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Abstract. An equivariant stable birational invariant of an action
of a finite group on a smooth projective variety is the first cohomol-
ogy group of the Picard module. Bogomolov–Prokhorov and Shinder
computed this for actions of cyclic groups on rational surfaces, with
maximal stabilizers, in terms of the geometry of the fixed point lo-
cus. Using the Brauer group of the quotient stack, we extend the
computation to more general actions and relate it to the equivariant
Burnside group formalism.

1. Introduction

Consider a smooth projective variety X over a field k of characteristic
zero, with a fixed algebraic closure k̄/k. Let G be a profinite group.
Following Manin [24], we say that X is a G-variety if we have an action
of G on Xk̄. Manin distinguished two cases:

• Algebraic: G = Gal(k̄/k) and the action is via the action on k̄,
• Geometric: k = k̄ and G is finite, acting by G ↪→ Aut(X).

In the algebraic case, we are interested in (stable) k-rationality of X.
In the geometric case, we are interested in (stable) linearizability, where
linearizability means the G-equivariant birationality of X and P(V ) for
some representation G → GL(V ), and stable linearlizability means the
same for X × Pm, for some m (where G acts trivially on Pm).

One of the insights in [23] and [24] was that there are striking sim-
ilarities between the study of k-rationality problems for geometrically
rational surfaces X over nonclosed fields k and the study of G-surfaces,
up to G-equivariant birationality, over algebraically closed fields.

Of fundamental importance, in both cases, is the cohomology group

H1(H,Pic(Xk̄)), (1.1)

where H ⊆ G is a finite-index subgroup. Its vanishing, for all H, is a
necessary condition for stable k-rationality, in the algebraic case, respec-
tively, stable linearizability, in the geometric case. In principle, (1.1) is
computable, provided one can reconstruct the H-action on Pic(Xk̄). In
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practice, in the algebraic case, this amounts to the determination of the
Galois action on exceptional curves, or the Hasse-Weil L-function – both
computationally intensive problems. This has been implemented for del
Pezzo surfaces and cyclic actions in [30], for more general actions in de-
gree 4 in [7], and diagonal del Pezzo surfaces of degree ≤ 3 in [8], [16],
[31].

On the other hand, Manin suggested (see, e.g., [24, Thm. 5.9]) to use
information about fixed-point loci for the action of G – in the geometric
case, this is easily available from the equations of the surface.

From now on, we focus on the geometric case; we will assume that k
is algebraically closed and X is a rational surface. The starting point
for our paper was a theorem of Bogomolov and Prokhorov [6]: a cyclic
group G = Cp of prime order p, acting regularly on X, can have at most
one irreducible (smooth) curve C of genus g ≥ 1 in its fixed locus, and
the cohomology is given by

H1(G,Pic(X)) ∼= (Z/pZ)2g,

where g = g(C) is the genus of C. This was extended by Shinder [28]
to arbitrary cyclic actions, under the assumption that all stabilizers are
maximal.

Our main result is an algorithm that allows a direct computation of
H1(G,Pic(X)) in the presence of fixed points, in particular, for cyclic
G, in terms of curves with nontrivial generic stabilizer. This is very
close, in spirit, to the Burnside group formalism from [20], providing
new invariants in equivariant birational geometry.

We approach the computation of H1(G,Pic(X)) via the Brauer group
Br([X/G]) of the quotient stack [X/G], or more classically, the equivariant
Brauer group, introduced in [12], see also [14, Sect. 2.3].

In Section 2, we recall basic notions concerning group cohomology and
the plane Cremona group. In Section 3, we discuss stable birational
invariants of G-actions, related via the exact sequence

Pic(X)G
δ2−→ H2(G, k×)→ Br([X/G])→ H1(G,Pic(X))

δ3−→ H3(G, k×).

This sequence determines H1(G,Pic(X)) in the presence of fixed points,
by the triviality of δ2 and δ3, in this case. We compute Br([X/G]) in Sec-
tion 4, from information on curves with nontrivial generic stabilizer. We
include representative examples of such computations in Section 5 and
comment on connections with equivariant Burnside groups in Section 6.
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and helpful comments. The first author was partially supported by the
Swiss National Science Foundation. The second author was partially
supported by NSF grant 2000099.
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2. Generalities

We work over an algebraically closed field k of characteristic zero.

