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1. Introduction

The geometry of moduli spaces of stable maps of genus 0 curves into a complex
projective manifold X leads to a system of quadratic equations in the tree-level (genus
0) Gromov-Witten numbers of X. In elementary examples, these equations solve for
all such numbers, uniquely and consistently, from starting data. The beautiful paper
of Di Francesco and Itzykson [1] presents a number of examples in this context.

One of the foundational papers in the area of quantum cohomology, [4], explains
this phenomenon, at least in some cases, by proving the first reconstruction theorem.
This theorem applies to manifoldsX such thatH∗(X,Q) is generated byH2(X). This
result gives an effective procedure for solving for genus 0 Gromov-Witten numbers
from starting data using the quadratic relations (since this entire paper is concerned
only with the genus 0 invariants, we omit explicit mention of genus from now on).

In all but the simplest cases there will be more than one way of using the relations
to solve for the numbers. In other words, the system of equations is overdetermined.
In the same paper the authors ask whether the seemingly redundant equations fol-
low algebraically from the useful ones. Consistency of this overdetermined system
of equations, as an algebraic (or combinatorial) statement rather than a geometric
statement, has only been noted in the literature in isolated instances, cf. [2].

The equations were predicted on the basis of physical theories and later confirmed
by rigorous study of the moduli spaces. The view taken by the physicists is quite
useful: the numbers are combined into a generating function and the relations are
represented by differential equations. The survey paper [6] documents these early
studies.

This paper continues in the spirit of these early investigations into the structure
of the relations. The main result is a generalization of the first reconstruction the-
orem. Keeping the hypothesis that the cohomology ring of X is generated by divi-
sors, we show that an initial collection of numbers and relations determines, purely
algebraically, the entire system of relations (strong reconstruction) as well as the
Gromov-Witten numbers. Examples, in the last section, illustrate the existence of
non-geometric solutions.

For a manifold X with H = H∗(X,C), the associativity relations can be expressed
geometrically by saying that an associated connection on TH is flat, i.e., that the
quantum potential function dictates on H the structure of a Frobenius manifold [2,
4]. Near a semisimple solution, the equations for flatness can be proved equivalent
(with suitable assumptions) to the well-studied Schlesinger equations, cf. [5]. Strong

Date: 9 June 1998.
1Funded by a Fannie and John Hertz Foundation Fellowship for Graduate Study and an Alfred

P. Sloan Foundation Dissertation Fellowship.

1



2 ANDREW KRESCH

reconstruction captures quantum deformations of H near the zero point, which is
never semisimple.

The author would like to express his appreciation to P. Belorousski, C. Faber, W.
Fulton, T. Graber, B. Kim, S. Kleiman, and R. Pandharipande for insightful con-
versation. Thanks are due to the organizers and staff of the Mittag-Leffler Institute,
where this work was done.

2. The basic problem

To set up the system of associativity relations, we start with the cohomology ring
A∗ = H2∗(X,Q) of a complex projective manifold X which has cohomology only in
even dimensions. If we fix an isomorphism

∫
: An ' Q then by duality the induced

pairing Ak ⊗ An−k → An → Q is nondegenerate for each k. Let us denote by
{Ti | i ∈ I} a basis for A as a Q-module, consisting of homogeneous elements, and
define gij =

∫
Ti · Tj . We know that (gij) must be an invertible matrix; let us denote

by (gij) the inverse matrix.
In order to get a well-defined system of equations, we need two more pieces of data:

a maximal-rank integral lattice Λ in (A1)∗ (we would ordinarily take Λ to be the dual
lattice to H1,1(X)∩H2(X,Z)), and a strongly convex polyhedral cone Θ ⊂ (A1)∗⊗R
(if we wish to capture geometry then Θ should contain the dual to the ample cone).
We also assume that the chosen basis {Ti} contains the identity element T1 = 1, as
well as the elements Tσi

dual to some Z-basis of Λ. We label the rest of the basis
elements by Tτj

, so we have B = {T1, Tσ1 , . . . , Tσr
, Tτ1 , . . . , Tτs

}. We may assume the
basis ordered so that codimTτj

≤ codimTτk
whenever j ≤ k. By our notation we

have integers r and s defined to be the ranks of the first and the higher graded pieces
of A, respectively.

We have taken A∗ = H2∗(X) for some manifold X since our main interest is in
the systems of associativity equations coming from geometry. However, we may just
as well take X to be a projective orbifold (we only require Q-duality). Even more
generally, there need not be any X at all: A may be any graded Gorenstein artinian
Q-algebra with socle in degree n ≥ 2 such that A0 ∼= Q and A1 6= 0.

If A is a Gorenstein ring as above, with the additional data consisting of
∫

, Λ, and
Θ, and if B be a basis for A as above, then we set C = Θ∩Λ \ {0} (in the geometric
situation, C corresponds to the set of effective curve classes). For any ω in the interior
of the dual cone to Θ, the set {β ∈ Z〈σ∗1 , . . . , σ∗r 〉 | 〈β, ω〉 < k} is finite for any k. The
set of unknown numbers is defined to be the collection of all N(β; d1, . . . , ds) with
β ∈ C and dj ≥ 0 for all j. (We remark that there is nothing resembling a canonical
class in the set-up). There is a system of equations in these unknowns, one for each
4-tuple (i, j, k, l) of elements of the basis indexing set I = {1, σ1, . . . , σr, τ1, . . . , τs}
and each degree (β; d1, . . . , ds).

