QUANTUM COHOMOLOGY OF THE LAGRANGIAN
GRASSMANNIAN

ANDREW KRESCH AND HARRY TAMVAKIS

ABSTRACT. Let V be a symplectic vector space and LG be the Lagrangian Grass-
mannian which parametrizes maximal isotropic subspaces in V. We give a pre-
sentation for the (small) quantum cohomology ring QH*(LG) and show that its
multiplicative structure is determined by the ring of @-polynomials. We formu-
late a ‘quantum Schubert calculus’ which includes quantum Pieri and Giambelli
formulas, as well as algorithms for computing the structure constants appearing
in the quantum product of Schubert classes.

1. INTRODUCTION

The multiplicative structure of the quantum cohomology ring QH*(X) of a pro-
jective complex manifold X encodes the enumerative geometry of rational curves in
X, in the form of Gromov-Witten invariants. The ring QH*(X) is a deformation of
the cohomology ring H*(X) which first appeared in the work of string theorists (see
e.g. [V], [W]). The exposition in [FP], following the work of Kontsevich and Manin
[KM], gives an algebro-geometric approach to this theory when X is a homogeneous
space G/ P, where G is a complex Lie group and P a parabolic subgroup, which is our
main interest here (see also [LT]). We will work throughout with the small quantum
cohomology ring (terminology from [FP, §10]).

The cohomology rings of homogeneous spaces X = G/P have been studied exten-
sively; see [Bo], [BGG], [D1], [D2]. We would like to have an analogous description of
the multiplicative structure of QH*(X), which we refer to as quantum Schubert calcu-
lus. As in the classical case, there are three main ingredients necessary for the latter
theory: (i) a presentation of QH* (%) in terms of generators and relations, (ii) a quan-
tum Giambelli formula which identifies the polynomials that represent the Schubert
classes in this presentation, and (iii) algorithms for computing the structure constants
in the multiplication table of QH*(X) (the latter include quantum Pieri rules).

Currently we have a fairly complete understanding of these questions when X =
SL,/P is a partial flag variety of SL,(C). Since the theory is not functorial, a
separate analysis must be done for the various parabolic subgroups P. For work
(in the SL,, case) on the quantum cohomology of (i) Grassmannians, see [W], [ST],
[Be], [BCF], (ii) complete flag varieties, see [GK], [C-F1], [FGP], and (iii) partial flag
varieties, see [AS], [K1], [K2], [C-F2], [C].

In contrast to the SL,, situation, much less is understood for the other families of
Lie groups. For an arbitrary complex semisimple Lie group G, with Borel subgroup B,
Kim [K3] found the quantum D-module structure for the flag variety X = G/B, and
thus determined a presentation of QH*(X). To the authors’ knowledge one still lacks
a presentation of the quantum ring for the other parabolic subgroups and a quantum
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Giambelli formula to compute the Gromov-Witten invariants, if G is not of type A.
Our aim in this paper is to answer all three questions when the Lie group G = Sps, is
the symplectic group and P = P, is the maximal parabolic subgroup associated with
a ‘right end root’ in the Dynkin diagram for the root system of type C),. In this case
X = G/P is the Lagrangian Grassmannian described below. In a companion paper
to this one [KT2], we describe the corresponding story for the orthogonal groups.

All cohomology classes in this paper occur in even degrees. To avoid unnecessary
factors of two, we adopt the following convention: a class « in the cohomology of a
complex variety X has degree k when « lies in H2*(X,7Z).

Let V be a complex vector space of dimension 2n, equipped with a symplectic
form. The variety of Lagrangian (i.e., maximal isotropic) subspaces of V is the
Lagrangian Grassmannian LG = LG(n,2n) = Spa,/P,. The integral cohomology
ring H*(LG,Z) has a Z-basis of Schubert classes oy, one for each strict partition
A= (A > X > > A\) with \y < n. Each o) is the class of a Schubert variety
X, of codimension |[A| = )" A; in LG. Of particular importance are the classes o; ;,
determined by two Schubert conditions, and the special Schubert classes o; = 0,0,
defined by a single Schubert condition. This terminology is reviewed in §3.1.

