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Abstract. A natural question is to determine which algebraic stacks are quo-

tient stacks. In this paper we give some partial answers and relate it to the

question of whether, for a scheme X, the natural map from the Brauer goup
(equivalence classes of Azumaya algebras) to the cohomological Brauer group

(the torsion subgroup of H2(X, Gm)) is surjective.

1. Introduction

Quotients of varieties by algebraic groups arise in many situations, for instance in
the theory of moduli, where moduli spaces are often naturally constructed as quotients
of parameter spaces by linear algebraic groups. The quotient of a scheme by a group
need not exist as a scheme (or even as an algebraic space), and even when a quotient
exists, the quotient morphism may not have expected properties. For example, if Z
and G are smooth, then the morphism Z → Z/G need not be smooth.

To overcome this difficulty, it is often helpful to consider quotients as stacks, rather
than as schemes or algebraic spaces. If G is a flat group scheme acting on an algebraic
space Z (G must be separated and finitely presented over some base scheme, with
the space Z and the action map defined over this base), then a quotient [Z/G] always
exists as a stack, and this stack is algebraic. Knowing that an algebraic stack has a
presentation as a quotient [Z/G] (with G a linear algebraic group, say) can make the
stack easier to study, for then the geometry of the stack is the G-equivariant geometry
on the space Z.

A natural question is to determine which algebraic stacks are quotient stacks. In
this paper we give some partial answers to this question and relate it to the old
question of whether, for a scheme X, the natural map from the Brauer group (classes
of Azumaya algebras modulo an equivalence relation) to the cohomological Brauer
group (the torsion subgroup of étale H2(X,Gm)) is surjective.

Some quick answers to this natural question are (the first two are folklore): (i) all
orbifolds are quotient stacks (Theorem 2.18); (ii) all regular Deligne-Mumford stacks
of dimension ≤ 2 are quotient stacks (Example 2.17); (iii) there exists a Deligne-
Mumford stack, normal and of finite type over the complex numbers (but singular
and nonseparated) which is not a quotient stack (Example 2.21).

In fact, the example in (iii) is a stack with stabilizer group Z/2 at every point; it
is a gerbe over a normal (but nonseparated) scheme, of dimension 2 over the complex

Date: 29 November 2000.
Research of the first author supported in part by the NSA, NSF, and the University of Missouri

Research Board; research of the second author supported in part by an NSF Postdoctoral Research
Fellowship, an NSF grant, and the Institute of Mathematical Sciences of the Chinese University

of Hong Kong; research of the third author supported in part by an NSF Postdoctoral Research
Fellowship; research of the fourth author supported in part by the University of Bologna, funds for
selected research topics.

1



2 D. EDIDIN, B. HASSETT, A. KRESCH, AND A. VISTOLI

numbers. Theorem 3.6 says such a stack is a quotient stack if and only if a certain
class in the cohomological Brauer group associated with it lies in the image of the
map from the Brauer group. So, (iii) yields an example, of independent interest, of
non-surjectivity of the Brauer map for a finite-type, normal, but nonseparated scheme
(Corollary 3.11). This stands in contrast with the recent result of S. Schröer [Sch],
which says that the Brauer map is surjective for any separated geometrically normal
algebraic surface.

The paper is organized as follows: In Section 2 we review the definition of algebraic
stacks and state accompanying results relative to quotient stacks. Additional results
concern finite covers of stacks by schemes. In Section 3 we review gerbes and Brauer
groups and state the result relating the Brauer map to gerbes being quotient stacks.
Finally in Section 4 we give proofs.

Acknowledgments. The authors thank Andrei Caldararu, Bill Graham, and Amnon
Yekutieli for helpful discussions. They are also grateful to Laurent Moret-Bailly and
the referee for a number of corrections and suggestions.

2. Stacks and quotient stacks

2.1. Stacks. Here we give a brief review of stacks. Some references are [D-M], [Vi]
and [L-MB].

Stacks are categories fibered in groupoids satisfying descent-type axioms; the stacks
of interest to us will be algebraic and hence admit descriptions in the form of groupoid
schemes. First, recall that a groupoid is a small category C in which all arrows are
isomorphisms. Write R = Hom(C) and X = Obj(C). There are two maps s, t : R →
X sending a morphism to its source and target, respectively; a map e : X → R taking
an object to the identity morphism of itself; a map i : R → R taking a morphism to
its inverse; and a map m : R×t,X,s R→ R taking a pair of composable morphisms to
their composition. Write j = (s, t) : R → X ×X. There are obvious compatibilities
between these maps.

A groupoid scheme consists of schemes R and X defined over a fixed base scheme L,
together with maps s, t, e, i,m satisfying the same compatibility conditions as above.
A groupoid scheme is called étale (respectively smooth, respectively flat) if the maps
s and t are étale (resp. smooth, resp. faithfully flat and locally of finite presentation).
The stabilizer of a groupoid scheme is the scheme S = j−1(∆X) (here ∆X ⊂ X ×X
is the diagonal). This is a group scheme over X.

Let L be a fixed ground scheme and let F be a category together with a func-
tor p : F → Sch /L. For a fixed L-scheme B, let F (B) denote the subcategory of
F consisting of objects mapping to B and morphisms mapping to 1B . Roughly, a
category fibered in groupoids (over L) is pair consisting of a category F and a functor
p : F → Sch /L, such that:

(i) For all L-schemes B, F (B) is a groupoid.
(ii) For any morphism of L-schemes f : B′ → B and any object x ∈ F (B), there

is an object f∗x in F (B′), unique up to canonical isomorphism, together with a
morphism f∗x→ x lying over f . For the precise definition see, e.g., [D-M, Sec. 4].