We introduce formal variables {yi | i ∈ I} and define the potential function

Φ = Φcl + Γ

to be the sum of the classical part

Φcl =
1
6

∑
i,j,k∈I

(∫
Ti · Tj · Tk

)
yiyjyk
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and the quantum correction

Γ =
∑
β∈C

d1,...,ds≥0

N(β; d1, . . . , ds)ec1yσ1 · · · ecryσr
yd1

τ1

d1!
· · ·

yds
τs

ds!
,

where for β ∈ C, we denote by ci the pairing of β with Tσi
. We see that Γ is an infinite

sum of polynomials in {e±yσ1 , . . . , e±yσr } times formal power series in {yτ1 , . . . , yτs
},

with N ’s as coefficients. Since Θ is assumed strongly convex, it is clear that Γ lives
in a formal power series ring.

Any 4-tuple (i, j, k, l) of elements of I determines a differential equation∑
e,f

Φijeg
efΦfkl =

∑
e,f

Φjkeg
efΦfil. (1)

We use a subscript i ∈ I to denote partial differentiation with respect to yi. Isolating
the coefficient of ec1yσ1 · · · ecryσr yd1

τ1
· · · yds

τs
on each side produces a quadratic equation

in N ’s, which we call an associativity relation (they imply associativity of the so-called
quantum product; see [3]). Following Dubrovin [2] we call the system of equations (1)
the WDVV equations (after E. Witten, R. Dijkgraaf, H. Verlinde and E. Verlinde). A
particular WDVV equation is represented symbolically by an equivalence of Feynman
diagrams ( i

j
〉 〈 l
k

)
∼

(
P�
�P

kj

li )
We adopt the notation

( i
j
〉 〈 l
k

)
to refer to the WDVV equation (1) and

( i
j
〉 〈 l
k

)(β;d1,...,ds)

to refer to a particular associativity relation. More generally, for ξ, π, ρ, σ ∈ A, we

use the notation
( ξ
π
〉 〈σ
ρ

)
to refer to the equation obtained by writing each element

in terms of the basis and summing in a multilinear fashion. For subsets Ξ,Π,P,Σ

of A, we let
( Ξ

Π
〉 〈Σ

P

)
refer to the collection of equations

( ξ
π
〉 〈σ
ρ

)
with ξ in Ξ, etc.

As a special case, for integers w, x, y, z,
(w
x
〉 〈z
y

)
refers to

(Aw

Ax 〉 〈
Az

Ay

)
. Also, if

i, j, k, l,m ∈ I, we write
( ij
k
〉 〈m
l

)
as shorthand for

(Ti · Tj

Tk
〉 〈Tm

Tl

)
.

We can rewrite (1) by splitting Φ into its classical and quantum parts. If Ti · Tj =∑
q tqTq, we denote

∑
q tqΓqkl by Γ(ij)kl. Then (1) becomes

Γij(kl) + Γ(ij)kl − Γjk(il) − Γ(jk)il =
∑
e,f

Γjkeg
efΓfil −

∑
e,f

Γijeg
efΓfkl. (2)

We have thus split the WDVV equation into the linear contribution (left-hand side)
and quadratic contribution (right-hand side).

Main Problem. Given A,
∫

, Λ, Θ as above, find solutions in rational numbers
N(β; d1, . . . , ds) to the full set of WDVV equations (1).

The formal identity
( i
j
〉 〈 l
k

)
+

( j
k
〉 〈 l
i

)
+

(k
i
〉 〈 l
j

)
= 0 tells us that if a collection

of numbers N(β; d1, . . . , ds) satisfies two of the three indicated WDVV equations,
then they also satisfies the third. We call refer to this fact as the two-out-of-three
implication.
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3. The three symbols relation

Let i, j, k, l,m ∈ I. Let Φ = Φcl + Γ be the potential function. The following
algebraic identity, called the three symbols identity, holds:

∂

∂ym

(∑
e,f

Φijeg
efΦfkl −

∑
e,f

Φjkeg
efΦfil

)
+

∂

∂yj

(∑
e,f

Φileg
efΦfkm −

∑
e,f

Φlkeg
efΦfim

)
+

∂

∂yl

(∑
e,f

Φimeg
efΦfkj −

∑
e,f

Φmkeg
efΦfij

)
= 0. (3)

Let (β, d) be a degree. Define eσi
= 0 and eτj

= (0, . . . , 1, . . . , 0) with the 1 in the
jth place. Then (3) gives us

Proposition 1. Suppose i, j, k, l,m ∈ I with codimTm ≥ 2, and let (β, d) be a

degree with dm ≥ 1. Then the relations
( i
l
〉 〈m
k

)(β;d+ej−em)

and
( i

m
〉 〈j
k

)(β;d+el−em)

together imply
( i
j
〉 〈 l
k

)(β;d)

.

This we call the three symbols relation (3sr), and denote by the diagram
( i
><

j, l;m
k

)(β;d)

.
We now record one application of 3sr.

Lemma 1. With the notation of the Main Problem, suppose (β; d) is a degree with
d 6= 0. Then the collection of all relations in degrees (β; d′) with

∑
i d

′
i = (

∑
i di)− 1

implies
( A

A1 〉 〈
A1

A

)(β;d)

.

Indeed, if dm ≥ 1 then
( i
><

1, 1;m
j

)
yields

( i
1
〉 〈1
j

)(β;d)

for any i, j ∈ I.

4. The five symbols relation

Given i, j, k, l,m ∈ I, the following algebraic identity holds:∑
e,f

Γij(me)g
efΓfkl =

∑
e,f

Γkl(me)g
efΓfij . (4)

Recall, if Tm · Te =
∑

q tqTq then by Γij(me) we mean
∑

q tqΓijq. Now (4) follows
by observing that with gabc =

∫
Ta · Tb · Tc we have tq =

∑
p gmepg

pq, and now the
coefficient

∑
e,p g

efgmepg
pq of ΓijqΓfkl on the left-hand side is symmetric in f and q.

We write the expression
∑

Γij(me)g
efΓfkl −

∑
Γkl(me)g

efΓfij and add to it the
four additional expressions obtained by permuting the variables i, j, k, l,m cyclically.