2.1. Cohomology of finite groups. Throughout, G is a finite group,
and Hi(G,M) the group cohomology with coefficients in a G-module M .
We write MG for the submodule of G-invariant elements in M .

We are interested in M = k×, with trivial action. The Q-module
structure on the quotient M/Mtors by the torsion subgroup Mtors = µ∞
(roots of unity) gives rise to an identification

Hi(G, k×) ∼= Hi(G, µ∞) for i > 0,

and in particular, the independence of k. We record computations for
several particular groups. For a cyclic group Cm = Z/mZ, we have

H2(Cm, k
×) = 0, H3(Cm, k

×) ∼= Z/m.

For a bicyclic group G := Z/mZ⊕ Z/nZ, with d := gcd(m,n),

H2(G, k×) ∼= Z/d, H3(G, k×) ∼= Z/m⊕ Z/d⊕ Z/n.

For a tricyclic group G := Z/m1Z⊕ Z/m2Z⊕ Z/m3Z, we put

dij := gcd(mi,mj), d := gcd(m1,m2,m3),

and then

H2(G, k×) ∼=
⊕
i<j

Z/dij, H3(G, k×) ∼=
⊕
i

Z/mi ⊕
⊕
i<j

Z/dij ⊕ Z/d.

For the dihedral group D8 of order 8, we have

H2(D8, k
×) ∼= Z/2, H3(D8, k

×) ∼= (Z/2)2 ⊕ Z/4.

(The first two computations are in [8]; the same method gives the others.)
Recall that, for any (pro)finite G, we have

H1(G,Q/Z) ∼= H2(G,Z), (2.1)

coming from the exact sequence

0→ Z→ Q→ Q/Z→ 0.

We also have

Hi(G,M) ↪→
⊕
`

Hi(Syl`,M)NG(Syl`),

where Syl` = Syl`(G) is an `-Sylow subgroup of G and NG(Syl`) is its
normalizer. This allows to separate `-primary components of Hi.
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2.2. The Cremona group and its finite subgroups. The plane Cre-
mona group Cr2 is the group of birational automorphisms of P2. Each
finite subgroup G ⊂ Cr2 can be realized as a subgroup of (regular) auto-
morphisms of a smooth projective rational surface. The classification of
groups that can occur, and the determination of the conjugacy classes of
these groups in Cr2, has occupied generations of mathematicians, culmi-
nating in [3], for abelian G, and [11], in general.

The standard approach to these problems relies on the equivariant Min-
imal Model Program: It suffices to consider minimal G-surfaces, which
in turn are G-isomorphic to either conic bundles over P1, or del Pezzo
surfaces. We have Pic(X)G ' Z2 in the first case, respectively, ' Z,
in the second case. When the anticanonical degree is ≥ 5, there is no
cohomology, i.e., H1(G,Pic(X)) = 0 [25, Thm. 29.3].

In case of del Pezzo surfaces of degree≤ 4, the group G embeds into the
Weyl group of the corresponding root system on the (primitive) Picard
group, i.e., D5, E6, E7, E8. Finite subgroups of these can be enumerated.
Not all of these groups arise as automorphisms of rational surfaces, but
for those that do, equations of these surfaces are written down explicitly.
In the conic bundle case, the analysis is based on a decomposition of the
G-action into an action of a quotient group on the base, and an action
of the kernel on the generic fiber; see, e.g., [11], [26].

2.3. Abelian subgroups of the plane Cremona group. A classi-
fication of finite abelian subgroups G ⊂ Cr2 can be found in [3]. We
summarize the main features.

• The only G that occur are [3, Thm. 6]:

(Z/2)4, (Z/3)2, (Z/4)2 ⊕ (Z/2), Z/2n⊕ (Z/2)2, Z/n⊕ Z/m, ∀n,m.
• If G fixes some curve of positive genus then G is cyclic, of order
≤ 6. If the curve has genus > 1, the order is 2 or 3 [3, Thm. 3].
• If no (nontrivial) element of G fixes a curve of positive genus,

then G is conjugate to a subgroup of Aut(P2), Aut(P1 × P1), or
G = Z/2× Z/4, with a particular action [3, Thm. 5].
• If G is cyclic and no element of G fixes a curve of positive genus

then G is conjugate to a subgroup of Aut(P2) [3, Thm. 4].