A morphism of categories fibered in groupoids is simply a functor commuting with
the projection functors to Sch /L. An isomorphism of categories fibered in groupoids
is a morphism which is an equivalence of categories.

Any contravariant functor Sch /L→ Sets determines a category fibered in groupoids.
We say that a category fibered in groupoids over L is represented by a scheme (resp.
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algebraic space) if it is equivalent to the functor of points of a scheme (resp. algebraic
space).

An important construction is the fiber product. Given morphisms f1 : F1 → F and
f2 : F2 → F , the fiber product F1 ×F F2 is the category fibered in groupoids defined
as follows: Objects are triples (x1, x2, ψ) where x1 is an object of F1, x2 is an object
of F2, and ψ : f1(x1) → f2(x2) is an isomorphism, lying over an identity morphism of
Sch /L. A morphism is specified by a pair of morphisms compatible with the induced
isomorphism in F .

Definition 2.1. A category fibered in groupoids (F, p) is a stack if it satisfies two
descent properties.

(1) For objects x, y in F (B) the functor IsoB(x, y) : Sch /B → Sets assigning to a
B-scheme f : B′ → B the set of isomorphisms between f∗x and f∗y is a sheaf for the
étale topology.

(2) F has effective descent for étale morphisms.

Definition 2.2. A morphism of stacks is representable if for any morphism of an
algebraic space B → F , the fiber product B ×F F ′ is represented by an algebraic
space. A morphism is strongly representable if for any morphism of a scheme B → F ,
the fiber product B ×F F ′ is represented by a scheme.

Let P be a property of morphism of schemes which is preserved by base change and
is local for the smooth topology. A representable morphism F ′ → F has property P
if for all morphisms B → F of algebraic spaces, the induced morphism B×F F

′ → B
has property P.

Stein factorization holds for algebraic spaces and implies [Kn, II.6.15] that if
f : X → Y is a separated quasi-finite morphism of algebraic spaces, and if Y is a
scheme, then X is a scheme. Hence, a representable separated quasi-finite morphism
is always strongly representable.

Definition 2.3. A stack F is algebraic, or is an Artin stack, if
(1) There exists a representable smooth surjective morphism X → F from a

scheme.
(2) The diagonal morphism F → F ×L F is representable, quasi-compact, and

separated.

Remark 2.4. The representability of the diagonal implies that any morphism from an
algebraic space is representable. For stacks with quasi-finite diagonal, any morphism
from a scheme is strongly representable.

Remark 2.5. A stack F is called a Deligne-Mumford stack if there exists an étale
cover of F by a scheme. By [L-MB, 8.1], this happens if and only if the diagonal
F → F ×L F is unramified. (As explained in [L-MB, 4.2], “unramified” should be
understood to mean “locally of finite type and formally unramified.”) A Deligne-
Mumford stack has, in particular, quasi-finite diagonal. The geometric fibers of the
diagonal are group schemes, so if all the residue fields of L have characteristic 0 then
conversely, any algebraic stack with quasi-finite diagonal is a Deligne-Mumford stack.

Finally, we describe very briefly groupoid presentations (or atlases) of algebraic
stacks: see [L-MB] for a full treatment. By definition, any algebraic stack F admits a
smooth surjective map from a scheme X; X → F is called a smooth atlas. In this case,
the fiber product R = X ×F X is an algebraic space. However, for stacks with quasi-
finite diagonal, the diagonal is strongly representable, so R is in fact a scheme. The
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smooth groupoid schemeR⇒X is called a presentation for F . Conversely, any smooth
groupoid scheme R⇒X with separated, finite-type relative diagonal R → X × X
determines an algebraic stack [R⇒X]. A theorem of Artin (cf. [L-MB, 10.1]) says
that any faithfully flat groupoid scheme R⇒X (with separated, finite-type relative
diagonal) determines an algebraic stack. In this case the groupoid scheme R⇒X
is called a faithfully flat presentation for F . By Remark 2.5, an algebraic stack is a
Deligne-Mumford stack if and only if it has an étale presentation. If F is an algebraic
stack with quasi-finite diagonal, then it is relatively straightforward ([K-M, Lemma
3.3]) to show that F has a quasi-finite faithfully flat atlas of schemes.

If the group scheme G acts on the algebraic space Z (we assume G flat, separated,
and of finite presentation over the ground scheme L; the space Z should be an L-
space and the action map Z ×L G→ Z an L-morphism), then the action determines
a groupoid Z×LG⇒Z. This will be a flat atlas for the stack whose fiber over any L-
scheme T is the category of principal G-bundles E → T together with G-equivariant
morphisms E → Z. This is an algebraic stack, denoted [Z/G].

As noted above, any algebraic space is an algebraic stack; the following result says
when the converse holds.

Proposition 2.6. [L-MB, 2.4.1.1 and 10.1] Let F be an algebraic stack, and let
s, t : R⇒X be a faithfully flat presentation for F . Then F is an algebraic space if
and only if the map R → X ×X is a monomorphism. If we set S = (s × t)−1(∆X)
then this is equivalent to S → X being an isomorphism by either s or t.

