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Abstract Let Ω be a C2 bounded open set of R
2 and consider the functionals

Fε(u) :=
∫

Ω

{
(1 − |∇u(x)|2)2

ε
+ ε|D2u(x)|2

}
dx .

We prove that if u ∈ W1,∞(Ω), |∇u| = 1 a.e., and ∇u ∈ BV, then

Γ − lim
ε↓0

Fε(u) = 1
3

∫

J∇u

|[∇u]|3dH 1 .

The new result is the Γ − lim sup inequality.
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1 Introduction

1.1 History of the problem

We consider the energy functionals

Fε[u,Ω] :=
∫

Ω

{
(1 − |∇u(x)|2)2

ε
+ ε|D2u(x)|2

}
dx. (1.1)

Here ε is a positive number, Ω is a (sufficiently smooth) bounded open set of
R

2, u is an element of H2(Ω), and |D2u(x)|2 denotes the square of the Hilbert–
Schmidt norm of the Hessian D2u(x). These functionals have been proposed
as models for different physical problems (see [3], [18], and [13]). In all these
cases one seeks minimizers of Fε among the u’s such that

u|∂Ω = 0
∂u
∂ν

∣∣∣∣
∂Ω

= −1. (1.2)

In [3] (see also [4]) the following conjectures were made. First of all, if
lim supε↓0 Fε(uε) < ∞, then uε converges, up to subsequences, to a Lipschitz
function u solving the eikonal equation |∇u| = 1. Second, if {uε} is a family of
minimizers, then the limits u must minimize

F0[v,Ω] := 1
3

∫

Ω∩J∇v

|[∇v]|3 dH 1 , (1.3)

among all v solving the eikonal equation. Here J∇v is the set where “∇v jumps”,
and [∇v] is the “jump”.

The first conjecture has been proved independently in [2] and [14], building
on the works [17] and [5]. Concerning the second question, one first has to
interpret (1.3). A possible choice is to restrict F0 to u’s with ∇u ∈ BV(Ω).
In [5] Aviles and Giga proved that F0 is lower semicontinuous on the space
BVe(Ω) := {u ∈ W1,∞ : |∇u| = 1 , ∇u ∈ BV(Ω)}; endowed with the L1

topology. However an example of [2] shows that {F0 ≤ c} ∩ BVe(Ω) is not com-
pact. This, combined with a construction of [10], gives a family {uε} bounded
in energy which converges to an u such that ∇u �∈ BVloc. In [2], inspired by
[5], a larger space AG(Ω) and a functional F̃ : AG(Ω) → R were proposed.
Summarizing the various results available in the literature, we have that:

(a) BVe(Ω) ⊂ AG(Ω) and F̃ = F0 on BVe(Ω);
(b) F̃ is lower semicontinuous on AG(Ω);
(c) The sublevel sets of F̃ are compact on AG(Ω);
(d) If lim sup Fε(uε) < ∞, then uε clusters to elements u ∈ AG(Ω);
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(e) If {uεk} ⊂ H2(Ω) converges to u ∈ AG(Ω), then

F̃(u) ≤ lim inf
k↑∞

Fεk(u
εk).

One can also impose the boundary conditions (1.2) and hence prove the exis-
tence of a F̃–minimizer. In the language of Γ –convergence (see [9] and the
books [8,7,6]), (e) is the Γ –liminf inequality. Combined with the Γ –limsup
inequality of Conjecture 1, (a)–(e) would give a full positive answer to the
problem raised by Aviles and Giga.

Conjecture 1 If u ∈ AG(Ω) satisfies (1.2), then there exists a family of func-
tions {uε} ⊂ H2(Ω) which satisfy (1.2), converge to u, and such that F̃(u) ≥
lim supε Fε(uε).

We finally remark that all these results are restricted to two dimensions
because of the structure of Fε: As it was shown in [11], already in three dimen-
sions the situation is very different.

1.2 Statement of the result

As far as we know, the existence of the optimal family of Conjecture 1 is known
only when u is the distance from the boundary and the jump set of ∇u is a
finite union of smooth arcs, with a finite number of intersections (see [15]). A
milder problem than Conjecture 1 is to exhibit such an optimal family without
imposing boundary conditions. For the case that ∇u jumps between two values
such a family was constructed in [3]; the construction was extended to piecewise
affine u’s with finitely many pieces in [10]. Therefore, in order to construct an
optimal family for any given u, it would suffice to approximate it with piecewise
affine maps uk such that lim F̃(uk) = F̃(u). This “approximation in energy”
is the standard procedure adopted to tackle Γ –limsup inequalities: First one
proves the existence of the optimal family for a suitable class of functions, and
then one shows that this class is dense in energy.

In our case an approximation by piecewise affine maps would be delicate if
we want to impose the boundary conditions: In particular it would require a
Whitney type triangulation ofΩ which refines towards the boundary. However,
even neglecting the boundary conditions and assuming that ∇u ∈ BV, it is not
clear at all whether an approximation in energy by piecewise affine maps is
possible. This difficulty is due to the rigidity of the eikonal constraint. Using a
completely different approach, in this paper we prove the following.

Theorem 1 Let Ω ⊂ R
2 be a C2 bounded domain, and u ∈ W1,∞(Ω , R) with

∇u ∈ BV(Ω , S1). Then there is a family {uε} ⊂ C∞(Ω) such that uε → u in
W1,p(Ω) for every p < ∞ and

lim sup
ε↓0

Fε[uε,Ω] ≤ F0[u,Ω].
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If u additionally satisfies (1.2), then the family uε can be chosen to also satisfy
(1.2).

Remark 1 We shall actually prove that the more general boundary conditions
u|∂Ω = g and ∂u

∂ν

∣∣
∂Ω

= h, for g, h ∈ C2(∂Ω), can be preserved.

Remark 2 A similar result has been independently obtained by A. Poliakovsky
[19,20].

Remark 3 Our proofs rely on the fine properties of BV functions and on esti-
mates upon the Fε energy of convolutions. This approach is remarkably different
from the traditional one based on approximation by affine maps, and can be
directly extended to more general functionals and higher dimension, provided
that the limiting function is in BV.

Concerning the more general case of Conjecture 1, we remark that nothing
is known about fine properties of functions in AG(Ω). Motivated by [13], in [12]
a (possibly smaller) function space A(Ω) ⊂ AG(Ω) was proposed. On this set
it is possible to define a functional F̄ in such a way that the pair (A(Ω), F̄) has
the five properties (a)–(e). Moreover in [12] it was shown that A(Ω) has fine
properties very similar to BV. However one can see that there are u ∈ A(Ω)
such that, for any convolution kernel ϕ, Fε(u ∗ ϕε) ↑ ∞. One such u can be
obtained by suitably modifying the example of [2]. Therefore this particular u
has finite energy and can be approximated in energy by piecewise affine maps
with finitely many pieces.

1.3 Rough strategy of the proof

We start by mollifying uχΩ to get an approximating family {uε}. Standard esti-
mates give lim supε Fε[uε,Ω] ≤ C (see Lemma 4). We build our result upon this
construction and this estimate. First, we prove a sharper bound on the energy
away from the jump set of ∇u, via Lemma 5. Then, around the ‘good part’ of the
jump set we replace uε with the appropriate one-dimensional optimal profile,
which gives the optimal energy. The remainder has small energy by the fine
properties of the BV function ∇u.