Cyclic subgroups play a special role in the classification: they always
admit fixed points. There are two series of such groups:

(dJ) de Jonquières, i.e., preserving a pencil of rational curves,
(ndJ) not de Jonquières.

Nonlinearizable groups of type (dJ) have even order 2n, with element
of order 2 fixing a hyperelliptic curve C and residual action of Cn on C.
There are 29 families of conjugacy classes of (ndJ), listed in [4, Table 2].
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2.4. Cohomology of finite subgroups of the Cremona group. In
the del Pezzo case, all possible cohomology groups

H1(G,Pic(X))

have been computed, see, e.g., [22], [29], [30], [9, Thm. 4.1], using the
presentation of G as a subgroup of the relevant Weyl group, as explained
in Section 2.2. However, not all subgroups of the respective Weyl groups
are realizable as automorphisms. In the conic bundle case, this compu-
tation can be found in [15, Thm. 2.6]; the cohomology group is always
2-torsion.

A theorem of Bogomolov and Prokhorov [6] states:

H1(G,Pic(X)) ∼= (Z/pZ)2g,

when G = Cp is cyclic of prime order p and g is the genus of the unique
curve of positive genus fixed by G (if such a curve exists). It applies to
(dJ) and p = 2, and to five actions of type (ndJ), with p = 2, 3, 5. The
proof relies on classification.

Shinder [28] generalized this result to arbitrary finite cyclic G = Cn
acting on surfaces X with H1(X,Z) = 0, under the assumption that all
stabilizers are maximal. For rational X, this applies to two actions, not
covered by [6], namely, #5 (n = 4) and #17 (n = 6) in [4, Table 2]. In
Section 4 we provide a general result describing cohomology in terms of
fixed loci, with a treatment of arbitrary cyclic actions on rational surfaces
in Section 5.

3. Stable birational invariants of G-actions

Let X be a smooth projective variety and G a finite group acting
regularly on X. It is known that

H1(G,Pic(X))

is a stable G-birational invariant and that

H1(H,Pic(X)) 6= 0, H ⊆ G,

is an obstruction to stable linearizability. In this section we discuss sev-
eral related invariants of G-actions.

Let
Br(X) := H2(X,Gm),

be the Brauer group of X. We also consider the Brauer group of the
quotient stack

Br([X/G]) = H2([X/G],Gm).

It is a stable G-birational invariant of X, as well as a stable birational
invariant of the quotient stack [X/G], in the sense of [19, Sect. 4].
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If X is rational then

Br(X) = 0.

A spectral sequence for G-actions yields:

0→ Hom(G, k×)→ Pic(X,G)→ Pic(X)G
δ2−→ H2(G, k×)

→ Br([X/G])→ H1(G,Pic(X))
δ3−→ H3(G, k×).

(3.1)

We record the simple observations:

• Both δ2 and δ3 are zero, provided G has a fixed point on X, e.g.,
when G is cyclic.
• If G is cyclic, then H2(G, k×) = 0.

The Amitsur group

Am(X,G)

is defined as the image of δ2 [5, Sect. 6]. It is a stable G-birational
invariant. In particular,

Am(X,H) 6= 0, H ⊆ G,

is an obstruction to stable linearizability [27].
Analogously, the image of δ3 is a stable G-birational invariant. This

follows from the corresponding property for H1(G,Pic(X)) and the func-
toriality of δ3. In [17, Sect. 6] we explained in the algebraic case how to
compute δ3 effectively; the adaptation to the geometric case is straight-
forward.

In Section 5 we give examples of G-actions on rational surfaces with
nontrivial

Br([X/G]), H1(G,Pic(X)), δ3.