We use identity (2) coming from the associativity relation
( e

m
〉 〈j
i

)
and its cyclic

translates to obtain

0 = Γij(me)Γfkl + Γjk(ie)Γflm + Γkl(je)Γfmi + Γlm(ke)Γfij + Γmi(le)Γfjk

− Γmi(je)Γfkl − Γij(ke)Γflm − Γjk(le)Γfmi − Γkl(me)Γfij − Γlm(ie)Γfjk

= Γ(mi)jeΓfkl + Γ(ij)keΓflm + Γ(jk)leΓfmi + Γ(kl)meΓfij + Γ(lm)ieΓfjk

− Γ(ij)meΓfkl − Γ(jk)ieΓflm − Γ(kl)jeΓfmi − Γ(lm)keΓfij − Γ(mi)leΓfjk.
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We have omitted summations symbols and gef ’s to save space. We have also omit-
ted the (cubic) terms obtained by substituting the quadratic contributions of the
associativity relations, but the key point is that these cancel.

The final expression above is the quadratic contribution of a sum of associativity
relations, conveniently written(mi

j
〉 〈 l
k

)
−

(m
ij
〉 〈 l
k

)
+

(m
i
〉 〈 l
jk

)
−

(m
i
〉 〈kl
j

)
+

( lm
i
〉 〈k
j

)
. (5)

The linear contribution of (5) vanishes (as may be checked), so the indicated associa-
tivity relations imply vanishing of (5), at least formally. To get a precise statement,
we grade the terms in Γ by degree. Using the notation of the Main Problem, we
rewrite the above, isolate the coefficient of some degree (β; d), and note that then
every quadratic term is a sum over β1 +β2 = β with 〈βi, ω〉 < 〈β, ω〉 for i = 1, 2. This
establishes

Proposition 2. Suppose i, j, k, l,m ∈ I, and let (β; d) be a degree. Let ω be an
element of the interior to the dual cone to Θ. The collection of relations consisting

of
( i
j
〉 〈e
k

)(β′;d′)

and its cyclic translates through {i, j, k, l,m}, for all e ∈ I and all

degrees (β′, d′) with 〈β′, ω〉 < 〈β, ω〉 and d′ ≤ d (componentwise), implies the relation(mi
j
〉 〈 l
k

)(β;d)

−
(m
ij
〉 〈 l
k

)(β;d)

+
(m
i
〉 〈 l
jk

)(β;d)

−
(m
i
〉 〈kl
j

)(β;d)

+
( lm

i
〉 〈k
j

)(β;d)

. (6)

We call this the five symbols relation (5sr). We employ the notation
(m↙i

j

⊗ l

k

)(β;d)

to describe the above relation.

5. Strong reconstruction for n = 2

As an illustration, we work out a strong reconstruction theorem for n = 2. For
simplicity let us suppose (as expected from geometry) the N(β; d) to be identically
zero except when d = 〈β,−K〉 − 1 (for some K ∈ A1). There is only one τ , and the
associativity relations are of the following forms:

(i)
(τ
τ
〉 〈σi

σj

)
(ii)

( τ

σi
〉 〈σk

σj

)
(iii)

( σi

σj
〉 〈σl

σk

)
.

The potential function is composed of (we write gef for gσeσf
)

Φcl =
1
2
y2
1yτ +

1
2

r∑
e,f=1

gefy1yσe
yσf

,

Γ =
∑

〈β,−K〉≥1
β=

∑
ciσ

∗
i ∈C

d=〈β,−K〉−1

N(β; d)ec1yσ1 · · · ecryσr
yd

τ

d!
.

Suppose we are given all N(β; d) with d ≤ 2, and suppose these satisfy( τ

σi
〉 〈σk

σj

)(β;0)

and
( σi

σj
〉 〈σl

σk

)(β;0)
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for all i, j, k, l ∈ {1, . . . , r} and all β. We claim that relations of type (i) allow us
to solve for all further N(β; d) (reconstruction) and that the numbers thus obtained
satisfy the full system of WDVV equations (strong reconstruction).

Indeed, by the three symbols relation,( τ

σj
〉 〈σl

σi

)(β;0)

and
( τ

σj
〉 〈σl

σk

)(β;0)

⇒
( σi

σj
〉 〈σl

σk

)(β;1)

,

and thus the hypothesis implies relations (ii) (β; 1). Similarly, relations (i) (β; d)
imply (ii) (β; d+ 1) and (iii) (β; d+ 2).

Inductively on d, assume allN(β; d′) known and all relations satisfied for 〈β,−K〉 <

d + 4. Relation
(τ
τ
〉 〈σi

σj

)(β;d)

reads gijΓ
(β;d)
zzz = Q

(β;d)
ij , where Q(β;d)

ij is a quadratic

expression in known quantities. Now
( τ

σk σl↘

⊗σi

σj

)
tells us gklQ

(β;d)
ij = gijQ

(β;d)
kl ,

which says we can solve for Γ(β;d)
zzz (that is, N(β; d + 3)) satisfying (i), and we have

just seen that the relations of type (i) imply all the relations in degree β.

6. Strong reconstruction theorem

Theorem 1. With the notation of the Main Problem, suppose A is generated by A1.
Then the collection of N(β; d) with

∑s
i=1 di ≤ 2 extends to a solution to WDVV if

and only if
( A

A1 〉 〈
A1

A

)(β;0)

is satisfied for all β.

We begin by organizing notation. By hypothesis, we may assume the basis B
chosen such that for each j, 1 ≤ j ≤ s, there exists ij ∈ {1, . . . , r} and µj ∈ I such
that Tτj = Tσij

· Tµj .
We wish to impose a partial order on the collection of degrees d = (d1, . . . , ds) with

fixed |d| :=
∑s

i=1 ds, such that (d1, . . . , ds) precedes (d1, . . . , di +1, . . . , dj −1, . . . , ds)
for any i < j. A convenient way is to order by

∑
idi.