More precisely, in Sect. 3 we define the set Jg(θ̄ , k, η, ε) of points x ∈ J∇u such
that:

• The jump of ∇u at x is at least θ̄ ;
• At a scale kε, ∇u is η–close to a pure jump and ‖D2u‖ is at least of order

kεθ̄

(see Definition 3). We denote by Ωg(θ̄ , k, η, ε) the kε–neighborhood of Jg. In
Proposition 1 we show that

lim
θ̄↓0

lim sup
k↑∞

lim sup
η↓0

lim sup
ε↓0

Fε[uε,Ω \Ωg(θ̄ , k, η, ε)] = 0.

Here the quadratic estimate of Lemma 5 plays a fundamental role.
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In Sect. 4 we coverΩg with balls Bi’s of size kε, in such a way that the number
of overlaps is controlled. On each ball we inductively substitute the original gra-
dient with a pure jump and glue in coronas of size ε. After we make all these
modifications we mollify the final function at a scale ε. We obtain in this way
a smooth vθ̄ ,k,η,ε. On most of the set Ωg this function is a ε–mollification of a
“roof” function, on most of the complement it equals uε. We suitably define a
family of disjoint rectangles {Ri

θ̄ ,k,η,ε
}i which are centered on the jumps of the

roof functions and have vertical size
√

kε. In each of these rectangles, vθ̄ ,k,η,ε is
the ε–mollification of a single roof function. In Proposition 2 we show that the Fε
energy of vθ̄ ,k,η,ε lies mostly in ∪iRi. In Sect. 5 we take vθ̄ ,k,η,ε and in each Ri we
substitute it with a suitable one-dimensional profile, glueing the two functions
in a layer of size ε. Denote by wθ̄ ,k,η,ε the final result. Then we prove that, for sets
Ω(ε) = {x ∈ Ω : dist (x, ∂Ω) > ε},

lim sup
θ̄↓0

lim sup
k↑∞

lim sup
η↓0

lim sup
ε↓0

Fε[wθ̄ ,k,η,ε,Ω
(ε)] ≤ F0[u,Ω] ,

A standard diagonal argument and an additional construction on the bound-
ary layer yields the desired optimal family. Finally, an interpolation argument
permits to enforce the boundary conditions (Sect. 6).

2 Preliminaries and basic estimates

2.1 Preliminaries and notation

We denote by Br(x) the disk of center x ∈ R
2 and radius r > 0. When x = 0 we

use Br in place of Br(0)
We fix a standard mollifier ϕ ∈ C∞

c (B1) with
∫
ϕ = 1 and for every δ > 0 we

denote by ϕδ the function ϕδ(x) = 1
δ2 ϕ

( x
δ

)
. For any u ∈ L1(Ω) we denote by uδ

the function (uχΩ) ∗ ϕδ . All constants below can depend on the choice of ϕ.
When µ is a Radon measure and Ω an open set, we denote by ‖µ‖(Ω) the

total variation of µ in Ω . This variant of the Poincaré inequality follows, for
instance, from Theorem 4.2.1 of [21].

Lemma 1 (Smooth poincaré inequality) There exists a constant C, depending
only on ϕ, such that

⎡
⎢⎣
∫

Bδ

∣∣v(x)− vδ(0)
∣∣2 dx

⎤
⎥⎦

1/2

≤ C‖Dv‖(Bδ) ∀v ∈ BV(Bδ). (2.1)

For any set A ⊂ R
2 we denote by Aδ the set

{
x : dist (x, A) < δ

}
. The next

lemma is a small variant of a well–known covering argument:
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Lemma 2 (Covering lemma) There exists a universal constant N such that the
following holds for every r > 0. Given a bounded E ⊂ R

2, there exist N finite
collections of balls F j = {Br(x

j
i)}i=1,...,�j such that

xj
i ∈ E for every j and i , Er/2 ⊂

⋃
j

⋃
i

Br(x
j
i)

and B2r(x
j
i) ∩ B2r(x

j
l) = ∅ for every i �= l.

Its proof is based on the geometric observation which is the main ingredient
of similar covering theorems:

Lemma 3 For any k > 1 there is N = N(k) such that the following holds. Given
any r > 0 and any set A ⊂ R

2 such that the balls {Br(x) : x ∈ A} are dis-
joint, one can subdivide A into N sets {Aj}j=1,...,N such that for each j the balls
{Bkr(x) : x ∈ Aj} are disjoint.

Proof Let N(k) be such that a disk of radius 2k + 1 can contain at most N(k)
disjoint balls of radius 1. We claim that this constant satisfies the requirement
of the lemma.

Indeed, let {Br(x) : x ∈ A} be a family of disjoint balls. We construct the sets
Aj of the statement by induction. We let A1 be a maximal subset of A such that
the balls {Bkr(x) : x ∈ A1} are disjoint. Analogously, we let Aj be a maximal
subset of A \ (A1 ∪ · · · ∪ Aj−1) such that {Bkr(x) : x ∈ Aj} are disjoint. We
claim that after at most N(k) steps the set A is exhausted. Indeed, if after N(k)
steps one point x0 ∈ A were left, then, by the maximality assumption, for each
j there would be xj ∈ Aj such that Bkr(x0) ∩ Bkr(xj) �= ∅. This implies that the
N(k)+ 1 disjoint balls {Br(xj)}j=0,...,N(k) are all contained in B(2k+1)r(x0), which
is a contradiction. ��

Proof of Lemma 2 Let F = {Br/2(x) : x ∈ E}. By the Besicovitch covering the-
orem [16, Sect. 1.5.2] the family F contains NBes

2 disjoint families F̃j = {Br/2(x) :
x ∈ Ej} which still cover E, where NBes

2 is a geometric constant. This means that

• Ej ⊂ E for each j;
• Br/2(x) ∩ Br/2(y) = ∅ for every x, y ∈ Ej, x �= y;
• E ⊂ ∪j ∪x∈Ej Br/2(x).

By the triangular inequality, the last condition implies

Er/2 ⊂
⋃

j

⋃
x∈Ej

Br(x) .
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By Lemma 3, each of the sets Ej can be subdivided into N(4) subsets
{Eh

j }h=1,...,N(4) such that, if x, y ∈ Eh
j and x �= y, then B2r(x) ∩ B2r(y) = ∅.

This proves the statement of the lemma for N = NBes
2 N(4). ��

2.2 Two estimates for the energy of mollifications

We now provide the two basic estimates on the energy of a mollification of u,
that will be used to control the error terms. The first one implies that mollifying
the limiting u we obtain a sequence bounded in energy, the second that away
from the jump set the energy density converges to zero. For clarity we formulate
and prove both lemmas keeping the mollification parameter ε distinct from the
parameter δ entering the energy; they will be applied for ε = δ.