4. Computing the Brauer group

In this section, we assume that X is a smooth projective rational sur-
face, with a generically free regular action of a finite group G. Our goal
is to describe the invariant Br([X/G]). Our description makes use of:

• the injectivity of the restriction map Br([X/G])→ Br([U/G]), for
nonempty G-invariant open U ⊂ X [1, Prop. 2.5 (iv)], hence also
of restriction to the generic point

Br([X/G])→ Br(k(X)G); (4.1)

• a description in terms of residues of the image of the map (4.1)
[18, Prop. 2.2].
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The description in terms of residues is similar to the classical descrip-
tion of the Brauer group of a nonsingular projective variety as the sub-
group of the Brauer group of the function field, having trivial residues
along all divisors. In the present setting, there are analogous residue
maps, and Br([X/G]) is identified with

ker

Br(k(X)G)→
⊕

[ξ]∈X(1)/G

H1([Spec(k(ξ))/Dξ],Q/Z)

 . (4.2)

Here, ξ denotes an orbit representative of codimension 1 points on X,
with decomposition group

Dξ := {g ∈ G | ξ · g = ξ}.
The decomposition group contains the inertia group Iξ, consisting of
the elements of Dξ which act trivially on k(ξ). The inertia group is

cyclic, since the normal bundle to the closure {ξ} at ξ is a faithful one-
dimensional representation, and central in Dξ, since k contains all roots
of unity.

Lemma 4.1. The map in (4.2) factors through⊕
[ξ]∈X(1)/G

H1(k(ξ)Dξ ,Q/Z).

Fixing a Brauer class α ∈ Br(k(X)G) and an orbit representative ξ of
codimension 1 points on X, the H1(k(ξ)Dξ ,Q/Z)-component of the image
of α is equal to |Iξ| times the image of α under the classical residue map

Br(k(X)G)→ H1(k(ξ)Dξ ,Q/Z).

Proof. This follows from [18, Rem. 2.4], which relates the stacky residue
map in (4.2) to the classical residue map in the statement of the lemma,
and shows that the former is |Iξ| times the latter. �

We recall the characterization of the Brauer group of the function field
of a smooth projective rational surface S over k, see [2, Thm. 1]:

0→ Br(k(S))→
⊕

curves C⊂S

H1(k(C),Q/Z)
r−→

⊕
k-points p∈S

Q/Z. (4.3)

Here the map r is the sum over local ramification indices at points over
p of the normalization of C, for all curves C passing through p.

Proposition 4.2. The Brauer group Br([X/G]) is identified with the
subgroup of Br(k(X)G) of elements with |Iξ|-torsion residue under the
classical residue map to H1(k(ξ)Dξ ,Q/Z) for every orbit representative ξ
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of codimension 1 points of X. Combining the residue map for every ξ,
the resulting homomorphism

Br([X/G])→
⊕

[ξ]∈X(1)/G

H1(k(ξ)Dξ ,Q/Z).

is injective.

Proof. We have the isomorphism of Br([X/G]) with the kernel (4.2). By
Lemma 4.1, this kernel is precisely the subgroup of Br(k(X)G), satisfying
the condition on residues in the statement of the proposition. So, the
first assertion is proved, and this gives the homomorphism in the second
assertion. It remains to establish injectivity.

Let α ∈ Br(k(X)G) be an element of the kernel. We let Y := X/G be
the quotient variety and take S → Y to be a resolution of singularities.
To show that α = 0, we are reduced by (4.3) to showing that the residue
of α vanishes at all components of the exceptional divisor of S → Y . But
the latter is a simple normal crossing divisor, with rational components,
without loops. So we get the triviality of the residues of α at components
of the exceptional divisor from the fact that the image of α in the middle
term of (4.3) lies in the kernel of r. �

Remark 4.3. The assertion about the injective homomorphism in Propo-
sition 4.2 relies on the structure of the resolution of quotient surface
singularities and may fail in higher dimension. For instance, if G is the
Klein four-group, then the projectivization of the regular representation
gives an action on X ∼= P3 with trivial inertia at all codimension 1 points,
but the exact sequence (3.1) yields

0 6= H2(G, k×) ∼= Br([X/G]).

The following result allows us to to determine the image of H2(G, k×)
in Br([X/G]), for given G, in terms of the description of Proposition 4.2,
(see also Remark 4.5).