We call attention to the map S → X of Proposition 2.6. The fiber product of the
diagonal F → F ×F with itself is an algebraic stack IF := F ×F×F F . The projection
(to either factor) IF → F is the stabilizer map, and is represented by the stabilizer
S → X of the groupoid space R⇒X, for any atlas X.

2.2. Results on stacks. The first theorem states that stacks with quasi-finite diago-
nal are finitely parametrized; i.e., admit finite covers by schemes. This is the strongest
possible result since any finitely parametrized stack must have quasi-finite diagonal.
This result extends results of Vistoli [Vi] and Laumon and Moret-Bailly [L-MB] for
Deligne-Mumford stacks. The first result of this form of which the authors are aware
is due to Seshadri [Se, Theorem 6.1] in the context of group actions on varieties. In
fact, the use of Lemma 4.1 was inspired by reading his paper.

Theorem 2.7. Let F be an algebraic stack of finite type over a Noetherian ground
scheme L. Then the diagonal δ : F → F ×LF is quasi-finite if and only if there exists
a finite surjective morphism X → F from a (not necessarily separated) scheme X.

Remark 2.8. Existence of finite scheme covers is an important ingredient in inter-
section theory on Deligne-Mumford stacks. It is used, for instance, to define proper
pushforward for nonrepresentable morphisms (of cycles modulo rational equivalence
with Q coefficients). General intersection-theoretic machinery has been developed for
Artin stacks whose geometric stabilizers are affine groups [Kr]. All of intersection
theory on Deligne-Mumford stacks, as in [Gi] and [Vi], generalizes to Artin stacks
with quasi-finite diagonal, where Theorem 2.7 is used to provide nonrepresentable
proper pushforwards.

Definition 2.9. Let F be a stack, of finite type over a Noetherian base scheme L. We
say F is a quotient stack if F is isomorphic to a stack of the form [Z/G] where Z is
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an algebraic space, of finite type over L, and G is a subgroup scheme of the general
linear group scheme GLn,L for some n, with G flat over L.

Remark 2.10. Every affine group scheme of finite type over a field is a subgroup
scheme of GLn, so the condition on G in Definition 2.9 is the natural notion of linear
algebraic group over a general Noetherian base.

Remark 2.11. The quotient Z ′ := Z ×L GLn,L/G (where G acts on Z and acts by
translation on GLn,L) exists as an algebraic space, and [Z ′/GLn] ' [Z/G]. So every
quotient stack is a quotient by GLn for some n.

We state two foundational results, followed by two results giving sufficient con-
ditions for a stack to be a quotient stack. Recall that f : E → F is a projective
morphism if and only if f factors, up to 2-isomorphism, as a closed immersion fol-
lowed by projection E → P(E) → F , where E is a finite-type quasi-coherent sheaf on
F and P(E) denotes its projectivization.

Lemma 2.12. Let F be an algebraic stack of finite type over a Noetherian scheme.
The following are equivalent.

(i) F is a quotient stack.
(ii) There exists a vector bundle V → F such that at every geometric point, the

stabilizer action on the fiber is faithful.
(iii) There exists a vector bundle V → F and a locally closed substack V 0 ⊂ V such

that V 0 is representable and V 0 surjects onto F .

Lemma 2.13. Let π : E → F be a flat projective map of stacks (of finite type over a
Noetherian base scheme) which is surjective. If E is a quotient stack, then so is F .

Theorem 2.14. Let F be an algebraic stack of finite type over a Noetherian scheme,
and let f : X → F be a finite cover by a scheme or algebraic space. If the coherent
sheaf f∗OX is the quotient of a locally free coherent sheaf then F ' [Z/GLn] where
Z is an algebraic space. In particular, if every coherent sheaf on F is the quotient of
a locally free coherent sheaf, then F is a quotient stack.

Remark 2.15. If the ground scheme L is normal and separated, and has the property
that every coherent sheaf on L is the quotient of a locally free sheaf (e.g., if L is affine,
or regular) and if F = [Z/GLn] where Z is a scheme equivariantly embedded in a
regular Noetherian separated scheme, then the equivariant resolution theorem of [Th]
implies that every coherent sheaf on F is the quotient of a locally free coherent sheaf
on F .

Corollary 2.16. Let F be an algebraic stack of finite type over a Noetherian scheme.
If F has a finite flat cover by an algebraic space then F is a quotient stack. In
particular, if F is regular and has a finite cover by a Cohen-Macaulay algebraic space
then F is a quotient stack.

Example 2.17. Assume the base scheme is a field (or more generally, any universally
Japanese scheme, for instance Spec Z). Any regular stack of dimension ≤ 2 with
quasi-finite diagonal is a quotient stack.

We emphasize the second statement of Corollary 2.16 because the Deligne-Mum-
ford stacks considered by Mumford in [Mu] satisfy (ii). In particular they are quotient
stacks, and the intersection product he constructs is a special case of the intersection
product of [E-G].
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Finally, if F is Deligne-Mumford then we have the following result which we ob-
tained based on conversations with Bill Graham. In the characteristic zero setting,
this result is familiar from the study of orbifolds.

Theorem 2.18. If F is a smooth Deligne-Mumford stack of finite type over the
Noetherian base scheme such that the automorphism group of a general geometric
point of F is trivial, then F is a quotient stack.

Thus any stack which admits a representable morphism to a smooth Deligne-
Mumford stack with trivial generic stabilizers, also, is a quotient stack.

