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Abstract. We prove that given any n-pointed prestable curve C of genus g
with linearly reductive automorphism group Aut(C), there exists an Aut(C)-
equivariant miniversal deformation of C over an affine variety W . In other words,
we prove that the algebraic stack Mg,n parametrizing n-pointed prestable curves
of genus g has an étale neighborhood of [C] isomorphic to the quotient stack
[W/Aut(C)].

1. Introduction

A fundamental question in algebraic geometry is to understand the relationship
between arbitrary algebraic stacks and quotient stacks. While not every algebraic
stack is a quotient stack ([7] and [11]), it is natural to conjecture that every algebraic
stack is étale locally a quotient stack around a point with linearly reductive stabilizer.
Precisely, we formulate the conjecture as follows:

Conjecture 1.1. Let X be an algebraic stack locally of finite type over an alge-
braically closed field k with separated and quasi-compact diagonal such that X has
affine stabilizer groups at all closed points. Suppose x ∈ X(k) has a linearly reduc-
tive stabilizer group scheme Gx. Then there exists an affine scheme W over k with
an action of Gx, a k-point w ∈W , and an étale, representable morphism

f : [W/Gx]→ X

such that f(w) = x and f induces an isomorphism of stabilizer groups at w.

Conjecture 1.1 after replacing W with an algebraic space is a particular case of
the conjecture stated in [3]. Similar questions were raised in [5, §5] and [16, §2].

This conjecture implies that étale-local properties of general algebraic stacks (sat-
isfying the above hypotheses) can be inferred from properties of algebraic stacks of
the form [Spec(A)/G] with G linearly reductive. Such quotient stacks are particu-
larly well understood; in particular, many geometric properties of [Spec(A)/G] can
be related to properties of the GIT quotient Spec(AG). Additionally, as suggested
by Rydh, it is possible to attach to an algebraic stack X satisfying Conjecture 1.1 at
a point x ∈ X(k) a Henselian localization OhX,x which is a comodule algebra over the

Hopf algebra of Gx such that [Spec(OhX,x)/Gx] → X satisfies analogous properties

to the usual Henselization Spec(OhW,w)→W .

The first author was partially supported by the Alexander von Humboldt Foundation. The
second author was partially supported by the Swiss National Science Foundation.
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Conjecture 1.1 is known to have a positive answer if X has quasi-finite diagonal
(e.g., X is a Deligne-Mumford stack) or if X = [U/G] where U is a normal scheme
and G is a linear algebraic group (see §3.2–3.3). The purpose of this article is to
verify Conjecture 1.1 in an interesting and natural moduli problem which does not
fall into one of the above cases. Let Mg,n be the moduli stack of prestable curves
(proper flat families of connected nodal curves) of genus g with n marked points.

Theorem 1.2. Conjecture 1.1 holds for Mg,n for all g, n ≥ 0.

This theorem implies that given any n-pointed prestable curve C of genus g with
linearly reductive automorphism group Aut(C), there exists an affine variety W with
an action of Aut(C) fixing a point w ∈ W and a miniversal deformation C → W
of C ∼= Cw such that there is an action of Aut(C) on the total family C compatible
with the action on W and restricting to the natural action of Aut(C) on Cw.

Let Mss
g,n ⊂ Mg,n be the open substack consisting of semistable curves (i.e.,

pointed curves (C, {pi}ni=1) such that ωC(
∑

i pi) has non-negative degree on every
component, where ωC is the dualizing sheaf). Since a prestable curve with a linearly
reductive automorphism group, which is not a 0-pointed smooth curve of genus 0,
is semistable, Theorem 1.2 reduces to proving that Mss

g,n satisfies Conjecture 1.1.
The algebraic stack Mss

g,n has particularly exotic properties in connection to Con-
jecture 1.1. For instance, Mss

g,n has a finite-type open substack which is not a global
quotient stack, does not have quasi-affine diagonal, and does not admit a good
moduli space (see §2.2). For these reasons, Mss

g,n serves as natural test cases for
Conjecture 1.1.

Finally, the technique employed to prove Theorem 1.2, based on stacks of log
structures, reveals features of the stack of semistable curves which may be of inde-
pendent interest. For instance, Lemma 4.3 gives a description of the local structure
of the stack of semistable curves near a curve whose stabilization has just one node, in
terms of a particular zero-dimensional smooth algebraic stack which has appeared in
many settings in algebraic geometry and has been studied in detail by Abramovich,
Cadman, Fantechi, and Wise [1]. In particular, this provides a concrete description
of the fiber of the stabilization morphism over a stable curve with one node.

The proof of Theorem 1.2 proceeds by a sequence of reductions. In Section
2, we show that it suffices to prove that Mss

g satisfies Conjecture 1.1 for all g ≥ 0
(Proposition 2.1); in that section, we also exhibit some exotic properties of the stack
Mss

g . In Section 3, we state a result (Proposition 3.10) that reduces Conjecture
1.1 for Mss

g to showing the existence of particular kinds of finite covers of étale
neighborhoods. Just this is enough to verify Conjecture 1.1 in the special case
(Theorem 4.2) of a pair of smooth curves of distinct positive genera joined by a
chain of rational curves (in Section 4). After presenting some stacks generalities
in Section 5 and a local construction around a strictly semistable curve in Section
6, the next task will be to formulate and prove, in Section 7, a structure result
(Proposition 7.1) for the moduli of semistable curves with stabilization contracting
a single chain of rational curves to a node. Finally, Theorem 1.2 is proved in Section
8.
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Conventions. In this paper we work with general algebraic stacks (not required
to have separated or quasi-compact diagonal) as defined in [21]. An algebraic stack
possessing an étale cover by a scheme is called a Deligne-Mumford stack. Sheaves
of monoids arise in the treatment of log structures; all (sheaves of) monoids are
commutative.

Acknowledgements. We are grateful for the valuable suggestions provided by the
referee. We thank Rahul Pandharipande for stimulating discussions which motivated
this investigation. We also thank the referee for useful comments and Jack Hall for
providing comments on the first draft.

2. Stable and semistable curves

Fix an algebraically closed field k and g ≥ 2. Let Mg,n be the moduli stack of
prestable curves (i.e., nodal, connected, proper curves) of genus g with n marked
points, with stabilization morphism

st : Mg,n →Mg,n,

which is flat, to the stackMg,n of stable curves of genus g with n marked points. The
algebraic stack Mg,n is quasi-separated and locally of finite type over k. Let Mss

g ⊂
Mg denote the locus of semistable curves, that is, curves whose dualizing sheaf has
non-negative multidegree. (A similar definition can also be made for Mss

g,n ⊂Mg,n.)

We will also consider Mqs
g ⊂Mss

g , the locus of quasistable curves, that is, semistable
curves where the exceptional components (smooth rational components on which
the degree of the dualizing sheaf is zero) are pairwise disjoint.

