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Abstract. For a finitely generated graded module M over a positively-graded commutative Noether-
ian ring R, the second author established in 1999 some restrictions, which can be formulated in terms
of the Castelnuovo regularity of M or the so-called a∗-invariant of M , on the supporting degrees of a
graded-indecomposable graded-injective direct summand, with associated prime ideal containing the
irrelevant ideal of R, of any term in the minimal graded-injective resolution of M . Earlier, in 1995, T.
Marley had established connections between finitely graded local cohomology modules of M and local
behaviour of M across Proj(R).

The purpose of this paper is to present some multi-graded analogues of the above-mentioned work.

0. Introduction

Very briefly, the purpose of this paper is to explore multi-graded analogues of some results in the
algebra of modules, and particularly local cohomology modules, over a commutative Noetherian ring
that is graded by the additive semigroup N0 of non-negative integers.

To describe the results that we plan to generalize, let R =
⊕

n∈N0
Rn be such a ‘positively-graded’

commutative Noetherian ring. Any unexplained notation in this Introduction will be as in Chapters 12
and 13 of our book [4]. In particular, the *injective envelope of a graded R-module M will be denoted
by *E(M) (see [4, §13.2]), and, for t ∈ Z, the tth shift functor (on the category *C(R) of all graded
R-modules and homogeneous R-homomorphisms) will be denoted by ( • )(t) (see [4, §12.1]).

Let N denote the set of positive integers; set R+ :=
⊕

n∈NRn, the irrelevant ideal of R. For a graded
R-module M and p ∈ * Spec(R) (the set of homogeneous prime ideals of R), we use M(p) to denote the
homogeneous localization of M at p. For i ∈ N0, the ordinary Bass number µi(p, M) is equal to the
rank of the homogeneous localization

(
*Exti

R(R/p,M)
)
(p)

as a (free) module over R(p)/pR(p) (see R.
Fossum and H.-B. Foxby [6, Corollary 4.9]).

Let i ∈ N0, and consider a direct decomposition given by a homogeneous isomorphism

*Ei(M)
∼=−→

⊕

α∈Λi

*E(R/pα)(−nα),

for an appropriate family (pα)α∈Λi of graded prime ideals of R and an appropriate family (nα)α∈Λi of
integers. (See [4, §13.2].)

Suppose that the graded prime ideal p contains the irrelevant ideal R+. In this case, the graded
ring R(p)/pR(p) is concentrated in degree 0, and its 0th component is a field isomorphic to kR0(p0), the
residue field of the local ring (R0)p0 . Thus,

µi(p,M) = dimkR0 (p0)

(
*Exti

R(R/p,M)
)
(p)

=
∑

t∈Z
dimkR0 (p0)

((
*Exti

R(R/p,M)
)
(p)

)
t
.
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In [15], it was shown that the graded R(p)/pR(p)-module
(
*Exti

R(R/p,M)
)
(p)

carries information about
the shifts ‘−nα’ for those α ∈ Λi for which pα = p. One has

*E(R/p)(n) 6∼= *E(R/p)(m) in *C(R) for m,n ∈ Z with m 6= n,

and, for a given t ∈ Z, the cardinality of the set {α ∈ Λi : pα = p and nα = t} is equal to

dimkR0 (p0)

((
*Exti

R(R/p,M)
)
(p)

)
t
,

the dimension of the tth component of
(
*Exti

R(R/p,M)
)
(p)

.
Let * Var(R+) := {q ∈ * Spec(R) : q ⊇ R+}. Let p ∈ *Var(R+), let i ∈ N0 and let t ∈ Z. We say

that t is an ith level anchor point of p for M if
((

*Exti
R(R/p,M)

)
(p)

)
t
6= 0;

the set of all ith level anchor points of p for M is denoted by anchi(p, M); also, we write

anch(p,M) =
⋃

j∈N0

anchj(p,M),

and refer to this as the set of anchor points of p for M . Thus anchi(p,M) is the set of integers h for
which, when we decompose

*Ei(M)
∼=−→

⊕

α∈Λi

*E(R/pα)(−nα)

by means of a homogeneous isomorphism, there exists α ∈ Λi with pα = p and nα = h. Note that
anchi(p,M) = ∅ if µi(p,M) = 0, and that anchi(p,M) is a finite set when M is finitely generated.

It was also shown in [15] that, when the graded R-module M is non-zero and finitely generated, the
Castelnuovo regularity reg(M) of M is an upper bound for the set

⋃

p∈*Var(R+)

anch(p,M)

of all anchor points of M . Consequently, for each i ≥ 0, every *indecomposable *injective direct
summand F of *Ei(M) with associated prime containing R+ must have Fj = 0 for all j > reg(M).

In §§2,3 we shall present an analogue of this theory for a standard multi-graded commutative Noe-
therian ring S =

⊕
n∈N0

r Sn (where r ∈ N with r ≥ 2). There is a satisfactory generalization of anchor
point theory to the multi-graded case, but we must stress now that we have not uncovered any links
between our multi-graded anchor point theory and the fast-developing theory of multi-graded Casteln-
uovo regularity (see, for example, Huy Tài Hà [9] and D. Maclagan and G. G. Smith [12]). This may be
because our multi-graded anchor point theory only yields information about multi-graded local cohomol-
ogy modules with respect to N0

r-graded ideals of S that contain one of the components S(0,...,0,1,0,...,0),
whereas the ideal S+ :=

⊕
n∈Nr Sn, which is relevant to multi-graded Castelnuovo regularity, normally

does not have that property.
The short §4 provides some motivation for our work in §5, where we provide multi-graded analogues

of work of T. Marley [14] about finitely graded local cohomology modules. We say that a graded R-
module L =

⊕
n∈Z Ln is finitely graded precisely when Ln 6= 0 for only finitely many n ∈ Z. In [14],

Marley defined, for a finitely generated graded R-module M ,

ga(M) := sup
{
k ∈ N0 : Hi

a(M) is finitely graded for all i < k
}

,

and he modified ideas of N. V. Trung and S. Ikeda in [16, Lemma 2.2] to prove that

ga(M) := sup
{

k ∈ N0 : R+ ⊆
√

(0 :R Hi
a(M)) for all i < k

}
;

he then used Faltings’ Annihilator Theorem for local cohomology (see [5] and [4, Theorem 9.5.1]). In
§5 below, we shall obtain some multi-graded analogues of some of Marley’s results in this area.
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1. Background results in multi-graded commutative algebra

Let R =
⊕

g∈G Rg be a commutative Noetherian ring graded by a finitely generated, additively-
written, torsion-free Abelian group G. Some aspects of the G-graded analogue of the theory of Bass
numbers have been developed by S. Goto and K.-i. Watanabe [8, §§1.2, 1.3], and it is appropriate for
us to review some of those here.

We shall denote by *CG(R) (or sometimes by *C(R) when the grading group G is clear) the category of
all G-graded R-modules and G-homogeneous R-homomorphisms of degree 0G between them. Projective
(respectively injective) objects in the category *CG(R) will be referred to as *projective (respectively
*injective) G-graded R-modules. Similarly, the attachment of ‘*’ to other concepts indicates that
they refer to the obvious interpretations of those concepts in the category *CG(R), although we shall
sometimes use ‘G’ instead of ‘*’ in order to emphasize the grading group. However, the following
comments about * HomR and the * Exti

R (i ≥ 0) may be helpful.

1.1. Reminders. Let M =
⊕

g∈G Mg and N =
⊕

g∈G Ng be G-graded R-modules.

(i) Let a ∈ G. We say that an R-homomorphism f : M −→ N is G-homogeneous of degree a
precisely when f(Mg) ⊆ Ng+a for all g ∈ G. Such a G-homogeneous homomorphism of degree
0G is simply called G-homogeneous. We denote by *HomR(M,N)a the R0G

-submodule of
HomR(M, N) consisting of all G-homogeneous R-homomorphisms from M to N of degree a.
Then the sum

∑
a∈G *HomR(M, N)a is direct, and we set

*HomR(M, N) :=
∑

a∈G

*HomR(M,N)a =
⊕

a∈G

*HomR(M, N)a.

This is an R-submodule of HomR(M, N), and the above direct decomposition provides it with
a structure as G-graded R-module. It is straightforward to check that

*HomR( • , • ) : *CG(R)× *CG(R) −→ *CG(R)

is a left exact, additive functor.
(ii) If M is finitely generated, then HomR(M, N) is actually equal to *HomR(M, N) with its

G-grading forgotten.
(iii) For i ∈ N0, the functor * Exti

R is the ith right derived functor in *CG(R) of * HomR. We make
two comments here about the case where M is finitely generated. In that case Exti

R(M, N) is
actually equal to * Exti

R(M, N) with its G-grading forgotten, and, second, one can calculate
the * Exti

R(M, N) by applying the functor * HomR(M, • ) to a (deleted) *injective resolution
of N in the category *CG(R) and then taking cohomology of the resulting complex.

For a ∈ G, we shall denote the ath shift functor by (•)(a) : *CG(R) −→ *CG(R): thus, for a G-graded
R-module M =

⊕
g∈G Mg, we have (M(a))g = Mg+a for all g ∈ G; also, f(a)d (M(a))g

= fd Mg+a for
each morphism f in *CG(R) and all g ∈ G.

1.2. Theorem (S. Goto and K.-i. Watanabe [8, §1.3]). Let M be G-graded R-module, and denote by
* Spec(R) the set of G-graded prime ideals of R. We denote by *E(M) or *ER(M) ‘the’ *injective
envelope of M , and by *Ei(M) or *Ei

R(M) ‘the’ ith term in ‘the’ minimal *injective resolution of M
(for each i ≥ 0).

(i) AssR *ER(M) = AssR M .
(ii) We have that M is a *indecomposable *injective G-graded R-module if and only if M is iso-

morphic (in the category *CG(R)) to *E(R/q)(a) for some q ∈ * Spec(R) and a ∈ G. In this
case, AssR M = {q} and q is uniquely determined by M .

(iii) Let (Mλ)λ∈Λ be a non-empty family of G-graded R-modules. Then
⊕

λ∈Λ Mλ is *injective if
and only if Mλ is *injective for all λ ∈ Λ.

(iv) Each *injective G-graded R-module M is a direct sum of *indecomposable *injective G-graded
submodules, and this decomposition is uniquely determined by M up to isomorphisms.

(v) Let i be a non-negative integer. In view of part (iv) above, there is a family (pα)α∈Λi of G-graded
prime ideals of R and a family (gα)α∈Λi of elements of G for which there is a G-homogeneous
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isomorphism

*Ei(M)
∼=−→

⊕

α∈Λi

*E(R/pα)(−gα).

Let p ∈ * Spec(R). Then the cardinality of the set {α ∈ Λi : pα = p} is equal to the ordinary
Bass number µi(p,M) (that is, to dimk(p) Exti

R(Rp/pRp,Mp), where k(p) denotes the residue
field of the local ring Rp).

A significant part of §2 of this paper is concerned with the shifts ‘−gα’ in the statement of part (v)
of Theorem 1.2. (The minus signs are inserted for notational convenience.) In [15], the second author
obtained some results about such shifts in the special case in which R is graded by the semigroup N0

of non-negative integers, and in §2 below, we shall establish some multi-graded analogues.
We shall employ the following device used by Huy Tài Hà [9, §2].

1.3. Definition. Let φ : G −→ H be a homomorphism of finitely generated torsion-free Abelian groups,
and let R =

⊕
g∈G Rg be a G-graded commutative Noetherian ring.

For each h ∈ H, set Rφ
h :=

⊕
g∈φ−1({h}) Rg; then

Rφ :=
⊕

h∈H

Rφ
h =

⊕

h∈H


 ⊕

g∈φ−1({h})
Rg




provides an H-grading on R, and we denote R by Rφ when considering it as an H-graded ring in this
way.

Furthermore, for each G-graded R-module M =
⊕

g∈G Mg, set Mφ
h :=

⊕
g∈φ−1({h}) Mg and Mφ :=⊕

h∈H Mφ
h ; then Mφ is an H-graded Rφ-module. Also, if f : M −→ N is a G-homogeneous homomor-

phism of G-graded R-modules, then the same map f becomes an H-homogeneous homomorphism of
H-graded Rφ-modules fφ : Mφ −→ Nφ.

In this way, ( • )φ becomes an exact additive covariant functor from *CG(R) to *CH(R).

