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Abstract. We give two examples of Brauer–Manin obstructions to integral

points on open subsets of the projective plane.

1. Introduction

Let k be a number field, and let X be a smooth projective geometrically irreducible
variety over k. It is well known that the existence of points of X over all completions
kv of k does not imply the existence of a k-rational point on X, in general. This
phenomenon is referred to as the failure of the Hasse principle. Examples of failure
of the Hasse principle are known for genus 1 curves, cubic surfaces, etc. Even when
the Hasse principle holds, rational points need not be dense in the set of adelic points
of X. This phenomenon – the failure of weak approximation – is also known in many
examples.

The Brauer–Manin obstruction [11, 12] often explains the failure of the Hasse
principle and weak approximation. The exact sequence from class field theory

0 → Br(k) −→
⊕

v

Br(kv)
P

invv−→ Q/Z → 0

(where
∑

invv denotes the sum of local invariants) leads to the constraint

X(k) ⊂ X(Ak)Br := { (xv) ∈ X(Ak) |
∑

invv(α|xv
) = 0 ∀α ∈ Br(X) }

on the set X(Ak) of adelic points on X, where Br(X) denotes the cohomological
Brauer group (see [6]). When X(Ak)Br 6= X(Ak), then we say there is a Brauer–
Manin obstruction to the Hasse principle in the case X(Ak)Br = ∅, and to weak
approximation in the case X(Ak)Br 6= ∅, respectively.

For a thorough introduction to the subject, see [15]. For a survey, see [13].
The study of rational points on projective hypersurfaces is equivalent to the study

of integral solutions to homogeneous Diophantine equations f(x0, . . . , xn) = 0. Many
interesting Diophantine problems involve non-homogeneous equations. Their solu-
tions can be interpreted as integral points on quasi-projective varieties.

Let ok be the ring of integers of k. Let X be an integral model for X, that is, a
scheme, projective and flat over Spec(ok) having general fiber X. Let Z be a reduced
closed subscheme of X, and set U = X r Z. Then we define Z to be the scheme-
theoretic closure of Z in X and set U = XrZ. We then have U(ok), the integral points
of U . By abuse of terminology, we say that a k-rational point of U is an integral point
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if its (unique) extension to an ok-point of X has image in U . (This notion depends on
the choice of integral model X .) There are S-integral points U(ok,S) for S a finite set
of non-archimedean places of k (where ok,S denotes the ring of S-integral elements of
k) and v-adic integral points U(ov) for v a non-archimedean place of k; the latter will
be identified with kv-points of U that extend to U(ov).

The Brauer–Manin obstruction has been extensively studied in the setting of pro-
jective varieties; see, for example, [3]. Its study in the context of open varieties is
more recent and originates in the work of Colliot-Thélène and Xu [4], which gives
a new explanation based on the Brauer–Manin obstruction for the failure of Hasse
principle exhibited in [2] and [14] in the representation of integers by quadratic forms
in three variables.

The insolubility of a Diophantine equation that admits solutions in k and in v-adic
integers for all non-archimedean places v of k can be a manifestation of the failure of
the Hasse principle, or strong approximation, for a variety. (For smooth projective
varieties, strong and weak approximation are the same.) This paper provides examples
of this, in which there is an explanation via the Brauer–Manin obstruction:

U(ok) ⊂
(∏
v-∞

U(ov)×
∏
v|∞

U(kv)
)Br(U)

, (1)

where the set on the right is the set of tuples of adelic points, integral at all non-
archimedean places, whose sum of local invariants is zero with respect to every element
of Br(U). The formulation of the obstruction, and in particular the use of Br(U) rather
than Br(U), follows Colliot-Thélène and Xu; see [4, §1].

This note is inspired by lectures of Colliot-Thélène on his joint work with Xu. As
in their work, we take U to be the complement of a geometrically irreducible smooth
divisor D on a surface X. In their work, X is a quadric surface and D a hyperplane
section. Here for simplicity we take k = Q and X = P2, so that if a homogeneous
f ∈ Z[x, y, z] defines D (and D), then elements of U(Z) correspond to triples of
integers (x : y : z) (up to a factor ±1) such that f(x, y, z) = ±1, where U = P2

Z rD.
The geometric Brauer group of U is understood by an exact sequence [1] that reduces
in this case to an isomorphism, the ramification map:

Br(U ⊗Q) ∼→ H1(D ⊗Q, Q/Z).