We recall, in the context of algebraic stacks of finite presentation over k, a global
quotient stack, or just quotient stack, is a stack quotient [U/G] for the action of
a linear algebraic group G on a finite-type algebraic space U . Choosing a faithful
representation G→ GLn, we have

(2.1) [U/G] ∼= [U ×G GLn /GLn],

where U×GGLn denotes the quotient of U×GLn by G, acting as given on U and by
left translation on GLn, which is an algebraic space. So, the definition of quotient
stack is unchanged if we restrict to GLn-actions. According to [7, Lem. 2.12], a
quotient stack can be characterized by the existence of a vector bundle with faithful
actions of the geometric stabilizer group schemes. Returning to (2.1), we remark
that the projection from U ×G GLn to G\GLn is étale locally the projection from a
product with U . When G is reductive, then, U affine implies U ×G GLn affine.

2.1. Boundary components. Let Cg → Mg be the universal family over the

moduli stack of Deligne-Mumford curves of genus g. The algebraic stacks Cg and

Mg are smooth over Spec(k). We will denote the relative singular locus by

Dg := Csing
g

which is defined by the Fitting ideal of the sheaf of relative differentials. The alge-
braic stack Dg is smooth of codimension 2 in Cg (cf. [6, §1]) and is the normalization

of the boundary divisor of Mg.
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The irreducible components of the boundary divisor of Mg are indexed by un-
ordered pairs of positive integers summing to g and an additional element (labelled
“irr” in [4]).

There is a degree 2 étale cover D̂g → Dg where D̂g parametrizes stable curves
together with a node and a choice of tangent direction to the curve at the node. We
recall from [4, XII.10.11] that

D̂g =Mg−1,2 t
(
M1,1 ×Mg−1,1

)
t
(
M2,1 ×Mg−2,1

)
t · · · t

(
Mg−1,1 ×M1,1

)
,

where the morphism to Dg is given by by gluing sections.

2.2. Bad properties of Mss
g . We start by exhibiting a few exotic properties of Mss

g

which indicate that Mss
g is a particularly interesting candidate to test the validity

of Conjecture 1.1. In fact, we restrict our attention to the finite-type open substack
Mqs

g of quasistable curves.
The inclusion i : Mg ↪→ Mqs

g has complement of codimension 2, and it follows
that pullback and pushforward by stabilization st∗ and st∗ give an equivalence of
categories of vector bundles. Since every vector bundle on Mqs

g is the pullback of a
vector bundle on Mg, there is no vector bundle on Mqs

g with faithful action on the
fiber by the stabilizer at a strictly semistable curve. So, by the characterization of
global quotient stacks in terms of vector bundles recalled above, Mqs

g is not a global
quotient stack. In fact, the argument of [11, Prop. 5.2] may be adapted to establish
the stronger statement that Mqs

g does not have quasi-affine diagonal.
Now suppose g ≥ 3 and consider the fiber F of st : Mqs

g → Mg over a curve C ′

with a single node and trivial automorphism group. The fiber F consists of two
curves, C ′ as well as the strictly semistable curve C obtained by inserting a P1 at
the node. Let U be a nodal cubic curve in P2. We now argue that the fiber F may

be identified with [U/Gm]. Let (C̃ ′, p1, p2) be the pointed normalization of C ′ and

consider the trivial family X = C̃ ′ × P1 → P1 with sections s1, s2 corresponding

to p1, p2. Here Gm acts on P1 (and on X ) in the standard way. Let X̃ be the
equivariant blowup of X at both p1 in the fiber over 0 and p2 in the fiber over
∞, and let s̃1, s̃2 be the proper transform of the sections s1, s2. Now glue the

sections s̃1, s̃2 to construct a family C̃ → P1 such that the fibers C̃0 and C̃∞ are

isomorphic to C but the generic fiber is C ′. Finally, since the fibers C̃0 and C̃∞
are equivariantly isomorphic respect to opposite actions of Gm, we may glue these
two fibers to construct a Gm-equivariant family of curves D over the nodal cubic
U . One checks that the induced map from [D/Gm] to the fiber F of st : Mqs

g →Mg

over C ′ is an isomorphism (it is representable, is a monomorphism, and satisfies the
valuative criterion for properness). It follows that there is no open substack V of
Mqs

g containing [C] and admitting a good moduli space.

2.3. First reduction. We show that in order to establish Theorem 1.2, it suffices
to show that Mss

g satisfies Conjecture 1.1.

Proposition 2.1. If Mss
g satisfies Conjecture 1.1 for all g ≥ 0, then Mg,n satisfies

Conjecture 1.1 for all g, n ≥ 0.
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Proof. An n-pointed prestable genus g curve (C, {pi}ni=1) with g or n positive or C
singular is semistable (i.e. ωC(

∑
i pi) has non-negative multidegree) if the automor-

phism group Aut(C, {pi}ni=1) is linearly reductive. Therefore, to establish that Mg,n

satisfies Conjecture 1.1 it suffices to show that the moduli stack Mss
g,n of pointed

semistable curves satisfies Conjecture 1.1.
For i = 1, . . . , n, let C1, . . . , Cn be automorphism-free smooth 1-pointed curves of

distinct genera g1, . . . , gn greater than g. Let g′ = g + g1 + · · ·+ gn. The morphism

Mss
g,n →Mss

g′ ,

defined by attaching Ci to the ith marked point, is a closed immersion. If Mss
g′

satisfies Conjecture 1.1, then so does Mss
g,n. �

3. Quotient structure of algebraic stacks

3.1. Stabilizer preserving morphisms. A morphism f : X → Y of algebraic
stacks is stabilizer preserving at a given geometric point of X if it induces an isomor-
phism of stabilizer group schemes at that geometric point. We say that f : X → Y
is pointwise stabilizer preserving if it is stabilizer preserving at all geometric points.

Lemma 3.1. Let f : X → Y be an étale representable morphism of algebraic stacks.
If the fiber of f over every geometric point consists of a single point, then f is an
isomorphism.

Proof. Since f is étale and surjective, to show that f is an isomorphism it suffices
to show that projection X ×Y X → X is an isomorphism. The relative diagonal
X → X×Y X is an isomorphism (as it is a surjective open immersion), and therefore
so is X ×Y X → X as the composition X → X ×Y X → X is the identity map. �

Lemma 3.2. Let W and X be algebraic stacks with finite stabilizer groups at geo-
metric points, and let f : W → X be a separated morphism. If X has finite inertia,
then so does W .

Proof. The inertia IW → W factors through IX ×X W , with morphism IW →
IX ×XW obtained via base change from the relative diagonal of f , hence finite, and
IX ×X W →W finite by the hypothesis on X. �

Lemma 3.3. Let X be a Deligne-Mumford stack with finite inertia, let Y be an
algebraic stack with separated diagonal, and let f : X → Y be a morphism. Then the
largest open substack U of X on which the restriction of f is a representable mor-
phism enjoys the following characterization: the geometric points of U are precisely
those at which f induces an injective homomorphism of stabilizer group schemes.

