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Abstract. We illustrate an approach to a conjecture of Bressan
concerning compactness of solutions to ordinary differential equa-
tions. This approach combines classical results in the theory of BV
functions with recent developments in the theory of renormalized
solutions to transport equations. Moreover it leads naturally to
some new questions in the theory of BV functions, which turn out
to be connected with regularity issues for solutions to Hamilton–
Jacobi PDEs and hyperbolic systems of conservation laws.

1. Introduction

In [9] the author advanced the following conjecture on compactness of ODEs

Conjecture 1.1 (Bressan’s compactness conjecture). Let bn : Rt × Rd
x → Rd be

smooth maps and denote by Φn the solution of the ODEs:

(1)





d
dtΦn(t, x) = bn(t, Φn(t, x)),

Φn(0, x) = x .

Assume that the fluxes Φn are nearly incompressible, i.e. that for some constant C
we have

(2) C−1 ≤ det(∇xΦn(t, x)) ≤ C ,

and that ‖bn‖∞ + ‖∇bn‖L1 is uniformly bounded. Then the sequence {Φn} is
strongly precompact in L1

loc.

Thanks to the compactness of the space of BV functions, after possibly extract-
ing a subsequence (not relabeled) we can assume the existence of a vector field
b ∈ BVloc ∩ L∞ such that bn → b strongly in L1

loc. Therefore a positive answer to
Conjecture 1.1 would provide the existence of a map Φ which solves (in a suitable
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weak sense) the ODE

(3)





d
dtΦ(t, x) = b(t,Φ(t, x)),

Φ(0, x) = x .

The ODEs (1) are naturally connected with the transport equations

(4)





∂tun + bn · ∇xun = 0,

u(0, x) = u(x) .

Indeed classical solutions of (4) are constant along the trajectories of (1). Next,
denote by Jn(t, ·) the Jacobian determinant of ∇xΦn(t, ·) and by Ψn(t, ·) the inverse
of the map Φn(t, ·). If we set ρn(t, x) := Jn(t,Ψn(t, x)), then a classical theorem of
Liouville states that ρn solves

(5)





∂tρn + divx(ρnbn) = 0,

ρn(0, x) = 1 .

Therefore the un solving (4) satisfy

∂t(ρnun) + divx(ρnunbn) = 0 .

The bounds (2) imply that, up to subsequences, we can assume the existence of a
ρ ∈ L∞ with ρ ≥ C−1 such that ρn ⇀∗ ρ in L∞. This ρ solves

(6)





∂tρ + divx(ρb) = 0,

ρ(0, x) = 1 ,

in the sense of distributions.
In [3] the authors suggested Conjecture 1.2 below (compare with Conjecture

4.1 of [3]). Using the DiPerna–Lions theory of renormalized solutions to transport
equations (see [10]) they proved that a positive answer to Conjecture 1.2 would
imply Bressan’s Compactness Conjecture (see Proposition 4.4 of [3]).

Conjecture 1.2. Let f ∈ L∞ ∩BVloc(R×Rm,Rm) and ρ ∈ L∞(R ×Rm) be such
that ρ is positive and bounded away from zero and ∂tρ + divx(ρf) = 0 in the sense
of distribution. If u ∈ L∞ satisfies ∂t(ρu)+divx (ρuf) = 0 and β ∈ C1(R,R), then
∂t(ρβ(u)) + divx(ρβ(u)f) = 0.

Actually a positive answer to this conjecture would imply even more: In partic-
ular it would show that the limit Φ of the fluxes Φn depends only on the limit b
of the coefficients bn. Therefore this flux would be a sort of “canonical” flow for
the ODE (3). In this paper we want to illustrate some recent partial results on
Conjecture 1.2, and related questions.
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2. Chain Rule

First of all let us recast Conjecture 1.2 in a more general formulation. Consider the
vector function v = (v1, v2) := (ρ, ρu), the vector field

B := (1, b) : R ×Rm → R ×Rm ,

and the coordinates z := (t, x). Then we have divz(v ⊗ B) = 0. To simplify the
notation, from now on we will write D · (vB) instead of div (v ⊗B). If we define

β̃ : R+ ×R → R

as β̃(x1, x2) := β(x2/x1), the goal of Conjecture 1.2 can be rewritten as D ·
(β̃(v)B) = 0. Since ρ = v1 is bounded away from zero, we can find a C1 func-
tion h which coincides with β̃ on the range of v. Hence we might restate our
problem in the following way:

Problem 2.1. Let Ω ⊂ Rn be an open set, B ∈ L∞ ∩ BV (Ω,RN ) and v ∈
L∞(Ω,Rk). Assume that D · (vB) = 0. Can we right a formula which allows
to compute D · (h(v)B) for h ∈ C1(Rk,R)?