Let us give an outline of the proof of the theorem. Let ω be an element of the
interior to the dual cone to Θ. Inducting on 〈β, ω〉, then on |d|, then downwards on∑
idi, we verify all associativity relations in degree (β; d), showing that those of the

form ( µj

σij

〉 〈τl
τk

)(β;d)

with codimTτj
≤ codimTτk

≤ codimTτl
and max(j, k, l) ≤ min{m | dm 6= 0} deter-

mine the numbers N(β; d+ ej + ek + el) (here ei = (0, . . . , 1, . . . , 0) with 1 in the ith

position).

7. Proof of strong reconstruction theorem

The induction breaks up into an outer induction on degrees and an inner induction
within each degree. The outer induction proceeds with respect to the partial order:
(β′, d′) ≺ (β, d) if 〈β′, ω〉 < 〈β, ω〉 and |d′| ≤ |d|; β′ = β and |d′| < |d|; or β′ = β, |d′| =
|d|, and

∑
id′i >

∑
idi. The inner induction is on (u, c, a, b) with u (corresponding

to codimTµj above) up from 1, c (= codimTτk
+ codimTτl

) up from 2(u+ 1), and a
(= codimTτk

) up from u+ 1 to [c/2]. Define b = c− a; then we always have a ≤ b.
The induction hypothesis, at a given step (β, d, u, c, a, b), consists of all relations in

previous degrees plus all numbers they refer to (i.e., all N(β′; d′ + e′) with (β′, d′) ≺
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(β, d), |e′| ≤ 3), plus, in the current degree, all
(z

1
〉 〈y
x

)
with min(x, y, z) < u, all(u

1
〉 〈y
x

)
and

(x
1
〉 〈u
y

)
with x ≥ u+ 1, y ≥ u+ 1, and either x+ y < c or x+ y = c

with min(x, y) < a, together with all numbers these relations refer to.

In any degree, for any integers x and y,
(x

1
〉 〈1
y

)
follows either by hypothesis

(d = 0) or by the induction hypothesis and Lemma 1 (|d| ≥ 1). When u ≥ 2 we

obtain
(x

1
〉 〈u
y

)
for x ≥ u and y ≥ u from

(x
1

⊗↖
u−1 1
y

)
, and now

(u
1
〉 〈x
u

)
for

x > u from
(u−1 1

↗

1

⊗x

u

)
.

The main step is to deduce
(u

1
〉 〈b
a

)
. Here the linear terms coming from the

associativity relation possibly involve new N ’s. We divide this into two steps.

First, we show it suffices to prove a distinguished set of
(u

1
〉 〈b
a

)
. Let S be the set

of relations
( µj

σij

〉 〈τl
τk

)
with codimTτj

= u+1, codimTτk
= a, and codimTτl

= b. We

claim that S (and the new N ’s referred to) implies
(u

1
〉 〈b
a

)
. Indeed, if codimTµ = u

and codimTσ = 1 with Tσ · Tµ =
∑
λjTτj

, then comparing
(µ
σ

⊗τl

σik

↗
µk

)
with∑

λj

( µj

σij

⊗τl

σik

↗
µk

)
establishes

(µ
σ
〉 〈τl
τk

)
from the relations in S.

For the second step, we establish all relations in S. Each
( µj

σij

〉 〈τl
τk

)
in S involves

the variable N(β; d + ej + ek + el). For a, b, u + 1 distinct, there is a one-to-one
correspondence between elements of S and such variables. In other cases, we shall
need symmetrizing arguments to show any two relations in S sharing a common
such variable are equivalent. In case a = b, the two-out-of-three implication gives( µj

σij

〉 〈τl
τk

)
⇔

( µj

σij

〉 〈τk
τl

)
. In case a = u + 1, we get

( µj

σij

〉 〈τl
τk

)
⇔

(σij

µj
〉 〈τl
τk

)
⇔( µk

σik

〉 〈τl
τj

)
by two-out-of-three and

(σij

µj

⊗τl

σik
µk
↗

)
.

Thus, it suffices to establish only those
( µj

σij

〉 〈τl
τk

)
∈ S such that j ≤ k ≤ l. In

case dm ≥ 1 for some m < l,
(µj

><
σij
, τl; τm

τk

)
establishes

( µj

σij

〉 〈τl
τk

)
. Otherwise,

N(β; d + ej + ek + el) is actually an unknown, so solving
( µj

σij

〉 〈τl
τk

)
establishes

simultaneously the number and the relation. Finally, two-out-of-three establishes(u
1
〉 〈a
b

)
from

(u
1
〉 〈b
a

)
.

Having finished the inner induction, to establish general
(w
x
〉 〈z
y

)
is an easy induc-

tion on min(w, x, y, z), using 5sr by decomposing the entry of lowest codimension.

8. Examples

For several manifolds/orbifolds X we give a description of the solution space to the
WDVV equations corresponding to X. Since our focus in on the equations coming
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from geometry, we impose the standard dimension restriction on N ’s: N(β; d) = 0
whenever

∑
j dj(codimTτj − 1) 6= 〈β, c1(X)〉+n− 3 (n = dimX). Geometry dictates

one solution to WDVV, together with a family of rescalings with as many degrees of
freedom as the Picard number of X. The common theme to these examples is the
existence of solutions besides the geometric solution and its rescalings.

