1Q̃a−1,b−1(X ′), (8)

which is true for any a > b. The rest of the argument is the same. �

Remark. Proposition 1 fails when λ is a composition; in fact (8) shows that it is
false even in the case of two-part compositions.

2.2. Symplectic Schubert polynomials. We denote the elements of the Weyl
group Wn for the root system Cn as barred permutations, following [KT1, §1.1].
Wn is generated by the elements s0, . . . , sn−1: for i > 0, si is the transposition inter-
changing i and i+ 1, and we define s0 by

(u1, u2, . . . , un)s0 = (u1, u2, . . . , un).

For each λ ∈ Dn of length `, with k = n− ` and λ′ = ρn r λ, the barred permutation

wλ = (λ1, . . . , λ`, λ
′
k, . . . , λ

′
1)

is the maximal Grassmannian element of Wn corresponding to λ. We also define the
elements

w′λ = wλs0 and w′′λ = wλs0s1s0. (9)
The group Wn acts on the polynomial ring Z[X]; in particular the transposition

s1 interchanges x1 and x2, while s0 replaces x1 by −x1 (all other variables remain
fixed). We require the divided difference operators ∂0, ∂

′
1 : Z[X] → Z[X], defined by

∂0(f) = (f − s0f)/(2x1) and ∂′1(f) = (f − s1f)/(x2 − x1).

Following [PR] and [LP], for each w ∈ Wn there is a symplectic Schubert polynomial
Cw(X) ∈ Z[X], which represents the Schubert class associated to w in the cohomology
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ring of Sp2n/B. According to [LP, Thm. A.6], for each λ ∈ Dn, the polynomial
Cλ(X) := Cwλ

(X) is equal to the Q̃-polynomial Q̃λ(X). Let us define

C′λ(X) = Cw′
λ
(X) and C′′λ(X) = Cw′′

λ
(X);

it follows from (9) that

C′λ(X) = ∂0(Q̃λ(X)) and C′′λ(X) = ∂0∂
′
1∂0(Q̃λ(X)) (10)

(valid for `(λ) > 1 and `(λ) > 2, respectively).

2.3. Pfaffian identities. We next study certain identities for symplectic Schubert
polynomials which are needed in our proof of the quantum Giambelli formula for
LG(n, 2n). We see from (7) and (10) that for each strict partition λ ∈ Dn,

C′λ(X) =
`(λ)∑
k=0

k odd

xk−1
1

∑
µ

Q̃µ(X ′) (11)

with the inner sum over all partitions µ such that |λ| − |µ| = k and λi − µi ∈ {0, 1}
for each i. For example, we have

C′a,b(X) = Q̃a−1,b(X ′) + Q̃a,b−1(X ′)

= Q̃a−1(X ′)Q̃b(X ′)− Q̃a(X ′)Q̃b−1(X ′)
(12)

for all a, b with a > b > 0. Our aim is to prove the two theorems that follow.

Theorem 2. Fix λ ∈ Dn of length ` > 3, and set r = 2b(`+ 1)/2c. Then
r−1∑
j=1

(−1)j−1 C′λj ,λr
(X)C′λr{λj ,λr}(X) = 0. (13)

Proof. Our argument can be conveniently expressed using only the partitions which
index the polynomials involved; we therefore begin by defining an algebra with formal
variables which represent these indices. Let A be a commutative Z-algebra gener-
ated by symbols (a1, a2, . . .), where the entries ai are barred integers. The symbol
(a1, a2, . . .) corresponds to the polynomial Q̃ρ(X ′), where ρ is the composition with
ρi equal to ai, when ai is unbarred, and ai − 1 when ai is barred (in the proof, this
is only used for partitions ρ). We identify (a, 0) with (a).

Let µ be a barred partition, that is, a partition in which bars have been added
to some of the entries; assume further that the underlying partition is strict. For
`(µ) > 3, we impose the Pfaffian relation

(µ) =
r−1∑
j=1

(−1)j−1(µj , µr) · (µr {µj , µr}) (14)

(this corresponds to (6) for ν = µ). Iterating this relation gives

(µ) =
∑

ε(µ, ν)(ν1, ν2) · · · (νr−1, νr), (15)

where the sum is over all (r − 1)(r − 3) · · · (1) ways to write the set {µ1, . . . , µr}
as a union of pairs {ν1, ν2} ∪ · · · ∪ {νr−1, νr}, and where ε(µ, ν) is the sign of the
permutation that takes (µ1, . . . , µr) into (ν1, . . . , νr); we adopt the convention that
ν2i−1 > ν2i.
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We define the square bracket symbols [µ], where µ is a strict unbarred partition,
as follows: [a] = (a), [a, b] = (a, b) + (a, b), and generally

[µ] =
r−1∑
j=1

(−1)j−1[µj , µr] · [µr {µj , µr}] (16)

Finally we impose the following relation in our algebra:

[a, b] = (a)(b)− (a)(b); (17)

this corresponds to (12).

Lemma 1. For each µ ∈ Dn with `(µ) > 3, we have [µ] = 0 in A.

Proof. When `(µ) ∈ {3, 4} the identity is easy to check using (17). For µ of larger
length it follows from the Laplace-type expansion for Pfaffians displayed in (16). �

For a partition ν and integer k, we define B(ν, k) to be the set of all barred
partitions µ which are obtained from ν by adding bars over k distinct entries. Now,
using equations (11) and (12) we see that (13) corresponds to the following identity,
which must hold for each odd k > 0:

r−1∑
j=1

(−1)j−1[λj , λr] ·
∑

µ∈B(λr{λj ,λr},k)

(µ) = 0. (18)

To prove (18), we work as follows. Call a pair [ν2i−1, ν2i] in square brackets dis-
tinguished; pairs which are not distinguished are called normal. A part of λ is distin-
guished if it belongs to a distinguished pair. We say that a pair (ν2i−1, ν2i) is odd if
exactly one of the parts ν2i−1 and ν2i is barred. In the sequel all brackets { , } will
be either round ( , ) or square [ , ], so all expressions are elements of the algebra A.

We define a matching of a barred partition µ to be an expression of the set
{µ1, µ2, . . . , µr} as a union of pairs {ν1, ν2} ∪ · · · ∪ {νr−1, νr} as above, together with
a specification of each {ν2i−1, ν2i} as distinguished or normal. Fix an odd integer k
with 0 < k < r − 1. The first claim is that the left hand side S of the sum (18)
satisfies

S =
∑

µ

∑
ν

ε(λ, ν){ν1, ν2} · · · {νr−1, νr} (19)

where (i) the outer sum is over µ ∈ B(λ, k) with the part equal to λr unbarred, (ii)
the inner sum is over all matchings ν of µ with a unique distinguished pair, which
contains λr, and (iii) the sign ε(λ, ν) is defined as above, by ignoring the bars.

Let t(µ, ν) be the total number of odd pairs in the summand

ε(λ, ν){ν1, ν2} · · · {νr−1, νr}
of S; note that t(µ, ν) > 0. Observe, for each t, that the set of summands with
t(µ, ν) = t can be partitioned into subsets of size 2t: elements in a single subset J
differ only by moving some of the bars within the odd pairs. The sum of the elements
in J is equal to a single expression ε(λ, ν){ν1, ν2} · · · {νr−1, νr} with t fewer barred
parts, t+ 1 distinguished pairs and no odd pairs.

Working in this way we may eliminate all odd pairs from the sum S. Hence S = S′,
where

S′ =
∼∑
µ

∼∑
ν

ε(λ, ν){ν1, ν2} · · · {νr−1, νr}; (20)
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here (i) the outer sum is over all barred partitions µ with parts obtained by adding
an even number, less than k, of bars to the parts of λ, (ii) the inner sum is over all
matchings ν of µ such that λr is distinguished and the number of barred parts plus
the number of distinguished pairs equals k+ 1, and (iii) the sign ε(λ, ν) is defined by
ignoring the bars, as before.