This time we cannot simply hope that D · (h(v)B) = 0. Indeed, let us look at
the following example. Consider an open set A ⊂ RN with smooth boundary and
two maps B ∈ L∞ ∩BV (RN ,RN ) and v ∈ L∞(RN ) such that

• B|A, u|A, B|RN\A, and B|RN\A are C1 and continuous up to the boundary
∂A;

• D · (vB) = 0 on RN .

Denote by∇·B the bounded function which on RN\∂A coincides with the pointwise
divergence of B. Then it is easy to show that

D · (h(v)B) =

[
h(v)−

∑

i

vi
∂h

∂yi
(v)

]
∇ ·B

+
{

h(v+)〈ν,B+〉 − h(v−)〈ν,B−〉
}

HN−1 ∂A(7)

where

• ν is the exterior unit normal to ∂A;
• B±, v± denote the interior and exterior traces of B and v on ∂A;
• Hn−1 ∂A denotes the nonnegative Radon measure which to any Borel set

E assigns the n − 1–dimensional Hausdorff measure (that is the n − 1–
dimensional volume) of E ∩ ∂A.

One can easily show examples where none of the terms in the right hand side of
(7) vanish. However, when h takes the special form induced by the hypotheses of
Conjecture 1.2, these terms do vanish (cp. with Lemma 7.6 of [5]).
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3. Decomposition of Measures

The BV Structure Theorem states that a BV function is approximately continuous
outside a rectifiable set J of codimension 1, and on this set it undergoes jump
discontinuities (in a suitable measure theoretic sense). For the precise statement
of this theorem we refer to Section 2.4 of [3] and to the book [7] (Section 3.7).
Moreover, the total variation measure |DB| of the (matrix–valued) Radon measure
DB can be decomposed as the sum of three mutually orthogonal measures |DB|a,
|DB|c, and |DB|j , where

• |DB|a is absolutely continuous with respect to the Lebesgue measure;
• |DB|j is absolutely continuous with respect to HN−1 J ;
• |DB|c is a singular measure such that |DB|c(A) = 0 for every Borel set A

with HN−1(A) < ∞.
Recall that DB = M |DB| for some bounded Borel matrix–valued function M , and
that D ·B = trM |DB|. Therefore we can write

DB = DaB + DcB + DjB := M |DaB|+ M |DcB|+ M |DjB|
D ·B = Da ·B + Dc ·B + Dj ·B := trM |DaB|+ trM |DcB|+ trM |DjB|

(see Sections 2.1 and 2.4 of [5] and Section 3.9 of [7]). The measures of these
decompositions are called absolutely continuous part, Cantor part, and jump part.

In the recent ground–breaking paper [2] the author extended the DiPerna–Lions
theory of renormalized solutions to BV vector fields with bounded divergence. One
consequence of his analysis is the following
Theorem 3.1. Let B, v, and h be as in Problem 2.1. Then

(8) D · (h(v)B) =

[
h(v)−

∑

i

vi
∂h

∂yi
(v)

]
Da ·B + µ ,

where |µ| ≤ C|Dc ·B|+ C|Dj ·B|, for some constant C.
A more general statement, proved with the techniques introduced in [2], can be

found in Section 3 of [5].

4. Ambrosio–Crippa–Maniglia Trace Theorem

Consider a bounded vector field C such that D · C is a Radon measure. For every
bounded open set Ω with C1 boundary we can define the normal trace of C on Ω
as the distribution Tr∂ΩC given by

(9) 〈Tr∂ΩC, ϕ〉 :=
∫

Ω

∇ϕ · C +
∫

Ω

ϕd [D · C] for every ϕ ∈ C∞c (RN ).

