
FLATTENING STRATIFICATION AND THE STACK OF PARTIAL

STABILIZATIONS OF PRESTABLE CURVES

ANDREW KRESCH

Abstract. We describe the stack of partial stabilizations of prestable curves. We

use this description to obtain examples of proper morphisms of schemes having no

flattening stratification and to obtain results on the existence of global quotient
stack presentations in the setting of moduli stack of prestable curves of genus 0.

1. Introduction

Given a finite-type morphism of Noetherian schemes f : T → S, a flattening strat-
ification for f is a finite collection of pairwise disjoint locally closed subschemes S1,
. . ., Sm of S, such that for any S-scheme S′, the morphism S′ ×S T → S′ obtained
by base change is flat if and only if the structure morphism S′ → S factors through
S1q . . .qSm. In [10], Grothendieck proved the existence of a flattening stratification
when f is projective. If O(1) denotes a relatively very ample invertible sheaf on T ,
and P1(n), . . ., Pm(n) are the Hilbert polynomials of the fibres of f ordered by their
values for n � 0, then a recipe to construct the Si is as follows. If n0 ≥ 0 is chosen
with Rjf∗(O(n)) = 0 for all n ≥ n0 and j ≥ 1, then for suitable N we can define open
Ui ⊂ S by the conditions dim(f∗(OT (n)) ⊗OS

k(s)) ≤ Pi(n) for n0 ≤ n ≤ N , where
k(s) denotes the residue field of s ∈ S, and the sum of Fitting ideals corresponding
to conditions dim(f∗(OT (n)) ⊗OS

k(s)) ≥ Pi(n) for all n ≥ n0 defines Si ⊂ Ui. For
details, see [15].

When f is proper, Grothendieck has shown the existence of a scheme with a finite-
type monomorphism to S, which takes the place of S1q. . .qSm in the above condition.
The proof (see Murre’s exposition [16]) uses a general representability criterion for
unramified functors. Following Raynaud and Gruson [19] we call this S-scheme a
universal flatificator for f . The question whether this is necessarily a stratification
was raised by Olsson and Starr [18].

The purpose of this note is to use partial stabilizations of prestable curves to obtain
examples where the universal flatificator is not a stratification. These examples are
derived from an example worked out using the formalism of Hom-stacks of Olsson
[17]. An étale cover of the moduli stack of prestable curves of genus 0 is exhibited,
whose connected components are global quotient stacks, while as predicted by Edidin
and Fulghesu [6] no global quotient presentation exists for sufficiently large finite-type
open substacks of the moduli stack itself.

1.1. Acknowledgements. The author thanks Joseph Ayoub and David Rydh for
helpful discussions. The author also thanks Johan de Jong for comments and ques-
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stratification on his blog. The author’s research has been supported by a grant from
the SNF.

2. Generalities

2.1. Conventions. All schemes are quasi-separated. For algebraic spaces and alge-
braic stacks we follows the conventions of Knutson [13] and Laumon and Moret-Bailly
[14], respectively; in particular, the diagonal of every algebraic space or stack is sep-
arated and is of finite type. But, for an algebraic stack X, an algebraic stack U
with representable smooth surjective morphism to X will be called an atlas for X.
(In many sources this terminology is reserved for a scheme U with smooth surjective
morphism to X.)

We use the notation Mg,n for the moduli stack of stable n-pointed curves of genus
g (see [5, 12]). The moduli stack of prestable curves of genus g is denoted Mg (see
[3]). The universal curve over any moduli stack is denoted similarly, with the letter
M replaced by C, for example, Cg,n, Cg.