Proposition 4.4. Let β ∈ H2(G, k×), with image in Br([X/G]) restrict-
ing to α ∈ Br(k(X)G). Let ξ be an orbit representative of codimension 1
points on X. Then:

(i) The residue of α in H1(k(ξ)Dξ ,Q/Z) is equal to the residue of the
restriction of α to Br(k(X)Dξ) in H1(k(ξ)Dξ ,Q/Z).

(ii) The restriction of α to Br(k(X)Dξ) lies in the image of the infla-
tion map

infξ : H2(Dξ/Iξ, (k(X)Iξ)×)→ H2(Dξ, k(X)×),

of the Hochschild-Serre spectral sequence.
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(iii) The residue of α in H1(k(ξ)Dξ ,Q/Z) is identified, under the iso-
morphism (2.1)

H1(k(ξ)Dξ ,Q/Z) ∼= H2(k(ξ)Dξ ,Z),

with the image under the valuation map

H2(Dξ/Iξ, (k(X)Iξ)×)→ H2(Dξ/Iξ,Z)

of the lift of the restriction of α to Br(k(X)Dξ) under the map infξ
in (ii). The action of Dξ on k(ξ) expresses Dξ/Iξ as a quotient of
the absolute Galois group of k(ξ)Dξ ; the corresponding inflation
map sends H2(Dξ/Iξ,Z) to H2(k(ξ)Dξ ,Z).

Proof. The map of quotient varieties X/Dξ → X/G induces an isomor-
phism of residue fields at the points corresponding to ξ. As well, it is étale
in a neighborhood of [ξ]. The residue map commutes with restriction by
an étale morphism, so we have (i).

In the remainder of the proof, for notational simplicity, we suppose that
Dξ = G. By a combination of the Hochschild-Serre spectral sequence and
Hilbert’s Theorem 90, the assertion in (ii) is equivalent to the triviality
of the restriction of α to Br(k(X)Iξ). But Iξ is cyclic, so H2(Iξ, k

×) = 0,
and the formation of α commutes with restriction.

For (iii), we only need to recall that a recipe to compute the residue of
α is to find a finite Galois extension of k(X)G, unramified over [ξ], and
a 2-cocycle for the Galois group, whose class inflates to α. Applying the
valuation to the 2-cocycle, to get a Z-valued 2-cocycle, leads to a class
which becomes the residue of α, when we make the identification with a
Q/Z-valued 1-cocycle as in statement (iii). By (ii), we have this for the
Galois extension k(X)Iξ . �

Remark 4.5. The recipe in Proposition 4.4 (iii) comes down to obtaining
a homomorphism Dξ/Iξ → Q/Z. This is determined by its restriction to
cyclic subgroups, thus the computation is reduced to a treatment of the
case Dξ/Iξ is cyclic. Then Dξ is a central extension of cyclic groups, so,
bicyclic:

Dξ
∼= Z/mZ⊕ Z/nZ,

with H2(Dξ, k
×) cyclic of order d := gcd(m,n); the inflation map

H2(Z/dZ⊕ Z/dZ, k×)→ H2(Dξ, k
×)

is an isomorphism. This lets us reduce further to the case

m = n = d = |Iξ|, Iξ = Z/dZ⊕ 0.

Let ζ denote a chosen primitive dth root of unity, by which Z/dZ ∼= µd,
and let us write k(X)0⊕Z/dZ = k(X)Dξ(γ1/d), where the chosen generator
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of Iξ acts on γ1/d by multiplication by ζ. A generator of

H2(Dξ, k
×) ∼= H2(Dξ, µ∞)

is the cup product of the projections to the two factors. The image in
H2(Dξ, k(X)×), in Proposition 4.4 (ii), lifts to the class represented by
γ−1 ∈ k(X)Dξ , under the standard isomorphism of H2(Z/dZ, (k(X)Iξ)×)
with a quotient by norms of (k(X)Dξ)×.

For the next result we impose the hypothesis that the G-action on X
is in standard form, see [13, Sect. 7.2]. This means that there is a simple
normal crossing divisor on whose complement G acts freely, such that
the G-orbit of every component of the divisor is smooth; general X may
be brought into standard form by a sequence of equivariant blow-ups.