1.4. Notation. We shall use N and N0 to denote the sets of positive and non-negative integers, respec-
tively, and r will denote a fixed positive integer. Throughout the remainder of the paper, R :=

⊕
n∈Zr Rn

will denote a commutative Noetherian ring, graded by the additively-written finitely generated free
Abelian group Zr (with its usual addition). For n = (n1, . . . , nr), m = (m1, . . . , mr) ∈ Zr, we shall
write

n ≤ m if and only if ni ≤ mi for all i = 1, . . . , r;

furthermore, n < m will mean that n ≤ m and n 6= m. The zero element of Zr will be denoted
by 0, and, for each i = 1, . . . , r, we shall use ei to denote the element of Zr which has 1 in the ith
spot and all other components zero. Also, 1 will denote (1, . . . , 1) ∈ Zr. Thus 1 =

∑r
i=1 ei, and

Re1Re2 . . . Rer ⊆ R1.
We shall sometimes denote the ith component of a general member w of Zr by wi without additional

explanation.
Comments made above that apply to the category *CZr

(R) will be used without further comment.
For example, we shall say that a graded ideal of R is *maximal if it is maximal among the set of proper
Zr-graded ideals of R, and that R is *local if it has a unique *maximal ideal. We shall use *Max(R)
to denote the set of *maximal ideals of R.

We shall use * Spec(R) to denote the set of Zr-graded prime ideals of R; for a Zr-graded ideal a of
R, we shall set * Var(a) := {p ∈ * Spec(R) : p ⊇ a} .

The next three lemmas are multi-graded analogues of preparatory results in [15, §1].

1.5. Lemma. Let p ∈ * Spec(R) and let a be an Zr-homogeneous element of degree n in R \ p. Then
multiplication by a provides a Zr-homogeneous automorphism of degree n of *E(R/p). Also, each
element of *E(R/p) is annihilated by some power of p.

Consequently, if S is a multiplicatively closed subset of N0
r-homogeneous elements of R such that

S ∩ p 6= ∅, then S−1 (*E(R/p)) = 0.
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Proof. Multiplication by a provides a Zr-homogeneous R-homomorphism

µa : *E(R/p) −→ *E(R/p)(n).

Since Ker µa has zero intersection with R/p, it follows that µa is injective. In view of Theorem 1.2(ii),
Im µa is a non-zero *injective Zr-graded submodule of the *indecomposable *injective Zr-graded R-
module *E(R/p)(n). Hence µa is surjective.

The fact that each element of *E(R/p) is annihilated by some power of p follows from Theorem 1.2(i),
which shows that p is the only associated prime ideal of each non-zero cyclic submodule of *E(R/p).
The final claim is then immediate. ¤

The next two lemmas below can be proved by making obvious modifications to the proofs of the
(well-known) ‘ungraded’ analogues.

1.6. Lemma. Let f : L −→ M be a Zr-homogeneous homomorphism of Zr-graded R-modules such
that M is a *essential extension of Im f . Let S be a multiplicatively closed subset of Zr-homogeneous
elements of R. Then S−1M is a *essential extension of its Zr-graded submodule Im(S−1f).

Proof. Modify the proof of [4, 11.1.5] in the obvious way. ¤
1.7. Lemma. Let S be a multiplicatively closed subset of Zr-homogeneous elements of R, and let p ∈
* Spec(R) be such that p ∩ S = ∅. Then

(i) the natural map *ER(R/p) −→ S−1(*ER(R/p)) is a Zr-homogeneous R-isomorphism, so that
*ER(R/p) has a natural structure as a Zr-graded S−1R-module;

(ii) there is a Zr-homogeneous isomorphism (in *C(S−1R))

*ER(R/p) ∼= *ES−1R(S−1R/S−1p);

(iii) *ES−1R(S−1R/S−1p), when considered as a Zr-graded R-module by means of the natural ho-
momorphism R −→ S−1R, is Zr-homogeneously isomorphic to *ER(R/p);

(iv) for each n ∈ Zr, there is a Zr-homogeneous isomorphism (in *C(S−1R))

S−1
(
*ER(R/p)(n)

) ∼= *ES−1R(S−1R/S−1p)(n);

(v) if I is a *injective Zr-graded R-module, then the Zr-graded S−1R-module S−1I is *injective.

Proof. (i) This is immediate from 1.5.
(ii) One can make the obvious modifications to the proof of [4, 10.1.11] to see that, as a Zr-graded

S−1R-module, *ER(R/p) is *injective; it is also Zr-homogeneously isomorphic, as a Zr-graded S−1R-
module, to S−1(*ER(R/p)). One can use 1.6 to see that S−1(*ER(R/p)) is a *essential extension of
S−1R/S−1p. The claim follows.

(iii), (iv) These are now easy.
(v) This can now be proved by making the obvious modifications to the proof of [4, 10.1.13(ii)]. ¤

2. A multi-graded analogue of anchor point theory

2.1. Definition. We shall say that R is positively graded precisely when Rn = 0 for all n 6≥ 0. When
that is the case, we say that R (as in 1.4) is standard precisely when R = R0[Re1 , . . . , Rer ].

The main results of this paper will concern the case where R is positively graded and standard.

2.2. Lemma. Suppose that R :=
⊕

n∈N0
r Rn is positively graded and standard. If a is an N0

r-graded
ideal of R such that a ⊇ Rt for some t ∈ N0

r, then a ⊇ Rn for each n ∈ N0
r with n ≥ t.

Proof. Since R is standard, Rn = RtRn−t, and so is contained in a. ¤
2.3. Definition. Suppose that R :=

⊕
n∈N0

r Rn is positively graded and standard. Let p ∈ * Spec(R).
The set

{
j ∈ {1, . . . , r} : Rej ⊆ p

}
will be called the set of p-directions and will be denoted by dir(p).

Observe that, if i ∈ dir(p), then p ⊇ R1 by 2.2. Conversely, if p ⊇ R1, then, since R1 = Re1 . . . Rer ,
there exists i ∈ {1, . . . , r} such that Rei ⊆ p, and i ∈ dir(p). Thus dir(p) 6= ∅ if and only if p ⊇ R1.

More generally, let b be an N0
r-graded ideal of R. We define the set of b-directions to be

dir(b) :=
{

j ∈ {1, . . . , r} : Rej ⊆
√

b
}

.
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The members of the set {1, . . . , r} \ dir(b) are called the non-b-directions. It is easy to see that
dir(b) =

⋂
p∈Min(b) dir(p), where Min(b) denotes the set of minimal prime ideals of b.

2.4. Remark. It follows from Lemma 2.2 that, in the situation of Definition 2.3, each N0
r-homogeneous

element of R \ p has degree with ith component 0 for all i ∈ dir(p).

2.5. Proposition. Suppose that R :=
⊕

n∈N0
r Rn is positively graded and standard. Let p ∈ *Var(R1R).

For notational convenience, suppose that dir(p) = {1, . . . , m}, where 0 < m ≤ r. For each i ∈
{1, . . . , r} \ dir(p) = {m + 1, . . . , r}, select ui ∈ Rei \ p.

Let a = (a1, . . . , am) ∈ Zm. For c = (cm+1, . . . , cr) ∈ Zr−m, we shall denote by a|c the element
(a1, . . . , am, cm+1, . . . , cr) of Zr obtained by juxtaposition.

(i) For all choices of c,d ∈ Zr−m, there is an isomorphism of R0-modules

(*ER(R/p))a|c ∼= (*ER(R/p))a|d.

(Note that this does not say anything of interest if m = r.)
(ii) If (*ER(R/p))a|c 6= 0 for any c ∈ Zr−m, then a ≤ 0.
(iii) Let T := R(p)/pR(p), where R(p) is the Zr-homogeneous localization of R at p. Then

(a) T is a simple Zr-graded ring in the sense of [8, Definition 1.1.1];
(b) T0 is a field;
(c) for each c = (cm+1, . . . , cr) ∈ Zr−m,

Ta|c =

{
0 if a 6= 0,

T0(um+1/1)cm+1 . . . (ur/1)cr if a = 0

(where ‘ ’ is used to denote natural images of elements of R(p) in T ); and
(d) every Zr-graded T -module is free.

(iv) We have (0 :*ER(p) (R(p)/pR(p))
pR(p)) = R(p)/pR(p).

(v) If a,b ∈ Zm and c,d ∈ Zr−m, and there is a Zr-homogeneous isomorphism

(*ER(R/p))(a|c) ∼= (*ER(R/p))(b|d),

then a = b.

Note. The obvious interpretation of the above statement is to be made in the case where m = r.

Proof. It will be convenient to write v for a general member of Zm and w for a general member of
Zr−m, and to use v|w to indicate the element of Zr obtained by juxtaposition.

(i) By Lemma 1.5, for each i = m + 1, . . . , r, multiplication by ui provides a Zr-homogeneous
automorphism of *ER(R/p) of degree ei; the claim follows from this.

(ii) Set ∆ := {v ∈ Zm : vi > 0 for some i ∈ {1, . . . , m}}. Since Rei ⊆ p for all i = 1, . . . ,m, it follows
from Lemma 2.2 that the Zr-graded R-module R/p has (R/p)v|w = 0 for all choices of v|w ∈ Zr with
v ∈ ∆. Therefore the Zr-graded submodule

⊕

v∈∆
w∈Zr−m

(R/p)v|w

of R/p is zero. Since *ER(R/p) is a *essential extension of R/p, it follows that
⊕

v∈∆
w∈Zr−m

(*ER(R/p))v|w = 0.

(iii) By Remark 2.4, each N0
r-homogeneous element of R \ p has degree v|w with v = 0. Also,

(R/p)v|w = 0 for all v ∈ Zm with v > 0. Now every non-zero Zr-homogeneous element of T is a unit
of T , so that T is a simple Zr-graded ring. Furthermore, the subgroup

G := {n ∈ Zr : Tn contains a unit of T}
is equal to {(n1, . . . , nm, nm+1, . . . , nr) ∈ Zr : n1 = · · · = nm = 0} . The claims in parts (b), (c) and (d)
now follow from [8, Lemma 1.1.2, Corollary 1.1.3 and Theorem 1.1.4].
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(iv) Recall that T = R(p)/pR(p). Now the Zr-graded T -module (0 :*ER(p) (R(p)/pR(p))
pR(p)) contains

its Zr-graded T -submodule R(p)/pR(p), and cannot be strictly larger, by *essentiality and the fact (see
part (iii)) that every Zr-graded T -module is free.

(v) By Lemma 1.7(iv), there is a Zr-homogeneous isomorphism of Zr-graded R(p)-modules
(
*ER(p)(R(p)/pR(p))

)
(a|c) ∼=

(
*ER(p)(R(p)/pR(p))

)
(b|d).

Abbreviate *ER(p)(R(p)/pR(p)) by F . It follows from part (iv) that

T (a|c) = (0 :F pR(p))(a|c) = (0 :F (a|c) pR(p))
∼= (0 :F (b|d) pR(p)) = (0 :F pR(p))(b|d)

= T (b|d),

where the isomorphism is Zr-homogeneous. But, for n = (n1, . . . , nm, nm+1, . . . , nr) ∈ Zr, we have

T (a|c)n 6= 0 if and only if (n1, . . . , nm) = −a

(by part (iii)). Therefore a = b. ¤

2.6. Remark. Suppose that R :=
⊕

n∈N0
r Rn is positively graded and standard, and let b be an N0

r-
graded ideal of R for which dir(b) 6= ∅.

Write dir(b) = {i1, . . . , im}, where 0 < m ≤ r and i1 < · · · < im. Let φ(b) : Zr −→ Zm be the
epimorphism of Abelian groups defined by

φ(b)((n1, . . . , nr)) = (ni1 , . . . , nim) for all (n1, . . . , nr) ∈ Zr.

We can think of φ(b) : Zr −→ Zm as the homomorphism which ‘forgets the co-ordinates in the non-b-
directions’.

Now let p ∈ *Var(R1R). The above defines an Abelian group homomorphism φ(p) : Zr −→ Z# dir(p).
(For a finite set Y , the notation #Y denotes the cardinality of the set Y .) In the case where b ⊆ p, we
have dir(b) ⊆ dir(p), and we define the Abelian group homomorphism φ(p; b) : Z# dir(p) −→ Z# dir(b) to
be the unique Z-homomorphism such that φ(p; b) ◦ φ(p) = φ(b).

Now let p ∈ *Var(R1R) and #dir(p) = m; we use the notation of 1.3. Let T := R(p)/pR(p), and let
L be a Zr-graded T -module.

(i) By Proposition 2.5(iii), for each a ∈ Zm and each n ∈ Zr,

(T (−n)φ(p))a =

{
0 if φ(p)(n) 6= a,

(Tφ(p))0 if φ(p)(n) = a.

In particular, the Zm-graded ring Tφ(p) is concentrated in degree 0 ∈ Zm.
(ii) Each component of the Zm-graded Tφ(p)-module Lφ(p) is a free (Tφ(p))0-submodule of Lφ(p).
(iii) If L is finitely generated, then

rankT φ(p) Lφ(p) =
∑

a∈Zm

rank(T φ(p))0

(
Lφ(p)

)
a
;

since the left-hand side of the above equation is finite, all except finitely many of the terms on
the right-hand side are zero.