2.2. Subsets of components. If f : X → Y is a representable smooth finite-type
morphism of algebraic stacks, then by Laumon and Moret-Bailly [14, (6.8)] there are
an algebraic stack π0(X/Y ) and a factorization of f as

X → π0(X/Y )→ Y

where π0(X/Y ) → Y is representable étale, and X → π0(X/Y ) is smooth surjective
with geometrically connected fibres.1 We need the variant Pπ0(X/Y ): given any
representable étale finite-type morphism f : V → Y we define PV to be the category
of pairs consisting of a morphism T → Y and an open subspace U ⊂ V ×Y T such
that U → T is universally closed (PV also may be described as f!F where F is the
constant sheaf of commutative monoids {∅, {∗}} and f! is left adjoint to f∗). An
object (T → Y,U ⊂ V ×Y T ) of PV will be called maximal when U = V ×Y T .

Proposition 2.1. For any representable étale finite-type morphism f : V → Y of
algebraic stacks PV is an algebraic stack, the morphism PV → Y is representable,
étale and of finite type and there is an étale surjective morphism

Y q V q
(
V ×Y V

)
q · · · → PV (1)

mapping Y isomorphically to an open and closed substack of PV .

The complement of the image of Y in PV will be denoted PV non-∅.

Proof. Given a scheme T and morphism T → Y , if U is open in V ×Y T and U → T is
universally closed, then for any point of T there are an étale neighbourhood T ′ → T
and a finite collection of sections of V ×Y T ′ → T ′ such that U ×T T ′ is the union of
their images. Thus, to show that PV → Y is representable (which implies that PV is
an algebraic stack) and étale and PV has the étale cover indicated in (1), it suffices
to show that for any m and n the morphism(×(m)

Y
V
)
×PV

(×(n)

Y
V
)
→×(m+n)

Y
V

1The argument of Laumon and Moret-Bailly [14], which invokes [11, (15.6.4)], may be carried out
when X is an algebraic space and Y is a scheme as soon as one recognizes that the local ring of an
étale atlas may be used in place of the usual local ring in the proof of Grothendieck [11, (15.5.6)],

and then π0(X/Y ) as described here is a local construction [14, (14.1)]. For π0 in greater generality,
see [20].
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is representable and is an open immersion. This follows easily from the fact that V →
Y , being étale and representable, has relative diagonal which is an open immersion.

The last assertion holds, since Y and×(n)

Y
V have disjoint open images in PV for

any n ≥ 1. �

2.3. Prestable curves. Recall that a family of prestable curves is a proper flat mor-
phism C → T of finite presentation, where T is a scheme and C is an algebraic space,
whose geometric fibres are connected, reduced and one-dimensional, and have only
nodes as singularities. We denote the relative smooth locus by Csm. Its complement
Csing is a closed algebraic subspace of C, defined on any affine étale chart by the
Fitting ideal of the module of relative differentials.

When explicitly mentioned, we will also consider families of prestable curves where
C and T are algebraic stacks and C → T is a representable morphism satisfying the
above properties.

Proposition 2.2. Let ψ : C → T be a family of prestable curves. Then the morphisms
π0(Csm/T )→ T and Pπ0(Csm/T )→ T are universally closed.

Proof. Using [11, (11.2.7)] we may reduce to the case T is Noetherian. Since π0(Csm/T )→
T is étale, universal closedness is equivalent to closedness upon base change to the
strict henselization of OT,t for all t ∈ T . So universal closedness is equivalent to
closedness after base change to schemes of finite type over T .2

Now by standard arguments, it suffices to verify closedness after base change to
Spec of a discrete valuation ring, so let us assume T to be of this form. Then it suffices
to show that any point of π0(Csm/T ) over the generic point of T has closure mapping
surjectively to T . Equivalently, the generic point y of any irreducible component
of C specializes to a smooth point in the fibre C0 over the closed point of T . By
properness, y specializes to some point of C0. So y specializes to the generic point of
some irreducible component of C0.

The assertion for Pπ0(Csm/T )→ T is now a consequence of Proposition 2.1. �

Corollary 2.3. The conclusion of Proposition 2.2 is valid for a family of prestable
curves in which C and T are algebraic stacks. Given sections s1 and s2 of π0(Csm/T )→
T and t1 and t2 of Pπ0(Csm/T )→ T , the substack of T defined by any of the following
conditions is open:

(i) equality of s1 and s2;
(ii) equality of t1 and t2;
(iii) maximality of t1.