Our D ⊂ P2 will admit unramified coverings over Q such that known constructions of
algebras representing ramified Brauer group elements can be carried out over Q. For
the local analysis we must restrict the Brauer group elements to points of U(R) and
to the p-adic integral points in U(Qp). These correspond to triples (x : y : z) of reals
satisfying f(x, y, z) ∈ R∗, and p-adic integers satisfying f(x, y, z) ∈ Z∗p, respectively.

2. Cubic

This section is devoted to the following example, concerning rational and integral
points on the complement of a plane cubic curve over Q.

Example 1. For the Diophantine equation

y2z − (4x− z)(16x2 + 20xz + 7z2) = 1 (2)

we have:
(i) there are solutions in p-adic integers for all primes p;
(ii) there are solutions in Q;
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(iii) there are no solutions in Z.

There is the rational solution (1/4, 1, 1), which is a p-adic integral solution for p 6= 2.
A 2-adic integral solution is (0, 0, 3

√
1/7), so statements (i) and (ii) are established.

The proof of (iii) is more subtle and uses the Brauer group. Letting the polynomial

f = y2z − (4x− z)(16x2 + 20xz + 7z2)

define the divisor D ⊂ P2 (and D ⊂ P2
Z) and setting U = P2 rD (and U = P2

Z rD) we
will exhibit a 2-torsion Brauer group element A ∈ Br(U) whose pull-back to Br(U⊗Q)
has prescribed (nontrivial) image under the ramification map. With A, we are able to
deduce from (1) a congruence condition on integral points of U that is incompatible
with (2).

Remark 1. Since f is homogeneous of odd degree, the insolubility of (2) in integers
implies U(Z) = ∅. Therefore, from statements (i)–(iii) of Example 1 we obtain a
Brauer–Manin obstruction to the Hasse principle over Z.

Remark 2. The fundamental group of U ⊗ Q is cyclic of order 3 by [16, Theorem 8]
(which treats the topological fundamental group) and [7, (XII.5.2), (XIII.4.6)] (which
provides the link to the algebraic fundamental group). Hence a universal cover of
U ⊗Q is Ũ ⊗Q, where Ũ is the affine open subscheme defined by t 6= 0 of the cubic
surface X̃ with defining equation f(x, y, z) = t3, and the covering map is given by
(x : y : z : t) 7→ (x : y : z). For the degree 3 extension of function fields Q(U) → Q(Ũ),
there are restriction and corestriction maps on Brauer groups, and restriction followed
by corestriction acts as multiplication by 3 on Br(Q(U)). Nontriviality of the pull-
back of A to Br(U ⊗ Q) (see Lemma 2.1, below) implies: the 2-torsion element A

remains nontrivial, and hence ramified (Br(X̃ ⊗ Q) = 0 since X̃, a cubic surface, is
geometrically rational), upon pull-back to the geometric universal cover.

Remark 3. We can state an integer-point analogue of a basic obstruction to rational
points coming from torsor theory and check that it does not obstruct integral points
on U . Letting the group µ3 of cube roots of unity act on the variety Ũ of Remark
2 by multiplication on the t coordinate gives Ũ the structure of U -torsor under µ3.
Torsor theory, described in [15, §2.2], supplies arithmetic twists πγ : Ũγ → U indexed
by γ ∈ H1(Q, µ3), with the property that U(Q) is the disjoint union of the images in
U of the Ũγ(Q). Obstructions based on the consequence that U(Q) = ∅ if Ũγ(Q) = ∅
for all γ are called descent obstructions; cf. [15, §5.3]. An easy integer-point descent
obstruction states: if, for every γ ∈ H1(Q, µ3), there exists a prime pγ such that
πγ(Ũγ(Qpγ

)) contains no pγ-adic integral points, then U(Z) = ∅. It follows from
the proof of [15, Proposition 5.3.2] that there are only finitely many classes γ such
that πγ(Ũγ(Qp)) contains a p-adic integral point for every prime p (the properness
hypothesis of the statement is used only for the lifting of rational points to integral
points). For the untwisted Ũ0 = Ũ , there exist p-adic integral points in π0(Ũ0(Qp))
for every prime p by statement (i).