Example 1. Let Q be a smooth quadric threefold, and let X = Q × Q. Let
A = A∗

QX. Strong reconstruction dictates 52 equations in 40 unknowns. We shall see
that the solution set has two degenerate irreducible components (i.e., with N(β; d)
nontrivial only for β contained in a ray of the effective cone) and two irreducible
components having nontrivial N(β; d) for β spanning (A1)∗. So, if one carries out
a program in the spirit of [1] of computing Gromov Witten invariants starting from
2 basic numbers (one counting curves of type (1, 0) with some simple incidence con-
ditions, and the other, curves of type (0, 1)), then one encounters two remarkable
phenomena. First, one must supply an additional basic number in order to produce
numbers ad infinitum (eventually, the algorithm of the first reconstruction theorem
becomes applicable). Second, there are two valid choices for this additional number:
zero, which yields the geometric solution, or a unique nonzero integer, which yields a
consistent non-geometric solution.

The cohomology of Q has one generator in each codimension: 1, h (hyperplane
class), ` (class of a line), and p (point class). With A ∼= A∗

QQ ⊗ A∗
QQ we have the

basis consisting of identity, divisor classes h⊗ 1 and 1⊗h, and classes in codimension
≥ 2 which we order as follows:

`⊗ 1, h⊗ h, 1⊗ `, p⊗ 1, `⊗ h, h⊗ `, 1⊗ p,

p⊗ h, `⊗ `, h⊗ p, p⊗ `, `⊗ p, p⊗ p

Denote by r and s the homology classes corresponding to line×point and point× line,
respectively. So, for instance, N(r; 1,0,0, 0,0,0,0, 0,0,0, 0,0, 1) corresponds to the
number of lines on the first copy of Q incident to a line and a point.

The set of basic relations dictated by the strong reconstruction theorem includes

20 equations in degree r, namely
( ϕ

h⊗ 1
〉 〈1⊗ h

ψ

)(r;0)

for all basis elements ϕ and ψ

whose codimensions add up to 7. The reader may check that of the 17 N(r; d)’s with∑
di ≤ 2, the relations in degree r determine that 11 of these vanish and that the

remaining 6 are linearly related:

N(r; 0,0,0, 0,1,0,0, 0,0,0, 1,0, 0)

= N(r; 1,0,0, 0,0,0,0, 0,0,0, 0,0, 1)

N(r; 0,0,0, 0,0,0,0, 1,1,0, 0,0, 0)

= N(r; 1,0,0, 0,0,0,0, 0,0,0, 0,0, 1)

N(r; 0,0,0, 1,0,0,0, 0,0,0, 0,1, 0)

= N(r; 1,0,0, 0,0,0,0, 0,0,0, 0,0, 1)

N(r; 0,0,0, 0,0,0,0, 2,0,0, 0,0, 0)

= 2N(r; 0,0,0, 1,0,0,0, 0,0,0, 1,0, 0)

The basic relations in degree s determine, by symmetry, analogous constraints on the
basic N(s; d).
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Now there are 6 more basic numbers, 2 each in degrees 2r, 2s, and r+s. These are

constrained by basic relations
(p⊗ h

h⊗ 1
〉 〈1⊗ h

p⊗ p

)
,
( `⊗ `

h⊗ 1
〉 〈1⊗ h

p⊗ p

)
,
(h⊗ p

h⊗ 1
〉 〈1⊗ h

p⊗ p

)
,

and
( p⊗ `

h⊗ 1
〉 〈1⊗ h

`⊗ p

)
in each degree.

In degrees 2r and 2s the relations determine that the basic N(2r; d) and N(2s; d)
vanish. In degree (r + s) we get interesting equations. The interested reader may
write out the 4 equations and make the linear substitutions indicated above to see
that the entire system of equations reduces to:

XW = 0 Y Z = 0

with

X = N(r; 0,0,0, 1,0,0,0, 0,0,0, 1,0, 0)

Y = N(s; 0,0,0, 0,0,0,1, 0,0,0, 0,1, 0)

Z = 2N(r; 1,0,0, 0,0,0,0, 0,0,0, 0,0, 1)

−N(r; 0,0,0, 1,0,0,0, 0,0,0, 1,0, 0)

W = 2N(s; 0,0,1, 0,0,0,0, 0,0,0, 0,0, 1)

−N(s; 0,0,0, 0,0,0,1, 0,0,0, 0,1, 0)

Given the constraints (from geometry) N(r; 1,0,0, 0,0,0,0, 0,0,0, 0,0, 1) =
N(s; 0,0,1, 0,0,0,0, 0,0,0, 0,0, 1) = 1, the system of equations above dictates two so-
lutions: the geometric solution,

N(r; 0,0,0, 1,0,0,0, 0,0,0, 1,0, 0)

= N(s; 0,0,0, 0,0,0,1, 0,0,0, 0,1, 0) = 0

and the non-geometric solution,

N(r; 0,0,0, 1,0,0,0, 0,0,0, 1,0, 0)

= N(s; 0,0,0, 0,0,0,1, 0,0,0, 0,1, 0) = 2.

By the strong reconstruction theorem, both of these extend uniquely to solutions to
the full set of WDVV equations for X.

Example 2. X = G(2, 4) and X = Sym2 P2. The cohomology rings (which are
isomorphic, up to scale) are not generated by divisors, so we are outside the scope
of the strong reconstruction theorem. However, the method of proof still applies,
and with a little extra work (and a genericity hypothesis, namely that some starting
number is nonzero) we can deduce strong reconstruction from the expected data (one
number for G(2, 4) and three numbers for (Sym2 P2), with a vacuous set of relations).