3. Partial stabilization of prestable curves

3.1. Admissible sets of irreducible components. Let g be a non-negative integer.
For any n, there is a morphism Mg,n → Mg which forgets the markings leaving the

curve unchanged, and by Behrend [3, Proposition 2] the disjoint union of Mg,n over
all n is an atlas for the Artin stack Mg. For a positive integer n1 ≤ n, there is a
morphism

Mg,n → Pπnon-∅
0 (Csm

g /Mg) (2)

2By Alper, Smyth and van der Wyck [2, Lemma 2.6], relying on [22, Tag 05BD], universal

closedness for any quasi-compact morphism of algebraic stacks X → Y is equivalent to closedness
after base change to schemes, finitely presented over Y .
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corresponding to the first n1 sections. This makes the disjoint union of Mg,n over

pairs of positive integers n1 ≤ n an atlas for Pπnon-∅
0 (Csm

g /Mg). The requirement that

the component in the fibre of C
sm

g,n → Mg,n of each of the first n1 sections contains
at least two others, among the first n1 sections, defines by Corollary 2.3 (applied to

π0(C
sm

g,n/Mg,n) → Mg,n) an open substack Mg,n,n1
⊂ Mg,n. The disjoint union of

Mg,n,n1
is again an atlas for Pπnon-∅

0 (Csm
g /Mg).

We now consider the stabilization morphism [12] which forgets all but the first n1
markings, performing contractions as necessary to enforce stability,

Mg,n,n1
→Mg,n1

. (3)

The substack of Mg,n1 where every component in the fibre of C
sm

g,n1
→ Mg,n1 has

at least one marked point is open (by Corollary 2.3 applied to π0(C
sm

g,n1
/Mg,n1) →

Mg,n1
); we denote it by M ′g,n1

. We denote the pre-image of M ′g,n1
under the morphism

(3) by M ′g,n,n1
.

Definition 1. The admissible locus in Pπnon-∅
0 (Csm

g /Mg) is the union of the images
of M ′g,n,n1

over pairs of positive integers n1 ≤ n, and will be denoted P ′π0(Csm
g /Mg).

3.2. Partial stabilization locus in Hom-stack. Stabilization induces a morphism
of respective universal curves (cf. [12]), which in the present situation takes the form
of a 2-commutative diagram

C ′g,n,n1
//

��

C ′g,n1

��
M ′g,n,n1 st′

// M ′g,n1

(4)

Proposition 3.1. The universal curves Cg ×Mg
P ′π0(Csm

g /Mg) → P ′π0(Csm
g /Mg)

and Cg →Mg fit into a 2-commutative diagram

Cg ×Mg
P ′π0(Csm

g /Mg) //

��

Cg

��
P ′π0(Csm

g /Mg) st
//Mg

(5)

with horizontal arrows determined uniquely up to 2-isomorphism, such that the cube
formed by (4) and (5) is 2-commutative.

Proof. There is a prestack, consisting of the objects of the stack
∐
M ′g,n,n1

(disjoint
union over pairs of positive integers n1 ≤ n) and the morphisms of families of curves
preserving the sets of components picked out by the first n1 sections, having stackifi-
cation P ′π0(Csm

g /Mg). Arguing as in [4, p. 26] (proof of Claim 5 and the universality
statement immediately following), we have a morphism from the prestack to Mg,
fitting into a strictly commutative diagram with the morphism st′ of (4). Over the
prestack there is a universal curve, and from this there is a morphism to Cg, fitting
into a 2-commutative cube with strictly commuting left, right, top, and bottom faces.
The proposition now follows by applying the universal property of stackification (twice
in the form of existence of morphisms, unique up to canonical 2-isomorphism, and
once in the form of existence and uniqueness of a 2-isomorphism). �
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Theorem 3.2. Partial stabilization in (5) determines a morphism

P ′π0(Csm
g /Mg)→ HomMg×Mg

(Cg ×Mg,Mg × Cg).

to the stack of morphisms [17] of universal curves, which is an isomorphism onto an
open and closed substack of HomMg×Mg

(Cg ×Mg,Mg × Cg).