Corollary 2.19. Let F be a smooth Deligne-Mumford stack of finite type over a Noe-
therian base scheme. Assume F has finite stabilizer, and suppose the automorphism
group of a general geometric point of F has trivial center. Then F is a quotient stack.

Recall that an algebraic space Q has quotient singularities if locally in the étale
topology Q is isomorphic to quotients U/H, where H is a finite group and U is
smooth. By [Vi, Proposition 2.8], any separated scheme of finite type over a field of
characteristic zero with quotient singularities is a moduli space for a smooth stack F
which has generically trivial stabilizer, so we have the following consequence.

Corollary 2.20. Any separated scheme of finite type over a field of characteristic 0
which has at worst quotient singularities is a quotient Q = Z/G where Z is a smooth
algebraic space and G is a linear algebraic group.

Lastly, as promised, not every Deligne-Mumford stack is a quotient stack.

Example 2.21. Let Y be the scheme Spec C[x, y, z]/(xy − z2), whose nonsingular
locus is Y reg = Y r{0}. There is a unique (up to 2-isomorphism) nontrivial involution
of Y reg × B(Z/2) which commutes with the projection map to Y reg. Let F be the
stack obtained by glueing two copies of Y × B(Z/2) via this involution. Then F is
not isomorphic to [Z/G] for any algebraic space Z and linear algebraic group G.

3. Gerbes and Brauer groups

In this section we give a brief review of gerbes and Brauer groups and state our
accompanying results. References for gerbes are [Mi] and [L-MB]. For Brauer groups,
see [Gr] and [Mi].

3.1. Gerbes. In what follows we fix a base scheme X, assumed Noetherian, and we
take G to be a group scheme, flat, separated, and of finite type over X. The gerbes
that arise in the theorem that relates gerbes to Brauer groups (Theorem 3.6) have
G equal to the algebraic torus Gm or a group of roots of unity µn. We only discuss
gerbes that are modeled on some group scheme G over the base.

Definition 3.1. A G-gerbe over X is a morphism F → X, with F an algebraic stack,
such that there exists a faithfully flat map, locally of finite presentation, X ′ → X,
such that F ×X X ′ ' BG×X X ′.

We say the G-gerbe F → X is trivial if F ' BG. Note that a gerbe F → X which
admits a section x ∈ F (X) satisfies F ' B(AutF (x)) where AutF (x) is group scheme
(or group space) IsoF (x, x) (such a gerbe is called neutral). Nontrivial gerbes are
easy to construct, much the way one constructs nontrivial vector bundles, or torsors.
For instance, one can glue two copies of A1 ×B(Z/2) along a nontrivial involution of
(A1 r {0})×B(Z/2) to obtain a nontrivial (Z/2)-gerbe over P1.
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Definition 3.2. Let G and H be two group schemes over X. The sheaf of band
isomorphisms, denoted Band(G,H), is the sheafification of the quotient of the sheaf
of group isomorphisms Iso(G,H) by the conjugation action of H. When G = H, this
is the sheaf of outer automorphisms of G, which is denoted Out(G).

Definition 3.3. Given a G-gerbe F → X, the associated torsor of outer automor-
phisms is the sheaf P over X defined as follows. Let T be an X-scheme. If there
exists an object t ∈ F (T ), then we define P (T ) to be Band(AutF (t), G ×X T ). One
checks that if t̃ denotes another object in F (T ), then there is a canonical element
Band(AutF (t),AutF (t̃ )) obtained by chosing local isomorphisms of t with t̃; this
canonically identifies Band(AutF (t), G×X T ) with Band(AutF (t̃ ), G×X T ). In gen-
eral, P (T ) is defined as the difference kernel P (T ′)⇒P (T ′ ×T T ′) with respect to
any flat cover T ′ → T such that t′ ∈ F (T ′) exists. Elements of P (T ) pull back in the
obvious fashion.

There is an obvious action of Out(G) on P , making it into a torsor. This torsor is
classified by some β ∈ H1(X,Out(G)). This is the first obstruction to triviality of F .

For the remainder of this section, we assume that Out(G) is a finite flat group
scheme over X. This is the case when (i) G is finite group (viewed as a group scheme
over Spec Z and hence over any base); (ii) G = µn for any positive integer n; (iii)
G = Gm. Now there are two ways to remove the first obstruction to triviality for a
gerbe. First, one can hope that β is in the image ofH1(X,Aut(G)) → H1(X,Out(G)),
and then use the Aut(G)-cocycle to substitute, in place of G, a new group scheme G′,
locally isomorphic to G. For instance, if the symmetric group S3 acts on A1 r {0}
by σ · z = sgn(σ)z, then F := [A1 r {0}/S3] is nontrivial as a (Z/3)-gerbe over X :=
A1 r {0}. Its first obstruction class is the nontrivial element of H1(X,Aut(Z/3)) =
H1(X,Out(Z/3)). Twisting, we obtain a group scheme G′ over X, and we find in
this example that F ' BG′.

The second method, which doesn’t require hoping, is to pull back to the total space
of the Out(G)-torsor. So, the first obstruction to triviality vanishes upon finite flat
pullback.