Corollary 4.6. Suppose that the G-action on X is in standard form,
and let

αξ ∈ H1(Spec(k(ξ)Dξ),Q/Z), |Iξ|αξ = 0,

be given, for every orbit representative ξ of codimension 1 points of X.
There exists an α ∈ Br([X/G]), mapping under the residue map to
(αξ)[ξ]∈X(1)/G, if and only if the local ramification indices at points over p
sum to 0, for every orbit representative p of k-points of X.

Proof. The quotient variety X/G has cyclic quotient singularities, over
which a minimal resolution has chains of rational curves as exceptional
divisors. We conclude by the exact sequence (4.3). �

Remark 4.7. Computations of Brauer groups of Deligne-Mumford stacks
have been carried out in, e.g., [1], however, mostly in the setting of points
and curves with nontrivial generic stabilizers.

5. Examples

We give representative examples of computations of H1(G,Pic(X)).
In the absence of fixed points, when there is the possibility of subtle
interplay with the other terms in (3.1), we also comment on these.

5.1. Cyclic groups. Let G be a cyclic group. In this case, there are
always fixed points. The maps δ2 and δ3 are zero maps, and

Br([X/G]) = H1(G,Pic(X)).

Corollary 4.6 allows us to compute the left side. Given the results in [6]
and [28], we focus on cases when

• The order of G is composite,
• some nontrivial stabilizers are proper subgroups of G.
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We assume that X is minimal, i.e., Pic(X)G ∼= Z (del Pezzo case) or
Z2 (conic bundle case). We use the classification of nonlinear actions,
summarized in [4, Table 2] and [3, Chapter 8].

(dJ) We have

G = C2n = 〈α〉 ⊂ Cr2,

and αn is a de Jonquières involution, described in detail in [3,
Prop. 7.6.2, Prop. 7.6.3]. The fixed locus of αn contains a unique
smooth curve, which is a hyperelliptic curve

X ⊃ C
π−→ P1.

The induced action of α on the base P1 is cyclic of order n, with
two fixed points, disjoint from the branch locus of π. Thus the
branch locus consists of rn points, for some positive integer r,
and g(C) = (rn− 2)/2. There are three cases, depending on the
number of fixed points for the action of α on C.

Applying Corollary 4.6 and the Riemann-Hurwitz formula for
the genus g′ = g(C/G) of the quotient curve C/G we obtain

H1(G,Pic(X)) =


(Z/2Z)r−2 4 fixed points, g′ = (r − 2)/2,

(Z/2Z)r−1 2 fixed points, g′ = (r − 1)/2,

(Z/2Z)r no fixed points, g′ = r/2.

(ndJ) We consider two actions, of G = C6, described in [4, Table 1,
Table 2] and in [3], using the notation of the latter to label the
cases.

Case 3.6.1: We consider an action of G = C6 = 〈α〉 on the cubic
surface X ⊂ P3, with equation

w3 + x3 + y3 + xz2 + λyz2 = 0,

with action by α on the coordinates (w, x, y, z) by the weights

[ζ : 1 : 1 : −1], ζ3 = e2πi/3.

There are four points fixed by α:

(0 : 1 : −1 : 0), (0 : 1 : −ω : 0), (0 : 1 : −ω2 : 0), (0 : 0 : 0 : 1).

We have a curve of genus 1, given by w = 0, fixed by α2, and
another curve of genus 1, given by z = 0, fixed by α3. Taking the
quotients of these curves by residual actions we obtain rational
curves with four, respectively three fixed points. This allows us
to conclude that

Br([X/G]) = 0,
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since 2-torsion and 3-torsion elements summing to 0 in Q/Z must
be 0 individually in (4.3).

Case 2.6: We consider another action of G = C6, on a del Pezzo
surface of degree 2, X ⊂ P(2, 1, 1, 1), with equation

w2 = x3y + y4 + z4 + λy2z2,

and with action on the coordinates (w : x : y : z) by

[−1 : ζ3 : 1 : −1].

The point (0 : 1 : 0 : 0) is fixed by α, there is a curve of genus 1,
given by x = 0, fixed by α2, and additional points

(0 : 1 : −1 : 0), (0 : 1 : −ω : 0), (0 : 1 : −ω2 : 0)

fixed by α3. The quotient of the genus 1 curve by residual action
is again of genus 1. We conclude that

Br([X/G]) ∼= (Z/3Z)2.