The proof makes use of the following preliminary result.

Lemma 3.3. Let k be a field, and let f : C → C ′ be a morphism of prestable curves
over k. Then the following are equivalent.

(i) Over each irreducible component of C ′ the restriction of f has generic degree
1, and every geometric fibre of f is connected and has arithmetic genus 0.

(ii) We have f∗OC ∼= OC′ and R1f∗OC = 0.
(iii) The morphism f is (up to isomorphism) the partial stabilization corresponding

to some admissible set of irreducible components of C.

Proof. The equivalence of (i) and (ii) follows from standard facts on sheaf cohomology
(Stein Factorization, Theorem on Formal Functions), and the implication (iii) ⇒ (ii)
follows from [12, Corollary 1.5]. Suppose (ii) holds. Now it suffices to show that the
set of irreducible components of C, corresponding to the irreducible components of
C ′, is admissible, for then the isomorphism f∗OC ∼= OC′ gives rise to an isomorphism
of C ′ with the corresponding partial stabilization of C, compatible with f .

For the verification of admissibility, we may suppose k to be algebraically closed.
The verification is trivial when f is an isomorphism, so we suppose the contrary,
and we may by an inductive argument suppose that admissibility is known for any
morphism satisfying (ii) where the source curve has fewer components than C has.
We claim that C, endowed with three markings per selected component, is not stable.
Indeed, for any p′ ∈ C ′ with dim f−1(p′) = 1, we have ωC |f−1(p′) isomorphic to
ωf−1(p′)(p) when p′ is a smooth point of C ′, or to ωf−1(p′)(p1 + p2) when p′ is a node,

for some point p, respectively points p1 and p2, on f−1(p′). In either case, this is an
invertible sheaf of non-positive degree. Let n2 additional markings on the contracted
components of C be chosen so that C with n = n1 + n2 markings (where n1 is three
times the number of irreducible components of C ′) is stable, and suppose that removal
of the nth marking renders C unstable; let f ′′ : C → C ′′ be the stabilization. Using
f ′′∗OC ∼= OC′′ we obtain a factorization of f as the composite

C
f ′′−→ C ′′

f ′−→ C ′

for some f ′, satisfying f ′∗OC′′ ∼= OC′ and R1f ′∗OC′′ = 0. We conclude by applying
the induction hypothesis. �

Proof of Theorem 3.2. The morphism is induced by diagram (5) and is representable
by Laumon and Moret-Bailly [14, (3.12)]. We first show that the morphism is an
open immersion. By Grothendieck [11, (17.9.1)], this is equivalent to saying that
it is étale and injective on geometric points. The morphism is clearly injective on
geometric points. To check that it is étale we use the characterization of Grothendieck
[11, (17.14.2)]. This says that it is enough to verify, for a local Noetherian ring A
and square-zero ideal I ⊂ A, corresponding to closed S1 ⊂ S = Spec(A), that for
any morphism f : C → C ′ of prestable curves of genus g over S, whose restriction
f1 : C1 → C ′1 over S1 is identified with a partial stabilization, there exists a unique
extension to an identification of C ′ with a partial stabilization of C over S, compatible
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with f . By Proposition 2.1, the admissible section of Pπ0(Csm/S) over S1 extends
uniquely to a section over S, which is again admissible, since the admissible locus is
open. Let C ′′ → S be the corresponding family of prestable curves of genus g, with
partial stabilization C → C ′′ over S. By hypothesis we have an isomorphism C ′1 → C ′′1
over S1, fitting into a commutative diagram with C1. Applying [12, Corollary 1.5], we
see that OC′ → f∗OC is an isomorphism (it is surjective by Nakayama’s lemma, since
after base change to the residue field it is surjective, and then injectivity is implied by
injectivity after base change to the residue field). There is, similarly, an isomorphism
with OC′′ . So, there is a unique compatible isomorphism C ′ ∼= C ′′.