Assume our G-gerbe has trivial first obstruction, and let a trivialization of P
be fixed. If the center of G is trivial, then one can use the stack axioms to glue
local sections of F → X to get a section defined over X; the cocycle condition will
automatically be satisfied. In general, the obstruction is a 2-cocycle with values in
the center Z of G. The class α ∈ H2(X,Z) is the second obstruction to triviality of
F (this depends on the choice of trivialization of P ; a different choice will differ by a
global section γ of Out(G), and the class in H2(X,Z) resulting from the new section
is the result of γ applied to α by the obvious action of Out(G) on Z).

Remark 3.4. A gerbe F is said to be banded (it is becoming standard to translate
as band the French verb lier) by G if the gerbe is endowed with a global section of
the associated torsor of outer automorphisms. When G is abelian, to say that F is
banded by G is equivalent to saying that for every X-scheme U and object u ∈ F (U),
there is chosen an isomorphism G(U) ∼→ AutF (u), compatible with pullbacks.

If G is abelian, then by cohomological machinery, the set of isomorphism classes
of gerbes on X banded by G is in bijection with H2(X,G) ([Mi, §IV.2]). For G
finite and flat with flat center Z let F → X be a gerbe banded by G, with second
obstruction α ∈ H2(X,Z), then the Z-gerbe E → X associated with α admits a finite
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flat representable morphism to F . So, such a G-gerbe is covered by a gerbe banded
by G, which in turn is covered by a gerbe banded by the center of G.

Proposition 3.5. Let G be a finite flat group scheme over X. Assume that the
center, Z, and the sheaf of outer automorphisms Out(G) are finite and flat as well.
Let F → X be a G-gerbe. Then there exists an Out(G)-torsor Y → X and a gerbe
E → Y banded by Z, such that E admits a finite flat representable surjective morphism
to F .

3.2. Brauer groups. Let X be a Noetherian scheme. The Brauer group Br(X)
is the group of Azumaya algebras (sheaves of algebras, étale-locally isomorhic to
endomorphism algebras of vector bundles), modulo the equivalence relation E ∼ E ′
if E ⊕ End(V ) ' E ′ ⊕ End(V ′) for some pair of vector bundles V and V ′ on X. By
the Skolem-Noether theorem, the rank n2 Azumaya algebras on X are classified by
H1(X,PGLn). The exact sequence

1 → Gm → GLn → PGLn → 1,

identifies the obstruction to a rank n2 Azumaya algebra being the endomorphism
algebra of a vector bundle as an element—in fact, an n-torsion element—of the étale
cohomology group H2(X,Gm). There is thus determined a homomorphism

Br(X) → H2(X,Gm).

It is a fact that this homomorphism is always injective [Mi, IV Th. 2.5].
The cohomological Brauer group, denoted Br′(X), is defined to be the torsion sub-

group of H2(X,Gm). When X is regular, the map Br′(X) → Br′(k(X)) is injective,
where k(X) denotes the generic point of X. For a field, Br, Br′ and the full second
cohomology group agree. It is only in the presence of singularities that the cohomo-
logical Brauer group may differ from the full cohomology group H2(X,Gm).

The Brauer map is the injective group homomorphism

Br(X) → Br′(X).

A major question in the study of Brauer groups is: for which schemes X is the Brauer
map an isomorphism? The article [Ho] identifies some classes of schemes for which
this is known. The Brauer map is known to be an isomorphism for abelian varieties,
low-dimensional varieties (general varieties of dimension 1 and regular varieties of
dimension 2), affine varieties, and separated unions of two affine varieties. Recently
the Brauer map has been shown to be an isomorphism for separated geometrically
normal algebraic surfaces [Sch]. Also known in general is that if α ∈ Br′(X) is
trivialized by a finite flat cover, then α lies in the image of the Brauer map.

Theorem 3.6. Let X be a Noetherian scheme. Let β be an element of H2(X,Gm).
The following are equivalent.

(i) β lies in the image of the Brauer map.
(ii) There exists a flat projective morphism of schemes π : Y → X, surjective, such

that π∗β = 0 in H2(Y,Gm).
(iii) The Gm-gerbe with classifying element β is a quotient stack.
Furthermore, if nβ = 0 and α ∈ H2(X,µn) is a pre-image of β under the map of

cohomology coming from the Kummer sequence, then conditions (i), (ii), and (iii) are
equivalent to

(iv) The µn-gerbe with classifying element α is a quotient stack.
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Remark 3.7. Here we are writing “G-gerbe with classifying element α” (for G = Gm

or µn) to refer to a gerbe, banded by G, whose second obstruction to triviality is
α ∈ H2(X,G). Such a gerbe is defined uniquely up to isomorphism, hence the abusive
terminology “the G-gerbe. . . .”

Remark 3.8. In characteristic p > 0 (or in mixed characteristic) the cohomology
groups above are flat cohomology groups. By [Gr, III.11], sheaf cohomology with
values in Gm, or in µn when n in invertible, is the same in the étale and flat topologies.

Remark 3.9. Statements (i) and (ii) do not involve stacks, so the implications (i) ⇔
(ii) have independent interest. One direction, (i) ⇒ (ii), is well-known: if β is in the
image of the boundary homomorphism H1(X,PGLm+1) → H2(X,Gm) then pullback
to the associated Pm-bundle trivializes β; the Pm-bundle is the famous Brauer-Severi
scheme. The other direction, (ii) ⇒ (i), seems to have been known only as folklore,
until recently. The result now appears in the Ph.D. thesis of A. Caldararu [Ca, Prop.
3.3.4].