5.2. Noncyclic actions, with fixed points. In this case, the maps δ2

and δ3 are trivial, and we obtain the exact sequence

0→ H2(G, k×)→ Br([X/G])→ H1(G,Pic(X))→ 0.

Case 3.33.1: Consider the action of G = (Z/3Z)2 on the diagonal cubic
surface X ⊂ P3, with equation

w3 + x3 + y3 + z3 = 0, (5.1)

where the generators of G act via

g1 := [ζ : 1 : 1 : 1] and g2 := [1 : 1 : 1 : ζ].

In the number-theoretic setup, this action was realized as a Galois action,
and [8, Prop. 1] computed

H1(G,Pic(X)) = Z/3.
In our geometric approach, we find two elliptic curves E1, E2 fixed by the
generators g1, g2, and intersecting in three points, given by x3 + y3 = 0,
and fixed by G. The quotients by the induced Z/3 on each curve are P1.
We find

Br([X/G]) = (Z/3)2.

Taking into account that

H2(G, k×) = Z/3,
we conclude that

H1(G,Pic(X)) = Z/3.
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5.3. Noncyclic actions, without fixed points. We turn to

Case 3.333: Consider the action of G = (Z/3Z)3 on (5.1) via g1, g2, and

g3 := [1 : 1 : ζ : 1].

There are no fixed points. We know that δ2 is the zero map, since
Pic(X,G) surjects onto Pic(X)G = Z(KX), and that

H2(G, k×) = (Z/3)3, H3(G, k×) = (Z/3)7.

There are four elliptic curves E1, E2, E3, fixed by the generators, and E4,
fixed by the product of the generators g1, g2, g3, respectively. Corollary
4.6 gives

Br([X/G]) ∼= (Z/3)3.

We have δ2 trivial, H2(G, k×) mapping isomorphically to Br([X/G]), and
δ3 mapping

H1(G,Pic(X)) ∼= Z/3,
(known by [8, Prop. 1]), isomorphically to its image in H3(G,Q/Z); in
particular, δ3 is nontrivial.

5.4. Dihedral group of order 8. We consider an action of the dihedral
group of order 8 on a minimal del Pezzo surface of degree 4, described in
[11, Sect. 6]. Let X ⊂ P4 be given as an intersection of two quadrics

x2
0 + x2

1 + x2
2 + x2

3 + x2
4 = x2

0 + ax2
1 − x2

2 − ax2
3 = 0, a 6= −1, 0, 1.

Let

G := 〈ι0, ι2, τ〉,
where ιi switches the sign of xi, for i = 0, 2, and

τ : (x0 : x1 : x2 : x3 : x4) 7→ (−x2 : −x3 : −x0 : −x1 : x4).

We have Pic(X)G = Z.
We proceed to analyze curves in the fixed-point locus of non-identity

elements of G. The elements ιi, i = 0, 2, fix the genus 1 curves

Ei := X ∩ {xi = 0},
E0 and E2 meet in 4 points, and ιi acts on E2−i, fixing the 4 points. The
map τ exchanges the genus 1 curves.

The conic

C : x0 + x2 = x1 + x3 = 2x2
0 + 2x2

1 + x2
4 = 0

is fixed by τ , with action by ι0ι2 fixing 2 points. The conic

C ′ : x0 − x2 = x1 + x3 = 2x2
0 + 2x2

1 + x2
4 = 0

is similarly fixed by ι0ι2τ .
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Two of the 4 points are fixed by all of G, and the other two form a
single G-orbit. In particular, the maps δ2 and δ3 in (3.1) are trivial.

We blow up the 4 points to obtain X̃, in standard form. The excep-
tional divisor is in the fixed-point locus of ι0ι2. Two of the components
have a residual fixed-point free action of Z/2Z⊕Z/2Z, the other two have
a residual action of a group of order 2. For the computation of Br([X/G])

we needed to pass to the model X̃ to be able to apply Corollary 4.6. The
result is:

Br([X/G]) ∼= (Z/2Z)2.

Since H2(G, k×) = Z/2Z, we obtain

H1(G,Pic(X)) = Z/2Z.