Proof. Let V → Y be a smooth atlas, where V is a separated scheme. The hy-
potheses imply that V → Y is a separated morphism. By Lemma 3.2, X ×Y V has
finite inertia. Similarly, letting S = V ×Y V (so that S is isomorphic to an algebraic
space, with (pr1, pr2) : S ⇒ V a groupoid presentation of Y ), X ×Y S has finite
inertia. For a Deligne-Mumford stack with finite inertia, the largest representable
open substack is the complement of the image of the complement of the identity in
the inertia stack, and its geometric points are characterized as those having trivial
stabilizer group. The largest representable open substack of X ×Y V has the same
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pre-image by the maps idX×pri : X×Y S → X×Y V for i = 1, 2, namely the largest
representable open substack of X ×Y S, and hence determines an open substack U
of X. It is easily verified that U is the largest open substack of X on which the re-
striction of f is representable, and that the geometric points of U are precisely those
at which f induces an injective homomorphism of stabilizer group schemes. �

3.2. Local structure of Deligne-Mumford stacks. The following result shows
that Conjecture 1.1 holds for any Deligne-Mumford stack.

Lemma 3.4. Given a Deligne-Mumford stack X with separated diagonal and a point
x of X having finite stabilizer:

(i) There exist an affine scheme W , finite group G, action of G on W , étale
representable morphism f : [W/G] → X, and point y ∈ [W/G] such that
f(y) = x and f is stabilizer preserving at y.

(ii) The group G in (i) may be taken to be the geometric stabilizer group at x.

Proof. We obtain (i) from [18, Prop. 6.11] and [12, Thm. 6.1]. For (ii), a variation
of the argument of [18, Prop. 6.11] in which Wd (d ∈ N) is replaced by WG (G a
finite group), defined as the stack over X of subschemes of the pullbacks of the
given étale atlas U , equipped with a structure of G-torsor, yields VG → WG with
WG
∼= [VG/G]. �

Remark 3.5. By [2, Prop. 3.6 and Thm. 2.19], Conjecture 1.1 holds for an algebraic
stack with finite inertia. By applying [10, §4], we see that Conjecture 1.1 in fact
holds for any algebraic stack with quasi-finite and separated diagonal.

3.3. Local structure of quotient stacks. Let k be an algebraically closed field.
Given a quotient stack [U/G], with U affine of finite type over k and point x ∈ U(k)
with linearly reductive stabilizer group scheme Gx, Luna’s étale slice theorem [13]
gives rise (under suitable hypotheses) to an étale morphism [W/Gx]→ [U/G], where
W is a Gx-invariant locally closed affine subscheme of U containing x.

Lemma 3.6. Let U be an affine scheme of finite type over an algebraically closed
field k, with action of a smooth linear algebraic group G. Then, for every point x ∈
U(k) with linearly reductive stabilizer group scheme Gx there exists a Gx-invariant
locally closed affine subscheme W ⊂ U containing x such that the induced morphism
[W/Gx]→ [U/G] is étale. In particular, Conjecture 1.1 holds for [U/G].

Proof. There exists a finite-dimensional linear G-space V with equivariant closed
immersion U ↪→ V ; thus it suffices to consider the case U = V . By [13, Lem. p. 96],
there exists a Gx-equivariant morphism

g : V → TxV

which is étale at x and satisfies g(x) = 0. We write

TxV = Tx(G · x)⊕N

for a Gx-representation N . Then the representable morphism [g−1(N)/Gx]→ [V/G]
is étale at x, hence on [W0/Gx] for some Gx-invariant open W0 ⊂ g−1(N) containing
x. Now W may be taken to be any Gx-invariant affine neighborhood of x in W0. �
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Remark 3.7. The conclusion of Lemma 3.6 is also valid if the hypothesis that U is
affine is replaced by the hypothesis that U is normal. Let x ∈ U(k) have linearly
reductive stabilizer group scheme Gx. Letting G◦ ⊂ G denote the connected com-
ponent of the identity, there exists a separated G◦-invariant open neighborhood of
x (e.g., the image under the action of G◦×U0 where U0 is any affine open neighbor-
hood of x). By Sumihiro’s theorem [20, Thm. 3.8], there exists a quasi-projective
G◦-invariant neighborhood U ′ of x. Letting H denote the image of Gx in G/G◦ and
G′ the pre-image of H under G→ G/G◦, if we take h1, . . . , hn ∈ Gx to be elements
mapping onto H then h1U

′ ∩ · · · ∩ hnU ′ is a G′-invariant quasi-projective neighbor-
hood of x. So we are reduced to the case that U is normal and quasi-projective.
Then there is an equivariant immersion U ↪→ P(V ) for some finite-dimensional lin-
ear G-space V , and as in the proof of Lemma 3.6 we are further reduced to the
case U = P(V ). We conclude by taking f to be a Gx-semi-invariant homogeneous
polynomial with f(x) 6= 0, invoking [13, Lem. p. 96] to obtain Gx-equivariant

g : P(V )f → TxP(V ),

étale at x with g(x) = 0, and applying the rest of the proof of Lemma 3.6.

Lemma 3.8. Let Y be an algebraic stack locally of finite type over an algebraically
closed field k. If there is a finite, flat cover f : X = [U/GLn] → Y for some n,
where U is an algebraic space (resp., an affine scheme), then Y ∼= [V/GLn′ ] for
some n′, where V is an algebraic space (resp., an affine scheme).

Proof. If E is a vector bundle on X such that the stabilizer at every geometric point
acts faithfully on the fiber, then f∗E is a vector bundle on Y with the same property
(cf. [7, proof of Lem. 2.13]). If U is affine, the base change X ×Y V is also an affine
scheme—indeed, as U → X is a GLn-bundle and X ×Y V → X is a GLn′-bundle,
the base change U ×Y V → X ×Y V is a GLn-bundle and since U ×Y V is affine, so
is X ×Y V . Since X ×Y V → V is finite and surjective, V is an affine scheme. �

Remark 3.9. In [19, §2], Rydh defines an algebraic stack X of finite presentation over
k to be of global type if every point x ∈ X(k) is in the image of an étale, representable
morphism [W/GLn] → X where W is quasi-affine. Any algebraic stack satisfying
Conjecture 1.1 which is also quasi-compact and has linearly reductive stabilizers at
closed points is therefore of global type.

3.4. Second reduction. We give a result, reducing Conjecture 1.1 for Mss
g to ex-

hibiting certain finite covers of étale neighborhoods.

Proposition 3.10. Let X be an algebraic stack, locally of finite type over an alge-
braically closed field k with separated and quasi-compact diagonal such that X has
affine stabilizer groups at all closed points. Suppose x ∈ X(k) has linearly reductive
stabilizer group scheme Gx, and there exist morphisms

X ′′ → X ′ → X

and x′ ∈ X ′(k) such that

(i) X ′′ ∼= [U/GLn] for some affine scheme U over k with action of GLn for
some n,

(ii) X ′′ → X ′ is a finite flat cover,
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(iii) X ′ → X is étale representable,
(iv) X ′ → X is stabilizer preserving at x′.