Lemma 4 (Linear estimate) There exists a universal constant C such that the
following holds for every k ≥ 1. If u ∈ W1,∞(B2kε) with ∇u ∈ BV(B2kε, S1),
then

Fδ[uε, Bkε] ≤ C
[
ε

δ
+ δ

ε

]
‖D2u‖(B2kε). (2.2)

Proof It suffices to prove the Lemma for k = 1, and then to cover Bkε with
balls of radius ε. First we estimate

∫

Bε

|D2uε|2 ≤ ‖D2uε‖L∞(Bε)‖D2uε‖L1(Bε)

= ‖∇u ∗ ∇(ϕε)‖L∞(Bε)‖D2u ∗ ϕε‖L1(Bε)

≤ ‖∇u‖L∞(B2ε)‖∇(ϕε)‖L1‖ϕε‖L1‖D2u‖(B2ε)

≤ C
ε

‖D2u‖(B2ε). (2.3)

For the second term, since |∇u| = 1 and |∇uε| ≤ 1, we compute

(1 − |∇uε|2)2 = 〈∇u − ∇uε, ∇u + ∇uε
〉2

≤ |∇u − ∇uε|2|∇u + ∇uε|2 ≤ 8|∇u − ∇uε| . (2.4)

Therefore
∫

Bε

(1 − |∇uε|2)2 ≤ 8
∫

Bε

|∇u(x)− ∇uε(x)| dx

≤ 8
∫

Bε

|∇u(x)− ∇uε(0)| dx + 8
∫

Bε

|∇uε(x)− ∇uε(0)| dx. (2.5)
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Using the inequality (2.1) we conclude

∫

Bε

|∇u(x)− ∇uε(0)| dx ≤ Cε

⎡
⎢⎣
∫

Bε

∣∣∇u(x)− ∇uε(0)
∣∣2 dx

⎤
⎥⎦

1/2

≤ Cε‖D2u‖(Bε). (2.6)

Note that

‖D2uε‖L∞(Bε) ≤ ‖D2u‖(B2ε)‖ϕε‖L∞ ≤ C
ε2 ‖D2u‖(B2ε) (2.7)

and therefore
∫

Bε

|∇uε(x)− ∇uε(0)| dx ≤ ‖D2uε‖∞εL 2(Bε) ≤ Cε‖D2u‖(B2ε). (2.8)

Putting together (2.3), (2.5), (2.6) and (2.8) we get (2.2). ��
Lemma 5 (Quadratic estimate) There exists a universal constant C such that the
following holds for all k ≥ 1. If u ∈ W1,∞(B2kε) and ∇u ∈ BV(B2kε, S1), then

Fδ[uε, Bkε] ≤ C
[

1
δ

+ δ

ε2

] {‖D2u‖(B2kε)
}2. (2.9)

Proof Again, it suffices to prove the Lemma for k = 1 and then to use a
covering argument. First we estimate from (2.7)

∫

Bε

|D2uε|2 ≤ L 2(Bε)‖D2uε‖2
L∞ ≤ C

ε2

{‖D2u‖(B2ε)
}2. (2.10)

For the second term we use again (2.4) to conclude
∫

Bε

(1 − |∇uε|2)2 ≤ 4
∫

Bε

|∇u(x)− ∇uε(x)|2 dx

≤ 8
∫

Bε

|∇u(x)− ∇uε(0)|2 dx + 8
∫

Bε

|∇uε(x)− ∇uε(0)|2 dx.

(2.11)

Using the inequality (2.1) we estimate
∫

Bε

|∇u(x)− ∇uε(0)|2 dx ≤ C
{‖D2u‖(Bε)

}2 . (2.12)
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Fig. 1 A roof function
tθ ,ν,x0,t0 is continuous, affine
on each side of the line
through x0 with normal ν, its
gradient jumps by 2 sin θ , and
its value at x0 is t0

From (2.7) we get

∫

Bε

|∇uε(x)− ∇uε(0)|2 dx ≤ ‖D2uε‖2∞ε2L 2(Bε)

≤ C
{‖D2u‖(B2ε)

}2. (2.13)

Putting together (2.10), (2.11), (2.12) and (2.13) we get (2.9). ��

3 Domain decomposition

Definition 1 (Roof functions) Given a point x0 ∈ R
2, a direction ν ∈ S

1, an
angle θ and a scalar t0 we define the roof function

t(x) = tθ ,ν,x0,t0(x) = t0 + cos θ (x − x0) · ν⊥ + sin θ |(x − x0) · ν|

(see Fig. 1). We denote by J (x0) the set of all such functions t with a given x0.

Definition 2 (Jump points) Let u ∈ W1,∞(Ω) s.t. ∇u ∈ BV(Ω , S1). Consider the
set J = J∇u of jump points of ∇u [1, Definition 3.67]. Then to each x0 we associate
the roof function t ∈ J (x0) such that ν = νu, t0 = u(x0) and ∇t± = ∇u± at x0.

In our construction we will deal with several positive parameters, involved in
the definition of a “good set” (see Definition 3) on which the most complicated
part of the construction will later take place:

ε is the scale of the mollification;
η denotes the L1 distance from a single jump;

kε is the scale at which we use the basic estimates of the previous section;
θ̄ denotes the maximum jump treated as “small jump” via the linear estimate.

Many sets and functions will depend on these parameters, but in order to avoid
cumbersome sub and superscripts, we will not make this dependence explicit
in our notation. Moreover C will always denote universal constants, which do
not depend on any of the parameters but can be different from line to line;
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Cp1,...,pj . is a constant which depends only on the parameters p1, . . . pj. Since we
will often take the limit

lim sup
θ̄↓0

lim sup
k↑∞

lim sup
η↓0

lim sup
ε↓0

,

we will denote it by Lim . Further, we define the sets

Ω(ε) = {x ∈ Ω : dist (x, ∂Ω) > ε} ,

Ω∗ = {x ∈ Ω : dist (x, ∂Ω) > 6kε} .

The mollification can be used in Ω(ε), we shall then perform a more refined
construction only in the smaller set Ω∗. The boundary layer Ω \ Ω(ε) will be
treated in Sect. 6.

Definition 3 We define Jg as the set of points x0 ∈ J∇u ∩Ω∗ such that:

(g1) The roof function t associated to x0 satisfies | sin θ | ≥ sin θ̄ ,

‖D2u‖(B2kε(x0)) ≥ kε sin θ̄ , (3.1)

and

1
|B2kε|

∫

B2kε(x0)

|∇u − ∇t| + |u − t|
ε

≤ η. (3.2)

(g2) For the finitely many balls Bε(y) ⊂ B2kε(x0) with y · ν = x0 · ν and
(y − x0) · ν⊥ ∈ 2εZ (see Fig. 2), one has

∫

Bε(y)∩J∇u

|[∇u]|3 dH 1 ≥ |2 sin θ |32ε − ηε . (3.3)

We set Ωg := Jg
kε/2 = {x ∈ Ω : dist (x, Jg) < kε/2}.

Proposition 1 (Domain decomposition) Let Ω ⊂⊂ R
2 and let u ∈ W1,∞(Ω) be

such that ∇u ∈ BV(Ω , S1). Then

Lim Fε[uε,Ω(ε) \Ωg] = 0 .