It was proved in [8] that there exists a unique g ∈ L∞loc(∂Ω) such that

〈Tr∂ΩC, ϕ〉 =
∫

∂Ω

gϕ .

The normal trace is local in the following sense:
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(L) Let E = ∂Ω ∩ ∂Ω′ and the exterior unit normals to Ω and Ω′ coincide on
E. Then, up to a set of zero HN−1 measure, Tr∂ΩC = Tr∂ΩC ′ on E .

This locality property allows to define the left and right traces Tr±AC on any recti-
fiable set A of codimension 1, once we fix , a Borel unit vector field ν normal to A
(see for instance Section 2.2 of [5]).

In [4], the authors proved the following Chain–Rule formula (see Theorem 4.2
therein):
Theorem 4.1. Assume that C = wB, where w is a bounded function and B is a
BV vector field. If β is a smooth function and J is a rectifiable set, then

(10) Tr±J (β(w)B) = β

(
Tr±J (wB)

Tr±J B

)
Tr±J B ,

where we use the convention that the right hand side is zero whenever Tr±J C = 0.
As a corollary of this chain–rule we have (cp. with Theorem 4.1 of [5]):

Theorem 4.2. Let B, v, and h be as in Problem 2.1. Then

D · (h(v)B) =
{

h

(
Tr+J (vB)
Tr+J B

)
Tr+J B − h

(
Tr−J (vB)
Tr−J B

)
Tr−J Bβ

}
HN−1 J

+

[
h(v)−

∑

i

vi
∂h

∂yi
(v)

]
Da ·B + ν ,(11)

where |ν| ≤ C|Dc ·B|.

5. A New Commutator Lemma

At this point it would be desirable to have a formula looking like

(12) ν =

[
h(v)−

∑

i

vi
∂h

∂yi
(v)

]
Dc ·B .

However, recall that Dc ·B is a singular measure, whereas v is a bounded function,
and therefore it is defined only up to sets of zero Lebesgue measure. Hence, the
right hand side of (12) does not have a meaning. It is tempting to conjecture that a
similar formula holds at least where the approximate limit exists. For the reader’s
convenience we recall the definition of approximate limit.
Definition 5.1. We say that v has approximate limit at x if there exists ṽ(x) such
that

lim
r↓0

1
rN

∫

Br(x)

|v(y)− ṽ(x)| dy = 0 .

We denote by Sv the set of points where v does not have approximate limit.
Indeed, using a new commutator lemma (see Lemma 5.1 and Theorem 5.2 of

[5]), we have proved:
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Theorem 5.2. Let ν be the measure of Theorem 4.2, then

(13) ν (Ω \ Sv) =

[
h(ṽ)−

∑

i

ṽi
∂h

∂yi
(ṽ)

]
Dc ·B (Ω \ Sv) .

6. Divergence Problem

From Theorems 3.1, 4.2 and 5.2 we conclude that Problem 2.1 would be completely
solved if we could show ν Sv = 0. Note that |ν Sv| ≤ C|Dc ·B| Sv. Therefore
one could hope that |Dc ·B| Sv = 0.

As before, we let M be a Borel matrix–valued function such that DcB = M |DcB|
and we observe that |Dc ·B| = |trM ||DcB|. In order to get some more insight about
this measure, we recall that |DcB| can be disintegrated in the following way. There
exists

• a (measurable) one–parameter family of rectifiable sets {Pt}t∈[0,∞[ of di-
mension N − 1

• and a Borel function f

such that

|DcB|(A) =
∫ ∞

0

[∫

A∩Pt

f(x) dHN−1(x)
]

dt for any Borel set A.

This decomposition is a consequence of the coarea formula for BV functions (see
for instance Theorem 3.4 of [7]). Moreover, as a corollary of the BV Structure
Theorem, we have that:

• For HN−1–a.e. x ∈ Pt, the approximate limit B̃(x) of B at x exists.

For each t we denote by νt a Borel unit vector field normal to Pt . It is natural to
call characteristic the set

Et :=
{
x ∈ St : 〈νt(x), B̃(x)〉 = 0

}
.