The curve D is an elliptic curve over Q with group structure D(Q) ∼= Z/2Z, as
is readily computed. Therefore, there is a unique (up to isomorphism) nontrivial
unramified cover D̃⊗Q → D⊗Q that arises by base change from some cover D̃ → D
defined over Q of degree 2.
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Lemma 2.1. The class in Br(Q(U)) of the quaternion algebra

(y2z−2 − (4x− z)(16x2 + 20xz + 7z2)z−3, (4x− z)z−1) (3)

is the restriction of a Brauer group element A ∈ Br(U), such that the pull-back of A to
Br(U⊗Q) is sent by the ramification map to the class of the extension Q(D) → Q(D̃).

Proof. The assertion about Br(U) uses the fact, immediate from [6, (III.6.2)], that
the image of Br(U) in Br(Q(U)) is the kernel of a ramification map Br(Q(U)) →⊕

u∈U(1) H1(ku, Q/Z), where the sum is over generic points u of codimension 1 sub-
varieties of U , with ku the residue field at such a point u. The argument of [1, §3]
supplies a concrete description of this map (since the base field Q is not algebraically
closed, the right-hand 0 in the exact sequence [1, (3.2)] needs to be replaced by
H3(Q(U), Gm)): for f , g ∈ Q(U)∗, if f , g ∈ O∗U,u then (f, g) ∈ Br(U) is in the kernel
of the ramification map at u, while if f ∈ O∗U,u and g is a uniformising element of
the discrete valuation ring OU,u, then (f, g) is in the kernel of the ramification map
when the residue class f̄ of f in ku is a square and otherwise maps to the class of
ku → ku(f̄1/2). Therefore, A is in the kernel of the ramification map at the line
4x− z = 0. Rewriting (3) in Br(Q(U)) as

(−zy−1 + (4x− z)(16x2 + 20xz + 7z2)y−3, zy−1)

+ (z2y−2 − (4x− z)(16x2 + 20xz + 7z2)zy−4, (4x− z)y−1),

we see that A is in the kernel of the ramification map at z = 0. At other u ∈ U (1),
the rational functions in (3) are both units in OU,u.

The algebra (3), over Q(U), is the explicitly given symbol algebra in [9, proof of
the Theorem]. There the image under the ramification map is computed and found
to be as claimed. �

The local analysis of the class A is simplified by the following observation.

Lemma 2.2. The element A ∈ Br(U) from Lemma 2.1 can be extended to Br(U ⊗
Z[1/2]).

Proof. Lemma 2.1 implies that for suitable N there exists on U1 = U ⊗ Z[1/2N ] an
A1 ∈ Br(U1) extending A. If we define U2 to be the complement in U ⊗ Z[1/2] of the
union of D and the scheme defined by (4x−z)z = 0, then (3) defines A2 ∈ Br(U2) also
extending A. The restrictions of A1 and A2 to Br(U1 ∩U2) are equal since U ⊗Z[1/2]
is regular and A1 and A2 extend the same element of Br(Q(U)). Therefore, by the
Mayer-Vietoris sequence, A extends to an element of Br(U1 ∪ U2). By a purity result
of Gabber for three-dimensional regular schemes [5, Theorem 2′], the restriction map
Br(U ⊗ Z[1/2]) → Br(U1 ∪ U2) is an isomorphism. �

At any 2-adic integral point (x : y : z) of U satisfying

y ≡ 0 (mod 2) and z ≡ 1 (mod 2), (4)

direct evaluation reveals that A is nonzero at (x : y : z) ∈ U(Q2). By Lemma 2.2,
A vanishes at all p-adic integral points of U , for any odd prime p. Since U(R) is
connected, the behaviour of A at real points of U is revealed by evaluation at a single
point, and we find that A vanishes at real points. Therefore, by condition (1), U has
no integral points satisfying (4). Any integral solution to (2) would have to satisfy
(4), as we see by reduction modulo 2. Therefore, (2) has no integral solutions, and
statement (iii) is established.
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3. Quartic

In this section, we study the complement of a quartic curve in the projective plane
over Q.

Example 2. For the Diophantine equation

−2x4 − y4 + 18z4 = 1 (5)

we have:
(i) there are solutions in p-adic integers for all primes p;
(ii) there are solutions in Q;
(iii) there are no solutions in Z.

The rational solution (1/2, 0, 1/2) is a p-adic integral solution for p 6= 2, and a
2-adic integral solution is (0, 4

√
17, 1). Thus, (i) and (ii) are established.

Let D ⊂ P2 and D ⊂ P2
Z be defined by the polynomial

f = −2x4 − y4 + 18z4,

and set U = P2rD and U = P2
Z rD. For (iii), we will use a 2-torsion class A ∈ Br(U).