Proof We cover the domain with four sets, which are treated separately. Fix
some α < θ̄ , to be chosen later. The first set is given by the points where D2u
scales less than linearly with the diameter. Therefore it contains most of the
measure of Ω , but almost no energy:

Ω1,α := {
x ∈ Ω∗ : ‖D2u‖(B2kε(x)) ≤ 4αkε

}
.
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Fig. 2 Sketch of the geometry
in Definition 3. The estimate
(3.2) states that on the large
ball B2kε the function u is
close to a roof function. The
condition (3.3) states that for
all balls of radius ε centered
on the jump set of the roof
function (dashed line), the
amount of energy contained
in the jump set of u (full
curve) is not significantly
smaller than the one of the
corresponding roof function

In this set we shall use the quadratic estimate to show that

Fε[uε,Ω1,α] ≤ Cαk‖D2u‖(Ω). (3.4)

The second set contains the points where D2u scales linearly but with a small
coefficient,

Ω2,α := {
x ∈ Ω∗ : ‖D2u‖(B2kε(x)) ≥ 4αkε

and ‖D2u‖(B4kε(x)) ≤ 32kε sin θ̄
}

.

Here we shall use the linear estimate to prove the existence of a function h such
that

lim
θ̄↓0

h(θ̄) = 0 (3.5)

and

lim sup
α↓0

lim sup
ε↓0

Fε[uε,Ω2,α] ≤ h(θ̄). (3.6)

The third set, given by

Ω3 := {
x ∈ Ω \Ωg : dist (x, ∂Ω) > 7kε , ‖D2u‖(B4kε(x)) > 32kε sin θ̄

}
,

contains the points where the energy concentrates, but which are sufficiently
distant from Jg. Using the fine properties of BV functions we shall show that
this set has small energy. More precisely we will prove that

lim
ε↓0

Fε[uε,Ω3] = 0. (3.7)
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Finally, the set Ω4 := {x ∈ Ω : ε < dist (x, ∂Ω) < 7kε} has small energy, in the
sense that

lim
ε↓0

Fε[uε,Ω4] = 0. (3.8)

Note that Ω(ε) \Ωg ⊂ Ω1,α ∪Ω2,α ∪Ω3 ∪Ω4. Therefore from (3.4), (3.7)
and (3.8) we get

lim sup
ε↓0

Fε[uε,Ω(ε) \Ωg] ≤ Cαk‖D2u‖(Ω)+ lim sup
ε↓0

Fε[uε,Ω2,α].

By (3.6) we can pick α = α(θ̄ , k, η) so that this expression is bounded by θ̄+h(θ̄).
We conclude that

Lim Fε[uε,Ω(ε) \Ωg] ≤ lim
θ̄↓0

h(θ̄)
(3.5)= 0.

We now proceed to prove the four claims.

Proof of (3.4) In order to simplify the notation we writeΩ1 forΩ1,α and we set
µ := ‖D2u‖. From Lemma 2 we get N families of disjoint balls F j = {B2kε(x

j
i)}i

such that xj
i ∈ Ω1 and Ω1 ⊂ ⋃

i,j Bkε(x
j
i). Using (2.9) we can write

Fε[uε,Ω1] ≤
∑

i,j

Fε[uε, Bkε(x
j
i)] ≤

∑
i,j

C
1
ε

[
µ(B2kε(x

j
i)
]2

≤ Cαk
∑

i,j

µ(B2kε(x
j
i)) ≤ Cαk

N∑
j=1

[∑
i

µ(B2kε(x
j
i))

]
≤CNαkµ(Ω).

Proof of (3.5) and (3.6) To simplify the notation we writeΩ2 forΩ2,α . Arguing
as in the previous step, via the linear estimate (2.2) we get

Fε[uε,Ω2] ≤ Cµ(Ω2
2kε) .

Recall that for µ–a.e. x ∈ Ω the limit

φ(x) := lim
r↓0

µ(Br(x))
2r

exists and is finite. Indeed,µ = µ1 +|∇u+−∇u−|H 1�J∇u, whereµ1(E) = 0 for
any set E such that H 1(E) < ∞. For µ-a.e. x �∈ J∇u, one has limµ(Br(x))/r =
limµ1(Br(x))/r = 0. Forµ-a.e. x ∈ J∇u, one has limµ(Br(x))/2r = |∇u+ −∇u−|
because J∇u is rectifiable [1, Sect. 3.9].



Sharp upper bounds for a variational problem with singular perturbation 131

Denote by Aα the set {x ∈ Ω∗ : α/4 ≤ φ(x) ≤ 16 sin θ̄}. We claim that

lim sup
ε↓0

µ(Ω2
2kε) ≤ lim sup

ε↓0
µ(Ω2

2kε ∩ Aα) . (3.9)

Then, since obviously µ(Ω2
2kε ∩ Aα) ≤ µ(Aα) and, by the properties of µ,

lim
θ̄↓0

lim sup
α↓0

µ(Aα) = 0 ,

the claim (3.9) would conclude the proof of (3.6).

To prove (3.9), fix any γ > 0. Then there exist r0 > 0 and a set K such that
µ(Ω \ (Aα ∪ K)) < γ and for any x ∈ K we have either

µ(Br(x))
2r

≤ α

3
for every r < r0

or

µ(Br(x))
2r

≥ 12 sin θ̄ for every r < r0.

We claim that

K ∩Ω2
2kε = ∅ for every ε < r0/4k. (3.10)

This would imply

lim sup
ε↓0

µ(Ω2
2kε \ Aα) ≤ γ

and the arbitrariness of γ would give (3.9).
To prove (3.10) we argue by contradiction. If it were false, there would be

x ∈ K and y ∈ Ω2 such that |x − y| < 2εk. Then either

4αkε ≤ µ(B2kε(y)) ≤ µ(B4kε(x)) ≤ 8
3
αkε

or

48kε sin θ̄ ≤ µ(B2kε)(x) ≤ µ(B4kε(y)) ≤ 32kε sin θ̄ .

Both cases would lead to a contradiction. This proves (3.10).

Proof of (3.7) We repeat the covering argument of the first estimate, using the
linear estimate (2.2) and covering with balls of radius Bkε/4. We conclude

Fε[uε,Ω3] ≤ Cµ(Ω3
kε/2). (3.11)
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For any point x0 consider the family of blow-ups vr,x0(x) = r−1u(x0 + rx) :
B1 → R.

Let A be the set of x0 ∈ Ω with the following properties:

• There are ν ∈ S
1 and θ ∈ R such that

lim
r↓0

‖D2vr‖(B1) = 4| sin θ | , lim
r↓0

∫

B1

|∇vr − ∇t| + |vr − t| = 0

where t = tθ ,ν,x0,t0 is a fixed roof function, with t0 = u(x0).
• Further,

lim
r↓0

∫

B1∩ J∇vr

|[∇vr] − 2 sin θν| dH 1 = 0

and, for every fixed open set ω ⊂ B1,

lim
r↓0

∣∣∣H 1(ω ∩ J∇vr)− H 1(ω ∩ J∇t)

∣∣∣ = 0 .

From the fine properties of BV functions, we know that µ(Ω \ A) = 0 (for
the first property, see [1, Proposition 3.69], for the second it follows from the
rectifiability of J∇u). Moreover, x0 ∈ A is in J∇u if and only if sin θ �= 0; in
this case the roof function above corresponds precisely to the roof function
associated to x0 in Definition 2 (although θ and ν are not unique).