We take as cohomology basis the powers of the ample generator h of A1X, plus
an extra codimension 2 element, chosen orthogonal to h. So B = {1, h, c, h2, h3, h4}
with c · h = 0,

∫
h4 6= 0,

∫
c2 6= 0. We have K = −4h, K = −3h in the cases of the

two respective varieties; set κ = 4, κ = 3 accordingly. It will be helpful to recall the
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(a) N(β;κβ − 5, 0, 0, 2) by
(h4

h
〉 〈c
h3

)(β;κβ−6,0,0,0)

(β ≥ 2)

(b) N(β − 1;
κβ − κ+ 1, 0, 0, 0) by

( c
h
〉 〈c
h4

)(β;κβ−5,0,0,0)

(β ≥ 2)

(c) N(β; t, u, v, w)
with u+ v + w ≥ 3 by

( 〈h〉
〈h〉

〉 〈 〈h〉
〈h〉

)(β;d)

(d) N(β;κβ − 4, 0, 1, 1) by
(h4

h
〉 〈c
h2

)(β;κβ−5,0,0,0)

(β ≥ 2)

(e) N(β;κβ − 3, 1, 0, 1) by
(h4

h
〉 〈c
h

)(β;κβ−4,0,0,0)

(κ+ β ≥ 5)

(f) N(β;κβ − 3, 0, 2, 0) by
(h3

h
〉 〈c
h2

)(β;κβ−4,0,0,0)

(κ+ β ≥ 5)

(g) N(β;κβ − 2, 0, 0, 1) by
(h3

h
〉 〈c
c

)(β;κβ−4,0,0,0)

(κ+ β ≥ 5)

(h) N(β;κβ − 2, 1, 1, 0) by
(h3

h
〉 〈c
h

)(β;κβ−3,0,0,0)

(i) N(β;κβ − 1, 0, 1, 0) by
(h2

h
〉 〈c
c

)(β;κβ−3,0,0,0)

(j) N(β;κβ − 1, 2, 0, 0) by
(h2

h
〉 〈c
h

)(β;κβ−2,0,0,0)

(k) N(β;κβ, 1, 0, 0) by
(h
h
〉 〈c
c

)(β;κβ−2,0,0,0)

Table 1. Order, within the Outer Induction, for the Proof of Strong
Reconstruction for G(2, 4)/Sym2 P2

dimension condition on relations. For
( ξ
π
〉 〈σ
ρ

)(β;d)

to be nontrivial requires

〈β,−K〉 −
s∑

j=1

dj(codimTτj − 1)

= codim ξ + codimπ + codim ρ+ codimσ − n. (7)

The relations in curve class β never involve the number N(β;κβ + 1, 0, 0, 0). We
recover this exceptional number from a particular degree β + 1 relation in which it
appears in a quadratic term, for which, to be able to solve, we must add the hypothesis
N(1; 0, 0, 1, 1) 6= 0 (resp. N(1; 1, 0, 0, 1) 6= 0) when κ = 4 (resp. κ = 3).

For each β, there are 10 numbers N(β; d) which are not of the form N(β; t, u, v, w)
with u + v + w ≥ 3; these are the numbers unreachable by the proof of strong
reconstruction applied to the subring of A generated by h. We must show how to
solve for 9 of these (all except N(β;κβ+1, 0, 0, 0)) as well as the leftover degree β−1
number. Table 1 outlines how to do this.

We induct first on curve class β. The induction hypothesis consists of all relations
and all numbers in degrees less than β − 1, and all relations and all numbers except
N(β − 1;κβ − κ + 1, 0, 0, 0) in degree β − 1. The relations indicated in entries (a),
(b) of Table 1 give us two new numbers, including N(β − 1;κβ − κ+ 1, 0, 0, 0). Thus
from now on we assume all relations and all numbers in degrees less than or equal to
β − 1.
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t1 t2 t3 t4 t5 t6 t7 t8
t1 t2 t4 t5 t6 (1/3)t7 5t8 0 t9
t2 t4 t6 (1/3)t7 5t8 0 5t9 0 0
t3 t5 (1/3)t7 t6 − (11/3)t7 0 5t8 0 15t9 0
t4 t6 5t8 0 5t9 0 0 0 0
t5 (1/3)t7 0 5t8 0 5t9 0 0 0
t6 5t8 5t9 0 0 0 0 0 0
t7 0 0 15t9 0 0 0 0 0
t8 t9 0 0 0 0 0 0 0

Table 2. Multiplication Table for A∗
QG(2, 5)

Now, inductively on d via the partial ordering d′ = (t′, u′, v′, w′) ≺ d = (t, u, v, w) ⇔
|d′| < |d| or |d′| = |d|, t′ > t or |d′| = |d|, t′ = t, u′+2v′+3w′ > u+2v+3w, we estab-
lish the relations indicated in (c)–(k) of the table, as applicable to the current degree.
Step (c) is the inner induction of the proof of the strong reconstruction theorem,
applied to the subring of A generated by h.

Finally, it follows from 5sr (this takes a bit of checking) that in any degree, the
(31 out of 55 total) relations indicated in Table 1 imply all the relations. The 21
encoded by step (c) follow by the proof of strong reconstruction, so we are reduced
to establishing the remaining 10. When u = v = w = 0, we are done by Table
1 (each remaining relation solves for an unknown number). Otherwise, since each
of the Feynman diagrams indicated in (a), (b), (d)–(k) of the table has a diagonal
containing c and h, an application of 3sr reduces us to relations obtained in previous
degrees (via the partial ordering above).