To describe the multiplicative structure of the classical and quantum cohomology
ring of LG we will use the @-polynomials of Pragacz and Ratajski [PR]. These
symmetric polynomials are modeled on Schur’s Q-functions [S], and are the geometric
analogues of Schur’s S-functions in type C. Let Xy = (x1,...,2%) be a k-tuple of
variables, let X = X,,, and for i > 0 let QZ(X ) be the i-th elementary symmetric
polynomial ¢;(X). For any nonnegative integers 1,7 with 7 > 7, let

Qi (X) = Qi(X)Q;(X) + 22 V¥ Qi k (X)Qj—k(X), (1)

and for any partition A= (M 2 Xy > -+ > )\T > 0), define

QA (X) = Pfaffian[Qx, , (X)]1<i<j<r (2)
if r is even; we may always assume this is the case by setting A\, = 0 if necessary. For
each positive integer n we denote by D,, the set of strict partitions A with A\; < n.

Let A,, denote the ring Z[X]°" of symmetric polynomials in X; as an abelian group,
A, is spanned by the polynomials C~2 A(X) for all partitions A. From the analysis
in [P, Sect. 6] and [PR] we obtain that the map which sends Qx(X) to oy for all
A € D, extends to a surjective ring homomorphism ¢ : A,, — H*(LG,Z) with kernel
generated by the relations QH(X) = 0 for 1 < i < n; the morphism ¢ is evaluation
on the Chern roots of the tautological rank n quotient bundle over LG. From this
statement one gets a presentation for the cohomology ring of LG; moreover, equations
(1) and (2) become Giambelli-type formulas, expressing the Schubert classes in terms
of the special ones.

The quantum cohomology QH*(LG) of the Lagrangian Grassmannian LG(n,2n)
is an algebra over Z[g|, where ¢ is a formal variable of degree n + 1; one recovers the
classical cohomology ring by setting ¢ = 0. For the SL,-Grassmannian, Bertram [Be]
proved the remarkable fact that the classical and quantum Giambelli are identical;
note that this is in contrast to the other SL,-flag varieties ([FGP], [C-F2], [C]).
Strictly speaking, the quantum Giambelli formulas for LG do not coincide with the
classical ones. Let XT := X,,;1, and define An+1 to be the subring of An+1 generated
by the polynomials Qi(XJr) for ¢ < n together with the polynomial 2 Qn+1(X+) the
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latter will play the role of ¢ in the quantum cohomology ring. Equations (1) and (2)
imply that Qx(X 1) € A,,11 for all partitions A\ with \; < n.

Theorem 1. The map sending Qx(XT) to oy for all A € Dy, and 2 Qpiy(XT) to g
extends to a surjective ring homomorphism 1~Xn+1 — QH*(LG) with kernel generated
by the relations @i,i(X"’) =0 for 1 < i< n. The ring QH*(LG) is presented as a
quotient of the polynomial ring Z[o, . ..,on,q| by the relations

ol +2 Z(*l)kawkm‘—k = (=1)""o2i-n-14, (3)
k=1

where it is understood that o; = 0 for j < 0. The Schubert class oy in this presentation
is given by the Giambelli formulas

0ij =005 +2Y (D)oo + (-1 oy a1 g (4)
k=1

fori>j>0, and
ox = Pfafﬁan[o-&,)\j]lgi<j<r’ (5)
where quantum multiplication is employed throughout. In other words, the quantum

Giambelli formula for LG(n,2n) coincides with the classical Giambelli formula for
LG(n+1,2n+2), when the class 20,41 is identified with q.

Our proof of Theorem 1 is similar to [Be] in that we use the Lagrangian Quot scheme
LQ  to compactify the moduli space of degree d maps P! — LG. However, unlike the
Quot scheme in type A, the scheme L@, is singular in general. More significantly, in
[KT1] we showed that there is no direct analogue of the Kempf-Laksov formula [KL]
for isotropic morphisms in type C. Thus the key intersection-theoretic ingredient
used by Bertram [Be] to prove quantum Giambelli in type A is no longer available.
Instead, we first show how to evaluate any three-term Gromov-Witten invariant in
degree 1 (i.e., one that counts lines on LG satisfying three incidence conditions); this
provides the quantum Giambelli formula (4) for the Schubert classes o; ;, as well as
the ring presentation for Q H*(LG) (§3.3). The Pfaffian formula (5) then follows from
a relation in the Chow group of Lagrangian Quot schemes, which is proved using a
careful analysis of the boundary of LQ; and some remarkable Pfaffian identities for
certain symplectic Schubert polynomials (§2.3). The latter objects were introduced in
[PR] and represent the Schubert classes in the complete symplectic flag variety.