Then Conjecture 1.1 holds for X at the point x.

Proof. By Lemma 3.8 we have X ′ ∼= [V/GLn′ ]. We conclude by Lemma 3.6. �

4. Proof in a special case

We apply the above reduction steps (Propositions 2.1 and 3.10) and a struc-
tural result (Lemma 4.3, below) to give a proof of Theorem 1.2 in a special case.
Namely, we will prove Theorem 4.2 which asserts that Conjecture 1.1 holds near
semistable curves whose stabilization is the nodal union of two smooth curves of
different genera. We remark that our argument in this section does not apply to
semistable curves whose stabilization has precisely one node but admits an auto-
morphism which swaps the tangent branches at the node. Therefore, we exclude
curves whose stabilization is an irreducible curve with precisely one node or is the
nodal union of two smooth curves of the same genus.

4.1. Aligned log structure. We recall the definition of an aligned log structure
introduced in [1]. Let X be a scheme. Given a log structure M → OX we consider
the characteristic sheaf M = M/O∗X . If M is a locally free log structure, then

there is a subsheaf of sets M
1 ⊂M , whose values on stalks are the sums of subsets

of generators of the free monoids Mx at geometric points x ∈ X. An aligned log

structure is a locally free log structure together with a subsheaf S ⊂M1
, such that

for every geometric point x ∈ X there is a labeling of the generators of Mx as
e1, . . . , en, such that

Sx = {0, e1, e1 + e2, . . . , e1 + · · ·+ en}.

Proposition 4.1. Let E be a Deligne-Mumford stack, E →Mg an étale morphism
with corresponding family of curves C → E, and D ⊂ Csing an open and closed
subscheme which maps isomorphically to a divisor in E. Define

X := E ×Mg
Mss

g ,

and let C → X denote the associated family of semistable curves, with stabilization
C→ C ×E X.

(i) The stack

D ×Csing Csing

is, by stabilization, the normalization of D ×E X.
(ii) Suppose the family of curves D×EC → D is obtained by gluing some C0 → D

along two sections s1 and s2, as in §2.1. Then there is a unique aligned log
structure (M,S) on X whose underlying log structure is that of the normal
crossing divisor D ×E X, such that for every geometric point x of D ×E X,
corresponding to a prestable curve whose stabilization collapses r exceptional
components to the corresponding point of D, the elements of Sx under the
isomorphism of (i) are x1 + · · ·+ xj for 0 ≤ j ≤ r + 1, where x1, . . . , xr+1

are the points of Csing mapping to the point of D, ordered so that x1 is the
image of s1 under the rational map (C0)x 99K Cx, and for every i the points
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xi and xi+1 lie on one of the exceptional components collapsing to the point
of D corresponding to x.

Proof. Since D ×Csing Csing is smooth and the morphism to D ×E X is finite and
restricts to an isomorphism over the stable curves in X, assertion (i) is clear.

Assertion (ii) quickly reduces to the following claim. Let R be a henselian discrete
valuation ring with residue field k, together with C0,R → Spec(R) with two sections
and CR → Spec(R), corresponding to some Spec(R) → D ×E X; in particular, the
stabilization of CR is assumed to be identified with the stable curve CR obtained
by gluing from C0,R → Spec(R) with the two sections. Denoting by s1,R and s2,R

the two sections, the common composite with the gluing is a section Spec(R)→ CR
with image contained in Csing

R . The restriction

h : Spec(R)×
Csing

R
Csing
R → Spec(R)

of the finite unramified morphism of (i) is necessarily the projection of a disjoint
union of some copies of Spec(R) and some (possibly nonreduced) points mapping
to the closed point of Spec(R). Let the fiber over the closed point be x1, . . . , xr+1

as in (ii), and let

i1 < i2 < · · · < iq+1

be the indices of those points over the closed point, which are the specializations
of copies of Spec(R). The claim is that at a geometric general point η of Spec(R),
stabilization of Cη collapses a chain of q rational curves to the node of Cη (the
common image of the two sections under gluing), and with the points η1, . . . , ηq+1

as in (ii) the point ηa maps to the ia-copy of Spec(R) for a = 1, . . . , q + 1.
There is nothing to prove if q = 0, so we assume q ≥ 1. There is an iterated

blow-up τ : Ĉ0,R → C0,R at points over c1 := s1,R(Spec(k)) and c2 := s2,R(Spec(k))
such that the composite with gluing and the inverse of stabilization

Ĉ0,R
τ→ C0,R → CR 99K CR

is defined in a neighborhood of τ−1({c1, c2}). (The process of blowing up points of
indeterminacy terminates. A classical result of Northcott asserts that upon blowing
up and replacing an mci-primary ideal in OC0,R,ci by its proper transform the multi-

plicity decreases; cf. [9].) Now τ−1(c1) is a connected scheme, whose image Z0 ⊂ CR
contains x1 and the specialization of η1.

For each 1 ≤ a ≤ q the generic fiber Cη has a unique exceptional component Eη,a
containing ηa and ηa+1. We let Wa denote the closure of Eη,a in CR. The special
fiber Za of Wa is connected and contains the specializations of ηa and ηa+1.

Since CR is Cohen-Macaulay with reduced special fiber, the complement of the

closure of Csing
η is normal. In particular, each xi with i /∈ {i1, . . . , iq+1} is a normal

point of CR, as are all smooth points of the special fiber of CR.
With these observations, we may establish the claim by contradiction. Suppose

there is some a, which we take to be minimal, such that ηa specializes to xi and ηa+1

specializes to xj , with j < i. If a = 1 then since Z0 is connected and contains x1

and xi we have xj ∈ Z0 as well, and then since Z1 is connected and 1-dimensional,
we would have dim(Z0 ∩ Z1) = 1, which is a contradiction. If a > 1, we may argue
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similarly, using that Z0∪· · ·∪Za−1 is connected and contains x1 and xi, hence must
as well contain xj . �

4.2. Separating nodes with distinct genera. From §2.1, every partition of g as
a sum of two positive integers determines an irreducible component of the boundary
divisor ofMg. Suppose g1 +g2 = g with g1 > g2. Then the corresponding boundary
component has an open substack Dg1,g2 parametrizing unions of smooth curves of
genera g1 and g2 at a node. We define

Eg1,g2 :=Mg ∪Dg1,g2 ⊂Mg,

the open substack consisting of smooth curves of genus g and unions of smooth
curves of genera g1 and g2. Then the inclusion of Eg1,g2 in Mg and Dg1,g2 satisfy
the hypotheses of Proposition 4.1, hence determine an aligned log structure on

Xg1,g2 := Eg1,g2 ×Mg
Mss

g ,

i.e., a morphism

(4.1) Xg1,g2 → Logal

to the stack of aligned log structures; the stack of aligned log structures is described
in [1].

Theorem 4.2. For positive integers g1, g2, and g, with g1 + g2 = g and g1 > g2,
Conjecture 1.1 holds for Xg1,g2.