2.7. Theorem. Suppose that R :=
⊕

n∈N0
r Rn is positively graded and standard. Let M be a Zr-graded

R-module, and let

I• : 0 −→ *E0(M) d0

−→ *E1(M) −→ · · · −→ *Ei(M) di

−→ *Ei+1(M) −→ · · ·
be the minimal *injective resolution of M . For each i ∈ N0, let

θi : *Ei(M)
∼=−→

⊕

α∈Λi

*E(R/pα)(−nα)

be a Zr-homogeneous isomorphism, where pα ∈ * Spec(R) and nα ∈ Zr for all α ∈ Λi.
Let p ∈ *Var(R1R) and use the notation φ(p) : Zr −→ Zm and T := R(p)/pR(p) of Remark 2.6,

where m is the number of p-directions.
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Let i ∈ N0 and let a ∈ Zm. Then the cardinality of the set {α ∈ Λi : pα = p and φ(p)(nα) = a} is
equal to

rank(T φ(p))0

(((
*Exti

R(p)
(R(p)/pR(p),M(p))

)φ(p))
a

)
.

Proof. By Lemmas 1.5, 1.6 and 1.7, there are Zr-homogeneous isomorphisms of graded R(p)-modules

*Ei
R(p)

(M(p)) ∼=
(
*Ei

R(M)
)
(p)
∼=

⊕

α∈Λi
pα⊆p

*E(R(p)/pαR(p))(−nα).

One can calculate * Exti
R(p)

(R(p)/pR(p),M(p)) (up to isomorphism in the category *CZr

(R(p))) by
taking the ith cohomology module of the complex (0 :(I•)(p)

pR(p)). Note that, by Lemma 1.6, for each
j ∈ N0, the inclusion Ker(dj

(p)) ⊆ *Ej(M)(p) is *essential, so that the inclusion

Ker(dj
(p)) ∩

(
0 :*Ej(M)(p)

pR(p)

)
⊆

(
0 :*Ej(M)(p)

pR(p)

)

is also *essential. Because, by Proposition 2.5(iii)(d), each Zr-graded T -module is free, it follows that
all the ‘differentiation’ maps in the complex (0 :(I•)(p)

pR(p)) are zero. Hence

*Exti
R(p)

(R(p)/pR(p),M(p)) ∼=
⊕

α∈Λi
pα⊆p

(
0 :*E(R(p)/pαR(p))(−nα)

pR(p)

)
in *CZr

(R(p)).

For α ∈ Λi such that pα ⊂ p (the symbol ‘⊂’ is reserved to denote strict inclusion), there exists an
N0

r-homogeneous element u ∈ p \ pα, and the fact (see Lemma 1.5) that multiplication by u/1 ∈ R(p)

provides an automorphism of *E(R(p)/pαR(p)) ensures that
(
0 :*E(R(p)/pαR(p))(−nα)

pR(p)

)
= 0.

If α ∈ Λi is such that pα = p, then, by Proposition 2.5(iv),

(0 :*ER(p) (R(p)/pR(p))(−nα)
pR(p)) =

(
R(p)/pR(p)

)
(−nα)

and, by Proposition 2.5(iii)(d), this is a free Zr-graded T -module.
Therefore there is a Zr-homogeneous isomorphism of Zr-graded T -modules

*Exti
R(p)

(R(p)/pR(p),M(p)) ∼=
⊕

α∈Λi
pα=p

(
R(p)/pR(p)

)
(−nα).

Now apply the functor ( • )φ(p) to obtain a Zm-homogeneous isomorphism of Zm-graded Tφ(p)-modules
(
*Exti

R(p)
(R(p)/pR(p),M(p))

)φ(p) ∼=
⊕

α∈Λi
pα=p

((
R(p)/pR(p)

)
(−nα)

)φ(p)
.

But, by Remark 2.6(i), for an α ∈ Λi,

((
T (−nα)

)φ(p))
a

=

{
0 if φ(p)(nα) 6= a,(
Tφ(p)

)
0

if φ(p)(nα) = a.

The desired result now follows from Remark 2.6(iii) ¤
2.8. Definitions. Let the situation and notation be as in Theorem 2.7, so that, in particular, p ∈
* Var(R1R) and m denotes the number of p-directions.

Let i ∈ N0. We say that a ∈ Zm is an ith level anchor point of p for M if
((

*Exti
R(p)

(R(p)/pR(p),M(p))
)φ(p))

a
6= 0;

the set of all ith level anchor points of p for M is denoted by anchi(p, M); also, we write

anch(p,M) =
⋃

j∈N0

anchj(p,M),

and refer to this as the set of anchor points of p for M .
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Thus anchi(p, M) is the set of m-tuples a ∈ Zm for which, when we decompose

*Ei(M)
∼=−→

⊕

α∈Λi

*E(R/pα)(−nα)

by means of a Zr-homogeneous isomorphism, there exists α ∈ Λi with pα = p and φ(p)(nα) = a. Note
that anchi(p, M) = ∅ if µi(p,M) = 0, and that, if M is finitely generated, then anchi(p,M) is a finite
set, by Remark 2.6(iii).

The details in our present multi-graded situation are more complicated (and therefore more inter-
esting!) than in the singly-graded situation studied in [15] because there might exist a p ∈ *Var(R1R)
for which the set of p-directions is a proper subset of {1, . . . , r}. This cannot happen when r = 1.
It is worthwhile for us to draw attention to the simplifications that occur in the above theory when
dir(p) = {1, . . . , r}, for that case provides a more-or-less exact analogue of the anchor point theory for
the singly-graded case developed in [15].

2.9. Example. Suppose that R :=
⊕

n∈N0
r Rn is positively graded and standard. Let M be a Zr-graded

R-module, and let

I• : 0 −→ *E0(M) d0

−→ *E1(M) −→ · · · −→ *Ei(M) di

−→ *Ei+1(M) −→ · · ·
be the minimal *injective resolution of M . For each i ∈ N0, let

θi : *Ei(M)
∼=−→

⊕

α∈Λi

*E(R/pα)(−nα)

be a Zr-homogeneous isomorphism, where pα ∈ * Spec(R) and nα ∈ Zr for all α ∈ Λi.
Let p ∈ * Spec(R) be such that p ⊇ Rn for all n > 0, so that dir(p) = {1, . . . , r}. In this case,

T := R(p)/pR(p) is concentrated in degree 0, and T0 is a field isomorphic to kR0(p0).
Let i ∈ N0. Then anchi(p,M) is the set of r-tuples a ∈ Zr for which there exists α ∈ Λi with pα = p

and nα = a. The cardinality of the set of such αs is

dimkR0 (p0)

((
*Exti

R(p)
(R(p)/pR(p),M(p))

)
a

)
,

and we have ∑

a∈Zr

dimkR0 (p0)

((
*Exti

R(p)
(R(p)/pR(p), M(p))

)
a

)
= µi(p, M).

In particular, if M is finitely generated, then there are only finitely many ith level anchor points of p
for M .

This reflects rather well the singly-graded anchor point theory studied in [15].

Our next aim is to extend (in a sense) the final result in Example 2.9 (namely that, when M (as in
the example) is a finitely generated Zr-graded R-module and p ∈ * Spec(R) is such that p ⊇ Rn for all
n > 0, then, for each i ∈ N0, there are only finitely many ith level anchor points of p for M) to all
N0

r-graded primes of R that contain R1.

2.10. Remark. Let S be a multiplicatively closed set of Zr-homogeneous elements of R, and let M , N
be Zr-graded R-modules with M finitely generated. Then, for each i ∈ N0, there is a Zr-homogeneous
S−1R-isomorphism

S−1
(
*Exti

R(M,N)
) ∼= *Exti

S−1R(S−1M, S−1N).

2.11. Theorem. Assume that R =
⊕

n∈N0
r Rn is positively graded and standard, and let M be a Zr-

graded R-module. Let i ∈ N0, and let p ∈ * Var(R1R). Then

anchi(p, M) = anchi(pφ(p),Mφ(p)),

and so is finite if M is finitely generated.
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Proof. Suppose, for ease of notation, that dir(p) = {1, . . . , m}, where 0 < m ≤ r. Note that pφ(p) is a
Zm-graded prime ideal of the Zm-graded ring Rφ(p), and that dir(pφ(p)) = {1, . . . , m} (by Lemma 2.2).

Set E := * Exti
R(R/p, M). Let a ∈ Zm. In view of 2.10, the m-tuple a is an ith level anchor point

of p for M if and only if ((E(p))φ(p))a 6= 0. Our initial task in this proof is to show that this is the case
if and only if (

(*Exti
Rφ(p)(Rφ(p)/pφ(p),Mφ(p)))(pφ(p))

)
a
6= 0.

Now the Zr-graded R-module E can be constructed by application of the functor *HomR( • ,M) to a
(deleted) *free resolution of R/p by finitely generated *free Zr-graded modules in the category *CZr

(R)
and then taking cohomology of the resulting complex. It follows that there is a Zm-homogeneous
isomorphism of Zm-graded Rφ(p)-modules

Eφ(p) ∼= *Exti
Rφ(p)(Rφ(p)/pφ(p),Mφ(p)).

Suppose that ((E(p))φ(p))a 6= 0. Thus there exists n ∈ Zr such that φ(p)(n) = a and ξ ∈ (E(p))n
such that ξ 6= 0. By Remark 2.4, there exists n′ ∈ Zr such that φ(p)(n′) = a and e ∈ En′ which is not
annihilated by any Zr-homogeneous element of R\p. Now any Zm-homogeneous element of Rφ(p)\pφ(p)

will, when written as a sum of Zr-homogeneous elements of R, have at least one component outside p,
and so 0 6= e/1 ∈ (Eφ(p))(pφ(p)). Hence

(
(Eφ(p))(pφ(p))

)
a
6= 0, so that

(
(*Exti

Rφ(p)(Rφ(p)/pφ(p),Mφ(p)))(pφ(p))

)
a
6= 0.

Now suppose that
(
(*Exti

Rφ(p)(Rφ(p)/pφ(p),Mφ(p)))(pφ(p))

)
a
6= 0. Then

(
(Eφ(p))(pφ(p))

)
a
6= 0. Since

every Zm-homogeneous element of Rφ(p) \ pφ(p) has degree 0 ∈ Zm, it follows that there exists e ∈
(Eφ(p))a that is not annihilated by any Zm-homogeneous element of Rφ(p) \ pφ(p). In particular, e is
not annihilated by any Zr-homogeneous element of R \ p. Therefore 0 6= e/1 ∈ ((E(p))φ(p))a.

This proves that anchi(p,M) = anchi(pφ(p),Mφ(p)). Finally, since dir(pφ(p)) = {1, . . . , m}, it follows
from Example 2.9 that anchi(pφ(p),Mφ(p)) is finite when M is finitely generated. ¤

The aim of the remainder of this section is to establish a multi-graded analogue of a result of Bass
[1, Lemma 3.1]. However, there are some subtleties which mean that our generalization of [15, Lemma
1.8] is not completely straightforward.

2.12. Theorem. Assume that R =
⊕

n∈N0
r Rn is positively graded and standard, and let M be a

finitely generated Zr-graded R-module. Let p, q ∈ * Spec(R) be such that R1R ⊆ p ⊂ q (we reserve
the symbol ‘⊂’ to denote strict inclusion) and that there is no Zr-graded prime ideal strictly between
p and q. Note that dir(p) ⊆ dir(q): suppose, for ease of notation, that dir(p) = {1, . . . ,m} and
dir(q) = {1, . . . ,m, m + 1, . . . , h}, where 0 < m ≤ h ≤ r.

Let i ∈ N0. Then, for each a = (a1, . . . , am) ∈ anchi(p,M), there exists

b = (b1, . . . , bm, bm+1, . . . , bh) ∈ anchi+1(q,M)

such that (b1, . . . , bm) = (a1, . . . , am) = a.

Proof. There exists an N0
r-homogeneous element b ∈ q \ p. By Remark 2.4, each N0

r-homogeneous
element of R \ p has degree with first m components 0. In particular, deg(b) = 0|v ∈ Zm × Zr−m for
some v ∈ Zr−m.

Since a ∈ anchi(p,M), there exists w ∈ Zr−m such that
(
*Exti

R(p)
(R(p)/pR(p),M(p))

)
a|w 6= 0.

Set E := * Exti
R(R/p,M). In view of Remark 2.10, we must have (E(p))a|w 6= 0. Since each N0

r-
homogeneous element of R \ p has degree with first m components 0, this means that there exists a
homogeneous element e ∈ E, with deg(e) = a|w′ for some w′ ∈ Zr−m, that is not annihilated by any
N0

r-homogeneous element of R \ p. But R \ q ⊆ R \ p, and so it follows that (E(q))a|w′ 6= 0. By Remark
2.10 again,

(
*Exti

R(q)
(R(q)/pR(q),M(q))

)
a|w′ 6= 0. Write F := * Exti

R(q)
(R(q)/pR(q),M(q)).