In QH*(LG) there are formulas

Ox- 0y = Zeiﬂ(n) o, 44,

the sum over d > 0 and strict partitions v with |v| = [A|+|u| —d(n+1). The quantum
structure constant € ,(n) is equal to a Gromov-Witten invariant (o, 0, 0,)4, which
is a non-negative integer. The integer (ox,0,,0,/)q counts the number of rational
curves of degree d that meet three Schubert varieties X, X, and X, in general
position. Here v/ is the dual partition of v, defined so that the classes o, and o,/ are
Poincaré dual to each other in H*(LG,Z).

Using Theorem 1, we give formulas and algorithms to compute the quantum num-
bers ef M(n); our approach was inspired by the second author’s study [T] of Arakelov
theory on Lagrangian Grassmannians. The resulting ‘quantum Schubert calculus’ is
a natural extension of the classical formulas of Boe and Hiller [BH], Stembridge [St]
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and Pragacz [P]. In particular we obtain a ‘quantum Pieri rule’ (Proposition 8) for
multiplying by a special Schubert class in QH*(LG), and some cases of a general
‘quantum Littlewood-Richardson rule’ in type C, which we obtain by relating some
of the higher degree quantum structure constants with classical ones (Theorem 7 and
Corollary 7).

This paper is organized as follows. In Section 2 we study the @—polynomials and
symplectic Schubert polynomials, and prove the Pfaffian identities we need for the
latter family. The Lagrangian and isotropic Grassmannians are introduced in Section
3, which includes our proof of the easier part (4) of the quantum Giambelli formula
for LG. We complete the proof of Theorem 1 in Sections 4 and 5, by studying
intersections on the Lagrangian Quot scheme LQ4. Finally, in Section 6 we formulate
a ‘quantum Schubert calculus’ for LG which extends the classical one.

The authors thank Anders Buch and Bill Fulton for helpful correspondence. Both
authors were supported in part by National Science Foundation postdoctoral research
fellowships. We also wish to thank the Institut des Hautes Etudes Scientifiques for
its hospitality during the final stages of this work.

2. Q—POLYNOMIALS AND SYMPLECTIC SCHUBERT POLYNOMIALS

2.1. Basic definitions and properties. We begin by recalling some basic facts
about partitions and their Young diagrams; the main reference is [M]. A partition is
a sequence A = (A1, g, ..., \.) of nonnegative integers in decreasing order; the length
£()) is the number of (nonzero) parts A;, and the weight |A\| = > A;. Set A\, = 0 for
any k > £()\). We identify a partition with its associated Young diagram of boxes;
the relation A D p is defined by the containment of diagrams. When A D u the
set-theoretic difference is the skew diagram M\/u. A skew diagram « is a horizontal
strip if it has at most one box in each column. Two boxes in « are connected if they
share a vertex or an edge; this defines the connected components of «.

Let &, denote the set of all partitions A with A\; < n. A partition is strict if all its
parts are different. Let p, = (n,n —1,...,1) and recall that D,, denotes the set of
strict partitions A with A C p,,. We use the notation A \ p to denote the partition
with parts given by the parts of A which are not parts of u.

Our references for the polynomials in this section are [PR] and [LP]; we will follow
the notational conventions of [KT1] throughout most of the paper. Recall from the
introduction the definitions of the polynomials Q,(X) and the ring A,, of symmetric
polynomials in X = X,,. These polynomials enjoy the following properties [PR, Sect.
4]:

(a) If Ay > n, then Qx(X) = 0.
(b) The set {Qx(X) | A € &,} is a Z-basis for A,,.
(c) Q“( ) =ei(X%,...,X2) for all 4.
(d) Qn(X)QA(X) = QU,,,\)(X) for all A € &,.
() If A= (A1,...,\) and AT = AU (4,4) = (A1,...,4,4,...,A) then
Qx+(X) = Qi s (X)Qx(X).
Define a composition v to be a sequence of nonnegative integers with finitely many

nonzero parts; we set |v| = > v;. The @-polynomials make sense when indexed by a
composition v (in fact, the index can be an arbitrary finite-length sequence of integers,
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following [LP, Rmk. 5.3] — we will not need this here). For any composition v the
polynomial @, (X) is equal to +@Q(X), where A is the partition obtained from v by
reordering the parts of v. The sign is determined by the following rule:

Q(...,i,j,...)(X) = _Q(...,j,i,...)(X)
for any two adjacent indices i, j with 4 # j. In other words, for any composition v
we have @, (X) = sgn(0)Qx(X), where o € So is the permutation of minimal length
such that v,y = Ax for all k. The polynomials defined in this way satisfy Pfaffian

relations such as
1

Qu(X) = (~1)7'Quy 0, (X) - Que gy wny (X)), (6)

Jj=1

%
I

where r is an even number such that v; = 0 for ¢ > r; this follows e.g. from the
Laplace-type expansion for Pfaffians displayed in [FPr, (D.1)]. Using this convention,
we have the following extension of [PR, Prop. 4.1]:

Proposition 1. For any partition A (not necessarily strict) we have
£N)
QNX) =D ab > QuX)), (7)
k=0 '

where the inner sum is over all compositions p such that |\ — |p| =k and \; — p; €
{0,1} for each i, while X' = (za,...,zp).

Proof. One notices the proof of [PR, Prop. 4.1] carries over to this more general
situation. In particular we have the relation

Qad(X) = Qup(X) + 21(Qu15(X) + Qap-1(X") + 21Qa-1-1(X"),  (8)
which is true for any a > b. The rest of the argument is the same. O

Remark. Proposition 1 fails when A is a composition; in fact (8) shows that it is
false even in the case of two-part compositions.

2.2. Symplectic Schubert polynomials. We denote the elements of the Weyl
group W, for the root system C, as barred permutations, following [KT1, §1.1].
W, is generated by the elements sq,...,s,_1: for i > 0, s; is the transposition inter-
changing i and i 4+ 1, and we define sg by

(uy,u, ..., up)So = (W, Uy ..., Un).
For each A € D,, of length ¢, with k =n — £ and X = p,, \ A, the barred permutation
wy = (Xl,...,Xg, ;cav)‘ll)

is the mazimal Grassmannian element of W, corresponding to A\. We also define the
elements

wh =wyso and wy = wxs08150- (9)

The group W,, acts on the polynomial ring Z[X]; in particular the transposition

s1 interchanges x; and xo, while sg replaces 1 by —x; (all other variables remain

fixed). We require the divided difference operators dy, 0 : Z[X]| — Z[X], defined by

9o(f) = (f —sof)/(2z1) and 91(f) = (f —s1f)/(z2 — z1).
Following [PR] and [LP], for each w € W), there is a symplectic Schubert polynomial
¢, (X) € Z[X], which represents the Schubert class associated to w in the cohomology
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ring of Spy,/B. According to [LE’, Thm. A.6L~for each A € D,, the polynomial
CA(X) := €y, (X) is equal to the @-polynomial @ (X). Let us define
Ch(X) = €y (X) and  €{(X) = €y (X);
it follows from (9) that
LX) = 0p(Qr(X)) and  €X(X) = 001 80(Qa (X)) (10)
(valid for £(X) > 1 and £(\) > 2, respectively).
2.3. Pfaffian identities. We next study certain identities for symplectic Schubert

polynomials which are needed in our proof of the quantum Giambelli formula for
LG(n,2n). We see from (7) and (10) that for each strict partition A € D,

ey
X)) =) af ) QuX) (11)
k=0 m
k odd
with the inner sum over all partitions p such that [A| — |u| = k and \; — p; € {0,1}
for each i. For example, we have

LX) = Que1,p(X") + Qap1(X)
= Qu-1(X)Qu(X") — Qu(X")Qp-1(X")

for all a, b with @ > b > 0. Our aim is to prove the two theorems that follow.

(12)

Theorem 2. Fiz A € D,, of length ¢ > 3, and set r = 2| (£ +1)/2]. Then
r—1
Z(_l)J_l Ql,\j,,\r(X) /)\\{Aj,AT}(X) =0. (13)

Jj=1

Proof. Our argument can be conveniently expressed using only the partitions which
index the polynomials involved; we therefore begin by defining an algebra with formal
variables which represent these indices. Let A be a commutative Z-algebra gener-
ated by symbols (a1, as,...), where the entries a; are barred integers. The symbol
(a1,as,...) corresponds to the polynomial @p(X’), where p is the composition with
p; equal to a;, when a; is unbarred, and a; — 1 when a; is barred (in the proof, this
is only used for partitions p). We identify (a,0) with (a).