Example 3. X = G(2, 5). We find a two-dimensional family of solutions, the
generic one non-geometric (X has Picard number 1). Thinking of X as the space of
rank 2 quotients of C5, let Q be the universal quotient bundle and ci = ci(Q). We use
the following basis for A∗

QX, suggested by T. Graber (a multiplication table is given
in Table 2):

(L1) N(β; 0, 0, 0, 0, 0, 5β, 0, 1)− 3N(β; 0, 0, 0, 0, 0, 5β − 1, 2, 0)

(L2) N(β; 1, 0, 0, 0, 0, 5β, 1, 0)−N(β; 0, 1, 0, 0, 0, 5β + 1, 0, 0)
+ βN(β; 0, 0, 0, 0, 0, 5β − 1, 2, 0)

(L3) N(β; 1, 0, 0, 0, 0, 5β, 1, 0)− 2βN(β; 0, 0, 0, 0, 0, 5β − 1, 2, 0)

(L4) N(β; 1, 0, 0, 0, 0, 5β + 2, 0, 0)− 2βN(β; 0, 0, 0, 0, 0, 5β + 1, 1, 0)
− 11β2N(β; 0, 0, 0, 0, 0, 5β − 1, 2, 0)

(L5) N(β; 2, 0, 0, 0, 0, 5β + 1, 0, 0)− 4β2N(β; 0, 0, 0, 0, 0, 5β − 1, 2, 0)

Table 3. The Linear Expressions Obtained by Degree β Relations
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(a) N(β; 0, 0, 1, 0, 1, 5β − 5, 0, 0) by
( t9
t1
〉 〈 t3
t4

)(β;0,0,0,0,0,5β−6,0,0)

(b) N(β; 0, 0, 0, 2, 0, 5β − 5, 0, 0) by
( t8
t1
〉 〈 t3
t6

)(β;0,0,0,0,0,5β−6,0,0)

(c) N(β; 0, 0, 0, 1, 1, 5β − 6, 0, 0) by
( t9
t1
〉 〈 t3
t6

)(β;0,0,0,0,0,5β−7,0,0)

(d) N(β; 0, 0, 0, 0, 1, 5β − 5, 0, 1) by
( t8
t1
〉 〈 t3
t7

)(β;0,0,0,0,0,5β−6,0,0)

(e) N(β; 0, 0, 0, 1, 0, 5β − 4, 0, 1) by
( t6
t1
〉 〈 t3
t7

)(β;0,0,0,0,0,5β−5,0,0)

(f) N(β; 0, 0, 0, 0, 1, 5β − 4, 1, 0) by
( t8
t1
〉 〈 t3
t5

)(β;0,0,0,0,0,5β−5,0,0)

(g) N(β−1; 0, 0, 0, 0, 0, 5β − 2, 0, 0) by
( t3
t1
〉 〈 t3
t9

)(β;0,0,0,0,0,5β−5,0,0)

Table 4. Path to the Remaining Degree (β − 1) Numbers for G(2, 5)

codim 0: t0 = 1
codim 1: t1 = c1
codim 2: t2 = c21 t3 = 2c21 − 5c2
codim 3: t4 = c31 t5 = 2c31 − 5c1c2
codim 4: t6 = c41 t7 = c41 − 5c22
codim 5: t8 = c1c

2
2

codim 6: t9 = c32 (point class)

We denote a typical unknown by N(β; d2, d4, d6, d8, d9, d3, d5, d7) (note special or-
der). Inductively on degree β, we show that degree β relations solve consistently for all
but 8 degree β numbers, plus the 5 linear expressions shown in Table 3. The 8 excep-
tions are the 7 numbers appearing in Table 3 as well as N(β; 0, 0, 0, 0, 0, 5β + 3, 0, 0).

The genericity assumption is N(1; 0, 0, 0, 0, 1, 0, 0, 1) 6= 0. Given the induction hy-
pothesis, we solve for the remaining degree (β−1) numbers according to Table 4, first
by the path shown with (0, 0, 0, 0, 0,−4, 2, 0) added to all degrees, then by the path
shown with (0, 0, 0, 0, 0,−2, 1, 0) added to all degrees, and then by the path as shown.

Only for β = 2, during the first pass, we must substitute
( t9
t1
〉 〈 t5
t6

)(β;0,0,0,0,0,5β−10,1,0)

for step (c). Once we have all the numbers in degree β − 1, we then induct on d with
respect to the partial ordering d′ ≺ d⇔

(i) |d′| < |d|, or
(ii) |d′| = |d| and d′2 + d′4 + d′6 + d′8 + d′9 < d2 + d4 + d6 + d8 + d9, or
(iii) |d′| = |d| and d′2 + d′4 + d′6 + d′8 + d′9 = d2 + d4 + d6 + d8 + d9, but d′2 + 2d′4 +

3d′6 + 4d′8 + 5d′9 > d2 + 2d4 + 3d6 + 4d8 + 5d9, or
(iv) |d′| = |d|, (d′2, d

′
4, d

′
6, d

′
8, d

′
9) = (d2, d4, d6, d8, d9), and d′3 + 2d′5 + 3d′7 < d3 +

2d5 + 3d7.
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For each d, we use the inner induction of the proof of strong reconstruction to
obtain all relations involving only powers of t1. Next, we obtain all of

N(β; 0, 0, 0, 0, 2, u, v, w)
u+ 2v + 3w = 5β − 7 by

( t9
t1
〉 〈 t7
t8

)(β;0,0,0,0,0,u,v,w−1)

or
( t9
t1
〉 〈 t5
t8

)(β;0,0,0,0,0,u,v−1,w)

or
( t9
t1
〉 〈 t3
t8

)(β;0,0,0,0,0,u−1,v,w)

N(β; 0, 0, 0, 1, 1, u, v, w)
u+ 2v + 3w = 5β − 6 by

( t9
t1
〉 〈 t7
t6

)(β;0,0,0,0,0,u,v,w−1)

or etc.
. . .
N(β; 2, 0, 0, 0, 0, u, v, w)
u+ 2v + 3w = 5β + 1 by

( t2
t1
〉 〈 t7
t1

)(β;0,0,0,0,0,u,v,w−1)

etc.

coming from relations in degree (β; d). The exception to be noted occurs in attempting
to solve for N(β; 2, 0, 0, 0, 0, 5β + 1, 0, 0): we get a value for (L5) of Table 3 rather
than a single N .