Key to the proof is the following observation, which reveals the structure of the
moduli stack of semistable curves of genus g near a curve whose stabilization is a
union of smooth curves of genera g1 and g2. The quotient stack

A1 := [A1/Gm],

where Gm acts in the standard way on A1, plays an important role. As is recalled
in [1], the stack A1 serves as a universal target for pairs consisting of a smooth
variety or algebraic stack Y with divisor D ⊂ Y . If D is also smooth, then the
corresponding morphism Y → A1 is smooth.

Lemma 4.3. The projection from Xg1,g2 and morphism (4.1) fit into a fiber square

Xg1,g2
//

��

Eg1,g2

��
Logal // A1

where the morphisms to A1 correspond to the boundary divisor of Logal and the
divisor Dg1,g2 ⊂ Eg1,g2.

Proof. The horizontal morphisms restrict to isomorphisms on the complements of
substacks of codimension 2, hence so does the morphism

(4.2) Xg1,g2 → Logal ×A1 Eg1,g2 ,

which is representable. The fiber product in (4.2) is smooth, since the morphism
Eg1,g2 → [A1/Gm] is smooth. So, by Zariski-Nagata purity [8, Thm. X.3.1] the
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morphism (4.2) is étale. The morphism (4.2) is bijective on geometric points and
pointwise stabilizer preserving, hence by Lemma 3.1 is an isomorphism. �

For the proof of Theorem 4.2 we use the stacks

An := [An/Gn
m],

also introduced in [1] (quotient stacks for the standard group actions).

Proof of Theorem 4.2. Let x ∈ Xg1,g2(k) correspond to a semistable curve C of
genus g whose stabilization C ′ is the union of smooth curves of genera g1 and g2.
We verify Conjecture 1.1 for Xg1,g2 at x. Let H be the automorphism group of
C ′. By Lemma 3.4, there exist an affine scheme W with action of H fixing a point
y ∈W and an étale representable morphism

[W/H]→ Eg1,g2

sending y to the point of Eg1,g2 corresponding to C ′.
If C is stable, we are done, so we assume that some positive number r of ex-

ceptional components are collapsed by stabilization C ′ → C. The coordinate hy-
perplanes gives rise to an aligned log structure on Ar+1, and the corresponding
morphism Ar+1 → Logal is étale representable [1] and stabilizer preserving at the
origin. Consequently, we have a stack

X ′ := Ar+1 ×Logal Xg1,g2 ×Eg1,g2
[W/H],

such that the projection to Xg1,g2 is étale representable, and a point x′ ∈ X ′ at
which the projection to Xg1,g2 is stabilizer preserving, sending x′ to x.

We let
X ′′ := Ar+1 ×Logal Xg1,g2 ×Eg1,g2

W.

By Lemma 4.3, X ′′ ∼= Ar+1 ×A1 W . Since W → A1 is affine, X ′′ is of the form
[U/Gr+1

m ] with U affine, and Proposition 3.10 implies Conjecture 1.1 for Xg1,g2 at
x. �

5. Stacks generalities

In this section, we record general facts about algebraic stacks that will be useful
for the proof of Theorem 1.2. The reader may want to skip this section on the first
reading but later return when these results are applied in Sections 6 through 8.

5.1. Étale coverings from unramified morphisms. Given a representable un-
ramified morphism X → Y of algebraic stacks, Rydh constructs [17, §3] a stack
EX/Y and a factorization X → EX/Y → Y as a closed immersion followed by an

étale representable morphism.1 The complement of X in EX/Y is isomorphic to Y .
The construction, known as the étale envelope, is functorial: given a scheme T , a
morphism T → EX/Y consists of a morphism T → Y with closed subscheme T ′ ⊂ T
and open immersion T ′ → X×Y T over T . For example, if X → Y is étale then (see
[17, Exa. 2.1]) EX/Y is the disjoint union of X and Y . If X is the disjoint union of

a pair of distinct lines `1, `2 in the plane Y = P2, then (see [17, Exa. 2.2]) EX/Y
is the scheme, covered by three copies Y0, Y1, Y2 of Y with Y0 and Yi glued along

1Rydh works in greater generality, not requiring X → Y to be representable.



12 ALPER AND KRESCH

the complement of `i for i = 1, 2; notice that the fiber of EX/Y → Y over `1 ∩ `2
consists of 3 points, all contained in the closure of `1 ∪ `2 ⊂ Y = Y0.

We need, as well, a variant due to Mustaţă and Mustaţă [14, §1.1]. Suppose that
X → Y is a representable unramified morphism of algebraic stacks that is étale
onto its image, a locally closed substack Y1 ⊂ Y . The topological closure Y 1 is then
closed in EX/Y , as we see by combining the isomorphism EXred/Y

∼= EX/Y of [17,

Thm. 1.2 (ix)] with the consequence of functoriality, that E
Xred/Y red

1

→ EXred/Y is

a closed immersion. Then we define

FX/Y := EX/Y r Y 1.

From the properties of the étale envelope mentioned above we obtain, for FX/Y , a
factorization X → FX/Y → Y as a closed immersion followed by an étale repre-
sentable morphism and a functorial description, where for a scheme T a morphism
T → FX/Y is given by a morphism T → Y whose image is disjoint from Y 1 r Y1

and an open immersion Y1 ×Y T → X ×Y T over T .

Proposition 5.1. Let f : X → Y be an étale representable morphism of algebraic
stacks. For a locally closed substack W ⊂ Y with f(X)∩W ⊂W and fiber diagram

Z //

��

X

f
��

W // Y

the induced morphism g : X → FZ/Y is an isomorphism if and only if the restriction

of f over Y rW is an isomorphism.

Proof. The forward implication is clear from the definition of FZ/Y . The reverse
implication follows by applying Lemma 3.1 to g by noting that the geometric points
of both X and FZ/Y lie over Y r (W rW ) and observing that g restricts to isomor-

phisms over W and over Y rW . �

5.2. Some stacks with non-separated diagonal. The stack of log structures
[15] has quasi-compact but non-separated diagonal. Here we describe an algebraic

stack År for each r > 0, also with quasi-compact but non-separated diagonal.
We recall, from §4.2, the stack Ar = [Ar/Gr

m] (quotient stack for the standard
action of Gr

m on Ar). There is an involution ι : Ar → Ar, (x1, . . . , xr) 7→ (xr, . . . , x1)
and a similar compatible involution of Gr

m inducing an involution ι : Ar → Ar.
Let us introduce År by defining Ur to be the non-separated scheme which is the

union of two copies of Ar ×Gr
m along the two copies of (A1 r {0})r ×Gr

m identified
via the involution

(x1, . . . , xr, t1, . . . , tr) 7→ (x1, . . . , xr, tr
xr
x1
, . . . , t1

x1

xr
),

and setting

År = [Ur ⇒ Ar],
the stack associated to the groupoid scheme with projection map and twisted action
map which on the first copy of Ar ×Gr

m is the standard diagonal action and on the
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second copy is the composition of the involution ι of Ar with the standard diagonal
action.