There is an exact sequence

0 −→ (
R(q)/pR(q)

)
(−(0|v))

b/1−→ R(q)/pR(q) −→ R(q)/
(
pR(q) + (b/1)R(q)

) −→ 0
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in *CZr

(R(q)), and this induces an exact sequence

F
b/1−→ F (0|v) −→ *Exti+1

R(q)
(R(q)/(pR(q) + (b/1)R(q)),M(q)).

Recall that deg(b) = 0|v. We claim that there exists y ∈ Zr−m such that Fa|y 6= (b/1)Fa|y−v. To see
this, note that b/1 ∈ qR(q), the unique *maximal ideal of the homogeneous localization R(q), and if we
had Fa|y = (b/1)Fa|y−v for every y ∈ Zr−m, then we should have Fa|w′ ⊆

⋂
n∈N(b/1)nF , which is zero

by the multi-graded version of Krull’s Intersection Theorem. (One can show that G :=
⋂

n∈N(b/1)nF
satisfies G = (b/1)G, and then use the multi-graded version of Nakayama’s Lemma.) Thus there exists
y ∈ Zr−m such that Fa|y 6= (b/1)Fa|y−v, and therefore, in view of the last exact sequence,

(
*Exti+1

R(q)
(R(q)/(pR(q) + (b/1)R(q)),M(q))

)
a|y

6= 0.

Now R(q)/
(
pR(q) + (b/1)R(q)

)
is concentrated in Zr-degrees whose first m components are all zero.

Therefore all its Zr-graded R-homomorphic images and all its Zr-graded submodules are also concen-
trated in Zr-degrees whose first m components are all zero.

The only Zr-graded prime ideal of R(q) that contains the ideal pR(q) + (b/1)R(q) is qR(q), and so
pR(q) +(b/1)R(q) is qR(q)-primary. It follows that there is a chain of Zr-graded ideals of R(q) from qR(q)

to pR(q) + (b/1)R(q) with the property that each subquotient is R(q)-isomorphic to
(
R(q)/qR(q)

)
(0|z)

for some z ∈ Zr−m. It therefore follows from the half-exactness of * Exti+1
R(q)

that there exists y′ ∈ Zr−m

such that (
*Exti+1

R(q)
(R(q)/qR(q),M(q))

)
a|y′ 6= 0.

The claim then follows from Theorem 2.7. ¤

2.13. Corollary. Assume that R =
⊕

n∈N0
r Rn is positively graded and standard, and let M be a

finitely generated Zr-graded R-module. Let p ∈ *Var(R1R), and suppose, for ease of notation, that
dir(p) = {1, . . . , m}.

Let a ∈ anch(p, M). Then there exists q ∈ * Spec(R) such that q ⊇ Rn for all n ∈ N0
r with n > 0

and b = (b1, . . . , bm, bm+1, . . . , br) ∈ anch(q, M) such that a = (b1, . . . , bm).

Proof. There exists a saturated chain p = p0 ⊂ p1 ⊂ · · · ⊂ pt = q of Zr-graded prime ideals of R such
that q is *maximal. Since q is contained in the Zr-graded prime ideal

(q ∩R0)
⊕ ⊕

n>0

Rn,

these two Zr-graded prime ideals must be the same; we therefore see that q ⊇ Rn for all n ∈ N0
r with

n > 0. The claim is now immediate from Theorem 2.12. ¤

3. The ends of certain multi-graded local cohomology modules

We begin with a combinatorial lemma.

3.1. Lemma. Let a := (a1, . . . , ar) ∈ Zr and let Σ be a non-empty subset of Zr such that n ≤ a for all
n ∈ Σ. Then Σ has only finitely many maximal elements.

Note. We are grateful to the referee for drawing our attention to the following proof, which is shorter
than our original.

Proof. The set ∆ := a− Σ := {a− n : n ∈ Σ} is a non-empty subset of N0
r. Now N0

r is a Noetherian
monoid with respect to addition, by [11, Proposition 1.3.5], for example. (All terminology concerning
monoids in this proof is as in [11, Chapter 1].) Therefore the monoideal (∆) of N0

r generated by ∆ can
be generated by finitely many elements of ∆, say by m(1), . . . ,m(s) ∈ ∆. Therefore

∆ ⊆ (∆) =
(
m(1) + N0

r
)
∪ · · · ∪

(
m(s) + N0

r
)

,

from which it follows that any minimal member of ∆ must belong to the set {m(1), . . . ,m(s)}. Therefore
any maximal member of Σ must belong to the set {a−m(1), . . . ,a−m(s)}. ¤
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3.2. Notation. Let Σ, ∆ ⊆ Zr. We shall denote by max(Σ) the set of maximal members of Σ. (If Σ
has no maximal member, then we interpret max(Σ) as the empty set.)

We shall write Σ 4 ∆ to indicate that, for each n ∈ Σ, there exists m ∈ ∆ such that n ≤ m;
moreover, we shall describe this situation by the terminology ‘∆ dominates Σ’. We shall use obvious
variants of this terminology. Observe that, if Σ 4 ∆ and ∆ 4 Σ, then max(Σ) = max(∆), and
Σ 4 max(Σ) if and only if ∆ 4 max(∆).

3.3. Remark (Huy Tài Hà [9, §2]). Let φ : Zr −→ Zm, where m is a positive integer, be a homomorphism
of Abelian groups. We use the notation Rφ, etcetera, of Definition 1.3. Let a be a Zr-graded ideal of
R. Then

(
(Hi

a( • ))φ)
)
i∈N0

and
(
(Hi

aφ( • φ))
)
i∈N0

are both negative strongly connected sequences of
covariant functors from *CZr

(R) to *CZm

(Rφ); moreover, the 0th members of these two connected
sequences are the same functor, and, whenever, I is a *-injective Zr-graded R-module and i > 0, we
have Hi

a(I) = 0 when all gradings are forgotten, so that (Hi
a(I))φ = 0 and Hi

aφ(Iφ) = 0. Consequently,
the two above-mentioned connected sequences are isomorphic. Hence, for each Zr-graded R-module M ,
there is a Zm-homogeneous isomorphism of Zm-graded Rφ-modules

(Hi
a(M))φ ∼= Hi

aφ(Mφ) for each i ∈ N0.

3.4. Notation. Throughout this section, we shall be concerned with the situation where

R =
⊕

n∈N0
r

Rn

is positively graded; we shall only assume that R is standard when this is explicitly stated.
We shall be greatly concerned with the N0

r-graded ideal

c := c(R) :=
⊕

n∈N0
r

n>0

Rn.

We shall accord R+ its usual meaning (see E. Hyry [10, p. 2215]), so that

R+ :=
⊕

n∈N0
r

n≥1

Rn =
⊕

n∈Nr

Rn.

Observe that, when r = 1, we have c = R+. However, in general this is not the case when r > 1.

3.5. Definition. Suppose that R =
⊕

n∈N0
r Rn is positively graded and standard; let M =

⊕
n∈Zr Mn

be a finitely generated Zr-graded R-module, and let j ∈ N0.
Let b be an N0

r-graded ideal such that dir(b) 6= ∅, and let i ∈ dir(b); consider the Abelian group
homomorphism φi : Zr −→ Z for which φi((n1, . . . , nr)) = ni for all (n1, . . . , nr) ∈ Zr, which is just the
ith coordinate function.

By Lemma 2.2, since Rei ⊆
√

b, we have

(Rφi)+ =
⊕

n∈N0
r

ni>0

Rn ⊆
√

b
φi

.

It therefore follows from [15, Corollary 2.5], with the notation of that paper, that the N0-graded Rφi-
module (Hj

b(M))φi ∼= Hj

bφi
(Mφi), if non-zero, has finite end satisfying

end((Hj
b(M))φi) ≤ a∗(Mφi) = sup{end(Hk

(Rφi )+
(Mφi)) : k ∈ N0} = sup{ak

(Rφi )+
(Mφi) : k ∈ N0}.

(Note that, in these circumstances, the invariant a∗(Mφi) is an integer.) Thus, if n := (n1, . . . , nr) ∈ Zr

is such that Hj
b(M)n 6= 0, then ni ≤ a∗(Mφi). Thus there exists a ∈ Z# dir(b) such that, for all

n := (n1, . . . , nr) ∈ Zr with Hj
b(M)n 6= 0, we have φ(b)(n) ≤ a. We define the end of Hj

b(M) by

end(Hj
b(M)) := max

{
φ(b)(n) : n ∈ Zr and Hj

b(M)n 6= 0
}

.

By Lemma 3.1, if Hj
b(M) 6= 0 and dir(b) 6= ∅, then this end is a non-empty finite set of points of

Z# dir(b). Note that the end of Hj
b(M) dominates φ(b)(n) for every n ∈ Zr for which Hj

b(M)n 6= 0.
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We draw the reader’s attention to the fact that, when r > 1 and Rei
6= 0 for all i ∈ {1, . . . , r}, the

ideal R+ =
⊕

n∈N0
r

n≥1

Rn has empty set of directions; consequently, we have not defined the end of the ith

local cohomology module Hi
R+

(M) of M with respect to R+. Thus we are not, in this paper, making
any contribution to the theory of multi-graded Castelnuovo regularity, and, in particular, we are not
proposing an alternative definition of a-invariant or a∗-invariant (see [9, Definitions 3.1.1 and 3.1.2]).

With this definition of the ends of (certain) multi-graded local cohomology modules, we can now
establish multi-graded analogues of some results in [15, §2].

3.6. Theorem. Suppose that R :=
⊕

n∈N0
r Rn is positively graded and standard. Let M be a finitely

generated Zr-graded R-module, and let

I• : 0 −→ *E0(M) d0

−→ *E1(M) −→ · · · −→ *Ei(M) di

−→ *Ei+1(M) −→ · · ·
be the minimal *injective resolution of M .

Let b be an N0
r-graded ideal such that dir(b) 6= ∅, and let j ∈ N0. Then

max

(
j⋃

i=0

end(Hj
b(M))

)
= max

{
φ(b)(n) : n ∈ Zr and (Γb(*Ei(M)))n 6= 0 for some i ∈ {0, . . . , j}}

= max




j⋃

i=0

⋃

p∈*Var(b)

φ(p; b)(anchi(p,M))


 .

Proof. Let i ∈ N0 and set

∆i :=
{
φ(b)(n) : n ∈ Zr and Hi

b(M)n 6= 0
}

, Σi :=
{
φ(b)(n) : n ∈ Zr and (Γb(*Ei(M)))n 6= 0

}

and
Φi :=

⋃

p∈*Var(b)

φ(p; b)(anchi(p,M)).

Also, let

θi : *Ei(M)
∼=−→

⊕

α∈Λi

*E(R/pα)(−nα)

be a Zr-homogeneous isomorphism, where pα ∈ * Spec(R) and nα ∈ Zr for all α ∈ Λi.
We shall first show that ∆i 4 Σi 4 Φi. Now Hi

b(M) is a homomorphic image, by a Zr-homogeneous
epimorphism, of

Ker
(
Γb(di) : Γb(*Ei(M)) −→ Γb(*Ei+1(M))

)
.

Therefore, if n ∈ Zr is such that Hi
b(M)n 6= 0, then (Γb(*Ei(M)))n 6= 0. This proves that ∆i ⊆ Σi, so

that ∆i 4 Σi.
Furthermore, given n ∈ Zr such that (Γb(*Ei(M)))n 6= 0, we can see from the isomorphism θi that

there must exist α ∈ Λi such that b ⊆ pα and (*E(R/pα)(−nα))n 6= 0. It now follows from Proposition
2.5(ii) that φ(pα)(n) ≤ φ(pα)(nα), so that

φ(pα; b)(φ(pα)(n)) ≤ φ(pα; b)(φ(pα)(nα)).

Now φ(pα)(nα) is an ith level anchor point of pα for M , and φ(pα; b) ◦φ(pα) = φ(b). This is enough to
prove that Σi 4 Φi.

In particular, we have proved that ∆0 4 Σ0 4 Φ0. We shall prove the desired result by induction
on j. We show next that Φ0 4 ∆0, and this, together with the above, will prove the claim in the case
where j = 0. Let m ∈ Φ0. Thus m ∈ Z# dir(b) and there exists α ∈ Λ0 such that pα ∈ * Var(b) and
m = φ(pα; b)(φ(pα)(nα)). Now the image of

⊕

n∈Zr

φ(pα)(n)≥φ(pα)(nα)

(*E(R/pα)(−nα))n
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under θ−1
0 is a non-zero Zr-graded submodule of Γb(*E0(M)); as the latter is a *essential extension

of Γb(M), it follows that there exists n ∈ Zr with φ(pα)(n) ≥ φ(pα)(nα) such that (Γb(M))n 6= 0.
Moreover,

φ(b)(n) = φ(pα; b) (φ(pα)(n)) ≥ φ(pα; b) (φ(pα)(nα)) = m.