Let p be a barred partition, that is, a partition in which bars have been added
to some of the entries; assume further that the underlying partition is strict. For
£(u) > 3, we impose the Pfaffian relation

r—1

()= (=17 (g ) - (e~ b e }) (14)

Il
-

(this corresponds to (6) for v = p). Iterating this relation gives

(/1‘) :Ze(ﬂ? V)(Z/luVQ)"'(Vrflvl/r)u (15)

where the sum is over all (r — 1)(r — 3)--- (1) ways to write the set {p1,..., 1}
as a union of pairs {vy,ve} U - U {v,—1,v,}, and where €(u,v) is the sign of the
permutation that takes (u1,...,u,) into (v1,...,v,); we adopt the convention that
Vai—1 2 V.
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We define the square bracket symbols [u], where p is a strict unbarred partition,
as follows: [a] = (@), [a,b] = (@,b) + (a,b), and generally
r—1

] = > (07 g el - T g ] (16)

Jj=1

Finally we impose the following relation in our algebra:

[a,b] = (@)(b) — (a)(b); (17)

this corresponds to (12).
Lemma 1. For each p € Dy, with ¢(u) > 3, we have [u] =0 in A.

Proof. When £(u) € {3,4} the identity is easy to check using (17). For p of larger
length it follows from the Laplace-type expansion for Pfaffians displayed in (16). O

For a partition v and integer k, we define B(v, k) to be the set of all barred
partitions g which are obtained from v by adding bars over k distinct entries. Now,
using equations (11) and (12) we see that (13) corresponds to the following identity,
which must hold for each odd k£ > 0:

r—1
SEUTRAL Y W= (%)
j=1 ;LEB(A\{XJ',AT}JC)

To prove (18), we work as follows. Call a pair [v9;_1, 9] in square brackets dis-
tinguished; pairs which are not distinguished are called normal. A part of X is distin-
guished if it belongs to a distinguished pair. We say that a pair (vo;_1,v9;) is odd if
exactly one of the parts vo;,_1 and vg; is barred. In the sequel all brackets { , } will
be either round ( , ) or square |, ], so all expressions are elements of the algebra A.

We define a matching of a barred partition p to be an expression of the set
{11, 2, ..., pr} as a union of pairs {vy, e} U---U{v,_1,v.} as above, together with
a specification of each {va;_1,12;} as distinguished or normal. Fix an odd integer k
with 0 < k& < r — 1. The first claim is that the left hand side S of the sum (18)

satisfies
S=>"> e\ v){vi,m} - {ve1, v} (19)

where (i) the outer sum is over p € B(\, k) with the part equal to A, unbarred, (ii)
the inner sum is over all matchings v of p with a unique distinguished pair, which
contains A, and (iii) the sign €(\, ) is defined as above, by ignoring the bars.

Let t(u,v) be the total number of odd pairs in the summand

e\ v){vi, vt {ve—1, 00}

of S; note that t(u,v) > 0. Observe, for each ¢, that the set of summands with
t(u,v) = t can be partitioned into subsets of size 2!: elements in a single subset J
differ only by moving some of the bars within the odd pairs. The sum of the elements
in J is equal to a single expression €(\, v){v1,va} - {vr_1, v} with ¢t fewer barred
parts, t + 1 distinguished pairs and no odd pairs.

Working in this way we may eliminate all odd pairs from the sum S. Hence S = 5’,
where

~ o~

S =33 e w{vnvat e {veon ki (20)

noov
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here (i) the outer sum is over all barred partitions p with parts obtained by adding
an even number, less than k, of bars to the parts of A, (ii) the inner sum is over all
matchings v of p such that A, is distinguished and the number of barred parts plus
the number of distinguished pairs equals &k + 1, and (iii) the sign e()\, v) is defined by
ignoring the bars, as before.

Observe next that S’ splits into subsums S”; each S” is the sum of all summands
in S’ with a given set of distinguished parts and normal pairs. It is clear that, up
to a sign depending on S”, the remainder after factoring out the normal pairs from
S” is a Pfaffian sum like (15) which involves only distinguished pairs. Now Lemma 1
implies that S” = 0; we deduce that S’, and hence S, vanishes. O

Theorem 3. For every A € D,, of even length £ > 4 we have
-1 A
Z(i]‘)‘]il Qt/)(j,)\[ (X) /)i\{)\j,)\g}(X) = 0' (21)
j=1

Proof. Using (8), one computes that for a > b > 0,
309, 00(Qap(X)) = Qa-2,4-1(X") + Qa—1,5-2(X")
= Qa—2(X")Qp-1(X") = Qu_1(X")Qp—2(X"),
where X" = (x3,...,2,). We deduce that
Pfaffian[€}, ) (X)|i<icj<e =0

for any partition A of even length ¢ > 4, by arguing as in Lemma 1. The proof of the
general case of (21) will require significantly more work.