Next, if we define M |DcB| = DcB, then a deep result of Alberti (see [1]) implies
that

|DcB|
(

E \
⋃
t

Et

)
+ |DcB|

(⋃
t

Et \ E

)
= 0 .

These considerations give an intuitive explanation for the following result of [4]
(compare with Theorem 6.5 therein):
Theorem 6.1. |DcB|((Ω \ E) \ Sv) = 0.

Therefore we have |ν Sv| ≤ C|Dc · B| E. Following [5] we call E tangential
set of B. Our discussion leads naturally to the following:

Problem 6.2 (Divergence problem). Does |Dc · B| vanish on the tangential set of
B?
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A positive answer to this question would solve Problem 2.1 completely. Not only
this would allow to answer positively to Bressan’s compactness Conjecture, but it
would also give a DiPerna–Lions theory for nearly incompressible BV coefficients.
We refer the reader to Section 7 of [5].

7. SBV Regularity

It turns out that Problem 6.2 has connections with some regularity questions about
solutions of 1–dimensional hyperbolic conservation laws and Hamilton–Jacobi equa-
tions. We start by introducing the space of SBV functions
Definition 7.1. Let Ω ⊂ RN be an open set. Then SBV (Ω,Rk) is given by the
maps u ∈ BV (Ω,Rk) such that Dcu vanishes identically.

The proof of the following theorem can be found in Section 8 of [5]:
Theorem 7.2 (SBV regularity). A positive answer to Question 6.2 would have the
following corollaries:

• Let H ∈ C2(Rd) be uniformly convex and let u ∈ W 1,∞(Ω) be such that

(14) H(∇u) = 0 Ld–a.e. in Ω .

If ∇u ∈ BV (Ω), then ∇u ∈ SBV (Ω).
• Let f ∈ C2(R) and assume that the set {f ′′ = 0} is L1-negligible. If

Ω ⊂ Rt ×Rx and u ∈ L∞ ∩BV (Ω) is a weak solution of

(15) ∂tu + ∂x[f(u)] = 0 in Ω,

then u ∈ SBV (Ω).
• Let F ∈ C2(Rk,Rk) be such that the system of conservation laws

(16) ∂tU + ∂x[F (U)] = 0

is strictly hyperbolic and genuinely nonlinear. Then, if Ω ⊂ Rt ×Rx, any
weak solution U ∈ L∞ ∩BV (Ω) is SBV (Ω).

In the following cases we gave in [6] a complete and independent proof of the
regularity stated above:

• Entropy solutions to 1–d uniformly convex conservation laws;
• Viscosity solutions of planar Hamilton–Jacobi equations with a uniformly

convex hamiltonian.

8. Interesting Cases of the Divergence Problem

We state here some cases of the divergence problem which still would have inter-
esting consequences. First of all, we note that Bressan’s compactness conjecture
would follow from a positive answer to

Problem 8.1. Let B ∈ BVloc ∩ L∞ and ρ ∈ L∞ be such that ρ ≥ C > 0 and
D · (ρB) = 0. Is it true that |Dc ·B| vanishes on the tangential set of B ?
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The next variants are concerned with some important subclasses of bounded
BV vector fields. We remark that a positive answer to Problem 8.4 would imply
SBV regularity of gradients of viscosity solutions to Hamilton–Jacobi PDEs with
uniformly convex hamiltonians, in any space dimension.

Problem 8.2. Let α ∈ W 1,∞
loc be such that ∇α ∈ BVloc. Is it true that Dc ·∇α (that

is the Cantor part of the Laplacian ∆α) vanishes on the tangential set of ∇α ?

Problem 8.3. Let B be as in Problem 6.2 and assume in addition that there is
λ ∈ R such that

(17) 〈B(y)−B(x), y − x〉 ≥ λ|x− y|2 ∀x, y ∈ Ω .

Does |Dc ·B| vanish on the tangential set of B ?

Problem 8.4. We assume that B = ∇α for α as in Problem 8.2 and that (17) holds
for some λ ∈ R. Does |Dc ·B| vanish on the tangential set of B ?
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