Observe next that S′ splits into subsums S′′; each S′′ is the sum of all summands
in S′ with a given set of distinguished parts and normal pairs. It is clear that, up
to a sign depending on S′′, the remainder after factoring out the normal pairs from
S′′ is a Pfaffian sum like (15) which involves only distinguished pairs. Now Lemma 1
implies that S′′ = 0; we deduce that S′, and hence S, vanishes. �

Theorem 3. For every λ ∈ Dn of even length ` > 4 we have
`−1∑
j=1

(−1)j−1 C′′λj ,λ`
(X) C′′λr{λj ,λ`}(X) = 0. (21)

Proof. Using (8), one computes that for a > b > 0,

∂0∂
′
1∂0(Q̃a,b(X)) = Q̃a−2,b−1(X ′′) + Q̃a−1,b−2(X ′′)

= Q̃a−2(X ′′)Q̃b−1(X ′′)− Q̃a−1(X ′′)Q̃b−2(X ′′),

where X ′′ = (x3, . . . , xn). We deduce that

Pfaffian[C′′λi,λj
(X)]16i<j6` = 0

for any partition λ of even length ` > 4, by arguing as in Lemma 1. The proof of the
general case of (21) will require significantly more work.

For each r and s with r > s > 0, let mr,s(x1, x2) denote the monomial symmetric
function in x1 and x2. In other words, mr,s(x1, x2) = xr

1x
s
2 + xs

1x
r
2 if r 6= s and

mr,s(x1, x2) = xr
1x

r
2 if r = s.

Proposition 2. For any strict partition λ of even length ` > 0 we have

C′′λ(X) =
∑

06s6r<`
r,s even

mr,s(x1, x2)
∑

a+2b=r+s+3
a,b>0

(
a− 1

s+ 1− b

) ∑
ν∈C(λ,a,b)

Q̃ν(X ′′), (22)

where C(λ, a, b) is defined as the set of compositions ν with λi − νi ∈ {0, 1, 2} for all
i and λi − νi = 1 (resp. λi − νi = 2) for exactly a (resp. b) values of i.

Proof. Use (10) and (11) to compute

C′′λ(X) = ∂0∂
′
1

( `−2∑
j=0

j even

xj
1

∑
µ∈P (λ,j+1)

Q̃µ(X ′)
)
, (23)

where P (λ, j+1) is the set of compositions µ with |λ|−|µ| = j+1 and λi−µi ∈ {0, 1}
for each i. Note also that for any j, k > 0 we have

∂1(x
j
1x

k
2) = sgn(j − k)

∑
c+d=j+k−1
c,d>min{j,k}

xc
1x

d
2. (24)

For each strict partition λ and j, k > 0, let P (λ, j, k) be the set of pairs of compo-
sitions (µ, ν) such that µ ∈ P (λ, j) and ν ∈ P (µ, k). Now apply (7) and (24) in (23)
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to get

C′′λ(X) =
∑

j even

∂0∂
′
1(x

j
1x

k
2)

∑
(µ,ν)∈P (λ,j+1,k)

Q̃ν(X ′′)

=
∑

j even

sgn(k − j)
∑

c+d=j+k−1
c,d>min{j,k}

c odd

xc−1
1 xd

2

∑
(µ,ν)∈P (λ,j+1,k)

Q̃ν(X ′′).

It is useful to observe that C′′λ(X) is a polynomial in R[x2
1, x

2
2]

S2 , where R =
Z[x3, . . . , xn]Sn−2 . This follows because

∂0(C′′λ(X)) = ∂1(C′′λ(X)) = 0

(for the latter, use the fact that ∂1∂0∂1∂0 = ∂0∂1∂0∂1 and ∂1(Q̃λ(X)) = 0). Using
this to cancel all irrelevant terms in the previous equality gives

C′′λ(X) =
∑

06s6r<`
r,s even

mr,s(x1, x2)
∑

j,k even
j+k=r+s+2
min{j,k}6r,s

∑
(µ,ν)∈P (λ,j+1,k)

sgn(k − j) Q̃ν(X ′′). (25)

Consider the terms occuring in the inner sum
∑∑

of (25) which involve a fixed
ν ∈ C(λ, a, b), for some a, b > 0 such that a + 2b = r + s + 3. Observe that the
coefficient of any such term depends only on (r, s, a, b) and can be expressed as∑

j,k even
j+k=r+s+2
min{j,k}6r,s

sgn(k − j)
(

a

k − b

)
. (26)

Now (26) can be rearranged as an alternating sum of binomial coefficients, which in
turn simplifies to the single binomial coefficient displayed in (22). �

For any r and s, both even, the coefficient of mr,s(x1, x2) in the left-hand side of
(21), expanded as a polynomial in R[x2

1, x
2
2]

S2 , is
`−1∑
j=1

(−1)j−1C′′λj ,λ`
(X)

∑
a+2b=r+s+3

a,b>0

(
a− 1

s+ 1− b

) ∑
ν∈C(λr{λj ,λ`},a,b)

Q̃ν(X ′′). (27)

Hence, to prove Theorem 3 it suffices to show that the expression (27) vanishes for
any strict partition λ of even length ` > 4 and any r, s > 0, both even.

To accomplish this, we form an algebra B as in the proof of Theorem 2, except
that the symbols (a1, a2, . . .) are now sequences of integers which can each have up to
two bars. This time the symbol (a1, a2, . . .) corresponds to the polynomial Q̃ν(X ′′),
where ν is the composition with νi equal to the integer ai minus the number of bars
over ai.

As before, we impose the Pfaffian relations (14) in B. Define also [a, b] = (a, b) +
(a, b), where a and b are integers, each with up to one bar. More generally, define [µ]
for any barred partition µ, as in (16). We also impose the relations

[a, b] = (a)(b)− (a)(b)

for integers a, b, with up to one bar each. As in the proof of Theorem 2, we have

Lemma 2. Let µ be a strict partition of even length at least 4, such that either µ is
unbarred or every part of µ has a bar. Then we have [µ] = 0 in B.
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The vanishing of (27) corresponds to the following identity in B:

∑
a+2b=r+s+3

a,b>0

(
a− 1

s+ 1− b

) `−1∑
j=1

(−1)j−1[λj , λ`]
∑

ν∈C(λr{λj ,λ`},a,b)

(ν) = 0. (28)

For each a and b, denote by Wa,b the contents of the inner two sums in (28). By
applying the Pfaffian expansion to the terms (ν) in Wa,b, we can write

Wa,b =
∑

ρ

ε(λ, ρ){ρ1, ρ2} · · · {ρ`−1, ρ`}.

The summands in Wa,b are of three types: first, those that contain a pair (ρ2i−1, ρ2i)
with a total of three bars; second, those not of the first type which contain at least
two pairs, each with exactly one bar; third, the remaining summands. Let Ra,b, Sa,b

and Ta,b denote the sum of the summands of, respectively, the first, second and third
types.

Arguing as in the proof of Theorem 2 and using Lemma 2, we see that Ra,b =
Sa,b = 0, for all a, b. However, it is not true that Ta,b is always zero. Observe that
Ta,b splits as a sum

∑
g T

g
a,b indexed by the number g of pairs in each summand which

contain 4 bars. We will show that∑
a+2b=r+s+3

a,b>0

(
a− 1

s+ 1− b

)
T g

a,b = 0 (29)

for each g. In the following we give the argument when g = 0, and afterwards we
describe the small modifications for the proof of the general case.

Assume that r > s and introduce

u = (r − s)/2 and v = (r + s)/2.

We recursively define a sequence of coefficients: Put eu = 1 and

em =
(

2m
m− u

)
− 2m
v + 2−m

em−1

for m = u+ 1, . . . , v + 1.

Lemma 3. We have ev+1 = 0.

Proof. For any integer p > 0 we have the combinatorial identity

∑
k

(−1)k2−k

(
p

k

)(
2k
k − q

)
=

{
(−1)q2−p

(
p

(p+q)/2

)
if p+ q is even,

0 if p+ q is odd.
(30)

This is proved, e.g., by showing the left-hand side L(p, q) satisfies the recursion
2L(p, q) +L(p− 1, q − 1) +L(p− 1, q + 1) = 0 and inducting on p. When q = 0, (30)
reduces to an identity attributed to Dawson in [R, p. 71]. The assertion ev+1 = 0
follows from the case (p, q) = (v + 1, u) of (30). �
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We deduce from Lemma 3 that∑
a+2b=r+s+3

a,b>0

(
a− 1

s+ 1− b

)
T 0

a,b =
v+1∑
m=u

(
2m
m− u

)
T 0

2m+1,v+1−m

=
v+1∑

m=u+1

em−1

(
T 0

2m−1,v+2−m +
2m

v + 2−m
T 0

2m+1,v+1−m

)
.