For each r and s with r > s > 0, let m, 5(x1,z2) denote the monomial symmetric
function in z; and z3. In other words, m, s(x1,22) = 272§ + x5af if r # s and
Mys(T1,22) = xfah if r=s.

Proposition 2. For any strict partition A of even length £ > 0 we have

CUSERD DIRUNCIESIED SRR (Rt B DI -AC NS

0<s<r<t a+2b=r+s+3 veC(\a,b)
7,8 even a,b>0

where C (A, a,b) is defined as the set of compositions v with \; — v; € {0,1,2} for all
1 and A; —v; =1 (resp. A; —v; = 2) for exactly a (resp. b) values of i.

Proof. Use (10) and (11) to compute

-2
¢l(X) = aoag( DD QH(X’)), (23)
3=0  peP(\j+1)
j even
where P(A, j+1) is the set of compositions p with |A\|—|u| = j+1 and A; —pu; € {0,1}
for each i. Note also that for any j, &k > 0 we have

O(wlaf) =sen(j—k) > wfas. (24)
ct+d=j+k—1
c,d>min{j,k}

For each strict partition A and j, k > 0, let P(\, 7, k) be the set of pairs of compo-
sitions (u,v) such that p € P(A,j) and v € P(u, k). Now apply (7) and (24) in (23)
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to get
(X)) = Y 90 (wfab) > Qu(X")
j even (p,v)EP(N,j+1,k)
O (Rt D DR B SR N )
j even c+d=j+k—1 (n,v)EP(N,j+1,k)
¢,d>min{j,k}
c odd

It is useful to observe that €Y(X) is a polynomial in R[z?,23]%2, where R =
Zlzs,...,r,)%"=2. This follows because

9o(€X (X)) = 01(€X(X)) =0

(for the latter, use the fact that 900,80 = 901801 and 81 (Qx(X)) = 0). Using
this to cancel all irrelevant terms in the previous equality gives

X)) = D meslonm) Y] > sen(k— ) Qu(X"). (25)
0<s<r< j,k even  (p,v)EP(X,j+1,k)
r,s even jrk=r+s+2
min{j,k}<r,s
Consider the terms occuring in the inner sum »_ > of (25) which involve a fixed
v € C(\a,b), for some a,b > 0 such that a +2b = r + s + 3. Observe that the

coefficient of any such term depends only on (7, s, a,b) and can be expressed as

> s-a(,,): (26)

7,k even
jtk=r+s+2
min{j,k}<r,s
Now (26) can be rearranged as an alternating sum of binomial coefficients, which in
turn simplifies to the single binomial coefficient displayed in (22). O

For any r and s, both even, the coefficient of m, s(z1,x2) in the left-hand side of
(21), expanded as a polynomial in R[z?, 223]%2, is

-1
Sentgam Y (5h) S e e

j=1 a+2b=r+s+3 veC(AN{A;,A\¢},a,b)

a,b>0
Hence, to prove Theorem 3 it suffices to show that the expression (27) vanishes for
any strict partition A of even length ¢ > 4 and any r,s > 0, both even.

To accomplish this, we form an algebra B as in the proof of Theorem 2, except
that the symbols (a1, as,...) are now sequences of integers which can each have up to
two bars. This time the symbol (ay,as,...) corresponds to the polynomial Q. (XM,
where v is the composition with v; equal to the integer a; minus the number of bars
OVEr ;.

As before, we impose the Pfaffian relations (14) in B. Define also [a, b] = (@, b) +
(a,b), where a and b are integers, each with up to one bar. More generally, define [1]
for any barred partition y, as in (16). We also impose the relations

[a, 8] = (@) (b) — (a)()
for integers a, b, with up to one bar each. As in the proof of Theorem 2, we have

Lemma 2. Let p be a strict partition of even length at least 4, such that either p is
unbarred or every part of u has a bar. Then we have [u] =0 in B.
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The vanishing of (27) corresponds to the following identity in B:

-1
a—1 = =
—1)7-1\, —
> (L)Zerrra Y w0 e
a+2b=r-i(-)s+3 Jj=1 veC(AN{X;,\¢},a,b)

For each a and b, denote by W, the contents of the inner two sums in (28). By
applying the Pfaffian expansion to the terms (v) in Wy 3, we can write

Wap = > _ e\ p){p1,p2} - {pe-1.pe}.