Now we show that the image is stable under specialization, that is, the image is
closed as well as open. It suffices to show, given a complete discrete valuation ring R
with algebraically closed residue field and morphism of prestable curves of genus g

C
f //

��

C ′

��
S

over S = Spec(R) whose restriction to the generic point satisfies the conditions of
Lemma 3.3, that the morphism f0 obtained by base change to the closed point also
satisfies the conditions of Lemma 3.3.

We let K denote the field of fractions of R, and k the residue field. Arguing with
an affine covering of C, we see that f∗OC is torsion-free and hence flat over S. Then,
using that OC′ is integrally closed in OC′ ⊗R K, we have f∗OC ∼= OC′ .

Since f is a morphism of flat projective S-schemes of relative dimension 1, the
formation of R1f∗OC commutes with arbitrary base change. In particular, we have
(R1f∗OC) ⊗R k ∼= R1(f0)∗OC0 , where C0 denotes the fibre over the closed point.
So R1f∗OC is supported at finitely many closed points, and the morphism OC′0 →
(f0)∗OC0

is an isomorphism away from these points.
Suppose p′ lies in the support of R1f∗OC . Let E′ be the union of irreducible

components of C ′0 containing p′, and let E be the union of irreducible components of
C0 mapping dominantly to a component of E′. If p′ is a smooth point of C ′0, then
there exists an affine neighbourhood V of p′ in C ′, such that the pre-image U in C
has the property that U ∩E → V ∩E′ is an isomorphism, with some p ∈ E mapping
to p′. If p′ is a node, then for a suitable neighbourhood there are points p1, p2 ∈ E
mapping to p′ such that f induces an isomorphism (U ∩ E)/p1 ∼ p2 → V ∩ E′ from
the curve with points p1 and p2 identified.

Now, we consider the exact sequence of sheaf cohomology groups

H0(U,OU )→ H0(U0,OU0)→ H1(U,OU )→ H1(U,OU ) (6)

corresponding to multiplication by a uniformizing element of R. But H0(V0,OV0)
maps isomorphically to H0(U0,OU0), from which it follows that the first map in (6)
is surjective. This yields a contradiction. �

4. No flattening stratification

4.1. Example with stacks. We want to consider the universal partial stabilization
Cg ×Mg

P ′π0(Csm
g /Mg)→ P ′π0(Csm

g /Mg)×Mg
Cg, coming from the diagram (5). We

do this in the case g = 0, and in order that we deal with finite-type algebraic stacks,
we restrict to the locus where the curves under consideration have at most two nodes.
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This choice is made, since m = 2 is the smallest integer m such that the universal
curve restricted to the locus with at most m nodes C≤m0 →M≤m0 is not projective [6].

Proposition 4.1. The universal flatificator of

C≤20 ×M
≤2
0
P ′π0((C≤20 )sm/M≤20 )→ P ′π0((C≤20 )sm/M≤20 )×

M
≤2
0

C≤20 (7)

is not a stratification.

Proof. Working over an arbitrary field k, we provide two morphisms

A1 → P ′π0((C≤20 )sm/M≤20 )×
M
≤2
0

C≤20

that are identical as maps of the underlying sets of points [14, (5.2)], such that the
morphism obtained by base change of (7) along one of them is flat and along the other
is not flat. Since A1 is reduced, this is incompatible with the existence of a flattening
stratification.

Using Theorem 3.2, it is enough to specify a source family, a target family, two
partial stabilizations and a section:

C
f2

//
f1 //

��

C ′

��
A1

LL

Let C1 be a family of conics degenerating to a union of two lines at t = 0:

C1 = Proj((k[t])[X,Y, Z]/(XY − tZ2)).