Lemma 4. We have

(v + 2−m)T 0
2m−1,v+2−m + 2mT 0

2m+1,v+1−m = 0 (31)

for every integer m with u+ 1 6 m 6 v + 1.

Proof. We have that

T 0
a,b =

∑
µ∈C(λ,a+2,b)

∑
ν

ε(λ, ν){ν1, ν2} · · · {ν`−1, ν`},

where the inner sum is over all matchings ν of µ with (i) a unique distinguished pair,
which contains λ` and has bars on both entries, (ii) a unique pair which contains only
one bar, and (iii) no pairs which contain 3 or 4 bars.

Now,

(v+2−m)T 0
2m−1,v+2−m =

∑
µ∈C(λ,2m+1,v+2−m)

∑
(ν,i)

ε(λ, ν){ν1, ν2} · · · {ν`−1, ν`}, (32)

where the inner sum is over pairs (ν, i), where ν is a matching satisfying (i)–(iii), and
i is the index of a double-barred part of ν. Also,

2mT 0
2m+1,v+1−m =

∑
µ∈C(λ,2m+3,v+1−m)

∑
(ρ,j)

ε(λ, ρ){ρ1, ρ2} · · · {ρ`−1, ρ`}, (33)

where the inner sum is over pairs (ρ, j), where ρ is a matching satisfying (i)–(iii), and
where j is the index of a single-barred part of ρ, which is not in the distinguished pair,
nor in the unique pair which contains only one bar. Observe that there is a bijection
between the pairs (ν, i) which appear in (32) and pairs (ρ, j) in (33).

Adding (32) and (33) and using the bijection between the indexing sets and the
identity

(c, d) + 2(c, d) + (c, d) = [c, d] + [c, d],
we may express the left-hand side of (31) as a sum in which every summand has two
distinguished pairs. By invoking the identity

[a, b]([c, d] + [c, d])− [a, c]([b, d] + [b, d]) + [a, b]([b, c] + [b, c])

= −(a)(b)[c, d] + (a)(c)[b, d]− (a)(d)[b, c]

(with a = λ`, always), we reduce ourselves to a situation where we may use Lemma
2 and conclude that (31) holds. �

It follows from Lemma 4 and the previous discussion that (29) holds for g = 0.
When g is positive, the above argument goes through with the triple (b, r, s) replaced
with (b−2g, r−2g, s−2g); note that the binomial coefficients in (29) remain unchanged
under these substitutions. This finishes the proof of Theorem 3. �
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3. Isotropic Grassmannians

3.1. Schubert subvarieties and incidence loci. The principal object of study is
the Lagrangian Grassmannian LG(n, 2n) which parametrizes n-dimensional subspaces
of a fixed 2n-dimensional complex vector space V , isotropic for a fixed nondegenerate
skew-symmetric bilinear form on V . When n is fixed, we write LG for LG(n, 2n).
We have dimC LG = n(n + 1)/2. The identities in cohomology that we establish in
§§3.1 and 3.2 remain valid if we work over an arbitrary base field, using Chow rings
in place of cohomology.

Let F• be a fixed complete isotropic flag of subspaces of V . The Schubert varieties
Xλ ⊂ LG — defined relative to F• — are indexed by partitions λ ∈ Dn. One has
dim(Σ∩F⊥k ) = dim(Σ∩Fk) +n− k for any Lagrangian subspace Σ, so there are two
ways to write the conditions which define a Schubert variety in LG:

Xλ = {Σ ∈ LG | rk(Σ → V/Fn+1−λi) 6 n− i, i = 1, . . . , `(λ) } (34)

= {Σ ∈ LG | rk(Σ → V/F⊥n+1−λi
) 6 n+ 1− i− λi, i = 1, . . . , `(λ) }. (35)

We call particular attention to the alternative formulation (35), as these are the
relevant rank conditions for situations where the morphism Σ → V is allowed to
degenerate.

Set σλ = [Xλ] in H∗(LG,Z). The classical Giambelli formula (5) for LG is equiv-
alent to the following identity in H∗(LG,Z):

σλ =
r−1∑
j=1

(−1)j−1σλj ,λr
· σλr{λj ,λr}, (36)

for r = 2b(`(λ) + 1)/2c. For µ ∈ Dn, let µ′ = ρn rµ denote the dual partition. Then,
we recall, the Poincaré duality pairing on LG satisfies∫

LG

σλ σµ = δλµ′ .

Later on, in place of Σ → V , we will have a morphism of vector bundles E → OT⊗V
over some base T , with E a rank n vector bundle and with the morphism generically of
full rank, but with loci where the rank drops. So we need to study the Grassmannians
IG(k, 2n) of isotropic k-dimensional subspaces of V , for various k < n, notably for
k = n− 1 and k = n− 2. We have IG(n, 2n) = LG(n, 2n).

Observe that any Sp2n-translate of the Schubert variety Xn,n−1,...,k+1 in LG is of
the form {Σ ∈ LG | Σ ⊃ A } for a unique A ∈ IG(n − k, 2n). Any such translate
can be identified with LG(k, 2k), and moreover, for any λ, meets Xλ in a Schubert
subvariety of LG(k, 2k):

Proposition 3. Let A be an isotropic subspace of V of dimension n − k, and let
Y ⊂ LG(n, 2n) be the subvariety of Lagrangian subspaces of V which contain A.
Then Xλ ∩ Y is a Schubert variety in Y ' LG(k, 2k) for any λ ∈ Dn. Moreover, if
`(λ) < k then the intersection, if nonempty, has positive dimension.

Proof. Define the isotropic flag F̃• of subspaces of A⊥/A by

F̃i = ((Fi +A) ∩A⊥)/A.

For any Lagrangian Σ ⊂ V containing A, we have

dim(Σ ∩ Fi) = dim((Σ/A) ∩ F̃i) + dim(A ∩ Fi).
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So Xλ∩Y is defined by the attitude of Σ/A with respect to F̃•, and hence is a Schubert
variety (if nonempty). For the intersection to be a point, we would require at least k
rank conditions as in (34), that is, `(λ) > k. �

The space IG(n− 1, 2n) is the parameter space of lines on LG, and the variety of
lines incident to Xλ (for nonempty λ) is the Schubert variety

X′
λ = {Σ′ ∈ IG(n− 1, 2n) | rk(Σ′ → V/F⊥n+1−λi

) 6 n+ 1− i− λi, all i }. (37)

Note the rank conditions are identical to those in (35). The codimension of X′
λ is

|λ| − 1. Analogously, IG(n− 2, 2n) parametrizes translates of Xn···43 (isomorphic to
the quadric threefold LG(2, 4)) on LG. Now suppose `(λ) > 2; then translates of
Xn···43 on LG incident to Xλ form the Schubert variety

X′′
λ = {Σ′′ ∈ IG(n− 2, 2n) | rk(Σ′′ → V/F⊥n+1−λi

) 6 n+ 1− i− λi, all i }, (38)

which has codimension |λ| − 3. We remark that the subvarieties we have described
are only some of the Schubert varieties in IG(n− 1, 2n) and IG(n− 2, 2n).

The modular interpretation of the loci X′
λ and X′′

λ is explained by

Lemma 5. Let A be an isotropic subspace of V of dimension n − k, and let Fn be
a fixed Lagrangian subspace of V . Then there exists a unique Lagrangian subspace
Σ which contains A and satisfies dim(Σ ∩ Fn) = dim(A ∩ Fn) + k. In fact, we have
Σ = Span(A,A⊥ ∩ Fn).