Still in a particular degree, we obtain

N(β; 0, 0, 0, 0, 1, u, v, w)
u+ 2v + 3w = 5β − 2 by

( t8
t1
〉 〈 t7
t7

)(β;0,0,0,0,0,u,v,w−2)

or
( t8
t1
〉 〈 t5
t7

)(β;0,0,0,0,0,u,v−1,w−1)

etc.

with exceptions noted below:

(L2) by
( t2
t1
〉 〈 t3
t3

)(β;0,0,0,0,0,5β−1,0,0)

(L3) by
( t1
t1
〉 〈 t3
t5

)(β;0,0,0,0,0,5β−1,0,0)

(L4) by
( t1
t1
〉 〈 t3
t3

)(β;0,0,0,0,0,5β,0,0)

Lastly, we have numbers of the form N(β; 0, 0, 0, 0, 0, u, v, w) and the relations that
produce these:

relation for cases relation for cases( t5
t1
〉 〈 t7
t7

)
w ≥ 3

( t3
t1
〉 〈 t3
t7

)
u ≥ 1 v ≥ 1 w ≥ 1( t3

t1
〉 〈 t7
t7

)
v ≥ 1 w ≥ 2

( t5
t1
〉 〈 t5
t3

)
v ≥ 3( t5

t1
〉 〈 t3
t7

)
u ≥ 1 w ≥ 2

( t3
t1
〉 〈 t3
t5

)
(only to get (L1))( t3

t1
〉 〈 t5
t7

)
v ≥ 2 w ≥ 1

Finally, we obtain
( t3
t1
〉 〈 t3
t9

)
,
( t5
t1
〉 〈 t3
t9

)
, and

( t7
t1
〉 〈 t3
t9

)
. First we consider the case

(d2, d4, d6, d8, d9) = (0, 0, 0, 0, 0) and d5 = d7 = 0. Starting with
( t3
t1
〉 〈 t3
t9

)(β;0,0,0,0,0,5β−9,2,0)
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Assumptions Implications( t8
t1
〉 〈 t3
t7

)(5β−8,1,0) ( t3
t1
〉 〈 t3
t9

)(5β−9,2,0)

+ 3sr ⇒
( t3
t1
〉 〈 t5
t9

)(5β−8,1,0)

( t8
t1
〉 〈 t5
t5

)(5β−8,1,0) ( t1
↖
t6 t1

⊗ t3
t7

)
⇒

( t8
t1
〉 〈 t7
t3

)(5β−8,1,0)

( t6
t1
〉 〈 t5
t7

)(5β−8,1,0) ( t5
t1

⊗ t3

t8 t1
↗

)
⇒

( t5
t1
〉 〈 t3
t9

)(5β−8,1,0)

( t8
t1
〉 〈 t5
t7

)(5β−7,0,0)

3sr ⇒
( t5
t1
〉 〈 t5
t9

)(5β−7,0,0)

( t1
t7

⊗ t3

t1 t8
↗

)
⇒

( t1
t7
〉 〈 t3
t9

)(5β−7,0,0)

( t1
↖
t5 t1

⊗ t3
t9

)
⇒

( t7
t1
〉 〈 t3
t9

)(5β−7,0,0)

Table 5. Steps for Deducing
( t3
t1
〉 〈 t3
t9

)(5β−9,2,0)

⇒( t7
t1
〉 〈 t3
t9

)(5β−7,0,0)

Using 3sr and 5sr (Notation (u, v, w) Is

Shorthand for (β; 0, 0, 0, 0, 0, u, v, w))

(assuming β ≥ 2) — which, we recall, we used to solve for one of the remain-
ing degree-(β − 1) unknowns — we apply the sequence of implications in Table 5

to deduce
( t7
t1
〉 〈 t3
t9

)(β;0,0,0,0,0,5β−7,0,0)

. Starting with
( t3
t1
〉 〈 t3
t9

)(β;0,0,0,0,0,5β−7,1,0)

(β ≥ 2) the first three steps of Table 5 (with degrees suitably adjusted) give us( t5
t1
〉 〈 t3
t9

)(β;0,0,0,0,0,5β−6,0,0)

. Lastly, we consider
( t3
t1
〉 〈 t3
t9

)(β;0,0,0,0,0,5β−5,0,0)

. This

comes about in solving for the last of the degree-(β−1) unknowns when β ≥ 2. When
β = 1 this relation imposes an actual constraint on the starting data. If one writes
out (e)–(g) of Table 4 then one finds the constraint

11N(1; 0, 0, 0, 0, 1, 0, 0, 1) = 6N(1; 0, 0, 1, 0, 1, 0, 0, 0)

+ 15N(1; 0, 0, 0, 2, 0, 0, 0, 0). (8)

Next, in case (d2, d4, d6, d8, d9) = (0, 0, 0, 0, 0) but d5 6= 0 or d7 6= 0, then because
of the induction order, some of the (85 total) relations listed as determining numbers
will determine numbers that have already been solved for. But in each such case,
3sr allows us to deduce the relation in question. Finally, when (d2, d4, d6, d8, d9) 6=
(0, 0, 0, 0, 0) then all 85 relations follow by 3sr just as in Example 2.

As in Example 2, we must now verify that the relations indicated in the above
lists (85 in number) plus the 120 relations which involve only powers of t1 imply
the remaining 461 relations by 5sr. This takes a bit of checking. The seemingly
daunting task is made tractable by associating to each relation its “weight” (the
quantity appearing on the right-hand side of (7)), and then noting that the terms
appearing in each 5sr expression (6) all carry the same weight. Now, there is just a
bit of checking to do within each weight class. Also, once we deduce all the relations
which involve t1, the relations which do not involve t1 follow immediately (find an
entry other than t3, factor it into t1 times something else, and invoke 5sr).
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Summarizing, any choice of starting data satisfying the genericity condition
N(1; 0, 0, 0, 0, 1, 0, 0, 1) 6= 0 and the constraint (8) extends uniquely to a full solu-
tion to WDVV for G(2, 5). These solutions form a two-dimensional family.
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