6. Comparison with the equivariant Burnside group

In [20] we have defined the equivariant Burnside group

Burnn(G),

an abelian group capturing equivariant birational invariants, i.e., invari-
ants ofG-actions on algebraic varieties of dimension nmodulo equivariant
birational maps. This group is generated by symbols

(H,Z ýK, β),

where H ⊆ G is an abelian group, Z ⊆ ZG(H)/H, acting on a function
field of transcendence degree d ≤ n and β is an unordered (n− d)-tuple
of nontrivial characters of H, generating the character group. These are
subject to certain relations; see [20, Sect. 4].

The invariant of a faithful action of a finite group G on a function
field is computed on an appropriate model X (where the G-action is in
standard form), and is given by

[X ý G] :=
∑

(H,Z ýK, β) ∈ Burnn(G),

a sum of contributions from loci with nontrivial stabilizers H, see [20] and
[13] for definitions and examples. In particular, an embedding G ↪→ Crn,
up to conjugation in Crn, gives rise to a well-defined class in Burnn(G).

There is a subgroup

Burninc
n (G) ⊂ Burnn(G)

spanned by incompressible divisorial symbols [21, Defn. 3.3 and Prop.
3.4]. This subgroup is a direct summand, and we can consider the pro-
jection

inc : Burnn(G)→ Burninc
n (G).
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Given an embedding

ι : G ↪→ Crn,

we obtain a sum of incompressible divisorial symbols

inc([ι]) ∈ Burninc
n (G).

Concretely, when n = 2, the incompressible divisorial symbols are
those where K is the function field of a curve of positive genus or Z is
noncyclic, acting on K ∼= k(t) [21, Prop. 3.6].

A related invariant, for actions of elements g of finite order of the plane
Cremona group, was introduced in [10] and refined in [4]:

• Normalized fixed curve: NFC(g) is the normalization of the com-
ponent of positive genus of the fixed curve of g, or ∅ if no such
component exists. (It is known that there can be at most one
such component.)
• Normalized fixed curve with action: say g ∈ G has order m, then

NFCA(g) :=
(
(NFC(gr), g|NFC(gr))

)m−1

r=1
,

where the second factor records the residual automorphism on the
fixed curve.

This invariant distinguishes cyclic actions, in the following sense:

Theorem 6.1. [4] Two cyclic subgroups G and G′ of Cr2 of the same
order are conjugate if and only if

NFCA(g) = NFCA(g′),

for some generators g of G and g′ of G′.

We now explain the relation between this invariant and the Burnside
group formalism, for cyclic groups G. We fix a generator g of G, and
consider an embedding ι : G→ Cr2. If the term (H,Z ýK, β) arises in
inc([ι]), then Z = G/H, H = 〈gr〉 for some r, and the rth component of
NFCA(g) consists of a curve of positive genus with function field K, with
an action of ḡ ∈ G/H. It is clear that NFCA(g) is completely determined
by inc([ι]).

However, except when r is half the order of G, the β-component
of (H,Z ýK, β) carries extra information, which is not captured by
NFCA(g). This sheds some light on the formulation of Theorem 6.1,
which is stated in terms of conjugacy of subgroups rather than conjugacy
of chosen generators in the Cremona group. Even with the β-components,
however, Theorem 6.1 cannot be directly strengthened to a characteriza-
tion of conjugacy classes of embeddings G ↪→ Cr2, as the next example
reveals.
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Example 6.2. [4, Thm. 4] Let G = 〈g〉 be a finite cyclic group of order
4, and let S be the degree 1 del Pezzo surface defined by

w2 = z3 + z(ax4 + bx2y2 + cy4) + xy(a′x4 + b′x2y2 + c′y4)

in P(3, 1, 1, 2). For general coefficients a, b, c, a′, b′, c′, the embeddings

ι, ι′ : G→ Aut(S) ⊂ Cr2,

where g acts by scalar multiplication on the coordinates w, x, y, z by

[i : 1 : −1 : −1], respectively [−i : 1 : −1 : −1],

are not conjugate. But

inc([ι]) = inc([ι′])

in Burninc
2 (G).

On the other hand, Theorem 6.1 does imply that inc([ι]) determines
H1(G,Pic(X)), for cyclic groups G.
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