It follows that Φ0 4 ∆0, so that max(∆0) = max(Σ0) = max(Φ0), and the desired result has been
proved when j = 0.

Now suppose that j > 0 and make the obvious inductive assumption. As we have already proved
that ∆i 4 Σi and Σi 4 Φi for all i = 0, . . . , j, it will be enough, in order to complete the inductive step,
for us to prove that Φj 4

⋃j
k=0 ∆k. So consider α ∈ Λj such that pα ∈ *Var(b); we shall show that

φ(pα; b)(φ(pα)(nα)) is dominated by a member of ∆0 ∪∆1 ∪ · · · ∪∆j−1 ∪∆j .
Now the image of

⊕

n∈Zr

φ(pα)(n)≥φ(pα)(nα)

(*E(R/pα)(−nα))n

under θ−1
j is a non-zero Zr-graded submodule of Γb(*Ej(M)); as the latter is a *essential extension of

Ker Γb(dj), it follows that there exists n ∈ Zr with φ(pα)(n) ≥ φ(pα)(nα) such that
(
Ker Γb(dj)

)
n
6= 0.

There is an exact sequence

0 −→ Im Γb(dj−1) −→ KerΓb(dj) −→ Hj
b(M) −→ 0

of graded Zr-modules and homogeneous homomorphisms. Therefore either Hj
b(M)n 6= 0 or

(
ImΓb(dj−1)

)
n
6= 0.

In the first case, φ(pα; b)(φ(pα)(n)) = φ(b)(n) ∈ ∆j . In the second case, (Γb(*Ej−1(M)))n 6= 0,
whence φ(b)(n) ∈ Σj−1, so that, by the inductive hypothesis, φ(b)(n) is dominated by an element of
∆0∪∆1∪· · ·∪∆j−1; thus, in this case also, φ(pα; b)(φ(pα)(nα)) is dominated by an element of

⋃j
k=0 ∆k.

This is enough to complete the inductive step. ¤

3.7. Notation. Suppose that R :=
⊕

n∈N0
r Rn is positively graded and standard, and let M be a finitely

generated Zr-graded R-module. Let Q be a non-empty subset of {1, . . . , r}. Define cQ :=
∑

i∈QReiR.
Then dir(cQ) ⊇ Q, and cQ is the smallest ideal (up to radical) with set of directions containing Q. We
also define the Q-bound bndQ(M) of M by

bndQ(M) := max

( ⋃

i∈N0

end(Hi
cQ(M))

)
.

Observe that bndQ(M) is a finite set of points in Z# dir(cQ), because Hi
cQ(M) = 0 whenever i exceeds

the arithmetic rank of cQ.
For consistency with our earlier notation in 3.4, we abbreviate c{1,...,r} =

∑
n>0 Rn by c. Note that

bnd{1,...,r}(M) = max
(⋃

i∈N0
end(Hi

c(M))
)

is a finite set of points in Zr.

The following corollaries, which are multi-graded analogues of [15, Corollaries 2.5, 2.6], can now be
deduced immediately from Theorem 3.6.

3.8. Corollary. Suppose that R :=
⊕

n∈N0
r Rn is positively graded and standard. Let M be a finitely

generated Zr-graded R-module, and let

I• : 0 −→ *E0(M) d0

−→ *E1(M) −→ · · · −→ *Ei(M) di

−→ *Ei+1(M) −→ · · ·

be the minimal *injective resolution of M .
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Let b be an N0
r-graded ideal of R such that dir(b) 6= ∅, and let j ∈ N0. Then

max

(
j⋃

i=0

end(Hj
b(M))

)
4 max




j⋃

i=0

⋃

p∈*Var(cdir(b))

φ(p; cdir(b))(anchi(p,M))




= max
{
φ(b)(n) : n ∈ Zr and (Γcdir(b)(*Ei(M)))n 6= 0 for an i ∈ {0, . . . , j}}

= max

(
j⋃

i=0

end(Hj
cdir(b)(M))

)
4 bnddir(b)(M).

3.9. Corollary. Suppose that R :=
⊕

n∈N0
r Rn is positively graded and standard. Let M be a finitely

generated Zr-graded R-module.
Let b be an N0

r-graded ideal of R of arithmetic rank t such that dir(b) 6= ∅, and let k ∈ N with k > t.
Then

max




t⋃

i=0

⋃

p∈*Var(b)

φ(p; b)(anchi(p,M))


 = max

(
t⋃

i=0

end(Hi
b(M))

)
= max

(
k⋃

i=0

end(Hi
b(M))

)

= max




k⋃

i=0

⋃

p∈*Var(b)

φ(p; b)(anchi(p,M))


 .

Consequently, for a p ∈ *Var(b) and a ∈ anch(p,M), we can conclude that φ(p; b)(a) is dominated by

max




t⋃

i=0

⋃

p∈*Var(b)

φ(p; b)(anchi(p,M))


 ,

a set of points of Z# dir(b) which arises from consideration of just the 0th, 1st, . . ., (t − 1)th and tth
terms of the minimal *injective resolution of M .

Our next aim is the establishment of multi-graded analogues of [15, Corollaries 3.1 and 3.2].

3.10. Lemma. Suppose that R :=
⊕

n∈N0
r Rn is positively graded, and let m be a *maximal ideal of R.

Then m0 := m ∩R0 is a maximal ideal of R0 and m = m0 ⊕ c, where c is as defined in Notation 3.4.

Proof. Recall that

c :=
⊕

n∈N0
r

n>0

Rn.

Since m0 ∈ Spec(R0), it follows that R ⊃ m0

⊕
c ⊇ m, so that m = m0

⊕
c. Furthermore, m0 must be

a maximal ideal of R0. ¤

3.11. Corollary. Suppose that R :=
⊕

n∈N0
r Rn is positively graded and standard. Let M be a finitely

generated Zr-graded R-module; let b be an N0
r-graded ideal of R such that dir(b) 6= ∅. Then

max

( ⋃

i∈N0

end(Hi
b(M))

)
= max


 ⋃

m∈*Var(b)∩*Max(R)

⋃

i∈N0

φ(m; b) end(Hi
m(M))


 .

Proof. Let m ∈ *Var(b) ∩ *Max(R). By Lemma 3.10, dir(m) = {1, . . . , r}; therefore, by Theorem 3.6,
max

(⋃
i∈N0

end(Hi
m(M))

)
= max

(⋃
i∈N0

anchi(m,M)
)
. Another use of Theorem 3.6 therefore shows
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that

max

( ⋃

i∈N0

φ(m; b)(end(Hi
m(M)))

)
= max

( ⋃

i∈N0

φ(m; b)(anchi(m,M))

)

4 max


 ⋃

i∈N0

⋃

p∈*Var(b)

φ(p; b)(anchi(p,M))




= max

( ⋃

i∈N0

end(Hi
b(M))

)
.

We have thus proved that

max

( ⋃

i∈N0

end(Hi
b(M))

)
< max


 ⋃

m∈*Var(b)∩*Max(R)

⋃

i∈N0

φ(m; b)(end(Hi
m(M)))


 .

Now let n ∈ Z# dir(b) be a maximal member of
⋃

i∈N0
end(Hi

b(M)). By Theorem 3.6, there exist
s ∈ N0 and p ∈ *Var(b) such that n = φ(p; b)(w) for some sth level anchor point w of p for M . Now
use Theorem 2.12 repeatedly, in conjunction with a saturated chain (of length t say) of N0

r-graded
prime ideals of R with p as its smallest term and a *maximal ideal m as its largest term: the conclusion
is that there exists v ∈ anchs+t(m,M) such that φ(m; p)(v) = w. Now

n = φ(p; b)(w) = φ(p; b)(φ(m; p)(v)) = φ(m; b)(v).

But, by Theorem 3.6 again, v is dominated by max
(⋃

i∈N0
end(Hi

m(M))
)
; it follows that

max

( ⋃

i∈N0

end(Hi
b(M))

)
4 max


 ⋃

m∈*Var(b)∩*Max(R)

⋃

i∈N0

φ(m; b)(end(Hi
m(M)))


 .

The desired conclusion follows. ¤

3.12. Corollary. Let the situation be as in Corollary 3.11, but assume in addition that (R0, m0) is local
and that b is proper; set m := m0 ⊕ c, where c is as defined in Notation 3.4. Then

max

( ⋃

i∈N0

end(Hi
b(M))

)
= max

( ⋃

i∈N0

φ(m; b)(end(Hi
m(M)))

)
.

In particular,

max

( ⋃

i∈N0

end(Hi
c(M))

)
= max

( ⋃

i∈N0

end(Hi
m(M))

)
.

4. Some vanishing results for multi-graded components of local cohomology modules

It is well known that, when r = 1, if M is a finitely generated Z-graded R-module, then there exists
t ∈ Z such that Hi

R+
(M)n = 0 for all i ∈ N0 and all n ≥ t; it then follows from [15, Corollary 2.5] that,

if b is any graded ideal of R with b ⊇ R+, then Hi
b(M)n = 0 for all i ∈ N0 and all n ≥ t. One of the

aims of this section is to establish a multi-graded analogue of this result.

4.1. Notation. Throughout this section, we shall be concerned with the situation where

R =
⊕

n∈N0
r

Rn

is positively graded; we shall only assume that R is standard when this is explicitly stated.
We shall be concerned with the N0

r-graded ideal R+ of R given (see Notation 3.4) by

R+ :=
⊕

n∈N0
r

n≥1

Rn.
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Although it is well known (see Hyry [10, Theorem 1.6]) that, if M is a finitely generated Zr-graded
R-module, then Hi

R+
(M)(n1,...,nr) = 0 for all n1, . . . , nr À 0, we have not been able to find in the

literature a proof of the corresponding statement with R+ replaced by an N0
r-graded ideal b that

contains R+. We present such a proof below, because we think it is of interest in its own right.

4.2. Theorem. Suppose that R =
⊕

n∈N0
r Rn is positively graded; let M be a finitely generated Zr-

graded R-module. Let b be an N0
r-graded ideal of R such that b ⊇ R+. Then there exists t ∈ Z such

that
Hi

b(M)n = 0 for all i ∈ N0 and all n ≥ (t, t, . . . , t).

Proof. We shall prove this by induction on r. In the case where r = 1 the result follows from [15,
Corollary 2.5], as was explained in the introduction to this section.

Now suppose that r > 1 and that the claim has been proved for smaller values of r. We define three
more N0

r-graded ideals a, c and d of R, as follows. Set

a :=
⊕

n=(n1,...,nr)∈N0
r

an where an =

{
bn if nr = 0,

Rn if nr > 0;

c :=
⊕

n=(n1,...,nr)∈N0
r

cn where cn =

{
bn if (n1, . . . , nr−1) 6≥ (1, . . . , 1),
Rn if (n1, . . . , nr−1) ≥ (1, . . . , 1);

and d := a + c.
Consider a ∩ c: for each n = (n1, . . . , nr) ∈ N0

r, the nth component (a ∩ c)n satisfies

(a ∩ c)n = an ∩ cn =

{
bn if nr = 0 or (n1, . . . , nr−1) 6≥ (1, . . . , 1),
Rn if nr > 0 and (n1, . . . , nr−1) ≥ (1, . . . , 1).

Since b ⊇ R+, we see that a ∩ c = b.
Let σ : Zr −→ Zr−1 be the group homomorphism defined by

σ((n1, . . . , nr)) = (n1 + nr, . . . , nr−1 + nr) for all (n1, . . . , nr) ∈ Zr.

Note that, for (n1, . . . , nr) ∈ N0
r, we have (n1 + nr, . . . , nr−1 + nr) ≥ 1 in Zr−1 if and only if nr ≥ 1

or (n1, . . . , nr−1) ≥ 1; furthermore, if nr ≥ 1, then an = Rn, and if (n1, . . . , nr−1) ≥ 1, then cn = Rn.
Let m ∈ Zr−1 with m ≥ 1. Therefore, in the N0

r−1-graded ring Rσ, we have

(dσ)m =
⊕

n∈Zr

σ(n)=m

(an + cn) =
⊕

n∈Zr

σ(n)=m

Rn = (Rσ)m.

Thus dσ ⊇ ⊕
m≥1(Rσ)m = (Rσ)+.

It therefore follows from the inductive hypothesis that there exists t̃ ∈ Z such that (Hj
dσ (Mσ))h = 0

for all j ∈ N0 and all h ≥ (t̃, . . . , t̃) in Zr−1. In view of Remark 3.3, this means that ((Hj
d(M))σ)h = 0

for all j ∈ N0 and all h ≥ (t̃, . . . , t̃) in Zr−1, so that, for all j ∈ N0,

Hj
d(M)(n1,...,nr) = 0 whenever (n1, . . . , nr−1, nr) ≥

(
1
2 t̃, . . . , 1

2 t̃, 1
2 t̃

)
in Zr.