A standard measure theoretic argument shows that those properties hold
uniformly, up to an arbitrarily small error set. More precisely, let the three
parameters θ̄ , k and η be fixed. For any positive γ and η̃ there exist ε0 > 0 and
K ⊂ A such that:

• µ(Ω \ K) ≤ γ ;
• For every x ∈ K and for every ε < ε0 the following estimates hold, with the

parameters corresponding to x:

‖D2u‖(B5kε(x)) ≤ 20kε| sin θ | + η̃ε , (3.12)

‖D2u‖(B2kε(x)) ≥ 8kε| sin θ | − η̃ε , (3.13)
1

|B2kε|
∫

B2kε(x)

|∇u − ∇t| + |u − t|
ε

≤ η̃ , (3.14)

∫

Bε(y)∩J∇u

|[∇u]|3dH 1 ≥ |2 sin θ |32ε − η̃ε , (3.15)

where the balls Bε(y) are the ones from Condition (g2) in Definition 3.
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We now claim that

If we choose η̃ sufficiently small then K ∩Ω3
kε/2 = ∅. (3.16)

The choice of η̃ will depend on θ̄ , k and η. With these kept fixed, (3.16) and
(3.11) give

lim sup
ε↓0

Fε[uε,Ω3] ≤ Cµ(Ω3
kε/2) ≤ Cµ(Ω \ K) ≤ Cγ .

Since γ is arbitrary and C is a universal constant, this would conclude the proof.
We now prove (3.16). Assume x ∈ K ∩Ω3

kε/2. Then there is y ∈ Ω3 such that
|y − x| ≤ kε/2. Therefore the ball B5kε(x) contains the ball B4kε(y), and x ∈ Ω∗.
From the definition of Ω3 and (3.12) we conclude

20kε | sin θ | ≥ 32kε sin θ̄ − η̃ε.

Clearly, if η̃ is sufficiently small, then | sin θ | ≥ sin θ̄ > 0. Therefore x ∈ J∇u.
Moreover, if η̃ is small compared to η and θ̄ , (3.13) and (3.14) imply (g1) and
(3.15) imply (g2) in Definition 3. Hence we conclude that x ∈ Jg. But this is not
possible because Ω3

kε/2 ∩ Jg = ∅.

Proof of (3.8) We coverΩ4 with N disjoint families of balls of radius ε. Apply-
ing the linear estimate (2.2) (with k = 1) to each of them we have

Fε[uε,Ω4] ≤ CNµ ({x ∈ Ω : dist (x, ∂Ω) < (7k + 1)ε}) .

Taking the limit ε → 0 we obtain (3.8). ��

4 Interior construction: the intermediate family

In this section we construct a function which coincides with a smoothed roof
function around most of Jg, and with uε away from it. We first briefly describe
the geometry, sketched in Fig. 3. We cover Ωg with balls of radius kε, and have
good estimates on the larger balls of radius 2kε. We first interpolate between
the original function u and a roof function on the coronas Bkε(x

j
i) \ B(k−1)ε(x

j
i),

and – after all interpolations have been performed – mollify on a scale ε

(Definition 4). Along the interface we obtain a finite number of rectangles
Rj

i such that the function coincides with a mollified roof on each of them (Defi-
nition 5). We then prove (Proposition 2) that the energy outside the rectangles is
negligible; in the next section we shall then produce an appropriate modification
of the construction inside the rectangles.

Let F j = {B2kε(x
j
i)}i (1 ≤ j ≤ N) be N families of disjoint balls such that

xj
i ∈ Jg and the Bkε(x

j
i) cover Ωg. These families exist by Lemma 2. For every
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Fig. 3 Sketch of the
construction in Definition 4,
for a case with N = 2. The
central ball belongs to the
family F1, the two outer ones
to F2. The interpolation is
done in the coronas, the
rectangles are disjoint and
contained in the part where v
coincides with a mollified roof
function. The dashed lines
represent the interfaces of the
roof functions

k fix a cutoff function ψ ∈ C∞
c (Bk) such that ψ = 1 on Bk−1. Then for every

ε > 0 we define ψε ∈ C∞
c (Bkε) as ψε(x) = ψ( x

ε
).

Definition 4 (Intermediate family of functions) We set v0 = u and inductively
define {vj}j=1,...,N as follows. At the j–th step we consider the family of balls F j,
and set

vj(x) :=

⎧⎪⎨
⎪⎩
(1 − ψε(x − xj

i))vj−1(x)+ ψε(x − xj
i)t

j
i(x) if x ∈ Bkε(x

j
i)

for some i,
vj−1(x) otherwise.

Here tji is the roof function associated to xj
i.

Finally we set v := vN ∗ ϕε.
Note that v depends on the covering, hence on Jg, and therefore on ε, η, θ̄

and k.

Definition 5 For each i and j, consider the family of rectangles of the form

{
x : |(x − xj

i) · ν| < √
kε , a < (x − xj

i) · ν⊥ < b
}

where a, b ∈ R,

and ν = νi
j is the normal associated to xj

i.

Let Rj
i be the largest of these rectangles among the ones contained in the ball

B(k−2)ε(x
j
i) and which do not intersect any ball B(k+1)ε(x

j′
i′) with j′ > j.

Uniqueness of Rj
i follows from the argument at the end of the proof of

Proposition 2. Further, by definition dist (Rj
i, Rj′

i′) > 3ε.

Proposition 2 (Energy concentration) Let v be as in Definition 4 and Rj
i as in

Definition 5. Then

Lim Fε
[
v,Ω(ε) \ ∪ijR

j
i

]
= 0. (4.1)
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Moreover on each Rj
i one has v = ϕε ∗ tji and

Lim
1
3

∑
ij

∫

Rj
i∩J∇t

j
i

|[∇tji]|3dH 1 ≤ F0[u,Ω] . (4.2)

Proof We first prove (4.2). Fix an Rj
i and denote by {Bijl}l=1,...,Nij the balls of the

type considered in point (g2) of Definition 3 which intersect Rj
i. Let �ij denote

the length of Rj
i in direction ν⊥. Then

∫

Rj
i∩J∇t

j
i

|[∇tji]|3dH 1 = �ij|2 sin θ |3 ≤ Nij2ε|2 sin θ |3.

From (g2) in Definition 3 we have

2ε|2 sin θ |3 ≤
∫

Bijl∩J∇u

|[∇u]|3dH 1 + ηε.

Using first (3.1) in Definition 3, then that the balls Bijl are disjoint, we have

∑
ij

∫

Rj
i∩J∇t

j
i

|[∇tji]|3dH 1 ≤
∑

ijl

∫

Bijl∩J∇u

|[∇u]|3dH 1 + 2kηε

≤
∑

ijl

∫

Bijl∩J∇u

|[∇u]|3dH 1 +
∑

ij

2η

sin θ̄
‖D2u‖(B2kε(x

j
i))

≤
∫

Ω∩J∇u

|[∇u]|3dH 1 + 2Nη

sin θ̄
‖D2u‖(Ω).

We conclude that

Lim
∑

ij

∫

Rj
i∩J∇t

j
i

|[∇tji]|3dH 1 ≤
∫

Ω∩J∇u

|[∇u]|3dH 1 ,

which gives (4.2).



136 S. Conti, C. De Lellis

We now pass to (4.1) and we first note that Ωg ⊂ ⋃
ij B(k+1)ε(x

j
i) and v = uε

on Ω(ε) \ ⋃ij B(k+1)ε(x
j
i). Therefore Proposition 1 implies

Lim Fε

⎡
⎣v,Ω(ε) \

⋃
ij

B(k+1)ε(x
j
i)

⎤
⎦ ≤ Lim Fε

[
uε,Ω(ε) \Ωg

]
= 0.