Remark 3.10. The question of whether a general Deligne-Mumford stack is a quotient
stack is hard (even with strong hypothesis such as smooth and proper over a field). But
for gerbes over schemes over a field of characteristic zero, Lemma 2.13 can be used, in
conjunction with Proposition 3.5 and Theorem 3.6, to reduce the question to the case
of µn-gerbes. Indeed, by Proposition 3.5, any G-gerbe has a finite flat representable
cover by an abelian group gerbe, which in turn admits a closed immersion to a product
of cyclic group gerbes.

Example 2.21 then tells us:

Corollary 3.11. Let X be the union of two copies of Spec C[x, y, z]/(xy− z2), glued
along the nonsingular locus. Then the Brauer map Br(X) → Br′(X) is not surjective.
So the nonseparated union of two affine varieties need not have surjective Brauer map.

(R. Hoobler has pointed out that it is possible to verify directly, using cohomological
methods, that the schemeX in this statement satisfies Br(X) = 0 and Br′(X) = Z/2.)

Going the other way, Theorem 3.6 provides an example of a stack with affine (but
not quasi-finite) diagonal of finite type over a field which is not a quotient stack.
(Note that the stack in Example 2.21 only has quasi-affine diagonal.)

Example 3.12. Let X be a normal separated surface over a field (if one wishes,
C) such that H2(X,Gm) contains a non-torsion element β [Gr, II.1.11.b]. Then the
Gm-gerbe F classified by β has affine diagonal and is not a quotient stack.

4. Proofs of results

4.1. Finite parametrization of stacks. Here we prove Theorem 2.7, which states
that that every stack with quasi-finite diagonal has a finite cover by a scheme. We
begin with an easy, but very useful lemma.

Lemma 4.1. Suppose that p1 : F1 → F and p2 : F2 → F are representable (respec-
tively strongly representable) morphisms. Assume that F is covered by open substacks
U1, U2 such that the fiber products U1 ×F F2 and F1 ×F U2 are representable by alge-
braic spaces (resp. schemes). Then the fiber product is F1 ×F F2 is also represented
by an algebraic space (resp. scheme).
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Proof. The inverse images of U1 ×F F2 and F1 ×F U2 in F1 ×F F2 are represented by
algebraic spaces (resp. schemes), because p1 and p2 are representable (resp. strongly
representable). But these inverse images are open substacks which cover F1×F F2. �

Proof of Theorem 2.7. Since F is finitely presented over the ground scheme, we may
assume that F is obtained by base change from a stack of finite type over Spec Z.
Hence to obtain a cover we may assume that F is of finite type over Spec Z. Also,
since the morphism Fred → F is finite and surjective we can assume F is reduced.
By working with each irreducible component separately we can assume F is integral.
Finally by normalizing we can assume that F is normal.

Suppose that F has an open cover F 1, . . . , F k such that F i has a finite cover by
a scheme Zi. The composite morphism Zi → F i ↪→ F is quasi-finite. Thus, by
Zariski’s Main Theorem [L-MB, Theorem 16.5] the morphism Zi → F factors as an
open immersion followed by a finite representable map Zi ↪→ Zi → F . Since F is
assumed to be irreducible, the finite representable morphism Zi → F has dense image
so it must be surjective. Set Z = Z1×FZ2 . . .×FZk. The induced map Z → F is finite,
representable and has dense image, so it is surjective. Since any finite representable
morphism is strongly representable, we can, by applying the Lemma, conclude that
Z is a scheme.

Thus, to prove the theorem it suffices to prove that F has a cover by open substacks
which admit finite covers by schemes. By [K-M, Lemma 3.3.1], F has a quasi-finite flat
cover by a scheme V . Let Vi be an irreducible component of V . Once again applying
Zariski’s Main Theorem, the quasi-finite morphism Vi → F factors as Vi ↪→ F ′ → F ,
where the first map is an open immersion and the second map is finite (and by
density surjective). Replacing F by F ′ we may therefore assume that F is generically
a scheme. In particular, we can assume that F has a generic point SpecK.

Let s, t : R⇒X be a smooth presentation for F . Since we are working locally we
can assume that X is a normal variety. By [K-M, Lemma 3.3.1], the smooth cover
can be refined to a quasi-finite flat cover by a scheme V and the morphism V → X
is the composition of a closed immersion and an étale morphism. Again since we
are working locally we may assume that V is irreducible. In particular we may also
assume that V is normal.

Since the morphism V → F is quasi-finite, it is open. Replacing F by an open
substack, we may assume that V → F is surjective. Now we construct a finite cover
of F by a scheme. The map V → F is generically finite, so K(V ) is a finite extension
of K (recall that SpecK is the generic point of F ). Let K ′ be a normal extension of
K containing K(V ). Then K ′ is Galois over a field K ′′ which is a purely inseparable
extension of K. Let F ′ be the normalization of F in K ′. Let U1 be the pre-image of
V in F ′, and for α ∈ Gal(K ′/K ′′) let Uα be the translate of U1 under the action of α.
Each Uα is a scheme. Since normalization commutes with smooth pullback ([L-MB,
Lemma 16.2.1]), we may invoke [Bour, Prop. V2.3.6] to deduce that Gal(K ′/K ′′) acts
transitively on the fibers of F ′/F . Hence the Uα cover F ′, so F ′ is a scheme which is
a finite cover of F . �

As a corollary of independent interest, we obtain Chow’s Lemma for stacks with
finite diagonal, extending [D-M, Theorem 4.12] (a stack with quasi-finite diagonal is
separated if and only if the diagonal is finite).
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Corollary 4.2. Let F be an algebraic stack of finite type over a Noetherian ground
scheme. If the diagonal of F is finite, then F admits a proper, surjective, generically
finite morphism from a quasi-projective scheme.