Proof. Set W = A ∩ Fn; replacing V by W⊥/W and A and Fn by their respective
images in W⊥/W , we are reduced to the case A∩Fn = 0. Now for dimension reasons,
we have

dim(A⊥ ∩ Fn) > k,

so isotropicity of Span(A,A⊥ ∩ Fn) forces dim(A⊥ ∩ Fn) = k, and the assertion is
clear. �

3.2. Pfaffian identities on isotropic Grassmannians. Let F = FSp(V ) denote
the variety of complete isotropic flags in V . There are natural projection maps from
F to the Grassmannians IG(n− 1, 2n) and IG(n− 2, 2n), inducing injective pullback
morphisms on cohomology. Referring to [KT1, §2.4], one sees that the Schubert class
[X′

λ] (resp. [X′′
λ]) in H∗(IG(n−1, 2n)) (resp. H∗(IG(n−2, 2n)) pulls back to the class

C′λ(X) (resp. C′′λ(X)) in H∗(F ), for each λ ∈ Dn. Here X = (x1, . . . , xn) is the vector
of Chern roots of the dual to the tautological rank n vector bundle over F , ordered
as in [KT1, Sect. 2]. Theorems 2 and 3 now give

Corollary 1. a) For every λ ∈ Dn of length ` > 3 and r = 2b(`+ 1)/2c we have
r−1∑
j=1

(−1)j−1 [X′
λj ,λr

] [X′
λr{λj ,λr}] = 0 (39)

in H∗(IG(n− 1, 2n),Z).

b) For every λ ∈ Dn of even length ` > 4 we have
`−1∑
j=1

(−1)j−1 [X′′
λj ,λ`

] [X′′
λr{λj ,λ`}] = 0 (40)

in H∗(IG(n− 2, 2n),Z).
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3.3. Counting lines on LG(n, 2n). In this subsection, we exploit a correspondence
between lines on LG(n, 2n) and points on LG(n + 1, 2n + 2) to derive the following
formula for three-point degree-1 Gromov–Witten invariants on LG = LG(n, 2n):

Proposition 4. For λ, µ, ν ∈ Dn we have

〈σλ, σµ, σν〉1 =
1
2

∫
LG(n+1,2n+2)

[X+
λ ] · [X+

µ ] · [X+
ν ],

where X+
λ , X+

µ , X+
ν denote Schubert varieties in LG(n+ 1, 2n+ 2).

Proof. Let V be as in §3.1, let H be a 2-dimensional symplectic vector space and
let V + be the orthogonal direct sum of V and H. Consider the correspondence
between LG(n + 1, 2n + 2) and IG(n − 1, 2n) consisting of pairs (Σ+,Σ′) with Σ+

a Lagrangian subspace of V + and Σ′ an isotropic (n − 1)-dimensional subspace of
V , given by the condition Σ′ ⊂ Σ+. This is the correspondence induced by the
rational map which sends [Σ+] to [Σ+ ∩ V ], defined for Lagrangian Σ+ ⊂ V + with
dim(Σ+ ∩ V ) = n− 1. Choose a nonzero h ∈ H and consider the isotropic flags F• in
V and F+

• in V +, with F+
i = Fi−1 ⊕ 〈h〉. Then, for any λ ∈ Dn, we have that to any

Σ+ with Σ+ ∈ X+
λ ⊂ LG(n+ 1, 2n+ 2), there corresponds Σ′ with Σ′ ∈ X′

λ.
The degree of q in QH∗(LG(n, 2n)) equals∫

LG

c1(TLG) · σ1′ = n+ 1,

so for degree reasons, the Gromov–Witten invariant 〈σλ, σµ, σν〉1 is potentially nonzero
(and hence counts lines on LG) when

|λ|+ |µ|+ |ν| = (n+ 1)(n/2 + 1).

Now choose general translates of isotropic flags of subspaces of V such that X′
λ, X′

µ,
and X′

ν meet transversely, and such that every point in the intersection corresponds
to a line in LG(n, 2n) which

(i) is incident to Xλ, Xµ, and Xν at three distinct points;
(ii) has each incidence point in the corresponding Schubert cell inside the Schubert

variety (i.e., all dimension estimates are sharp); and
(iii) (for ` = `(λ) < n) the line is not incident to Xρ`+1 , and similarly for µ and ν

(using the respective defining flags).
We remark that (ii) and (iii) can be combined into the single statement that the

points in X′
λ ∩X′

µ ∩X′
ν all lie in the intersections of the corresponding Schubert cells

in IG(n− 1, 2n).
For each of λ, µ, ν, we extend the corresponding flag of isotropic spaces in V to

subspaces of V + by adjoining, in each case, a generally chosen element of H. Now
it is evident that every point in X+

λ ∩ X+
µ ∩ X+

ν (intersection on LG(n + 1, 2n + 2))
corresponds to a point in X′

λ ∩X′
µ ∩X′

ν . Analysis using Lemma 5 shows that to every
point in X′

λ ∩ X′
µ ∩ X′

ν there correspond exactly two points in X+
λ ∩ X+

µ ∩ X+
ν , each

a point of transverse intersection. This uses the fact that on LG(2, 4) (case n = 1),
three general SL2×SL2 translates of X+

1 meet transversely at two points, both away
from the locus of Σ+ meeting V nontrivially. �

Corollary 2. If i and j are such that i+ j > n+ 1, then

σiσj = 2
n−i∑
k=1

σi+k,j−k + σi+j−n−1 q
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in QH∗(LG(n, 2n)).

From the corollary we immediately deduce that the quantum relation (3) and
the two-condition quantum Giambelli formula (4) are valid in QH∗(LG). By [ST],
now, we obtain a presentation of QH∗(LG) as a quotient of the polynomial ring
Z[σ1, . . . , σn, q] modulo the relations (3) (see also [FP, Sect. 10]). The proof of the
more difficult relation (5) occupies Sections 4 and 5.

4. Lagrangian Quot schemes

4.1. Overview. Here is a summary of our analysis in the next two sections. The goal
is to establish an identity in the Chow group of the Lagrangian Quot schemes, from
which identity (5) in QH∗(LG(n, 2n)) follows. We make use of type C degeneracy loci
for isotropic morphisms of vector bundles [KT1] to define classes [Wλ(p)]k (p ∈ P1)
of the appropriate dimension k := (n + 1)(n/2 + d) − |λ| in the Chow group of the
Quot scheme LQd, which compactifies the space of degree-d maps P1 → LG. Choose
a point p′ on P1 distinct from p, and use W̃ to denote a degeneracy locus defined with
respect to a general translate of the fixed isotropic flag of vector spaces. We produce
a Pfaffian formula analogous to (36):

[Wλ(p)]k =
r−1∑
j=1

(−1)j−1[Wλj ,λr (p) ∩ W̃λr{λj ,λr}(p
′)]k, (41)

for any λ ∈ Dn with `(λ) > 3 and r = 2b(`(λ) + 1)/2c.
In fact, we need the cycles in (41) to remain rationally equivalent under further

intersection with some (general translate of) Wµ(p′′) (with varying µ, where p′′ is a
third distinct point on P1). The way around the difficulty of a lack of an intersection
product on the (possibly singular) LQd is to work instead on a modification LQd(p′′),
on which the evaluation-at-p′′ map is globally defined, and employ a refined inter-
section operation from LG. Then, the rational equivalence implies that the (zero!)
number of degree-d maps P1 → LG which send p to Xλ and p′′ to a general translate
of Xµ — with no constraint on any third point — is equal to the alternating sum
of 3-point degree-d structure constants 〈σλj ,λr , σλr{λj ,λr}, σµ〉d, and this is exactly
what we require to establish the quantum Giambelli formula (Theorem 5).

The required rational equivalence (which is similar to (41), but involves cycles on
LQd(p′′)) is a sum of rational equivalences coming from three sources: (i) Pfaffian
formulas on LG (36); (ii) supplementary rational equivalences on the isotropic Grass-
mannians of (n − 1)-dimensional and (n − 2)-dimensional isotropic subspaces of the
ambient vector space (39), (40); and (iii) rational equivalences {p} ∼ {p′} on P1. The
most interesting of these are (ii). Indeed, at some stage in the analysis, we consider
intersections Wλj ,λr

(p)∩ W̃λr{λj ,λr}(p), where the same point p appears twice. Such
an intersection has several components of the correct dimension. Of course, degree-d
morphisms P1 → LG sending p into Xλj ,λr ∩ X̃λr{λj ,λr} make up one such compo-
nent. But also there are components of the same dimension, entirely contained in
the boundary of the Quot scheme. The formulas in Corollary 1 give us precisely the
cancellation of these extra contributions.