This estimate allows to reduce the proof of (4.1) to the following two identities:

Lim Fε

⎡
⎣v,

⋃
i,j

B(k+1)ε(x
j
i) \ B(k−2)ε(x

j
i)

⎤
⎦ = 0 , (4.3)

and

Lim Fε

⎡
⎣v,

⋃
i,j

B(k−2)ε(x
j
i) \ Rj

i

⎤
⎦ = 0 . (4.4)

Proof of (4.3) We first claim that for J = 0, 1, ...N, the function vJ obeys

1
|B2kε|

∫

B2kε(x
j
i)

|∇vJ − ∇tji| + |vJ − tji|
ε

≤ CJη ∀i, j. (4.5)

Notice that we require the control on all balls, not only on those of the J-th
family, and that we allow the constant to depend on J. This can be proved by
induction. For J = 0, (4.5) follows from (3.2) and the fact that v0 = u. At step
J, for each x ∈ Bkε(xJ

i ) we have

|vJ − vJ−1|(x) ≤ |vJ−1 − tJi |(x)
and

|∇vJ − ∇vJ−1|(x) ≤ |∇vJ−1 − ∇tJi |(x)+ C
ε

|vJ−1 − tJi |(x) .

The balls of the J-th family are disjoint, hence for those the result is clear. Con-
sider now a generic ball B2kε(x

j
i). Since all balls have the same size, and each

family is disjoint, it can intersect at most M (which is a universal constant) of
the balls of the family J. Therefore,

1
|B2kε|

∫

B2kε(x
j
i)

|vJ − vJ−1| =
∑

i′

1
|B2kε|

∫

B2kε(x
j
i)∩Bkε(xJ

i′ )

|vJ − vJ−1|

≤ MCJ−1η ,
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and the same for the gradient. The triangular inequality concludes the proof
of (4.5).

Next we claim that (4.5) implies

Fε[vj
ε, B(k+1)ε(x

j
i) \ B(k−2)ε(x

j
i)] ≤ Cε + Ckηε , (4.6)

where as usual vj
ε = ϕε ∗vj, and Ck can only depend on k. For the moment let us

assume the claim, which will be proved below. Attributing each x in the union
of the B(k+1)ε \ B(k−2)ε to the level j where v(x) was last modified, i.e. to the

largest j such that x ∈ B(k+1)ε(x
j
i), we get

Fε

⎡
⎣v,

⋃
i,j

B(k+1)ε \ B(k−2)ε

⎤
⎦

≤
∑

j

Fε

[
vj
ε,
⋃

i

B(k+1)ε(x
j
i) \ B(k−2)ε(x

j
i)

]
≤
∑

ij

Cε + Ckηε .

Using (3.1) we obtain, for Cθ̄ = C/ sin θ̄ ,

Fε

⎡
⎣v,

⋃
i,j

B(k+1)ε \ B(k−2)ε

⎤
⎦ ≤

∑
ij

(
Cθ̄
k

+ Cθ̄Ckη

)
‖D2u‖(B2kε(x

j
i))

≤ N
(

Cθ̄
k

+ Cθ̄Ckη

)
‖D2u‖(Ω) .

This bound is uniform in ε. Therefore

lim
k↑∞

lim sup
η↓0

lim sup
ε↓0

Fε

⎡
⎣v,

⋃
i,j

B(k+1)ε \ B(k−2)ε

⎤
⎦ ≤ N lim

k↑∞
Cθ̄
k

‖D2u‖(Ω) = 0.

To complete the proof of (4.3) it remains to prove the claim (4.6). After
scaling and translating we conclude that it suffices to prove that (4.5) implies
(4.6) when ε = 1 and xj

i = 0. Then it is clear that (4.5) gives

‖∇vj
1 − ∇(tji)1‖L1(Bk+1)

+ ‖∇2vj
1 − ∇2(tji)1‖L2(Bk+1)

≤ Ckη ,

where the constant can depend on k (the dependence on j can be removed,
taking the maximum between the finitely many Cj’s). Finally,

F1[vj
1, Bk+1 \ Bk−2] ≤ F1[(tji)1, Bk+1 \ Bk−2] + Ckη ≤ C + Ckη ,

which is equivalent to (4.6).
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Proof of (4.4) Roughly speaking (4.4) follows from the fact that the rectangles
cover most of the interface, i.e. that at most a length of order ε is lost in any ball.
In turn, this follows from the fact that overlapping balls have roof functions
which are η-close.

In each ball B(k−2)ε(x
j
i) we consider the set

Ej
i = B(k−2)ε(x

j
i) \ Rj

i \
⋃
j′>j

B(k+1)ε

(
xj′

i′
)

.

Note that in each (Ej
i)ε we have vN = tji, and correspondingly in each Ej

i we
have v = ϕε ∗ tji. By (4.3) it suffices to show that

Lim Fε[v, ∪i,jE
j
i] = 0 .

In order to achieve our goal we claim that

(Cl) For any fixed θ̄ > 0 and k > 2, there exist positive η0 and ε0 such that

∥∥∥Ej
i ∩

{
|(x − xj

i) · νj
i | ≤ ε

}∥∥∥ ≤ Cε2 for all i and j, (4.7)

whenever ε < ε0 and η < η0.

For the moment we assume (Cl), which will be proved later. Since ‖∇(ϕε ∗ tji)‖ ≤
1 and ‖D2(ϕε ∗ tji)‖ ≤ C/ε, from (4.7) and (3.1) we would get

Fε[v, Ej
i] ≤ Cε ≤ C

k sin θ̄
‖D2u‖(B2kε(x

j
i)) ∀i, j, ∀ε < ε0, ∀η < η0. (4.8)

Summing all the contributions and taking into account that the families F j are
formed by disjoint balls, from (4.8) we conclude

lim sup
η↓0

lim sup
ε↓0

Fε[v, ∪ijE
j
i] ≤ CN

k sin θ̄
‖D2u‖(Ω)

and hence we get (4.4).
It remains to prove (Cl). Without loss of generality we can assume x = xj

i = 0
and ν = e2. Moreover for simplicity we drop the indices i and j.

The maximality of R implies that there is a point on the left side (and a point

on the right side) which is either in ∂B(k−2)ε or in ∂B(k+1)ε(x
j′
i′), for some j′ > j.

In the first case the result is obvious (see Fig. 4). In the second case, it follows

from the fact that the center x′ = xj′
i′ of the other ball is close to the horizontal

axis. Indeed, if we denote by t and t′ the two roof functions corresponding to
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Fig. 4 Set Eε = E ∩ {|x2| ≤ ε}
(black) entering (4.7) in the
proof of Proposition 2. The
dashed line is the jump set of
∇t, the dotted lines delimit the
region where x′ needs to lie. It
follows that the part of ∂B′
delimiting R has to be
approximately vertical. For
clarity one rectangle smaller
than R is illustrated, the
optimal one touches both left
and right boundaries

x = 0 and x′, by (3.2) we have

1
|B2kε|

∫

B2kε∩B2kε(x′)

|∇t − ∇t′| + |t − t′|
ε

≤ 2η .