The summands in W, ; are of three types: first, those that contain a pair (p2;—1, p2;)
with a total of three bars; second, those not of the first type which contain at least
two pairs, each with exactly one bar; third, the remaining summands. Let R, Sa
and T, ; denote the sum of the summands of, respectively, the first, second and third
types.

Arguing as in the proof of Theorem 2 and using Lemma 2, we see that R, =
Sap = 0, for all a, b. However, it is not true that 7, ; is always zero. Observe that
Top splits as a sum Y g T(ib indexed by the number g of pairs in each summand which
contain 4 bars. We will show that

3 (S j_;i b)Tfyb =0 (29)

a+2b=r+s+3
a,b>0

for each g. In the following we give the argument when g = 0, and afterwards we
describe the small modifications for the proof of the general case.
Assume that r > s and introduce

u=(r—s)/2 and v=(r+s)/2.

We recursively define a sequence of coefficients: Put e, = 1 and

2m 2m
em = - ———em-1
m-—u v+2—m

form=u+1,...,v+1.
Lemma 3. We have e,411 = 0.

Proof. For any integer p > 0 we have the combinatorial identity

Seue(f)(2,) = {(_1)(]2_7)((“2)/2) RSN )

. —q 0 if p+ ¢ is odd.

This is proved, e.g., by showing the left-hand side L(p,q) satisfies the recursion
2L(p,q)+ L(p—1,9— 1)+ L(p—1,¢g+ 1) = 0 and inducting on p. When ¢ = 0, (30)
reduces to an identity attributed to Dawson in [R, p. 71]. The assertion e,41 = 0
follows from the case (p,q) = (v + 1,u) of (30). O
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We deduce from Lemma 3 that

a—1 0 vt 2m 0
Z s+1—b Ta,b = Z m—u T2m+1,1)+17m

a+2b=r+s+3 m=u
a,b>0
v+1
2m
_ 0 0
= E €m—1 (T2m71,v+27m + vro2—m T2m+1,v+17m)'
m=u-+1

Lemma 4. We have
(,U + 2 — m) T20m—1,v+2—m + 2m T2()m+l,v+1—m =0 (31)
for every integer m with u+1<m<v+1.

Proof. We have that
T, = >, > e\v)fv,v}te{vea,ml,

neC(Na+2,b) v

where the inner sum is over all matchings v of p with (i) a unique distinguished pair,
which contains Ay and has bars on both entries, (ii) a unique pair which contains only
one bar, and (iil) no pairs which contain 3 or 4 bars.

Now,

(U—|—2—m) T20m—1,v+2—m = Z ZE(/\, V){V171/2}~-~{1/g_1,l/g}, (32)

pneC(X,2m+1,v+2—m) (v,i)

where the inner sum is over pairs (v, ), where v is a matching satisfying (i)—(iii), and
1 is the index of a double-barred part of v. Also,

2m Tgm—i—l,v—&-l—m = Z Z 6(>‘v P){Pl, p2} T {pé—l; pe}’ (33)
pneC(X,2m+3,v+1—m) (p,j)
where the inner sum is over pairs (p, j), where p is a matching satisfying (i)—(iii), and
where j is the index of a single-barred part of p, which is not in the distinguished pair,
nor in the unique pair which contains only one bar. Observe that there is a bijection
between the pairs (v,4) which appear in (32) and pairs (p, j) in (33).
Adding (32) and (33) and using the bijection between the indexing sets and the
identity
(€, d) +2(c,d) + (c,d) = [¢,d] + [, d],
we may express the left-hand side of (31) as a sum in which every summand has two
distinguished pairs. By invoking the identity

[@,0)([e,d] + [e,d]) — [a,€)([b, d] + [, d]) + [a,b]([b, c] + [b,7])
= —(@(O®)[e.d] + @)@)[b,d] — @)(d)[b, ]
(with @ = Ay, always), we reduce ourselves to a situation where we may use Lemma
2 and conclude that (31) holds. O

It follows from Lemma 4 and the previous discussion that (29) holds for g = 0.
When g is positive, the above argument goes through with the triple (b, r, s) replaced
with (b—2g,7—2g, s—2g); note that the binomial coefficients in (29) remain unchanged
under these substitutions. This finishes the proof of Theorem 3. d
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3. IsOTROPIC GRASSMANNIANS

3.1. Schubert subvarieties and incidence loci. The principal object of study is
the Lagrangian Grassmannian LG(n, 2n) which parametrizes n-dimensional subspaces
of a fixed 2n-dimensional complex vector space V', isotropic for a fixed nondegenerate
skew-symmetric bilinear form on V. When n is fixed, we write LG for LG(n,2n).
We have dim¢ LG = n(n + 1)/2. The identities in cohomology that we establish in
§63.1 and 3.2 remain valid if we work over an arbitrary base field, using Chow rings
in place of cohomology.