4.2. Definition of LQd. Fix a complex vector space V and set N = dimV . Let m
and n be positive integers, with m + n = N . We recall (from [G1]) that the Quot
scheme Qd (d > 0) parametrizing quotient sheaves of OP1⊗V with Hilbert polynomial
nt+n+d is a smooth projective variety which compactifies the space of parametrized
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degree-d maps from P1 to the Grassmannian of m-dimensional subspaces of V . On
P1 ×Qd there is a universal exact sequence of sheaves

0 −→ E −→ O ⊗ V −→ Q −→ 0

with E locally free of rank m.
We fix m = n and N = 2n from now on, and let the 2n-dimensional vector space

V be endowed with a nondegenerate skew-symmetric bilinear form.

Definition 1. For a nonnegative integer d, the Lagrangian Quot scheme LQd is the
closed subscheme of Qd which is defined by the vanishing of the composite

E −→ OP1 ⊗ V
α−→ OP1 ⊗ V ∗ −→ E∗

where α is the isomorphism defined by the symplectic form on V .

For n = 2, the scheme LQ1 was introduced and studied in [KT1]; it is nonsingular.
For general n and d, however, LQd has singularities. The open subscheme LMd ⊂
LQd, defined as the locus where E → OP1 ⊗ V has everywhere full rank, is smooth
and irreducible, and coincides with the moduli space M0,3(LG, d) of 3-pointed (that
is, parametrized) maps P1 → LG of degree d (the irreducibility of all M0,i(LG, d) is
known, [KP], [Th]).

4.3. Degeneracy loci. Degeneracy loci for isotropic morphisms of vector bundles in
type C (as well as types B and D) were introduced in [KT1].

Definition 2. The degeneracy loci Wλ and Wλ(p) (λ ∈ Dn and p ∈ P1) are the
following subschemes of P1 × LQd:

Wλ = {x ∈ P1 × LQd | rk(E → O ⊗ V/F⊥n+1−λi
)x 6 n+ 1− i− λi,

i = 1, . . . , `(λ) },
Wλ(p) = Wλ ∩ ({p} × LQd)

Define also
h(n, d) = (n+ 1)(n/2 + d),

the dimension of the Lagrangian Quot scheme LQd. The fact that three-term Gromov–
Witten invariants on LG arise as numbers of points in intersections of degeneracy loci
on LQd is a consequence of the

Moving Lemma. Let k be a positive integer, and let p1, . . ., pk be distinct points on
P1. Let λ1, . . ., λk be partitions in Dn, and let us take the degeneracy loci Wλ1(p1),
. . ., Wλk(pk) to be defined by isotropic flags of vector spaces in general position. Let
us define

Z = Wλ1(p1) ∩ · · · ∩Wλk(pk).

Then Z has dimension at most h(n, d)−
∑k

i=1 |λi|. Moreover, Z∩LMd is either empty
or generically reduced and of pure dimension h(n, d)−

∑
i |λi|; also, Z∩(LQd rLMd)

has dimension at most h(n, d)−
∑k

i=1 |λi| − 1.

We prove the Moving Lemma in §4.4, after stating a theorem which describes the
structure of the boundary of LQd.

Corollary 3. Let p, p′, p′′ ∈ P1 be distinct points. Suppose λ, µ, ν ∈ Dn satisfy
|λ|+ |µ|+ |ν| = h(n, d). With degeneracy loci defined with respect to isotropic flags in
general position, the intersection Wλ(p) ∩Wµ(p′) ∩Wν(p′′) consists of finitely many
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reduced points, all contained in LMd, and the corresponding Gromov–Witten invariant
on LG equals the cardinality of this set of points:

〈σλ, σµ, σν〉d = #
(
Wλ(p) ∩Wµ(p′) ∩Wν(p′′)

)
.

Corollary 4. If p and p′ are distinct points of P1 and if |λ| + |µ| = h(n, d), then
Wλ(p) ∩ W̃µ(p′) = ∅ for a general translate W̃µ(p′) of Wµ(p′).

As in Bertram’s paper [Be], we cover LQd by images of Grassmann bundles over
smaller Quot schemes.

Definition 3. We let πc : Gc → P1 × LQd−c denote the Grassmann bundle of c-
dimensional quotients of the universal bundle E on P1 × LQd−c. The morphism
βc : Gc → LQd is given as follows. On Gc there is the universal quotient bundle Fc,
of rank c. If ic denotes the morphism Gc → P1×Gc given by (pr1 ◦πc, id), then there
is a natural morphism of sheaves

(id× (pr2 ◦ πc))∗E → ic∗π
∗
cE

on P1 ×Gc. We define Ec to be the kernel of this morphism composed with ic∗ of the
morphism to the universal quotient bundle on Gc:

Ec = ker((id× (pr2 ◦ πc))∗E → ic∗Fc).

Now Ec is a subsheaf of O⊗V on P1×Gc, with cokernel flat over Gc, and hence there
is an induced morphism βc : Gc → LQd.

It is natural to consider degeneracy loci with respect to the bundles Ec.

Definition 4. The degeneracy loci Ŵc,λ and Ŵc,λ(p) (λ ∈ Dn and p ∈ P1) are the
following subschemes of Gc:

Ŵc,λ = {x ∈ Gc | rk(Ec → O⊗ V/F⊥n+1−λi
)x 6 n+ 1− i− λi,

i = 1, . . . , `(λ) },

Ŵc,λ(p) = Ŵc,λ(p) ∩ π−1
c ({p} × LQd−c).

4.4. Boundary structure of LQd. The boundary of LQd is made up of points at
which Q fails to be locally free, or equivalently, where E → O ⊗ V drops rank at one
or more points of P1. The following theorem is taken more-or-less verbatim from [Be].

Theorem 4. The maps βc : Gc → LQd satisfy the following conditions: (i) Given
x ∈ LQd, if Qx has rank at least n+ c at p ∈ P1, then x lies in the image of βc.
(ii) The restriction of βc to π−1

c (P1 × LMd−c) is a locally closed immersion.
(iii) We have

β−1
c (Wλ(p)) = π−1

c (P1 ×Wλ(p)) ∪ Ŵc,λ(p)
where on the right, Wλ(p) denotes the degeneracy locus in LQd−c.

Proof. The argument is exactly as in [Be]. �

Proof of the Moving Lemma. The assertions on LMd are clear by transversality of
general translates (cf. [H, III.10.8]). So, we restrict attention to the boundary; it is
enough to show that

π−1
c

(
P1 ×

k⋂
i=1

Wλi(pi)
)

and π−1
c

(
P1 ×

k⋂
i=1
i 6=j

Wλi(pi)
)
∩ Ŵc,λj (pj)
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(j = 1, . . . , k) have dimension at most h(n, d)−
∑

i |λi|−1. The first of these is taken
care of by induction on the degree d. For the second, there are loci

Uc(p) ⊂ π−1
c ({p} × LQd−c)

defined by the condition rk(Ec → O⊗ V ) = n− c, and evaluation maps

fp
c : Uc(p) → IG(n− c, 2n).

Given x ∈ LQd, if Qx has rank n + c then x ∈ βc(Uc(p)), so it suffices to prove
dimension estimates for

π−1
c

(
P1 ×

k⋂
i=1
i 6=j

Wλi(pi)
)
∩ Ŵc,λj (pj) ∩ Uc(pj). (42)

But now Ŵc,λj (pj)∩Uc(pj) = (fp
c )−1(X′) for a Schubert variety X′ in IG(n−c, 2n) of

codimension at least |λj | − c(c+ 1)/2. Now, by transversality of a general translate,
the intersection (42) has dimension at most h(n, d)− 1−

∑
i |λi|. �

5. Intersections on LQd and Quantum Giambelli

As outlined in §4.1, we need three kinds of rational equivalences on LQd. Two of
the rational equivalences we require follow from a simple intersection-theoretic lemma,
while in the remainder of this section we develop the third kind. The Chow group
(algebraic cycles modulo rational equivalence) of a scheme X is denoted A∗X. We
employ the following notation.