At the same time, |B2kε ∩ B2kε(x′)| ≥ C|B2kε|, for some universal constant C,
because B(k+1)ε ∩ B(k+1)ε(x′) �= ∅ and k ≥ 2. Since both | sin θ | and | sin θ ′| are
bounded from below by sin θ̄ , the distance of x′ from the horizontal axis (which
is the jump set of ∇t) is controlled by Ck,θ̄ ηε. Choosing η such that Ck,θ̄ η < 1
we get (Cl). ��

5 Interior construction: the optimal family

We complete the construction of Sect. 4 by modifying it inside the “good”
rectangles, and obtain the recovery sequence (in a subdomain). We prove

Proposition 3 Let Ω ⊂ R
2 be a C2 bounded domain, and u ∈ W1,∞(Ω) with

∇u ∈ BV(Ω , S1). Then there is a family {uε} ⊂ C∞(Ω) such that uε → u in
W1,p(Ω) for every p < ∞, uε = uε in a neighbourhood of ∂Ω(ε), and

lim sup
ε↓0

Fε[uε,Ω(ε)] ≤ F0[u,Ω] .

Proof Consider the function v of Definition 4 and the decomposition of the
domain obtained in Definition 5. We claim that for each rectangle Rj

i we can
find a smooth w such that v = w outside Rj

i and

Fε[w, Rj
i] ≤ �ij

1
3
|2 sin θ |3 + Cε

(
1

θ̄
+ ke−θ̄√k

)
, (5.1)

where θ is the angle of the roof function tji, and �ij = H 1(J∇vN ∩ Rj
i) the length

of the rectangle. We assume for the moment the claim, which will be proved
below.
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We repeat the construction in each of the (disjoint) rectangles; let w be the
result. Then

Fε
[
w, Rj

i

]
≤ 1

3
|2 sin θ |3H 1(J∇vN ∩ Rj

i)+ Cε

θ̄
+ Cεke−θ̄√k

≤ 1
3

∫

J∇u∩Rj
i

|[∇u]|3dH 1 + Cε + kεη + Cε

θ̄
+ Cεke−θ̄√k ,

where we estimated the first term via the integral of the jump of ∇u using (3.3).
(The rectangle contains up to k disjoint balls of the type appearing in (3.3), the
sum of their diameters is at least H 1(J∇vN ∩ Rj

i)− 4ε.)
Summing over all rectangles and using (3.1) we get

Fε
[
w, ∪ijR

j
i

]
≤ 1

3

∫

J∇u

|[∇u]|3 dH 1 +
∑

i,j

(
Cθ̄
k

+ Cθ̄ η + Ce−θ̄√k
)

‖D2u‖(B2kε(x
j
i))

≤F0[u,Ω] + Cθ̄
k

‖D2u‖(Ω)+ Cθ̄ η‖D2u‖(Ω)+ Ce−θ̄√k‖D2u‖(Ω).
(5.2)

Taking the Lim , we send first ε → 0, then η → 0, then k → ∞. Combining
(5.2) with Proposition 2 we get

Lim Fε[w,Ω(ε)] ≤ F0[u,Ω] .

A standard diagonal argument concludes the proof.
It remains to prove (5.1). By scaling and translating it suffices to consider the

case ε = 1, t(x) = cos θ x1 + sin θ |x2|, and

R = (−a, a)× (−√
k,

√
k) .

If a ≤ 2, simply w = v will do, since Fε[t1, R] ≤ Ca. We can therefore assume
2 ≤ a ≤ k .

The ideal profile for a transition with jump 2 sin θ across an horizontal inter-
face is

wθ = cos θ x1 + ln [2 cosh(x2 sin θ)] .

Its gradient takes the form

∇wθ =
(

cos θ
sin θ tanh(x2 sin θ)

)
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hence

|∇wθ |2 − 1 = sin2 θ(tanh2 s − 1)2 , ∇2wθ = sin2 θ

cosh2 s
e1 ⊗ e1 ,

where s = x2 sin θ . The energy across the interface is

∫

R

(|∇wθ |2 − 1)2 + |∇2wθ |2dx2

=
∫

R

[
sin4 θ(tanh2 s − 1)2 + sin4 θ

cosh4 s

]
1

| sin θ |ds = 8
3
| sin θ |3 .

Let now ψ be a cutoff function in C∞
c (R, [0, 1]), with ψ = 1 on the smaller

rectangle

R′ = (−(a − 1), a − 1)× ( − √
k + 1,

√
k − 1

)

and |ψ | + |∇ψ | + |∇2ψ | ≤ C for some universal constant C (independent of a
and k).

We define w = ψwθ + (1 − ψ)v. To prove the claim it suffices to estimate
the contribution from the boundary layer R \ R′. Recall that on R we have
v = t1 = t ∗ φ1. We get

∇w = ∇t1 + ψ(∇wθ − ∇t1)+ ∇ψ(wθ − t1) .

Now we estimate the energy. The explicit expressions above give

|wθ − t| + |∇wθ − ∇t| ≤ Ce−|x2 sin θ | .

Analogously one gets |∇2w| ≤ Ce−|x2 sin θ |. If |x2| > 1, then t1 = t, and in
particular |∇t1| = 1. Therefore,

F1[w, R \ R′] ≤ 4k

√
k∫

√
k−1

Ce−2|x2 sin θ |dx2 + 2

√
k∫

−√
k

Ce−2|x2 sin θ |dx2

≤ Cke−θ̄√k + C
| sin θ | .

Since | sin θ | ≥ sin θ̄ ≥ θ̄/2, this proves the claim (5.1). ��
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6 Construction up to the boundary

We show how to extend the construction up to the boundary, and how to enforce
boundary values for uε and the normal derivative. We start with an estimate
on the mollification of smooth functions, that will be crucial in the estimate of
term (VI) below (through (6.10)).

Lemma 6 Let ϕ be an even mollifier (that is ϕδ(x) = ϕδ(−x)) supported in B1,
and ϕδ(x) = δ−2ϕ(x/δ). Let A ⊂ R

2 be open and u ∈ C2(A). Then there exists a
constant Cu, depending on u and ϕ, such that

|u(x)− u ∗ ϕδ(x)| ≤ Cuδ
2 for every x ∈ A and δ < dist (x, ∂A).

Proof When w is affine and dist (x, ∂A) < δ, then w(x) = w ∗ ϕδ(x). Therefore
it suffices to prove the lemma when x = 0, u(0) = 0, and ∇u(0) = 0. In this case
we can write

|u(0)− u ∗ ϕδ(0)| ≤ Cu

∫

Bδ

|x|2|ϕδ(x)| ≤ Cuδ
2

where Cu depends only on ‖u‖C2 . ��
Proof of Theorem 1 In this proof we do not explicitly indicate the dependence
of constants on the domain Ω , as well as on the boundary data g and h.