The stabilizer of År at the origin is the semi-direct product Gr
m o Z/2Z where

Z/2Z acts on Gr
m via the involution (t1, . . . , tr) 7→ (tr, . . . , t1) of Gr

m.
Just as the stack A1 has the well-known interpretation of schemes with a line

bundle and a global section, we leave it to the reader to see that Å1 has the inter-
pretation of schemes with a line bundle, a global section, and a degree-two finite
étale cover of the zero-locus of the section. In particular, the fiber of the obvi-
ous morphism Å1 → A1 over BGm = [{0}/Gm] is isomorphic to BGm × BZ/2Z;
Proposition 5.1 yields an isomorphism

(5.1) FBGm/Å1
∼= A1.

Multiplication of coordinates induces morphisms mul : Ar → A1 and mul : År →
Å1. There are étale representable morphisms Ar → År induced on the level of
groupoid schemes from the inclusion of the first copy of Ar ×Gr

m in Ur.

Proposition 5.2. These morphisms fit into a fiber diagram

Ar mul //

��

A1

��

År mul // Å1

Proof. Each of the morphisms arises from a morphism of groupoid schemes. Stan-
dard manipulations of groupoid schemes establish the proposition. �

5.3. Semi-aligned log structures. We return to the setting of §4.1. Besides the

zero section there is another global section s1 of M
1
, given by the sums of generators

of theMx. An involution j ofM
1

is characterized by the property that the composite

M
1 (id,j)−→ M

1 ×M1 ⊂M ×M +−→M

is the constant map s1. Given an aligned log structure, application of the involution
j yields a new aligned log structure, the opposite aligned log structure.

A related notion is semi-aligned log structure, exactly as in §4.1 but with

Sx = {0, e1, en, e1 + e2, en−1 + en, . . . , e1 + · · ·+ en}.

Proposition 5.3. Let π : X → Y be a finite type étale universally closed morphism
of algebraic spaces. Then there is a natural transformation

tr : π∗ ◦ π∗ → id

(“trace”) on sheaves of idempotent monoids on Y , which on stalks is given by sum-
ming the values on fibers.

Proof. Given y ∈ Y there exist an étale neighborhood y′ ∈ Y ′ → Y with y′ 7→ y and
sections σ1, . . . , σr of π′ : X ′ := X ×Y Y ′ → Y ′ whose images cover π′−1(y′). Since
π is universally closed, we may replace Y ′ by a suitable open neighborhood of y′, so
that the images of the sections cover X ′. We may then define the trace locally by
summing the r sections over Y ′. �
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Besides the stack of aligned log structures Logal described in [1], there is a stack

of semi-aligned log structures, which we denote by Log
1
2

al. The assignment, to a
scheme with an aligned log structure, of the opposite aligned log structure, yields

an involution j of the stack Logal. If X is a scheme and (M → OX ,S ⊂M
1
) is an

aligned log structure on X, then S t j(S) is an aligned log structure on X tX, and
the trace for X t X → X yields tr(S t j(S)), a semi-aligned log structure on X.
This construction gives rise to a morphism of algebraic stacks

(5.2) Logal → Log
1
2

al.

Proposition 5.4. The morphism (5.2) is representable, étale, of finite type, and
universally closed, and restricts to an isomorphism over the locus of locally free log
structures of rank ≤ 1 and a finite étale morphism of degree 2 over the locus of rank
≥ 2.

Proof. The morphism (5.2) is clearly representable and locally of finite type, and it
is trivial to verify the criterion in terms of square-zero extensions to be étale. The
sheaf of sections of (5.2) is locally the quotient of a finite constant sheaf, hence the
morphism (5.2) is universally closed of finite type. The assertion about the locus of
locally free log structures of rank ≤ 1 is a triviality. Since the geometric fibers over
locally free log structures of rank ≥ 2 all consist of two points, the properties of the
morphism (5.2) imply that it restricts to a finite morphism. �

Given a normal crossings divisor D on a smooth algebraic stack X, we set Xk ⊂ X
to be the locally closed substack consisting of all points lying, smooth locally in
exactly k smooth divisors. For instance, X0 = X \D and X1 is the smooth locus
of D. Set X≤k and X≥k to be the locally closed substacks obtained by taking the
unions of the corresponding Xi’s. We make these definitions more generally for an
algebraic stack with a given locally free log structure.

Considering the fiber square

Logal,≥2 //

��

Logal

��

Log
1
2

al,≥2 // Log
1
2

al

(5.3)

Proposition 5.4 tells us that the criterion of Proposition 5.1 is satisfied.

Corollary 5.5. The fiber square (5.3) induces an isomorphism

Logal → F
Logal,≥2/Log

1
2 al

Another consequence of Proposition 5.4 is that we have a morphism

al : Log
1
2

al,≥2 → BZ/2Z

corresponding to the restriction of morphism (5.2) to Log
1
2

al,≥2. Now we consider
the composite morphism

(5.4) Log
1
2

al,≥2 (id,al)−→ Log
1
2

al,≥2 ×BZ/2Z ↪→ Log
1
2

al ×A1 Å1,
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remembering that the fiber of Å1 over BGm ⊂ A1 is isomorphic to BGm ×BZ/2Z,
so that we obtain a stack

(5.5) F
Log

1
2 al,≥2/Log

1
2 al×A1Å1

.

We note that while Logal,r consists of a single point with stabilizer Gr
m and

Log
1
2

al,r consists of a single point with stabilizer Gr
m for r ≤ 1 and Gr

m o Z/2Z for
r ≥ 2, the stack (5.5) in codimension r is a point with trivial stabilizer for r = 0 and
stabilizer Gr

m o Z/2Z for r ≥ 1. This feature leads us to introduce a new notion,
and compact notation.

By an augmented semi-aligned log structure on a scheme or algebraic stack X we
mean the data of a semi-aligned log structure (M,S), a degree 2 finite étale cover

X̂ → X≥1, and an augmentation isomorphism

X̂≥2 → Logal ×
Log

1
2 al X

≥2

over X≥2. (The fiber product is of the morphism (5.2) and the restriction of (M,S)
to X≥2.) The stack (5.5) is identified with the stack of augmented semi-aligned log
structures, which we denote by

Log( 1
2

+ε)al.

To understand the stack (5.5), following the definition in §5.1, it is important to
remember the isomorphism of target objects in the definition of fiber product of

stacks Log
1
2

al,≥2 ×
Log

1
2 al×A1Å1

T (target of the open immersion).

As an example, there is a natural semi-aligned log structure on År, by taking the
e1, . . . , en to correspond to the natural coordinates on Ar. The triple consisting of
this semi-aligned log structure, the cover (Ar)≥1 → (År)≥1, and the restriction of
the natural aligned log structure of Ar, is an augmented semi-aligned log structure.
This yields a morphism

(5.6) År → Log( 1
2

+ε)al.