We now give two similar, but simpler, arguments. Let π : Zr −→ Z be the group homomorphism
given by projection onto the rth co-ordinate. Note that, for n ∈ N0

r, if π(n) ≥ 1, then an = Rn.
Therefore aπ ⊇ (Rπ)+. It therefore follows from the case where r = 1 that there exists t ∈ Z such that
(Hj

aπ (Mπ))n = 0 for all j ∈ N0 and all n ≥ t. In view of Remark 3.3, this means that ((Hj
a(M))π)n = 0

for all j ∈ N0 and all n ≥ t, that is,

Hj
a(M)(n1,...,nr) = 0 whenever j ∈ N0 and nr ≥ t.

Next, let θ : Zr −→ Zr−1 be the group homomorphism defined by

θ((n1, . . . , nr)) = (n1, . . . , nr−1) for all (n1, . . . , nr) ∈ Zr.

Note that, if n ∈ Zr has θ(n) ≥ 1 in Zr−1, then cn = Rn. Therefore, for m ∈ Zr−1 with m ≥ 1, we have
(cθ)m = (Rθ)m. This means that, in the N0

r−1-graded ring Rθ, we have cθ ⊇ ⊕
m≥1(Rθ)m = (Rθ)+.
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It therefore follows from the inductive hypothesis that there exists t̂ ∈ Z such that (Hj
cθ (Mθ))h = 0

for all j ∈ N0 and all h ≥ (t̂, . . . , t̂) in Zr−1. In view of Remark 3.3, this means that ((Hj
c (M))θ)h = 0

for all j ∈ N0 and all h ≥ (t̂, . . . , t̂) in Zr−1, so that

Hj
c (M)(n1,...,nr) = 0 whenever j ∈ N0 and (n1, . . . , nr−1) ≥ (t̂, . . . , t̂).

We recall that a ∩ c = b. There is an exact Mayer–Vietoris sequence (in the category *CZr

(R))

0 H0
d(M) H0

c (M)⊕H0
a(M) H0

b(M)

H1
d(M) H1

c (M)⊕H1
a(M) H1

b(M)

· · · · · ·
Hi

d(M) Hi
c(M)⊕Hi

a(M) Hi
b(M)

Hi+1
d (M) · · · .

- - -

- - -

-

- - -

- -

It now follows from this Mayer–Vietoris sequence that, if we set t := max{ 1
2 t̃, t̂, t}, then

Hj
b(M)(n1,...,nr) = 0 whenever j ∈ N0 and (n1, . . . , nr) ≥ (t, . . . , t).

This completes the inductive step, and the proof. ¤

We can deduce from the above Theorem 4.2 a vanishing result for multi-graded components of local
cohomology modules with respect to a multi-graded ideal that has both directions and non-directions.

4.3. Corollary. Suppose that R =
⊕

n∈N0
r Rn is positively graded and standard; let M be a finitely

generated Zr-graded R-module. Let b be an N0
r-graded ideal of R that has some directions and some

non-directions: to be precise, and for ease of notation, suppose that dir(b) = {m + 1, . . . , r}, where
1 ≤ m < r. Then there exists t ∈ Z such that, for all j ∈ N0, and for all n = (n1, . . . , nr) ∈ Zr for
which (n1, . . . , nm, nm+1 + · · ·+ nr) ≥ (t, . . . , t) in Zm+1, we have Hj

b(M)n = 0.

Note. As b has some directions and R is standard, it follows from Lemma 2.2 that R+ ⊆ b, so that
Theorem 4.2 yields a t′ ∈ Z such that Hi

b(M)n = 0 for all n ≥ (t′, . . . , t′). Thus, when m = r − 1, the
conclusion of Corollary 4.3 already follows from Theorem 4.2.

Proof. Without loss of generality, we can, and do, assume that b =
√

b.
Let φ : Zr −→ Zm+1 be the group homomorphism defined by

φ((n1, . . . , nr)) = (n1, . . . , nm, nm+1 + · · ·+ nr) for all (n1, . . . , nr) ∈ Zr.

Let n = (n1, . . . , nr) ∈ N0
r be such that φ(n) ≥ 1 in Zm+1. Then nm+1 + · · ·+ nr ≥ 1, so that one of

nm+1, . . . , nr is positive. Now Rei ⊆
√

b = b for all i = m + 1, . . . , r, and since n ≥ ei for one of these
is, it follows from Lemma 2.2 that b ⊇ Rn. It therefore follows that, in the N0

m+1-graded ring Rφ, we
have bφ ⊇ ⊕

m≥1(Rφ)m = (Rφ)+.
We can now appeal to Theorem 4.2 to deduce that there exists t ∈ Z such that (Hj

bφ(Mφ))h = 0 for
all j ∈ N0 and all h ≥ (t, . . . , t) in Zm+1. In view of Remark 3.3, this means that ((Hj

b(M))φ)h = 0 for
all j ∈ N0 and all h ≥ (t, . . . , t) in Zm+1, so that

Hj
b(M)(n1,...,nr) = 0 whenever j ∈ N0 and (n1, . . . , nm, nm+1 + · · ·+ nr) ≥ (t, . . . , t).

¤

One of the reasons why we consider that Theorem 4.2 is of interest in its own right concerns the
structure of the (multi-)graded components Hi

b(M)n (n ∈ Zr) as modules over R0 (the hypotheses
and notation here are as in Theorem 4.2). The example in [4, Exercise 15.1.7] shows that these graded
components need not be finitely generated R0-modules; however, it is always the case that (for a finitely
generated Zr-graded R-module M) the (multi-)graded components Hi

R+
(M)n (n ∈ Zr) of the ith local

cohomology module of M with respect to R+ are finitely generated R0-modules (for all i ∈ N0), as we
now show.
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4.4. Theorem. Suppose that R =
⊕

n∈N0
r Rn is positively graded; let M be a finitely generated Zr-

graded R-module. Then Hi
R+

(M)n is a finitely generated R0-module, for all i ∈ N0 and all n ∈ Zr.

Note. In the case where r = 1, this result is well known: see [4, Proposition 15.1.5].

Proof. We use induction on i. When i = 0, the claim is immediate from the fact that H0
R+

(M) is
isomorphic to a submodule of M , and so is finitely generated. So suppose that i > 0 and that the claim
has been proved for smaller values of i, for all finitely generated Zr-graded R-modules.

Recall that all the associated prime ideals of M are N0
r-graded. Set B(M) := AssR(M)\*Var(R+),

and denote #B(M) by b(M); we shall argue by induction on b(M). If b(M) = 0, then M is R+-torsion,
so that Hi

R+
(M) = 0 and the desired result is clear in this case.

Now suppose that b(M) = 1: let p be the unique member of B(M). Set M := M/ΓR+(M). We can
use the long exact sequence of local cohomology modules induced by the exact sequence

0 −→ ΓR+(M) −→ M −→ M −→ 0,

together with the fact that Hj
R+

(ΓR+(M)) = 0 for all j ∈ N, to see that, in order to complete the
proof in this case, it is sufficient for us to prove the result for M . Now M is R+-torsion-free, and
Ass(M) = {p}. (See [4, Exercise 2.1.12].) There exists a Zr-homogeneous element a ∈ R+ \ p; note
that a is a non-zero-divisor on M . Let the degree of a be v = (v1, . . . , vr), and note that vj > 0 for all
j = 1, . . . , r. By Theorem 4.2, there exists t ∈ Z such that Hj

R+
(M)n = 0 for all n ≥ (t, t, . . . , t).

Let n = (n1, . . . , nr) ∈ Zr. Since vj > 0 for all j = 1, . . . , r, there exists w ∈ N such that nj +vjw ≥ t
for all j = 1, . . . , r. The exact sequence

0 −→ M
aw

−→ M(wv) −→ (
M/awM

)
(wv) −→ 0

induces an exact sequence of R0-modules

Hi−1
R+

(M/awM)n+wv −→ Hi
R+

(M)n −→ Hi
R+

(M)n+wv,

and since w was chosen to ensure that the rightmost term in this sequence is zero, it follows from the
inductive hypothesis that Hi

R+
(M)n is a finitely generated R0-module. This completes the proof in the

case where b(M) = 1.
Now suppose that b(M) = b > 1 and that it has been proved that all the graded components of

Hi
R+

(L) are finitely generated R0-modules for all choices of finitely generated Zr-graded R-module L

with b(L) < b. Let p, q ∈ B(M) with p 6= q: suppose, for the sake of argument, that p 6⊆ q. Consider
the p-torsion submodule Γp(M) of M . By [4, Exercise 2.1.12], Ass(Γp(M)) and Ass(M/Γp(M)) are
disjoint and Ass M = Ass(Γp(M))∪Ass(M/Γp(M)). Now p ∈ Ass(Γp(M)) and q 6∈ Ass(Γp(M)); hence
b(Γp(M)) < b and b(M/Γp(M)) < b. Therefore, by the inductive hypothesis, both Hi

R+
(Γp(M))n

and Hi
R+

(M/Γp(M))n are finitely generated R0-modules, for all n ∈ Zr. We can now use the long
exact sequence of local cohomology modules (with respect to R+) induced from the exact sequence
0 −→ Γp(M) −→ M −→ M/Γp(M) −→ 0 to deduce that Hi

R+
(M)n is a finitely generated R0-module

for all n ∈ Zr. The result follows. ¤

5. A multi-graded analogue of Marley’s work on finitely graded local cohomology
modules

As was mentioned in the Introduction, the purpose of this section is to obtain some multi-graded
analogues of results about finitely graded local cohomology modules that were proved, in the case where
r = 1, by Marley in [14]. We shall present a multi-graded analogue of one of Marley’s results and some
extensions of that analogue.

5.1. Notation. Throughout this section, we shall be concerned with the situation where R =
⊕

n∈N0
r Rn

is positively graded and standard, and we shall let M =
⊕

n∈Zr Mn be a Zr-graded R-module. Also, b
will always denote an N0

r-graded ideal of R.
For n = (n1, . . . , nr) ∈ N0

r, we shall denote {i ∈ {1, . . . , r} : ni 6= 0} by P(n).

5.2. Definition. An r-tuple n ∈ Zr is called a supporting degree of M precisely when Mn 6= 0; we
denote the set of all supporting degrees of M by S(M).
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Note that Theorem 4.2 imposes substantial restrictions on S(Hi
b(M)) when (i ∈ N0 and) b ⊇ R+.

The example below is included as motivation for the introduction of some notation.

5.3. Example. Let k be an algebraically closed field and let A = k ⊕ A1 ⊕ · · · ⊕ Am ⊕ · · · and
B = k ⊕ B1 ⊕ · · · ⊕ Bn ⊕ · · · be two normal Noetherian standard N0-graded k-algebra domains with
w := dim A > 1 and v := dim B > 1. We consider the N0

2-graded k-algebra

R := A⊗k B =
⊕

(m,n)∈N0
2

Am ⊗k Bn.

Clearly R = k[R(1,0), R(0,1)] is positively graded and standard, and, as a finitely generated k-algebra,
is Noetherian. By [17, Chapter III, §15, Theorem 40, Corollary 1], R is again an integral domain.
Observe that R+ = R(1,1)R = A+ ⊗k B+. As A and B are normal and their dimensions exceed 1, we
have Hi

A+
(A) = Hi

B+
(B) = 0 for i = 0, 1. The Künneth relations for tensor products (see [7] or [13,

Theorem 10.1]) yield, for each i ∈ N0, an isomorphism of Z2-graded R modules

Hi
R+

(R) ∼=
(
A⊗k Hi

B+
(B)

)
⊕

(
Hi

A+
(A)⊗k B

)
⊕




⊕

j,l∈N\{1}
j+l=i+1

(
Hj

A+
(A)⊗k H l

B+
(B)

)

 .

As S(A) = S(B) = N0, it follows that, for each i ∈ N0,

S(Hi
R+

(R)) =
(
N0 × S(Hi

B+
(B))

)
∪

(
S(Hi

A+
(A))× N0

)
∪




⋃

j,l∈N\{1}
j+l=i+1

(
S(Hj

A+
(A))× S(H l

B+
(B))

)

 .

Observe, in particular, that Hi
R+

(R) = 0 for i = 0, 1 and for all i ≥ w + v.
Appropriate choices for A and B yield many examples for R. We shall just concentrate on a class

of examples obtained by this procedure when A and B are chosen in a particular way, which we now
describe. We can use [2, Proposition (2.13)], in conjunction with the Serre–Grothendieck correspondence
(see [4, 20.4.4]), to choose the algebra A (as above) so that, for a prescribed set W ⊆ {2, . . . , w − 1},
we have

S(Hi
A+

(A)) =





∅ for all i ∈ N0 \ (W ∪ {w}),
{0} for all i ∈ W,

{k ∈ Z : k < 0} for i = w.