4.2. Stacks which are quotient stacks. In this section we give proofs of Lemmas
2.12 and 2.13, and from these deduce Theorems 2.14 and 2.18.

In Lemma 2.12, the implication (i) ⇒ (iii) is well-known: if F ' [X/G], let G
act linearly on some affine space Am, freely on some open U ⊂ Am such that the
structure map from U to the base scheme is surjective. Now we take V 0 ⊂ V to
be [X × U/G] ⊂ [X × Am/G] with the diagonal G-action. Clearly, (iii) implies (ii).
If V → F is a vector bundle of rank n such that at every geometric point, the
stabilizer action is faithful on the fiber, then the stabilizer action on frames is free
at every geometric point, hence the associated frame bundle P is an algebraic space
(Proposition 2.6), and F ' [P/GLn]. This establishes (ii) implies (i), and we have
proved Lemma 2.12.

To prove Lemma 2.13, let E and F be finite-type stacks over a Noetherian ground
scheme, and let π : E → F be a flat, projective morphism. LetO(1) denote a relatively
ample invertible sheaf on E, and for a coherent sheaf E on E, we let E(k) denote
E ⊗ O(k). We know that for k sufficiently large, we have Riπ∗E(k) = 0 for i > 0
and hence π∗E(k) locally free (these are local assertions, and for schemes this is well
known).

Suppose E is a quotient stack. Then there is a locally free coherent sheaf E on
E, such that the geometric stabilizer group actions on fibers are faithful. Replacing
E by E ⊕ OE if necessary, the stabilizer actions on fibers of E(k) for each k will be
faithful as well. Choose k such that Riπ∗E(k) = 0 for i > 0 and such that the
natural map of sheaves π∗(π∗E(k)) → E(k) is surjective. We may also suppose E(k)
is very ample when restricted to the fibers of π. If we let F := π∗E(k), then F is a
locally free coherent sheaf on F such that the stabilizer group actions on fibers are
faithful. Indeed, if p : Spec Ω → F is a geometric point, with stabilizer group Γ, then
Y := E ×F Spec Ω is a projective scheme with very ample coherent sheaf E(k)⊗OY

that is generated by global sections, and since Γ acts faithfully on the fibers of E(k)
it follows that Γ acts faithfully on H0(Y, E(k)⊗OY ). Lemma 2.13 is proved.

Now Theorem 2.14 is proved as follows. Let f : X → F be a finite cover of F
by a scheme (or algebraic space). By assumption there is a surjection of sheaves
E → f∗OX . Let V be the vector bundle associated with E . Then there is a closed
immersion of X into the stack V . Since X is representable and X → F is surjective,
F is a quotient stack by Lemma 2.12.

Remark 4.3. If, in the situation of Theorem 2.14, the stack F admits a finite map to
a scheme Q (this occurs exactly when F has finite stabilizer and hence has a moduli
space [K-M], and the moduli space is a scheme) then Z (the algebraic space for which
we have F ' [Z/GLn]) is in fact a scheme. The reason that Z is a scheme is as
follows: Let Y → F be a finite cover of F by a scheme. Then, since Z → F is affine,
the fiber product Z ×F Y is an affine Q-scheme. Thus, by Chevalley’s theorem for
algebraic spaces [Kn, III.4.1] it follows that Z is an affine Q-scheme as well.

Finally, Theorem 2.18 is a direct consequence of Lemma 2.12, provided we know
that the tangent bundles and higher jet bundles of smooth Deligne-Mumford stacks
enjoy faithful actions by the stabilizers of geometric points.
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Proposition 4.4. Let s, t : R⇒X be an étale presentation of a smooth Deligne-
Mumford stack F . Let ϕ : S → X be the stabilizer group scheme. Assume that no
component of S r e(X) dominates a component of X. Then for some k > 0, S acts
faithfully on the bundle of k-jets in X.

Proof. Let x be a point in X. Replacing X by an étale cover if necessary, we may
assume the points of ϕ−1(x) all have residue field equal to the residue field of x. Then,
for any r ∈ ϕ−1(x), r 6= e(x), the induced maps

s#, t# : ÔX,x → ÔR,r

are isomorphisms. Thus the composite

ÔX,x
s#

→ ÔR,r
(t#)−1

→ ÔX,x

gives an automorphism of the completed local ring ÔX,x. By assumption on S, s 6= t
in a neighborhood of r ∈ R so the automorphism is nontrivial. Thus, r must act
nontrivially on the vector space OX,x/m

k
x for some k > 0. Then, there exists k such

that the stabilizer group ϕ−1(x) acts faithfully on the space of k-jets at x.
By Noetherian induction on X, there is a k for which the stabilizer action on k-jets

is faithful at all points of X. �

Example 4.5. Let k be a field of characteristic p > 0. The map z 7→ zp − z realizes
C = P1 as a cyclic cover of P1, of degree p, branched only over infinity. So, P1 is the
coarse moduli space of the stack F = [C/(Z/p)], where a generator of Z/p acts on C
by [z : w] 7→ [z + w : w]. The stabilizer of F acts faithfully on the tangent bundle
everywhere except at the point over infinity. For n ≥ 2, the action on n-jets is faithful
at all points.