Definition 5. Let p denote a point of P1. Then: (i) evp : LMd → LG is the
evaluation-at-p morphism;
(ii) τ(p) : LQd(p) → LQd is the projection from the relative Lagrangian Grassman-
nian LQd(p) := LGn(Q|{p}×LQd

), that is, the closed subscheme of the Grassman-
nian Grassn of rank-n quotients [G2] of the indicated coherent sheaf, defined by the
isotropicity condition on the kernel of the composite morphism from OGrassn

⊗ V to
the universal quotient bundle of the relative Grassmannian;
(iii) ev(p) : LQd(p) → LG is the evaluation morphism on the relative Lagrangian
Grassmannian; and (iv) evp

c : π−1
c ({p} × LMd−c) → IG(n− c, 2n) is evaluation at p.

Lemma 6. Let T be a projective variety which is a homogenous space for an algebraic
group G. Let X be a scheme, equipped with an action of the group G. Let U be a
G-invariant integral open subscheme of X, and let f : U → T be a G-equivariant
morphism. Then the map on algebraic cycles

[V ] 7→
[
f−1(V )

]
(43)

(this sends the cycle of an integral closed subscheme V of T to the cycle associated
with the closure in X of the pre-image in U) respects rational equivalence, and hence
induces a map on Chow groups A∗T → A∗X.

Proof. Denote by Z the closure in X× T of the graph of f . Since T is projective, the
map Z → X is proper. The action of G on U extends to an action on Z. The map
Z → T is G-equivariant, and hence is flat; the restriction to Z r U is flat as well,
of smaller relative dimension. It follows that the map on cycles (43) is equal to the
composite of flat pullback to Z, followed by proper pushforward to X. Since these
operations respect rational equivalence, so does the composite. �
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Let us denote by X̃µ, X̃′
µ and X̃′′

µ the translates of Xµ, X′
µ and X′′

µ by a general
element of the algebraic group Sp2n.

Corollary 5. The following cycles are rationally equivalent to zero on LQd, and also
on LQd(p′), for any λ ∈ Dn, with ` = `(λ) and r = 2b(`+ 1)/2c, and distinct points
p, p′ ∈ P1.
(i) (` > 3) [

(evp)−1(Xλ)
]
−

r−1∑
j=1

(−1)j−1
[
(evp)−1(Xλj ,λr

∩ X̃λr{λj ,λr})
]
.

(ii) (` > 3)
r−1∑
j=1

(−1)j−1
[
β1

(
(evp

1)
−1(X′

λj ,λr
∩ X̃′

λr{λj ,λr})
) ]

.

(iii) (r = ` > 4)
r−1∑
j=1

(−1)j−1
[
β2

(
(evp

2)
−1(X′′

λj ,λr
∩ X̃′′

λr{λj ,λr})
) ]

.

Proof. We get (i) from the classical Giambelli formula by invoking Lemma 6 with
X = LQd or X = LQd(p′), and U = LMd. The rational equivalences of Corollary 1
give us (ii) and (iii): we invoke Lemma 6 with

X = π−1
c ({p} × LQd−c) or X = π−1

c ({p} × LQd−c)×LQd
LQd(p′),

and U = π−1
c ({p} × LMd−c), where c = 1 for (ii) and c = 2 for (iii). �

Recall that, given a closed subscheme Z of a scheme X, one defines [Z] ∈ A∗X
to be the class in the Chow group of the formal sum

∑
mV [V ] where V runs over

integral closed subschemes of X which are irreducible components of Z, and where
mV is the geometric multiplicity of V in Z. In the following statement, we write [Z]k
to denote the k-dimensional component of [Z], that is, the class of the same sum with
V restricted to the irreducible components of X which have dimension k.

Proposition 5. (a) Suppose λ and µ are in Dn, and let p, p′, p′′ be distinct points
in P1. Assume `(λ) equals 1 or 2 and `(µ) > 2. Let k = h(n, d)− |λ| − |µ|. Then[

Wλ(p) ∩ W̃µ(p′)
]
k

=
[
Wλ(p) ∩ W̃µ(p)

]
k

in A∗LQd, (44)[
τ(p′′)−1

(
Wλ(p) ∩ W̃µ(p′)

)]
k

=
[
τ(p′′)−1

(
Wλ(p) ∩ W̃µ(p)

)]
k

in A∗LQd(p′′), (45)

where W̃µ(p) denotes degeneracy locus with respect to a general translate of the isotropic
flag of subspaces.

(b) In A∗LQd, we have[
Wλ(p) ∩ W̃µ(p)

]
k

=
[
(evp)−1(Xλ ∩ X̃µ)

]
(46)

+
[
β1

(
(evp

1)
−1(X′

λ ∩ X̃′
µ)

) ]
+ δ`,2

[
β2

(
(evp

2)
−1(X′′

λ ∩ X̃′′
µ)

) ]
,

(with δ`,2 the Kronecker delta), and in A∗LQd(p′′), the cycle class[
τ(p′′)−1

(
Wλ(p) ∩ W̃µ(p)

)]
k

is equal to the right-hand side of (46).
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Proof. To prove (44), we consider the subscheme Y := (P1×Wλ(p))∩W̃µ of P1×LQd.
By generic flatness and equivariance for automorphisms of P1 fixing the point p, the
morphism Y → P1 is flat over P1 r{p}. In fact, we claim, the morphism is flat on the
complement of some closed subscheme of dimension < k. Restricting our attention to
the (k + 1)-dimensional irreducible components of Y , now, the rational equivalence
{p} ∼ {p′} on P1 pulls back to (44) on LQd.

We justify this claim and at the same time establish part (b). First, for any c > 1,
the intersection of two general-position Schubert varieties in IG(n−c, 2n), defined by
the rank conditions in (35) corresponding to the partitions λ and µ, has codimension
at least |λ| + |µ| − c(c + 1), with equality only if `(λ) > c by Proposition 3. It now
follows, by a dimension count similar to the one in the proof of the Moving Lemma,
that the irreducible components of Wλ(p) ∩ W̃µ(p) of dimension k are precisely the
ones indicated on the right-hand side of (46). A simple argument using Kontsevich’s
spaces of stable maps (see, e.g., [FP]) shows that each of these components lies in
the closure of ((P1 r {p}) × Wλ(p)) ∩ (P1 r {p}) ×P1 W̃µ. For instance, consider
a point x ∈ β1((ev

p
1)
−1(X′

λ ∩ X̃′
µ)). Such a point corresponds to a degree (d − 1)

map ψ : P1 → LG with the resulting sheaf sequence modified at the point p. Let
ψ(p) ∈ LG correspond to the Lagrangian subspace Σ. The modification selects Σ′ ⊂ Σ
of codimension 1; this corresponds to a line E ⊂ LG. In the generic case, this line
meets Xλ in a unique point r and X̃µ in a unique point s, both distinct from ψ(p).
The map from two P1’s joined at a point to ψ(P1)∪E is a point of the space of stable
maps; in fact, it is some

x̃ ∈M0,4(LG, d)×(LG×LG) (Xλ × X̃µ),

where we let marked points 1 and 2 land on r and s, respectively, and take marked
points 3 and 4 on the other component, distinct from p. By properness and transver-
sality of a general translate, x̃ is the value at the special point of a family of such
stable maps over Spec C[[t]], which is generically a smooth curve mapping to LG.
Applying the morphism which forgets the first marked point, we get a C((t))-valued
point of M0,3(LG, d) = LMd with limit point x in the Quot scheme.

It remains only to show that the components indicated on the right-hand side of
(46) are generically reduced. This is clear for the first-listed component, by transver-
sality of a general translate. For the others, it is a linear algebra exercise to check,
from the definition using rank conditions, that the scheme Wλ(p) ∩ W̃µ(p) in the
neighborhood of a point β1(x) for general x ∈ (evp

1)
−1(X′

λ ∩ X̃′
µ) (resp. a point β2(x)

for general x ∈ (evp
2)
−1(X′′

λ ∩ X̃′′
µ)) is contained in the image of the restriction of βc

to π−1
c ({p} × LMd−c), where c = 1 (resp. c = 2). Recall, by Theorem 4, that the

restriction of βc is a locally closed immersion; now, the rank conditions, near x on
π−1

c ({p} ×LMd−c), are the Schubert conditions in (37) or (38), and transversality of
a general translate completes the argument.