Let C2 = A1 × P1, choose a section of each family, let C be the union of C1 and C2

glued along the respective sections and let C ′ = C2 with its section. We define maps

• f1, collapsing C1 to its section and mapping C2 isomorphically to C ′;
• f2, collapsing C2 to its section and mapping C1 onto C ′ so that over t = 0

the irreducible component containing the section is collapsed.

The pullback of f1 by the section is isomorphic to the structure map of C1, which
is flat. The pullback of f2 by the section is the union of one irreducible component
dominating A1 and another supported over t = 0, which is not flat. �

4.2. Examples with schemes. The two families with their partial stabilizations
appearing in the proof of Proposition 4.1 may be combined into one, where the base
is a union of two lines Spec(A), with A = k[s, t]/(st). In coordinates, after base
change by the section we will obtain

Proj(A[X,Y, Z]/(sX,XY − tZ2))→ Spec(A).

A computation as outlined in Section 1 shows that the flattening stratification is

A1 q (A1 r {0})→ Spec(A)

corresponding to the loci given by s = 0 and s 6= 0, respectively.

Proposition 4.2. Let S be the projective line over a field k with two k-points iden-
tified (i.e., a nodal cubic curve with rational tangent directions at the node). Then
there exists a morphism

S → P ′π0((C≤20 )sm/M≤20 )×
M
≤2
0

C≤20 (8)
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such that the morphism obtained from (7) by base change is a proper morphism of
finite-type schemes over k, whose universal flatificator is A1 → S.

Proof. Starting with the family of curves over Spec(A) (with A = k[s, t]/(st) as above)
given in coordinates by

Proj(A[X,Y, Z,W ]/(YW − stXZ,ZW − sX2, XY − tZ2)), (9)

we may consider the étale equivalence relation which identifies (X : Y : Z : W ) over
(0, t) ∈ Spec(A), t 6= 0, with (XW : XZ : t−1X2 : W 2) = (0 : Y : Z : 0) over (t−1, 0),
and identifies (X : Y : Z : W ) over (s, 0), s 6= 0, with (s−1Z2 : Y 2 : Y Z : XZ) =
(X : 0 : 0 : W ) over (0, s−1). This is compatible with the morphism to P1 given by
(X : W ) = (Z : sX) = (Y : 0). So, with the constant section (1 : 0) of S × P1 → S
we obtain a diagram of algebraic spaces

C //

��

S × P1

��
S

JJ

and hence, by Theorem 3.2, a morphism (8). But C is a scheme, as we may see by
representing S as a quotient of a projective scheme by a free action of a group of
order 2, so that C is such a quotient of a proper scheme that is covered by two open
subschemes, each isomorphic to (9). Now it may be checked that any two points
identified by the group action are contained in a common affine neighbourhood. �

This example occurs in the family given in [8, Example 2.3] of prestable curves
over a projective algebraic surface such that the three-dimensional total space is not
a scheme. Following [8] we have:

Proposition 4.3. Let k be a field. Then there exist the following:

(i) A morphism C → S × P1, the partial stabilization of a family of curves over
a smooth projective surface S over k, with C a smooth algebraic space, such
that the universal flatificator is not a stratification.

(ii) A finite étale morphism C̃ → C such that C̃ is a scheme, and the universal

flatificator of C̃ → S × P1 is not a stratification.

5. Quotient stacks

An algebraic stack X of finite type over a field is said to be a global quotient stack
if X is isomorphic to a stack quotient [Y/G] for some finite-type algebraic space Y
with action of a linear algebraic group G (see [7]). Over a general Noetherian base
scheme, one takes the same definition with G being a flat subgroup scheme of GLn
for some n; in fact, it is equivalent to require G = GLn. The (stronger) condition to
be isomorphic to a quotient stack of the form [Y/GLn] with Y a quasi-affine scheme is
connected with the resolution property (of coherent sheaves, by locally free coherent
sheaves); cf. [9, 21, 23].

5.1. Étale covers by global quotient stacks. An easy construction produces an
étale cover of M≤m0 for any m by a global quotient stack.