Finally, Corollary 2.19 follows from the following construction. Let F be a smooth
Deligne-Mumford stack with finite stabilizer IF → F . There is an open dense substack
F 0 on which the restriction I0 → F 0 of the stabilizer map is étale. Let J0 be the
closure of I0 in IF ; then π0 : J0 → F is étale, since any finite unramified morphism
from a scheme to a normal Noetherian scheme, such that every component dominates
the target, is étale. Then E := π0

∗OJ0 is a locally free coherent sheaf F . We claim
that the total space of the associated vector bundle has trivial generic stabilizers,
from which it follows (since F embeds in any vector bundle as the zero section) that
F is a quotient stack.

Let p : Spec Ω → F be a general geometric point of F , with automorphism group
G. Then the fiber of π0 over p is canonically isomorphic to G, and the action of
G over this fiber is by conjugation. Since G, by hypothesis, has trivial center, the
generic action on fibers of π0

∗OJ0 is faithful.

4.3. A nonquotient stack. We work out Example 2.21. By Lemma 2.12, if we can
show the stack F of Example 2.21 has no nontrivial vector bundles, it follows that F
is not a quotient stack.

Let Y = Spec C[x, y, z]/(xy − z2), with nonsingular locus Y reg. The nontrivial
involution i of Y reg × B(Z/2) is specified by (it suffices to say how i acts on pairs
consisting of map T → Y reg and trivial Z/2-torsor on T )

i(T
f→ Y reg, T × Z/2 → T ) = (T

f→ Y reg, f∗(A2 r {0} → Y reg)).

The stack F is the union of two copies of Y ×B(Z/2), glued via i.
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By [M-P] the scheme Y has no nontrivial vector bundles (this fact holds more
generally for any affine toric variety [Gu]), and since Y is normal and the glueing is
over a locus whose complement has codimension 2, the scheme Y qY reg Y (this is the
scheme over which F is a gerbe) also has no nontrivial vector bundles. Every vector
bundle on F splits into (+1)- and (−1)-eigenbundles for the stabilizer action, so we
deduce that the (+1)-eigenbundle is trivial.

We claim the (−1)-eigenbundle is zero. Let F be a locally free coherent sheaf on F
such that the stabilizer action is multiplication by −1 on sections, and let Fi (i = 1, 2)
denote the restriction of F over the ith copy of Y . Then there is a given isomorphism

F1|F reg ' i∗(F2|F reg).

Let L denote the (pullback to F reg of the) unique 2-torsion invertible sheaf on Y reg;
for any locally free coherent sheaf F on F reg such that the stabilizer acts by (−1) we
have i∗F ' L⊗ F . Hence

F1|Y reg ' L⊗ (F2|Y reg).

But this is impossible unless F1 = F2 = 0, for otherwise Fi|Y (i = 1, 2) is free of
some rank m ≥ 1, and hence we have L⊕m ' O⊕m on Y reg. But Y reg sits inside
[A2/(Z/2)] with complement of codimension 2, so this implies an isomorphism on
[A2/(Z/2)] between a free coherent sheaf and a nontrivial locally free coherent sheaf.

4.4. Gerbes and the Brauer group. Here we prove Theorem 3.6. For (i) ⇒
(iii), let γ ∈ H1(X,PGLn) be the class of an Azumaya algebra representing a given
cohomological Brauer group element β ∈ H2(X,Gm). If P → X is the PGLn-
bundle associated with γ, then by the definition of the boundary map in nonabelian
cohomology, the gerbe represented by β is [P/GLn].

For (iii) ⇒ (i), we note that if F is the Gm-gerbe associated with β, then a vector
bundle B on F decomposes into eigenbundles indexed by characters in Ĝm. Given
a faithful stabilizer action on fibers, the characters whose eigenbundles are nonzero
must generate Ĝm; then the decomposition of B⊗r ⊗ (B∨)⊗s for suitable integers r
and s has nonzero eigenbundle B1 → F for the unit character. The complement of
the zero section of B1 is a Brauer-Severi scheme over X, and the associated Azumaya
algebra represents β.

As we have remarked, (i) ⇒ (ii) is well-known. The implication (ii) ⇒ (iii) is an
immediate consequence of Lemma 2.13.

Finally, suppose β is n-torsion with pre-image α in H2(X,µn), and let us show
(iii) ⇔ (iv). Let F be the Gm-gerbe associated with β, and let F ′ be the µn-gerbe
associated with α. There is a natural representable morphism π : F ′ → F , hence
(iii) ⇒ (iv). For the reverse implication, let E be a locally free coherent sheaf on
F ′ such that the stabilizer action on sections is faithful. Consider the quasi-coherent
sheaf F := π∗E with its decomposition into eigensheaves F =

⊕
λ∈Ĝm

Fλ. We claim
each Fλ is locally free of finite type, and Fλ 6= 0 if and only if the eigensheaf of E
corresponding to the restriction of λ to µn is nonzero. Indeed, it suffices to verify the
claims étale locally, and the claims hold in the case of trivial gerbes. We can choose
a finite set S of characters which generates Ĝm such that Fλ 6= 0 for every λ ∈ S.
Then

⊕
λ∈S Fλ is a locally free coherent sheaf on F , such that the stabilizer action

on sections is faithful.



14 D. EDIDIN, B. HASSETT, A. KRESCH, AND A. VISTOLI

References
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