This takes care of the assertions concerning cycles on LQd. A dimension count
shows that every k-dimensional irreducible component in

τ(p′′)−1(Wλ(p) ∩ W̃µ(p))

and in
τ(p′′)−1(Wλ(p) ∩ W̃µ(p′))

meets the open set where τ(p′′) is an isomorphism. Now, exactly the same argument
as above establishes the equality (45) and the case of (b) which concerns LQd(p′′). �
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We now establish the rational equivalences on LQd — and on LQd(p′′) — which
directly imply the quantum Giambelli formula of Theorem 1.

Proposition 6. Fix λ ∈ Dn with ` = `(λ) ≥ 3. Set r = 2b(` + 1)/2c. Let p, p′, p′′

denote distinct points in P1. Then we have the following identity of cycle classes

[
(evp)−1(Xλ)

]
=

r−1∑
j=1

(−1)j−1
[ (

(evp)−1(Xλj ,λr
) ∩ (evp′)−1(X̃λr{λj ,λr})

) ]
, (47)

both on LQd and on LQd(p′′), where X̃µ denotes the translate of Xµ by a generally
chosen element of the group Sp2n.

Proof. Combining parts (a) and (b) of Proposition 5 gives[ (
(evp)−1(Xλj ,λr ) ∩ (evp′)−1(X̃λr{λj ,λr})

) ]
=

[
(evp)−1(Xλj ,λr ∩ X̃λr{λj ,λr})

]
+

[
β1

(
(evp

1)
−1(X′

λj ,λr
∩ X̃′

λr{λj ,λr})
) ]

+ δ`,r
[
β2

(
(evp

2)
−1(X′′

λj ,λr
∩ X̃′′

λr{λj ,λr})
) ]

,

for each j, with 1 ≤ j ≤ r − 1. Now (47) follows by summing and applying (i), (ii),
and (in case ` = r) (iii) of Corollary 5. �

The next result is equivalent to the quantum Giambelli relation (5).

Theorem 5. Suppose λ ∈ Dn, with ` = `(λ) ≥ 3, and set r = 2b(`+ 1)/2c. Then we
have the following identity in QH∗(LG):

σλ =
r−1∑
j=1

(−1)j−1σλj ,λr
σλr{λj ,λr}. (48)

Proof. The classical component of (48) is the classical Pfaffian identity. Hence, (48)
is equivalent to

0 =
r−1∑
j=1

(−1)j−1〈σλj ,λr
, σλr{λj ,λr}, σµ〉d (49)

for every d ≥ 1 and µ ∈ Dn such that |λ|+ |µ| = h(n, d). But (49) follows by applying
the refined cap product operation [F, §8.1] along ev(p′′) to a general translate of Xµ

in LG and to both sides of (47) in LQd(p′′). On one side, we get zero, by Corollary 4.
On the other side, we get the required alternating sum of Gromov–Witten numbers,
by Corollary 3. �

6. Quantum Schubert calculus

In this section, we use Theorem 1 and the algebra of Q̃-polynomials to find explicit
combinatorial rules that compute some of the quantum structure constants eν

λµ(n)
that appear in the quantum product of two Schubert classes.
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6.1. Algebraic background. The Q̃-polynomials are the duals of certain modi-
fied Hall-Littlewood polynomials. More precisely, let {Pλ(X; t)} and {Qλ(X; t)} be
the usual Hall-Littlewood polynomials, defined as in [M, III.2]. Let {Q′

λ(X; t)} be
the adjoint basis to {Pλ(X; t)} for the standard scalar product on Λn[t]; we have
Q′

λ(X; t) = Qλ(X/(1− t); t) in the notation of λ-rings (see [LLT]). According to [PR,
Prop. 4.9], we have, for λ ∈ En,

Q̃λ(X) = ω(Q′
λ(X;−1)),

where ω is the duality involution of [M, I.2].
By property (b) of §2.1 there exist integers e(λ, µ; ν) such that

Q̃λ(X) Q̃µ(X) =
∑

ν

e(λ, µ; ν) Q̃ν(X). (50)

The coefficients e(λ, µ; ν) are independent of n, and defined for any partitions λ, µ, ν ∈
En. They occur in the second author’s description of Schubert calculus for the
Arakelov Chow ring of LG, considered as a scheme over the integers (see [T]).

There are explicit combinatorial rules (albeit, involving signs) for generating the
numbers e(λ, µ; ν), which follow by specializing corresponding formulas for the mul-
tiplication of Hall-Littlewood polynomials (see [PR, Sect. 4] and [M, III.3.(3.8)]). In
particular one has the following Pieri type formula for λ strict ([PR, Prop. 4.9]):

Q̃λ(X) Q̃k(X) =
∑

µ

2N(λ,µ) Q̃µ(X), (51)

where the sum is over all partitions µ ⊃ λ with |µ| = |λ| + k such that µ/λ is a
horizontal strip, and N(λ, µ) is the number of connected components of µ/λ not
meeting the first column. Recall, by property (d) of §2.1, that

Q̃λ(X) Q̃n(X) = Q̃(n,λ)(X),

for any partition λ ∈ En.
When λ, µ and ν are strict partitions, the e(λ, µ; ν) are classical structure constants

for LG(n, 2n),
σλσµ =

∑
ν∈Dn

e(λ, µ; ν)σν ,

and hence are nonnegative integers. For strict λ, µ and ν, Stembridge [St] has given a
combinatorial rule for the numbers e(λ, µ; ν), analogous to the Littlewood-Richardson
rule in type A. More precisely, we have

e(λ, µ; ν) = 2`(λ)+`(µ)−`(ν)f(λ, µ; ν) (52)

where f(λ, µ; ν) is equal to the number of marked tableaux of weight λ on the shifted
skew shape S(ν/µ) satisfying certain conditions (for details, see loc. cit.). We also
note that the f(λ, µ; ν) are the (classical) structure constants in the cup product
decomposition

τλτµ =
∑

ν∈Dn

f(λ, µ; ν) τν

where τλ, τµ and τν denote Schubert classes in the cohomology of the even orthogonal
Grassmannian OG(n+ 1, 2n+ 2) (see [P, Sect. 6]).

Proposition 7. For λ and ν in Dn and any integer k with 1 6 k 6 n, we have

e(λ, k; (n+ 1, ν)) = 2`(λ)−`(ν)e(ν, n+ 1− k; λ).
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Proof. This follows from the combinatorial description of the structure constants given
in (51). �

6.2. Quantum multiplication. Recall from the Introduction that for any λ, µ ∈ Dn

there is a formula

σλ · σµ =
∑

eν
λµ(n)σν q

d

inQH∗(LG(n, 2n)). In Proposition 4 we showed that the quantum structure constants
in degree d = 1 for LG(n, 2n) are 1/2 times classical structure constants for LG(n+
1, 2n+ 2). Using Theorem 1, the Pieri rule (51) and Proposition 7, we now get

Proposition 8 (Quantum Pieri Rule). For any λ ∈ Dn and k > 0 we have

σλ · σk =
∑

µ

2N(λ,µ)σµ +
∑

ν

2N ′(ν,λ)σν q (53)

where the first sum is classical, as in (51), while the second is over all strict ν contained
in λ with |ν| = |λ|+ k−n− 1 such that λ/ν is a horizontal strip, and N ′(ν, λ) is one
less than the number of connected components of λ/ν.

For any d, n > 0 and partition ν, let (nd, ν) denote the partition

(n, n, . . . , n, ν1, ν2, . . .),

where n appears d times before the first component ν1 of ν. Theorem 1 now gives

Theorem 6. For any d > 0 and strict partitions λ, µ, ν ∈ Dn with |ν| = |λ| + |µ| −
d(n + 1), the quantum structure constant eν

λµ(n) (which is also the Gromov–Witten
invariant 〈σλ, σµ, σν′〉d) satisfies

eν
λµ(n) = 2−d e(λ, µ; ((n+ 1)d, ν)).

Corollary 6. For any d > 0 and λ, µ, ν ∈ Dn−1, the coefficient

e(λ, µ; (nd, ν))

is a nonnegative integer divisible by 2d.