The equation for D can be transformed to (4x2 − y2)2 + 2(x2 + 2y2 + 9z2)(x2 +
2y2−9z2) = 0, so Q(D) → Q(D)(

√
x2 + 2y2 + 9z2/x) describes an unramified degree

2 cover D̃ → D.

Lemma 3.1. The class in Br(Q(U)) of the quaternion algebra1

(fh,−gh), (6)

with

g = −28x2 − 36xy + 7y2 + 72z2 and h = −25x2 + 16xy − 22y2 + 81z2,

is the restriction of an element A ∈ Br(U). The pull-back of A to Br(U ⊗Q) is sent
by the ramification map to the class of the extension Q(D) → Q(D̃).

Proof. For the first claim it suffices by [6, (III.6.2)] to show that A is in the kernel of
the ramification map at the divisors on U defined by g and by h. Since (fh,−gh) =
(f, g)+(f,−h)+(g, h) in Br(Q(U)), this reduces to the assertions that fg is a square
modulo h and fh is a square modulo g, and these assertions can be verified directly.

The algebra (6), over Q(U), is that given in [10, proof of Proposition 1.3(iii)],
applied to the ramification locus D⊗Q (after linear change of coordinates that elim-
inates the y4 term from f). The image of the pull-back of A to Br(U ⊗Q) under the
ramification map is calculated and found to be as claimed. �

Lemma 3.2. The element A ∈ Br(U) from Lemma 3.1 can be extended to Br(U ⊗
Z[1/2]).

Proof. The element A extends over U ⊗ Z[1/N ] for some integer N , as well as over
the open subscheme of U ⊗Z[1/2] where f , g, and h are nonvanishing, and hence over
their union by the Mayer-Vietoris sequence. Gabber’s purity result [5, Theorem 2′]
completes the proof. �

1We take the liberty here of writing homogeneous functions of even degree rather than rational
functions.



6 ANDREW KRESCH AND YURI TSCHINKEL

By direct evaluation, we see that for (x : y : z) ∈ U(Z2) satisfying

x ≡ 0 (mod 2), y ≡ 1 (mod 2), and z ≡ 1 (mod 2), (7)

A is nonzero at (x : y : z) ∈ U(Q2). By Lemma 3.2, A vanishes at p-adic integral
points of U for p odd. Evaluation at one point in each of the two connected components
of U(R) reveals that A vanishes at all real points of U . Therefore, the constraint (1)
dictates that U has no integral points satisfying (7). Any integral solution to (5)
would have to satisfy (7), so (iii) is established.

Remark 4. Since (0 : 1 : 0) ∈ U(Z), Example 2 furnishes a Brauer–Manin obstruction
to strong approximation of integral points, as formulated in [8, §2].

Remark 5. There is a tower of projective varieties and open subvarieties

Ũ
� � //

��
π

��

X̃
(x:y:z:t) 7→
(x:y:z:t2)

��
W

� � //

��

V

(x:y:z:w) 7→
(x:y:z)

��
U

� � // P2

where X̃ is defined by f(x, y, z) = t4 in P3, V is defined by f(x, y, z) = w2 in weighted
projective space P(1, 1, 1, 2), and Ũ ⊂ X̃ and W ⊂ V are defined by t 6= 0 and w 6= 0,
respectively. By [16, Theorem 8] (which treats the topological fundamental group)
and [7, (XII.5.2), (XIII.4.6)] (which provides the link to the algebraic fundamental
group), Ũ ⊗Q is a geometric universal cover of U . The pull-back of A to Br(W ⊗Q)
is seen by direct evaluation to lie in the kernel of the ramification map for W ⊗ Q,
and hence the pull-back of A to the geometric universal cover is unramified and, in
fact, trivial (since Br(V ⊗Q) = 0).

Remark 6. The obstruction mentioned in Remark 4 is not, to the authors’ knowledge,
a consequence of any descent obstruction coming from U -torsors under finite algebraic
groups. Remark 5 exhibits a U -torsor Ũ under the group µ4 of fourth roots of unity,
acting by multiplication on the t coordinate. For every prime p, the set π(Ũ(Qp))
contains p-adic integral points by statement (i), and some of these indeed satisfy (7)
when p = 2.

Acknowledgement. The authors are grateful to the referee for suggestions that led
to significant improvements in the presentation of this material.
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