An aligned log structure determines an augmented semi-aligned log structure
(via the trace construction as in (5.2), with trivial cover and isomorphism of trivial
covers as augmentation isomorphism). In other words, we have a morphism from

Logal to Log( 1
2

+ε)al, and this is étale since the stack (5.5) is étale over Log
1
2

al and
the composite

Logal → Log( 1
2

+ε)al → Log
1
2

al

is étale. There is also a morphism

(5.7) Log( 1
2

+ε)al → Å1,

mapping an augmented semi-aligned log structure to its degree 2 cover.
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Proposition 5.6. The morphisms (5.6) and (5.7) fit into a fiber diagram

Ar //

��

Logal //

��

A1

��

År // Log( 1
2

+ε)al // Å1

Proof. Since the outer square is a fiber square (Proposition 5.2), it suffices to verify
that the right-hand square is a fiber square. This results by observing that upon
base change by A1 → Å1 the composition (5.4) yields a composition of morphisms
in (5.3) and applying Corollary 5.5. �

Proposition 5.7. Let X be an algebraic stack with locally free log structure M ,

and let π : X̂ → X≥1 be a degree 2 finite étale cover with corresponding étale cover
f : F

X̂/X
→ X and involution ι : F

X̂/X
→ F

X̂/X
. If (f∗M,S′) is an aligned structure

with ι∗S′ related to S′ by the involution j, then there is a unique augmented semi-
aligned log structure

((M,S), π, X̂≥2 → Logal ×
Log

1
2 al X

≥2)

on X such that

(i) the semi-aligned log structure on F
X̂/X

obtained by the trace construction

from S′ is equal to f∗S, and

(ii) the restriction of (f∗M,S′) to X̂≥2 is the aligned log structure obtained by
projecting from the augmentation isomorphism.

Furthermore, the morphisms corresponding to the log structures fit into a fiber dia-
gram

F
X̂/X

//

��

Logal

��

X // Log( 1
2

+ε)al

Proof. Condition (i) determines S uniquely, and (M,S) is a semi-aligned log struc-

ture on X. Restricting S′, we obtain X̂ → Logal, and the further restriction to X̂≥2

yields the augmentation isomorphism, which is uniquely determined by (ii).
The diagram is 2-commutative. As in the proof of Proposition 5.6, we may reduce

the proposition, by adjoining the fiber square with A1 → Å1 to the right, to the
assertion that the outer square of the larger diagram is 2-cartesian. Since the degree
2 cover of the augmented semi-aligned log structure is π, we have the assertion
by the isomorphism (5.1) and the fact that the construction of §5.1 respects base
change. �

6. A local construction around a strictly semistable curve

In this section, we construct an étale neighborhood [(X×mg,4)◦/Sr] → Mss
g of any

strictly semistable curve C which is stabilizer preserving at a pre-image x′ of C
(Proposition 6.1). In order to apply Proposition 3.10 to Mss

g (in Section 8) we will
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need a refinement (Proposition 6.2) that leads to the existence of U → Mss
g , étale

and representable, and stabilizer preserving at a pre-image x′′ of C (Corollary 6.3).
The morphism Dg →Mg is representable and unramified, and we may consider

the algebraic stack Eg = EDg/Mg
(construction of §5.1), with étale representable

morphism

Eg →Mg.

The stack Eg may be viewed as the moduli stack of stable curves of genus g endowed
with a choice of at most one node.

6.1. Stabilization. We defineXg to be the algebraic stack parametrizing semistable
curves of genus g with at most one chosen node of the stabilization, that is, the fiber
product

Xg = Mss
g ×Mg

Eg.

We will, by abuse of notation, let st denote also the projection Xg → Eg.
Let Xg,4 ⊂ Xg be the open substack parametrizing semistable curves C whose

stabilization C → C ′ has at most one positive dimensional fiber, such that if c′ ∈ C ′
has a positive dimensional fiber then the node c′ is chosen.

6.2. The local construction. Let C be a strictly semistable curve of genus g over
an algebraically closed field k and C ′ its stabilization. We attach the following
discrete data to C. We let m be the number of positive dimensional fibers of the
stabilization C ′ → C, n be the maximum number of irreducible components of such
a fiber, and r = (r1, . . . , rn) be the sequence of nonnegative integers where ri is the
number of such fibers having precisely i irreducible components. Note that rn > 0
and

∑
i ri = m; moreover, the number of exceptional components is

∑
i iri.

We define

E×mg = Eg ×Mg
Eg ×Mg

· · · ×Mg
Eg︸ ︷︷ ︸

m times

Similarly, we denote by X×mg,4 the m-fold fiber product of Xg,4 over Mg. Define

(E×mg )◦ ⊂ E×mg as the open substack parametrizing curves where no pair of selected

nodes is the same, and let (X×mg,4)◦ be the pre-image of (E×mg )◦.

The product Sr = Sr1×· · ·×Srn of symmetric groups acts naturally on the m-fold
fiber products. Evidently, (E×mg )◦ and (X×mg,4)◦ are Sr-invariant. There is a point

x′ ∈ (X×mg,4)◦ corresponding to the m-tuple of semistable curves (C1, . . . , Cm), where

Ci is obtained by contracting all exceptional components which do not lie over the
ith marked point of the stabilization.

Proposition 6.1. The morphism (X×mg,4)◦ → Mss
g , defined by mapping an m-tuple

(B1, . . . , Bm) of semistable curves with stabilization B′ to the fiber product

B1 ×B′ · · · ×B′ Bm,

is étale, representable and Sr-equivariant. Moreover, the induced morphism

[(X×mg,4)◦/Sr]→Mss
g
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is stabilizer preserving at x′ and the diagram

[(X×mg,4)◦/Sr] //

��

[(E×mg )◦/Sr]

��
Mss

g
//Mg

is 2-commutative with étale vertical morphisms and representable induced morphism
[(X×mg,4)◦/Sr]→Mss

g ×Mg
[(E×mg )◦/Sr].

Proof. Since (E×mg )◦ ⊂ (X×mg,4)◦ has complement of codimension 2 and Xg,4 →Mg

is Cohen-Macaulay, (X×mg,4)◦ is normal. Since the morphism (X×mg,4)◦ →Mss
g is étale

in codimension 1, we may conclude from Zariski-Nagata purity [8, Thm. X.3.1] that
it is étale. The remaining statements are clear. �

Since the morphism [(X×mg,4)◦/Sr]→Mss
g is not in general representable (e.g., for

m > 1, the induced morphism on stabilizers is not injective at an m-tuple (B, . . . , B)
where B is a smooth curve), some refinement is necessary in order to reduce the
verification of Conjecture 1.1 to a stack related to [(X×mg,4)◦/Sr]. We now provide

such a refinement.
We recall the degree 2 cover D̂g → Dg from §2.1. By (5.1), there is a fiber diagram

F
D̂g/Eg

//

��

A1

��

Eg // Å1

(6.1)

where the bottom arrow is given by D̂g → Dg. We let F×m
D̂g/Eg

be the m-fold fiber

product over Mg and (F×m
D̂g/Eg

)◦ the pre-image of (E×mg )◦.