Proposition 5.1. For any positive integer m there exists a representable étale sur-
jective morphism from a quotient stack of the form [Y/GLn] with Y quasi-affine to

the stack M≤m0 of prestable curves of genus 0 with at most m nodes.
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Proof. A genus-0 prestable curve with at most m nodes has (geometrically) at most
m+ 1 irreducible components. Consider now the morphism

×(m+1)

M
≤m
0

π0((C≤m0 )sm/M≤m0 )→ Pπ0((C≤m0 )sm/M≤m0 ).

By Corollary 2.3 there is an open substack U of the stack on the left, where the m+1
selected components are all the components. The universal curve over π0((C≤m0 )sm/M≤m0 )
has a natural line bundle, of degree 2 on the selected component and degree 0 on all
other components. The tensor product of various powers of these line bundles on
the universal cover over U has positive degree on every irreducible component of ev-
ery geometric fibre. Now U → M≤m0 is representable, étale and surjective, and by
standard techniques (cf. [5, Section 1]) U is isomorphic to the quotient stack of an
open subscheme of a Hilbert scheme by the group of projective linear transformations,
hence by Totaro [23] is isomorphic to a quotient stack of the form [Y/GLn] with Y
quasi-affine, for some n. �

Remark 1. In the terminology of Rydh [21], the fact that M≤m0 admits a representable
étale surjective morphism from a quotient stack of the form [Y/GLn] with Y quasi-

affine is expressed by saying that M≤m0 is of global type.

5.2. No global quotient stack presentation. In [6], it is shown that M≤10 admits

a global quotient stack presentation, and evidence is given for M≤m0 not to be a global
quotient stack for m ≥ 2.

Proposition 5.2. Over any base field, there is no global quotient stack presentation
for the moduli stack M≤m0 of genus-0 prestable curves with at most m nodes, for any
m ≥ 2.

Proof. Let k denote the base field. There is a smooth surjective morphism ϕ : A1 →
M≤10 corresponding to the family of curves C1 from Section 4.1.

It suffices to treat the case m = 2. Now, P ′π0((C≤20 )sm/M≤20 ) admits a global

section over M≤20 which is maximal over M≤10 and selects the two ‘tail’ components
over the locus of curves with two nodes. Indeed, this is a constructible locus in
P ′π0((C≤20 )sm/M≤20 ), readily verified to be stable under generization, and its projec-

tion to M≤20 is étale and bijective on geometric points. So it defines a section. We

observe that the composite M≤20 → P ′π0((C≤20 )sm/M≤20 ) → M0 of the restriction

of the morphism st of (5) to P ′π0((C≤20 )sm/M≤20 ) with this section has image M≤10 .

Denoting the composite morphism to M≤10 by σ, we consider the cartesian diagram

X //

��

A1

ϕ

��
M≤20 σ

//M≤10

(10)

The stack X has non-trivial stabiliser group at the point corresponding to a curve
with two nodes, and X is smooth since the morphism ϕ is smooth. Now it follows
that X is not a global quotient stack either because X is irreducible and normal and
has an open substack isomorphic to A1 with complement of codimension 2, hence
possesses no non-trivial vector bundles, or because as may be observed directly the
diagonal of X is not quasi-affine (cf. [7, Section 2], respectively [23, Section 6]). So

M≤20 is not a global quotient stack. �
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Remark 2. Using cohomology and base change machinery as in [12], it emerges that
the morphism σ in (10) acts by

(C
π→ T ) 7→ Proj

(⊕
`≥0

π∗((ω
∨
C/T )⊗`)

)
.

This observation permits a direct proof of Proposition 5.2, not using admissible sets
of components or Hom-stacks.

Remark 3. The stack X considered in the proof has Gm stabilizer at one point and
possesses an étale cover by a quotient stack [A2/Gm] with action by weights 1 and
−1. Thus X satisfies [1, Conjecture 1], a statement on the étale-local structure of
Artin stacks.
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