For every ζ > 0 we consider the tubular neighborhood of the boundary
Tζ := (∂Ω)ζ and the open set Ωζ := {x : dist (x,Ω) < ζ }. Let ν : ∂Ω → S

1

be the outer normal to ∂Ω , and η > 0 be such that (x, t) → x + tν(x) is a
diffeomorphismus between ∂Ω × (−3η, 3η) and T3η. We define w : Ωη → R by
setting w(x) = u(x) on Ω , and

w(y + tν(y)) = 3u(y − tν(y))− 2u(y − 2tν(y)) for y ∈ ∂Ω , t ∈ (0, η)

(this is the standard extension procedure for Sobolev functions). Then

∇w ∈ BV(Ωη, R2) , ‖∇w‖L∞(Ωη) ≤ C , (6.1)

‖D2w‖(∂Ω) = 0 , and w
∣∣
Ω

= u . (6.2)

Let uε be the result of Proposition 3, and set wε = uε on Ω(ε), and wε = wε on
Ω \ Ω(ε). These match smoothly since both equal uε around ∂Ω(ε). We claim
that the family wε satisfies,

lim sup
ε↓0

Fε[wε,Ω] ≤ F0[u,Ω] , (6.3)

wε → u in W1,p(Ω), ∀p < ∞ , wε = wε on Tε ∩Ω . (6.4)
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The last condition is by definition; the middle one follows from Proposition 3
and the facts |wε| ≤ C, |Tε| → 0. To prove the first one, by Proposition 3 it
suffices to show that

lim
ε↓0

Fε[wε,Ω \Ω(ε)] = 0 . (6.5)

The latter is proved by a variant of the argument leading to Lemma 4. Indeed,
let x ∈ Ω . Following (2.3), (2.4), and (2.5) we get

Fε[wε, Bε(x) ∩Ω] ≤ C‖D2w‖(B2ε(x))

+8
ε

∫

Bε(x)

|∇w(y)− ∇wε(x)| + |∇wε(y)− ∇wε(x)| .

The rest of the argument is unchanged. We conclude that

Fε[wε, Bε(x) ∩Ω] ≤ C‖D2w‖(B2ε(x)) , for all x ∈ Ω . (6.6)

Let now F j = {B2ε(x
j
i)}i (1 ≤ j ≤ N) be N families of disjoint balls such that the

union of the Bε(x
j
i) covers Ω ∩ Tε and xj

i ∈ Ω ∩ Tε. Then (6.6) gives

Fε[wε, Tε ∩Ω] ≤
∑

ij

Fε[wε, Bε(x
j
i) ∩Ω]

≤ C
∑

ij

‖D2w‖(B2ε(x
j
i)) ≤ C‖D2w‖(T3ε) ,

and (6.5) follows since limε↓0 ‖D2w‖(T3ε) = ‖D2w‖(∂Ω) = 0. This concludes
the proof of (6.3) and (6.4) and of the first part of the Theorem.

We finally enforce the boundary conditions. Let g, h ∈ C2(∂Ω), as in
Remark 1. Then

v(y + tν(y)) = g(y)+ h(y)t y ∈ ∂Ω , t ∈ (−η, η)

defines a map v ∈ C2(Tη), and v = u up to the gradient on ∂Ω . Let w : Ωη → R

be given by

w(x) =
{

u(x) for x ∈ Ω
v(x) for x ∈ Tη \Ω .

By the trace properties of BV functions, the new w still satisfies (6.1) and (6.2).
We repeat the above construction using the new definition of w, and obtain a
family {wε}ε ⊂ C∞(Ω̄) which obeys (6.3). We extend each wε to Ω3ε by setting
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wε = wε. Next, fix a cutoff ψ ∈ C∞([0, ∞), [0, 1]) with ψ = 0 on [3/4, ∞) and
ψ = 1 on [0, 1/4]. We define Ψ ε : R

2 → [0, 1] as

Ψ ε(x) :=
{
ψ (dist (x, ∂Ω)/ε) , for x ∈ Ω ,
0 else.

We set zε := (1 −Ψ ε)wε +Ψ εv. For small ε, {zε} ⊂ C2(Ω̄). Moreover zε|∂Ω = g

and ∂zε
∂ν

∣∣∣
∂Ω

= h. We claim that {zε} is the desired optimal sequence. Since

zε|Ω\Tε = wε and wε → w in W1,p(Ω) for all p, it suffices to prove

lim
ε↓0

Fε[zε,Ω ∩ Tε] = 0 , (6.7)

lim
ε↓0

∫

Tε

|∇zε|p = 0 for all p < ∞. (6.8)

First step By (6.1) we have ‖∇wε‖C0 ≤ C and ‖D2wε‖ ≤ Cε−1 on Tε.
Moreover

‖∇zε‖C0(Tε) ≤ ‖∇wε‖C0(Tε) + ‖∇v‖C0(Tε) + C
ε

‖wε − v‖C0(Tε). (6.9)

We claim that ‖wε − v‖C0(Tε) ≤ Cε. Indeed, notice that on Ω3ε \ Ωε we have
wε = vε. By the smoothness of v, from Lemma 6 we get ‖vε−v‖C0(Ω3ε\Ωε) ≤ Cε2,
and hence

‖wε − v‖C0(Ω3ε\Ωε) ≤ Cε2 . (6.10)

Recall that ‖∇wε‖ + ‖∇v‖ ≤ C. Therefore using (6.10) and integrating over
the segments perpendicular to ∂Ω , we easily get ‖wε − v‖C0(Tε) ≤ Cε. Plugging
this into (6.9) we conclude ‖Dzε‖C0(Tε) ≤ C and hence (6.8) follows easily. In a
similar way we get ‖D2zε‖C0(Tε) ≤ Cε−1. Summarizing,

‖∇zε‖C0(Tε) ≤ C and ‖D2zε‖C0(Tε) ≤ C
ε

on Tε. (6.11)

Second step Using (6.11) we can write

Fε[zε,Ω ∩ Tε] ≤ Fε[wε,Ω ∩ Tε] + C
∫

Ω∩Tε

|∇zε − ∇wε|
ε

+ |D2zε|. (6.12)

The first term is infinitesimal by (6.5). To estimate the second one, we compute

|∇zε − ∇wε| ≤ |∇Ψ ε| |wε − v| + |∇wε − ∇v|
≤ Cε−1|wε − v| + |∇wε − ∇w| + |∇w − ∇v|.
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Similarly

|D2zε| ≤ |D2wε| + |D2v| + Cε−1|∇wε − ∇v| + Cε−2|wε − v|
≤ |D2wε| + |D2v| + Cε−1|∇wε − ∇w|

+ Cε−1|∇w − ∇v| + Cε−2|wε − v|.

Therefore the integral in (6.12) is bounded by a universal constant times

∫

Tε

|D2v| +
∫

Tε

|D2wε| +
∫

Tε

|∇wε − ∇w|
ε

+
∫

Tε

|∇w − ∇v|
ε

+
∫

Tε

|wε − v|
ε2 .

We denote these integrals respectively by (I), (II), (III), (IV), and (V) and we
will prove that they all vanish as ε ↓ 0.
Third step The limit of (I) vanishes because |D2v| is bounded. In the proof of
(6.5) we have already shown that the limits of (II) and (III) also vanish.

Next, note that the BV function ∇w − ∇v has trace 0 on ∂Ω . Therefore (IV)
vanishes thanks to the trace properties of BV functions.

Finally, integrating over segments perpendicular to ∂Ω we get

(V) ≤ C
∫

Ω3ε\Ωε

|wε − v|
ε2 + C

ε

∫

T3ε

|∇wε − ∇v| =: (VI)+ (VII).

The limit of (VI) vanishes by (6.10); and (VII) is treated as (III) above. ��
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