Proposition 6.2. There is an étale morphism [Spec(A)/H]→ [(E×mg )◦/Sr], stabi-

lizer preserving at a point y′′ over the image in [(E×mg )◦/Sr] of x′ ∈ (X×mg,4)◦ such

that the composition

[Spec(A)/H]→ [(E×mg )◦/Sr]→Mg

is representable. Moreover, there is a finite étale cover Spec(B) → [Spec(A)/H]
such that the composition Spec(B) → [Spec(A)/H] → [(E×mg )◦/Sr] factors through

(F×m
D̂g/Eg

)◦.

Proof. Let Wr = Wr1 × · · · ×Wrn be the product of the hyperoctohedral groups of
signed permutations. There is an action of Wr on (F×m

D̂/Eg
)◦ compatible with the

Sr-action on (E×mg )◦; this gives an étale morphism [(F×m
D̂/Eg

)◦/Wr] → [(E×mg )◦/Sr]

which is stabilizer preserving at the unique pre-image ỹ in [(F×m
D̂/Eg

)◦/Wr] of the

image of x′ ∈ (X×mg,4)◦ in [(E×mg )◦/Sr]. Let H denote the stabilizer group at ỹ. By

Lemma 3.3 and §3.2, there exists an affine scheme Spec(A) with an action of H and
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an étale morphism [Spec(A)/H] → [(F×m
D̂/Eg

)◦/Wr] stabilizer preserving at a point

y′′ ∈ [Spec(A)/H] above ỹ such that the composite morphism [Spec(A)/H] →Mg

is étale and representable.
The final statements are obtained by taking Spec(B) to be the affine scheme

representing the base change Spec(A)×[(F×m

D̂/Eg
)◦/Wr] (F×m

D̂/Eg
)◦. �

Corollary 6.3. With the notation of Proposition 6.2, if we define U as the fiber
product

U //

��

[Spec(A)/H]

��
[(X×mg,4)◦/Sr] // [(E×mg )◦/Sr]

then the composition U → [(X×mg,4)◦/Sr] → Mss
g is étale and representable, and

stabilizer preserving at a pre-image x′′ of C.

7. Local structure of Xg

In the section, we exhibit an augmented semi-aligned log structure on Xg. This
semi-aligned log structure allows us to establish Proposition 7.1 which provides an
explicit description of the fiber of the stabilization morphism over a stable curve
with precisely one node. This proposition will in turn be applied in Section 8 to
complete the proof of Theorem 1.2.

7.1. Augmented semi-aligned log structure on Xg. Recall that Xg was defined

in §6.1. We denote by X̂g the fiber product

X̂g
//

��

D̂g

��
Xg

st // Eg

where the degree 2 étale cover D̂g → Dg ⊂ Eg is as in §2.1. By applying the
construction of §5.1, diagram (6.1) may be extended to the left with a fiber square

F
X̂g/Xg

//

��

F
D̂g/Eg

��
Xg

// Eg

(7.1)

We observe, F
D̂g/Eg

→ Mg and D̂ satisfy the hypotheses of Proposition 4.1 and

thus determine an aligned log structure on F
X̂g/Xg

. Now Proposition 5.7 may be

applied to yield an augmented semi-aligned log structure

(7.2) Xg → Log( 1
2

+ε)al
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fitting into a fiber diagram

F
X̂g/Xg

//

��

Logal

��

Xg
// Log( 1

2
+ε)al

(7.3)

with the morphism corresponding to the aligned log structure on F
X̂g/Xg

and vertical

étale morphisms.

7.2. Structure of Xg,4. The next result is an analogue of Lemma 4.3 for Xg,4.

Proposition 7.1. There is a fiber diagram

Xg,4
st //

��

Eg

��

Log( 1
2

+ε)al // Å1

(7.4)

where the left vertical arrow is the restriction to Xg,4 of the morphism (7.2) and

the right vertical arrow is given by the finite étale cover D̂g → Dg.

Proof. Since the morphisms Xg,4 → Eg and Log( 1
2

+ε)al → Å1 are isomorphisms in
codimension 1, so is the morphism

(7.5) Ψ: Xg,4 → Log( 1
2

+ε)al ×Å1 Eg.

The fiber product in (7.5) is smooth (since the right-hand morphism in (7.4) is
smooth), so it follows from Zariski-Nagata purity [8, Thm. X.3.1] that Ψ is étale.
Since Ψ is also bijective on geometric points and is pointwise stabilizer preserving,
we conclude from Lemma 3.1 that Ψ is an isomorphism. �

8. Proof of Theorem 1.2

Theorem 8.1. Conjecture 1.1 holds for Mss
g .

Proof. Let C be a strictly semistable curve with stabilization C ′. Let m and r =
(r1, . . . , rn) be the combinatorial data assigned to C as introduced in §6.2.

We apply Proposition 6.2 and, with the notation from there, define

X ′ := [Å×r/Sr]×
[(Log(

1
2+ε)al)×m/Sr]

[(X×mg,4)◦/Sr]×[(E×m
g )◦/Sr] [Spec(A)/H],

X ′′ := [Å×r/Sr]×
[(Log(

1
2+ε)al)×m/Sr]

[(X×mg,4)◦/Sr]×[(E×m
g )◦/Sr] Spec(B).

Notice, with the notation of Corollary 6.3, X ′ may be identified with the fiber
product [Å×r/Sr] ×

[(Log(
1
2+ε)al)×m/Sr]

U and hence (cf. Proposition 5.6) admits a

morphism to Mss
g satisfying conditions (iii) and (iv) of Proposition 3.10. The cover

X ′′ → X ′ satisfies condition (ii). So it remains to verify condition (i).
By Proposition 6.2, X ′′ is isomorphic to

Å×r ×
(Log(

1
2+ε)al)×m

(F×m
X̂g,4/Xg,4

)◦ ×(F×m

D̂g/Eg
)◦ Spec(B),
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where X̂g,4 denotes the pre-image of Xg,4 under X̂g → Xg and where (F×m
X̂g,4/Xg,4

)◦

denotes the pre-image of (E×mg )◦ in the m-fold fiber product F×m
X̂g,4/Xg,4

over Mg.

Thanks to (7.3) and Proposition 5.6, X ′′ may be identified with

A×r ×(Logal)×m (F×m
X̂g,4/Xg,4

)◦ ×(F×m

D̂g/Eg
)◦ Spec(B).

The next step is to obtain from diagrams (6.1), (7.1), and (7.3) and Propositions
5.6 and 7.1 the fiber diagram

F
X̂g,4/Xg,4

//

��

F
D̂g/Eg

��
Logal // A1

This yields further fiber diagrams upon passing to m-fold fiber products (in the top
row, over Mg), and upon restricting to pre-images of (E×mg )◦. Now we have

X ′′ ∼= A×r ×(A1)×m Spec(B),

and we conclude, as in the proof of Theorem 4.2, by observing that the morphism
from Spec(B) to (A1)×m is affine. �
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