Let F, be a fixed complete isotropic flag of subspaces of V. The Schubert varieties
Xy C LG — defined relative to Fy — are indexed by partitions A € D,,. One has
dim(X N F{) = dim(X N Fy) +n — k for any Lagrangian subspace %, so there are two
ways to write the conditions which define a Schubert variety in LG:

X ={Z€LG| k(X = V/Fp1x)<n—i, i=1,....,00\)} (34)
={SeLG|tk(E—>V/Fr, ) <n+l—i—X,i=1....N} (35

We call particular attention to the alternative formulation (35), as these are the
relevant rank conditions for situations where the morphism ¥ — V is allowed to
degenerate.

Set oy = [X,] in H*(LG,Z). The classical Giambelli formula (5) for LG is equiv-
alent to the following identity in H*(LG,Z):

r—1
oy = Z(*l)jflﬂ,\j,/\r COA{A A} (36)
j=1
for r = 2[(£(\)+1)/2]. For u € Dy, let p’ = py, \ p denote the dual partition. Then,
we recall, the Poincaré duality pairing on LG satisfies

/ UAO'/L:(S)\;L/-
LG

Later on, in place of ¥ — V', we will have a morphism of vector bundles £ — O7r®V
over some base T', with £ a rank n vector bundle and with the morphism generically of
full rank, but with loci where the rank drops. So we need to study the Grassmannians
IG(k,2n) of isotropic k-dimensional subspaces of V', for various k& < n, notably for
k=mn—1and k =n — 2. We have IG(n,2n) = LG(n, 2n).

Observe that any Spa,-translate of the Schubert variety X, ,—1,.. k41 in LG is of
the form {¥ € LG | ¥ D A} for a unique A € IG(n — k,2n). Any such translate
can be identified with LG(k,2k), and moreover, for any A, meets X, in a Schubert
subvariety of LG(k, 2k):

Proposition 3. Let A be an isotropic subspace of V of dimension n — k, and let
Y C LG(n,2n) be the subvariety of Lagrangian subspaces of V' which contain A.
Then Xx NY is a Schubert variety in Y ~ LG(k,2k) for any \ € D,. Moreover, if
L(N) < k then the intersection, if nonempty, has positive dimension.

Proof. Define the isotropic flag F, of subspaces of A+/A by
F; = ((F,+ A)n Ah)/A.
For any Lagrangian ¥ C V containing A, we have

dim(X N F;) = dim(($/A) N F;) + dim(A N F}).
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So X,NY is defined by the attitude of /A with respect to ﬁ., and hence is a Schubert
variety (if nonempty). For the intersection to be a point, we would require at least k
rank conditions as in (34), that is, £(\) > k. O

The space IG(n — 1,2n) is the parameter space of lines on LG, and the variety of
lines incident to X (for nonempty A) is the Schubert variety

Xy ={YelIGn—1,2n)| k(X = V/Fpy_y)<n+1—i—X,ali}. (37)

n

Note the rank conditions are identical to those in (35). The codimension of X/ is
|A] = 1. Analogously, IG(n — 2,2n) parametrizes translates of X,,...43 (isomorphic to
the quadric threefold LG(2,4)) on LG. Now suppose £(A) > 2; then translates of
X,...43 on LG incident to X, form the Schubert variety

N={Y"€IGn—22n)|1k(X" = V/F 1 y)<n+1—i—X\, ali}, (38)

n

which has codimension |A\| — 3. We remark that the subvarieties we have described
are only some of the Schubert varieties in IG(n — 1,2n) and IG(n — 2,2n).
The modular interpretation of the loci ¥ and X% is explained by

Lemma 5. Let A be an isotropic subspace of V' of dimension n — k, and let F,, be
a fized Lagrangian subspace of V. Then there exists a unique Lagrangian subspace
¥ which contains A and satisfies dim(X N F,,) = dim(AN F,) + k. In fact, we have
¥ = Span(A, At N F,).

Proof. Set W = A