Similarly, for a prescribed set V ⊆ {2, . . . , v − 1}, we choose B (as above) so that

S(Hi
B+

(B)) =





∅ for all i ∈ N0 \ (V ∪ {v}),
{0} for all i ∈ V,

{k ∈ Z : k < 0} for i = v.

With such a choice of A for w = 5 and W = {2}, and such a choice of B for v = 5 and V = {3}, the
sets of supporting degrees S(Hi

R+
(R)) for i = 2, 3, 4, 5 are as in Figure 1 below.
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Figure 1. S(Hi
R+

(R)) for i = 2, 3, 4, 5 respectively
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In view of Theorem 4.2, the supporting set S(H5
R+

(R)) seems unremarkable. The local cohomology
module H4

R+
(R) is finitely graded. Although neither H3

R+
(R) nor H2

R+
(R) is finitely graded, both have

sets of supporting degrees that are quite restricted.

We now return to the general situation described in Notation 5.1. In the case where r = 1, one
way of recording that a local cohomology module Hi

b(M) is finitely graded is to state that there exist
s, t ∈ Z with s < t such that

S(Hi
b(M)) =

{
n ∈ Z : Hi

b(M)n 6= 0
} ⊆ {n ∈ Z : s ≤ n < t} .

One might expect the natural generalization to our multi-graded situation to involve conditions such as

S(Hi
b(M)) =

{
n ∈ Zr : Hi

b(M)n 6= 0
} ⊆ {n = (n1, . . . , nr) ∈ Zr : si ≤ ni < ti for all i = 1, . . . , r} ,

where s = (s1, . . . , sr), t = (t1, . . . , tr) ∈ Zr satisfy s ≤ t. However, in the light of evidence like that
provided by Example 5.3 above, and other examples, we introduce the following.

5.4. Notation. Let s = (s1, . . . , sr), t = (t1, . . . , tr) ∈ Zr with s ≤ t. We set

X(s, t) := {n = (n1, . . . , nr) ∈ Zr : there exists i ∈ {1, . . . , r} such that si ≤ ni < ti} .

5.5. Example. Figure 2 below illustrates, in the case where r = 2, the set X((−2, 1), (0, 2)).
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Figure 2. The set X((−2, 1), (0, 2)) in Z2

5.6. Remark. Let s, s′, s′′, t, t′, t′′ ∈ Zr with s ≤ t, s′ ≤ t′ and s′′ ≤ t′′. Let m ∈ N0
r \ {0}.

(i) Clearly (s + N0
r) \ (t + N0

r) ⊆ X(s, t).
(ii) Suppose that P(t− s) ⊆ P(m). Let w ∈ Zr be such that P(w) ⊆ {1, . . . , r} \ P(m). Then

X(s + w, t + w) = X(s, t) = {n ∈ Zr : there exists i ∈ P(m) such that si ≤ ni < ti} .

(iii) Clearly X(s′, t′) ∪ X(s′′, t′′) ⊆ X(min{s′, s′′}, max{t′, t′′}).
(iv) Assume that P(t′ − s′) ⊆ P(m) and P(t′′ − s′′) ⊆ P(m). For each i ∈ {1, . . . , r}, set

s̃i := min{s′i, s′′i } and t̃i :=

{
max{t′i, t′′i } if i ∈ P(m),
s̃i if i ∈ {1, . . . , r} \ P(m).

Set s̃ := (s̃1, . . . , s̃r) and t̃ := (t̃1, . . . , t̃r). Then

s̃ ≤ t̃, P(t̃− s̃) ⊆ P(m) and X(s′, t′) ∪ X(s′′, t′′) ⊆ X(s̃, t̃).

The next lemma provides a small hint about the importance of the sets X(s, t) of Notation 5.4 for
our work.

5.7. Lemma. Let m ∈ N0
r \ {0}. Assume that M is finitely generated and that Rm ⊆

√
(0 :R M).

Then there exist s, t ∈ Zr such that s ≤ t, P(t− s) ⊆ P(m) and S(M) ⊆ (s +N0
r) \ (t +N0

r), so that
S(M) ⊆ X(s, t) in view of Remark 5.6(i).
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Proof. As M is finitely generated, there exist s,w ∈ Zr such that s ≤ w and M =
∑

s≤n≤w RMn. In
particular, S(M) ⊆ s + N0

r.
Moreover, there exists u ∈ N such that (Rm)u ⊆ (0 :R M); since R is standard, (Rm)u = Rum; hence

RumMn = 0 for all n ∈ Zr.
Let t = s +

∑
i∈P(m)(wi − si + umi)ei. Now, let h = (h1, . . . , hr) ∈ t + N0

r. Our proof will be
complete once we have shown that Mh = 0. For each i ∈ P(m), we have hi ≥ ti = wi +umi. Moreover,

Mh =
∑

n∈T
Rh−nMn, where T = {n ∈ Zr : s ≤ n ≤ w, n ≤ h} .

Let n = (n1, . . . , nr) ∈ T . If i ∈ P(m), then ni + umi ≤ wi + umi ≤ hi; if i ∈ {1, . . . , r} \ P(m), then
ni + umi = ni ≤ hi. Consequently n + um ≤ h . Therefore um ≤ h− n for all n ∈ T , and hence

Mh =
∑

n∈T
Rh−nMn =

∑

n∈T
Rh−n−umRumMn = 0.

¤

5.8. Definition. Let Q ⊆ {1, . . . , r}. By a Q-domain in Zr we mean a set of the form

X(s, t) with s, t ∈ Zr, s ≤ t and P(t− s) ⊆ Q.

5.9. Remarks. The following statements are immediate from the definition.

(i) A ∅-domain in Zr is empty.
(ii) If Q ⊆ Q′ ⊆ {1, . . . , r} and if X is a Q-domain in Zr, then X is a Q′-domain in Zr.
(iii) If X is a Q-domain in Zr and w ∈ Zr, then w + X := {w + n : n ∈ X} is a Q-domain in Zr.
(iv) If s, t ∈ Zr with s ≤ t and P(t− s) ⊆ Q, then (s+N0

r) \ (t+N0
r) is contained in a Q-domain

in Zr, by Remark 5.6(i).
(v) If X is a Q-domain in Zr and w ∈ Zr is such that P(w)∩Q = ∅, then X = w +X, by Remark

5.6(ii).
(vi) By Remark 5.6(iv), the union of finitely many Q-domains in Zr is contained in a Q-domain in

Zr.

5.10. Lemma. Let m,k ∈ N0
r \ {0}, and let T be a Zr-graded R-module such that RmT = 0. Let

y ∈ Rk, and let K denote the kernel of the homogeneous R-homomorphism T −→ T (k) given by
multiplication by y.

(i) If P(m) ⊆ P(k), then there exists v ∈ N0 such that S(T ) ⊆ ⋃v
j=0 (S(K)− jk).

(ii) If P(m) 6⊆ P(k), if multiplication by y provides an isomorphism T
∼=−→ T (k), and if T consid-

ered as an Ry-module is finitely generated, then S(T ) is contained in a (P(m) \P(k))-domain
in Zr.

Proof. Write m = (m1, . . . , mr) and k = (k1, . . . , kr). Let u ∈ N be such that mi ≤ uki for all
i ∈ P(k). Set h :=

∑
i∈{1,...,r}\P(k) miei. Then, if i ∈ P(k), we have (uk + h)i = uki ≥ mi, whereas, if

i ∈ {1, . . . , r} \ P(k), we have (uk + h)i = uki + mi ≥ mi. Therefore m ≤ uk + h.
Now, let z ∈ Rh. Then, because R is standard, yuz ∈ Ruk+h = Ruk+h−mRm. As RmT = 0, it

follows that yuzT = 0. Therefore yuRhT = 0.
(i) Assume that P(m) ⊆ P(k). Then P(h) = P(m) \ P(k) = ∅, so that h = 0. Hence yuT =

yuR0T = 0.
Now let K :=

⋃u−1
j=0 (S(K)−jk), and let n ∈ Zr\K. If we show that Tn = 0, then we shall have proved

part (i). Now n+jk 6∈ S(K) for all j ∈ {0, . . . , u−1}, and so the R0-homomorphism yu : Tn −→ Tn+uk,
which is the composition of the R0-homomorphisms y : Tn+jk −→ Tn+(j+1)k for j = 0, . . . , u − 1, is
injective. But yuTn = 0, and so Tn = 0.

(ii) Now assume that P(m) 6⊆ P(k), that multiplication by y provides an isomorphism T
∼=−→ T (k),

and that T considered as an Ry-module is finitely generated. As yuRhT = 0, it follows that RhT = 0.
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As T is finitely generated over Ry, there are finitely many r-tuples g(1), . . . ,g(q) ∈ Zr such that
T =

∑q
j=1 RyTg(j) . Now, for i ∈ {1, . . . , r}, set

si :=

{
0 if i 6∈ P(h),
min{g(j)

i : j = 1, . . . , q} if i ∈ P(h),
ti :=

{
0 if i 6∈ P(h),
max{g(j)

i : j = 1, . . . , q}+ hi if i ∈ P(h),

and put s = (s1, . . . , sr), t = (t1, . . . , tr). Then s ≤ t and P(t − s) = P(h) = P(m) \ P(k). Let
n ∈ Zr \ X(s, t). If we show that Tn = 0, then we shall have proved part (ii). Let α ∈ Tn. There exist
integers v1, . . . , vq such that α ∈ ∑q

j=1 yvj Rn−vjk−g(j)Tg(j) .
Note that, for each i ∈ P(h) = P(m) \P(k), we have either ni < si or ti ≤ ni (because n 6∈ X(s, t)).
Assume first that there is some i ∈ P(h) with ni < si. As i 6∈ P(k), it follows that

(n− vjk− g(j))i = ni − vjki − g
(j)
i = ni − g

(j)
i < si − g

(j)
i ≤ 0,

for all j ∈ {1, . . . , q}, so that Rn−vjk−g(j) = 0 and α = 0.
Therefore, we can, and do, assume that ti ≤ ni for all i ∈ P(h). In this case, for each i ∈ P(h) and

each j ∈ {1, . . . , q}, we have

(n− vjk− g(j))i = ni − vjki − g
(j)
i = ni − g

(j)
i ≥ ti − g

(j)
i ≥ hi.

Therefore, for each j ∈ {1, . . . , q}, either n−vjk−g(j) ≥ h, or n−vjk−g(j) has a negative component
and Rn−vjk−g(j) = 0. This means that

α ∈
q∑

j=1

yvj Rn−vjk−g(j)Tg(j) =
q∑

j=1
n−vjk−g(j)≥0

yvj Rn−vjk−g(j)−hRhTg(j) = 0.

It follows that Tn = 0, as required. ¤

5.11. Lemma. Let m ∈ N0
r \ {0} and k ∈ N0

r. Assume that M is finitely generated and that Rm ⊆√
(0 :R M). Let y ∈ Rk. Then there exists a (P(m)\P(k))-domain X in Zr such that S(H1

yR(M)) ⊆ X.

Proof. Assume first that k = 0. Then P(k) = ∅ and, by the multi-graded analogue of [4, Lemma
13.1.10], there are R0-isomorphisms H1

yR(M)n ∼= H1
yR0

(Mn) for all n ∈ Zr. Therefore S(H1
yR(M)) ⊆

S(M), and the claim follows in this case from Lemma 5.7.
We now deal with the remaining case, where k 6= 0. Since (by the multi-graded analogue of [4,

12.4.2]) there is a Zr-homogeneous epimorphism of Zr-graded R-modules DyR(M) −→ H1
yR(M), it

suffices for us to show that S(DyR(M)) is contained in a (P(m) \ P(k))-domain in Zr.
Recall that there is a homogeneous isomorphism DyR(M) ∼= My, and so the multiplication map y :

DyR(M) −→ DyR(M)(k) is an isomorphism, and DyR(M) is finitely generated as an Ry-module. Since
Rm ⊆

√
(0 :R M), there exists u ∈ N such that RumM = 0, so that RumMy = 0 and RumDyR(M) = 0.

Observe that P(um) = P(m). We now apply Lemma 5.10, with DyR(M) as the module T and um in
the rôle of m: if P(um) = P(m) ⊆ P(k), then part (i) of Lemma 5.10 yields that S(DyR(M)) = ∅,
while if P(um) = P(m) 6⊆ P(k), then it follows from part (ii) of Lemma 5.10 that S(DyR(M)) is
contained in a (P(m) \ P(k))-domain in Zr. ¤

5.12. Lemma. Let m ∈ N0
r \ {0}. Assume that M is finitely generated and that Rm ⊆

√
(0 :R M).