Remark. It is not true that the coefficients e(λ, µ; ν) in (50) are all nonnegative.
For example, we have

Q̃3,2,1(X4) · Q̃3,2,1(X4) = 8 Q̃4,4,4 + 4 Q̃4,3,2,2,1 + 4 Q̃4,2,2,2,2 − 4 Q̃4,4,2,2

+ Q̃3,3(−4e1e2e3 + 2e32 + 4e23)

+ Q̃1,1(4e21e
2
4 − 4e1e2e3e4 + e22e

2
3).

Example. It follows from the remark that

σ3,2,1 · σ3,2,1 = q3

in QH∗(LG(3, 6)). This in turn implies that there is a single rational cubic curve
passing through 3 general points on LG(3, 6). (See Corollary 8 for a generalization.)
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6.3. Eight-fold symmetry. For any partition λ ∈ Dn with `(λ) = r, let λ∗ =
(n + 1 − λr, . . . , n + 1 − λ1). The next result illustrates a symmetry enjoyed by the
Gromov–Witten invariants for LG(n, 2n).

Theorem 7. For any d, e > 0 with d+ e = `(λ), we have

2n+d 〈σλ, σµ, σν〉d = 2`(µ)+`(ν)+e 〈σλ∗ , σµ′ , σν′〉e. (54)

Also, for every d > `(λ), we have 〈σλ, σµ, σν〉d = 0.

Proof. We can pass to real coefficients, and introduce

σ̃λ = 2n/4−`(λ)/2 σλ and q̃ = q/2.

Equation (54) is equivalent to the assertion that the coefficient of σ̃ν′ q̃
d in σ̃µσλ is

equal to the coefficient of σ̃µq̃
e in σ̃ν′σλ∗ . We observe (a restatement of quantum

Pieri) that with respect to the basis {σ̃λ} for H∗(LQ,R), the matrices representing
the operators

− ∪ σi : H2∗(LG,R) → H2(∗+i)(LG,R) (55)

and
q̃-coefficient(− ∗ σn+1−i) : H2(∗+i)(LG,R) → H2∗(LG,R) (56)

(where ∗ in (56) denotes the product in QH∗) are transposes of each other. Us-
ing the quantum Giambelli formulas (4) and (5), we may express the operations
q̃d-coefficient(− ∗ σλ) and q̃e-coefficient(− ∗ σλ∗) as expressions in (commuting) op-
erators (55) and (56), and again they are transpose to each other. This establishes
(54); the assertion that 〈σλ, σµ, σν〉d = 0 when d > `(λ) is also clear. �

As a consequence of the previous results, we obtain some cases of a quantum
Littlewood-Richardson rule in type C, specifically, expressions for σλσµ whenever
`(µ) 6 3.

Corollary 7. For any λ ∈ Dn and integers a, b, c with a > b > c, we have

σλ · σa,b =
∑

µ

e(λ, (a, b); µ)σµ +
1
2

∑
ν

e(λ, (a, b); (n+ 1, ν))σν q (57)

+
∑

ρ

f(ρ, (a, b)∗; λ)σρ q
2,

σλ · σa,b,c =
∑

µ

e(λ, (a, b, c); µ)σµ +
1
2

∑
ν

e(λ, (a, b, c); (n+ 1, ν))σν q (58)

+
∑

ρ

f(ρ, (a, b, c)∗; (n+ 1, λ))σρ q
2

+
∑

η

f(η, (a, b, c)∗; λ)ση q
3.

In particular, we see that all the quantum structure constants on the Lagrangian
Grassmannians LG(n, 2n) with n 6 7 are powers of 2 (prescribed by Theorem 7 and
Proposition 4) times classical structure constants.

Note that in (57), we could have applied Theorem 7 to rewrite the second summand
on the right as a structure constant involving (a, b)∗:

e(λ, (a, b); (n+ 1, ν)) = 2`(λ)−`(ν)e(ν, (a, b)∗; (n+ 1, λ)). (59)
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The disappearance of the factors of 2 upon replacing the e’s by f ’s after applying
(54) is a more general phenomenon. For any partitions λ, µ and ν, let us define the
integer f(λ, µ; ν) using equation (52).

Proposition 9. For any λ, µ ∈ Dn, we have

σλσµ =
∑

d+e=`(µ)

∑
ν∈Dn

f(ν, µ∗; ((n+ 1)e, λ))σν q
d

in QH∗(LG). In other words, any degree d quantum structure constant satisfies

eν
λµ(n) = f(ν, µ∗; ((n+ 1)e, λ)) (60)

where d+ e = `(µ).

Remarks. a) The identities (59) (which involves only classical structure constants)
and (60) appear to be new. Note that (60) implies that any degree d quantum
structure constant eν

λµ(n), where d = `(µ) or d = `(µ) − 1, is equal to a classical
structure constant.

b) For any λ ∈ En define the P̃ -polynomial P̃λ(X) = 2−`(λ)Q̃λ(X); we have

P̃λ(X)P̃µ(X) =
∑
ν∈En

f(λ, µ; ν) P̃ν(X).

In a companion paper to this one [KT2], we show that the multiplication of P̃ -
polynomials describes the quantum cohomology ring of the spinor variety OG(n +
1, 2n+2). At present we do not have a combinatorial interpretation for the coefficients
f(λ, µ; (ne, ν)) when e > 2.

If we fix an integer d and strict partitions λ, µ, ν, then by repeated application of
(54) we can relate 8 different Gromov–Witten invariants to each other. More precisely,
if we define operators A, B and C by

A 〈λ, µ, ν〉 = 〈λ∗, µ′, ν′〉,
B 〈λ, µ, ν〉 = 〈λ′, µ∗, ν′〉,
C 〈λ, µ, ν〉 = 〈λ′, µ′, ν∗〉,

then {A,B,C} generates a (Z/2Z)3-symmetry on the table of Gromov–Witten invari-
ants. This symmetry dictates the vanishing of many of these numbers:

Proposition 10. Let λ, µ, ν ∈ Dn and let d be an integer. The inequalities

0 6 d 6 `(λ) and `(λ) + `(µ)− n 6 d 6 `(λ) + `(µ) + `(ν)− n (61)

are necessary conditions for the Gromov–Witten number 〈σλ, σµ, σν〉d to be nonzero.
Moreover, if the two sides of any of the inequalities in (61) differ by 0 or 1, then
〈σλ, σµ, σν〉d is related by the eight-fold symmetry to a classical structure constant.

As an application, we have the following rule for quantum multiplication by σρn
:

Corollary 8. For any λ ∈ Dn, we have

σλ · σρn
= σλ′∗ q

`(λ)

in QH∗(LG(n, 2n)). In particular, σρn
· σρn

= qn.
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[H] R. Hartshorne : Algebraic Geometry, Grad. Texts in Math. 52, Springer-Verlag, New York,

1977.
[KL] G. Kempf and D. Laksov : The determinantal formula of Schubert calculus, Acta Math. 132

(1974), 153–162.

[K1] B. Kim : Quantum cohomology of partial flag manifolds and a residue formula for their
intersection pairings, Internat. Math. Res. Notices 1995, no. 1, 1–15.

[K2] B. Kim : On equivariant quantum cohomology, Internat. Math. Res. Notices 1996, no. 17,
841–851.

[K3] B. Kim : Quantum cohomology of flag manifolds G/B and quantum Toda lattices, Ann. of

Math. (2) 149 (1999), 129–148.
[KP] B. Kim and R. Pandharipande : The connectedness of the moduli space of maps to homo-

geneous spaces, in Symplectic geometry and mirror symmetry (Seoul, 2000), 187–201, World
Sci. Publ., River Edge, NJ, 2001.

[KM] M. Kontsevich, Y. Manin : Gromov–Witten classes, quantum cohomology, and enumerative

geometry, Comm. Math. Phys. 164 (1994), no. 3, 525–562.

[KT1] A. Kresch and H. Tamvakis : Double Schubert polynomials and degeneracy loci for the clas-
sical groups, Ann. Inst. Fourier (Grenoble) 52 (2002), no. 6, 1681–1727.

[KT2] A. Kresch and H. Tamvakis : Quantum cohomology of orthogonal Grassmannians, Compo-

sitio Math., to appear.



QUANTUM COHOMOLOGY OF THE LAGRANGIAN GRASSMANNIAN 27

[LLT] A. Lascoux, B. Leclerc and J.-Y. Thibon : Fonctions de Hall-Littlewood et polynômes de
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