Then there exists a P(m)-domain X in Zr such that S(Hi
b(M)) ⊆ X for all i ∈ N0.

Proof. Since Hi
b(M) = 0 for all i > ara(b), it follows from Remark 5.9(vi) that it is sufficient for us to

show that, for each i ∈ N0, there exists a P(m)-domain Xi in Zr such that S(Hi
b(M)) ⊆ Xi. For i = 0,

this is immediate from Lemma 5.7.
Let y1, . . . , ys be N0

r-homogeneous elements of R that generate b. We argue by induction on s.
When s = 1 and i = 1, the desired result follows from Lemma 5.11; as we have already dealt, in the
preceding paragraph, with the case where i = 0, and as Hi

y1R(M) = 0 for all i > 1, we have established
the desired result in all cases when s = 1.



24 MARKUS P. BRODMANN AND RODNEY Y. SHARP

So suppose now that s > 1 and that the desired result has been proved in all cases where b can
be generated by fewer than s N0

r-homogeneous elements. Again, we have already dealt with the case
where i = 0. For i ∈ N, there is an exact Mayer–Vietoris sequence (in the category *CZr

(R))

· · · −→ Hi−1
(y1ys,...,ys−1ys)R(M) −→ Hi

b(M) −→ Hi
(y1,...,ys−1)R

(M)⊕Hi
ysR(M) −→ · · · .

By the inductive hypothesis, there exist P(m)-domains X′i,X′′i ,X′′′i in Zr such that

S(Hi−1
(y1ys,...,ys−1ys)R(M)) ⊆ X′i, S(Hi

(y1,...,ys−1)R
(M)) ⊆ X′′i and S(Hi

ysR(M)) ⊆ X′′′i .

Therefore S(Hi
b(M)) ⊆ X′i ∪ X′′i ∪ X′′′i , and so the desired result follows from Remark 5.9(vi). ¤

5.13. Lemma. Let m ∈ N0
r \ {0}. Let p1, . . . , pn be prime ideals of R such that Rm 6⊆ pi for each

i = 1, . . . , n. Then there exists u ∈ N such that Rum 6⊆ ⋃n
i=1 pi

Proof. Consider the (Noetherian) N0-graded ring R0[Rm] =
⊕

j∈N0
Rjm (in which Rjm is the compo-

nent of degree j, for all j ∈ N0). Apply the ordinary Homogeneous Prime Avoidance Lemma (see [4,
Lemma 15.1.2]) to the graded ideal RmR0[Rm] =

⊕
j∈NRjm and the prime ideals pi ∩ R0[Rm] (i =

1, . . . , n). ¤
5.14. Lemma. Let m ∈ N0

r \ {0} and let X be a P(m)-domain in Zr. Then there exists u ∈ N such
that, for each w ∈ Zr, there is some j ∈ {0, . . . , #P(m)} with w + jum 6∈ X.

Proof. There exist s, t ∈ Zr with s ≤ t and P(t− s) ⊆ P(m) for which X = X(s, t). Choose u ∈ N such
that um ≥ t− s.

For an arbitrary w ∈ Zr, set I(w) = {i ∈ {1, . . . , r} : si ≤ wi < ti}, and observe that I(w) ⊆ P(m),
and that w ∈ X if and only if I(w) 6= ∅. Note also that, for i ∈ I(w) and j ∈ N, we have

(w + jum)i = wi + jumi ≥ si + umi ≥ si + ti − si = ti,

so that i 6∈ I(w + jum). So, for each i ∈ P(m), if there is a j′ ∈ N0 with i ∈ I(w + j′um), then
i 6∈ I(w + jum) for all j > j′. This means that, for each i ∈ P(m), there is at most one j′ ∈ N0 with
i ∈ I(w + j′um). By the pigeon-hole principle, it is therefore possible to choose a j ∈ {0, . . . , #P(m)}
for which I(w + jum) ∩ P(m) = ∅, and then w + jum 6∈ X. ¤

The concept introduced in the next definition can be regarded as a multi-graded analogue of one
defined by Marley in [14, §2].

5.15. Definition. Let Q ⊆ {1, . . . , r}, and let b be an N0
r-graded ideal of R. We define the Q-finiteness

dimension gQb (M) of M with respect to b by

gQb (M) := sup
{
k ∈ N0 : for all i < k, there exists a Q-domain Xi in Zr with S(Hi

b(M)) ⊆ Xi

}
,

if this supremum exists, and ∞ otherwise.

5.16. Example. For R as in Example 5.3, we have

g∅R+
(R) = 2, g

{1}
R+

(R) = 3, g
{2}
R+

(R) = 2, g
{1,2}
R+

(R) = 5.

5.17. Remarks. The first three of the statements below are immediate from Remarks 5.9(i),(ii),(iii)
respectively.

(i) In the case whereQ = ∅, we have g∅b(M) = inf
{
i ∈ N0 : Hi

b(M) 6= 0
}

(with the usual convention
that the infimum of the empty set of integers is interpreted as ∞).

(ii) If Q ⊆ Q′ ⊆ {1, . . . , r}, then gQb (M) ≤ gQ
′

b (M).
(iii) For n ∈ Zr, we have gQb (M(n)) = gQb (M).
(iv) Let (Qλ)λ∈Λ be a family of subsets of {1, . . . , r}. Set

Ω :=

{ ⋂

λ∈Λ

Xλ : Xλ is a Qλ-domain in Zr for all λ ∈ Λ

}
.

It is straightforward to check that

inf
{

gQλ

b (M) : λ ∈ Λ
}

= sup
{
k ∈ N0 : for all i < k, there exists Yi ∈ Ω with S(Hi

b(M)) ⊆ Yi

}
.
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(v) Since a subset of Zr is finite if and only if it is contained in a set of the form
⋂r

j=1 Xj , where
Xj is a {j}-domain in Zr for all j ∈ {1, . . . , r}, it therefore follows from part (iv) that

min
{

g
{1}
b (M), . . . , g{r}b (M)

}
= sup

{
k ∈ N0 : S(Hi

b(M)) is finite for all i < k
}

.

Thus we can say that min
{

g
{1}
b (M), . . . , g{r}b (M)

}
identifies the smallest integer i (if there be

any) for which Hi
b(M) is not finitely graded.

5.18. Proposition. Let m ∈ N0
r \ {0}, and let f ∈ N. Assume that M is finitely generated. The

following statements are equivalent:
(i) Rm ⊆

√
(0 :R Hi

b(M)) for all integers i < f ;
(ii) for each integer i < f , there is a P(m)-domain Xi in Zr such that S(Hi

b(M)) ⊆ Xi, that is
f ≤ g

P(m)
b (M);

(iii) there is a P(m)-domain X in Zr such that S(Hi
b(M)) ⊆ X for all integers i < f .

Proof. (ii) ⇔ (iii) This is immediate from Remark 5.9(vi).
(iii) ⇒ (i) Assume that statement (iii) holds. By Lemma 5.14, there exist u, v := #P(m) ∈ N such

that, for each n ∈ Zr, there exists j(n) ∈ {0, . . . , v} with n + j(n)um 6∈ X. So, for each n ∈ Zr and
each integer i < f , we have Hi

b(M)n+j(n)um = 0 and

RvumHi
b(M)n = Rvum−j(n)umRj(n)umHi

b(M)n ⊆ Rvum−j(n)umHi
b(M)n+j(n)um = 0.

Therefore RvumHi
b(M) = 0 for all integers i < f , and hence

(Rm)vu ⊆ Rvum ⊆ (0 :R Hi
b(M)) for all i < f.

(i) ⇒ (ii) Assume that statement (i) holds. We argue by induction on f . When f = 1, the desired
conclusion is immediate from Lemma 5.7 (applied to H0

b(M)).
So assume now that f > 1 and that statement (ii) has been proved for smaller values of f . This

inductive hypothesis implies that there exist P(m)-domains X0, . . . ,Xf−2 in Zr such that S(Hi
b(M)) ⊆

Xi for all i ∈ {0, . . . , f−2}. It thus remains to find a P(m)-domain Xf−1 in Zr such that S(Hf−1
b (M)) ⊆

Xf−1.
Set M := M/ΓRmR(M), and observe that Rm ⊆

√
(0 :R ΓRmR(M)). It therefore follows from

Lemma 5.12 that there is a P(m)-domain X′ in Zr such that S(Hf−1
b (ΓRmR(M))) ⊆ X′. In view of the

exact sequence of Zr-graded R-modules

Hf−1
b (ΓRmR(M)) −→ Hf−1

b (M) −→ Hf−1
b (M)

and Remark 5.9(vi), it is now enough for us to show that S(Hf−1
b (M)) is contained in a P(m)-domain

in Zr.
As Rm ⊆

√
(0 :R Hj

b(ΓRmR(M))) for all j ∈ N0, the exact sequence

Hi
b(M) −→ Hi

b(M) −→ Hi+1
b (ΓRmR(M))

shows that Rm ⊆
√

(0 :R Hi
b(M)) for all integers i < f . Set AssR(M) =: {p1, . . . , pk}. As RmR does

not consist entirely of zero-divisors on M , we have Rm 6⊆ pi for each i = 1, . . . , k. Therefore, by Lemma
5.13, there exists u′ ∈ N such that Ru′m 6⊆ ⋃k

i=1 pi, and hence there exists y′ ∈ Ru′m which is not a
zero-divisor on M . We can now take a sufficiently high power y of y′ to find u ∈ N and y ∈ Rum such
that RumHf−1

b (M) = 0 and y is a non-zero-divisor on M , so that there is a short exact sequence of
Zr-graded R modules

0 −→ M(−um)
y−→ M −→ M/yM −→ 0.

It now follows from the long exact sequence of local cohomology modules induced from the above short

exact sequence that Rm ⊆
√

(0 :R Hi
b(M/yM)) for all integers i < f − 1. Therefore, by the inductive

hypothesis, there is a P(m)-domain X′′ in Zr such that S(Hf−2
b (M/yM)) ⊆ X′′. Let K be the kernel

of the map Hf−1
b (M) −→ Hf−1

b (M)(um) provided by multiplication by y. The long exact sequence
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of local cohomology modules induced from the last-displayed short exact sequence now shows that
S(K) ⊆ X′′ − um.

We now apply Lemma 5.10(i) to Hf−1
b (M), with um playing the rôles of both m and k: the conclusion

is that there exists v ∈ N0 such that

S(Hf−1
b (M)) ⊆

v⋃

j=0

(S(K)− jum) ⊆
v⋃

j=0

(X′′ − um− jum).

We can now use Remarks 5.9(iii),(vi) to deduce the existence of a P(m)-domain Xf−1 in Zr such that
S(Hf−1

b (M)) ⊆ Xf−1. With this, the proof is complete. ¤

We now connect the concept ofQ-finiteness dimension of M with respect to b, introduced in Definition
5.17, with the concept of a-finiteness dimension of M relative to b (where a is a second ideal of R),
studied by Faltings in [5]. (See also [4, Chapter 9].)

5.19. Reminder. Assume that M is finitely generated, and let a, d be ideals of R (not necessarily
graded).

The a-finiteness dimension fa
d (M) of M relative to d is defined by

fa
d (M) = inf

{
i ∈ N0 : a 6⊆

√
(0 : Hi

d(M))
}

and the a-minimum d-adjusted depth λa
d(M) of M is defined by

λa
d(M) := inf{depth Mp + ht(d + p)/p : p ∈ Spec(R) \Var(a)} .

(Here, Var(a) denotes the variety {p ∈ Spec(R) : p ⊇ a} of a.) It is always the case that fa
d (M) ≤

λa
d(M); Faltings’ (Extended) Annihilator Theorem [5] states that if R admits a dualizing complex or is

a homomorphic image of a regular ring, then fa
d (M) = λa

d(M). (See [3, Corollary 3.8] for an account of
the extended version of Faltings’ Annihilator Theorem.)

5.20. Remark. Let the situation be as in Reminder 5.19, let K ⊆ R, and let (Kj)j∈J be a family of
subsets of R.

(i) It is easy to deduce from the definition that fKR
d (M) = inf

{
faR

d (M) : a ∈ K
}
.

(ii) We can then deduce from part (i) that f
(
⋃

j∈J Kj)R

d (M) = inf
{

f
KjR
d (M) : j ∈ J

}
.

(iii) Similarly, it is easy to deduce from the definition that λKR
d (M) = inf

{
λaR

d (M) : a ∈ K
}
.

(iv) We can then deduce from part (iii) that λ
(
⋃

j∈J Kj)R

d (M) = inf
{

λ
KjR
d (M) : j ∈ J

}
.

5.21. Theorem. Assume that M is finitely generated, and let ∅ 6= T ⊆ N0
r.

(i) We have

sup{k ∈ N0 : for all i < k and all m ∈ T , there exists a P(m)-domain X(m)
i in Zr

such that S(Hi
b(M)) ⊆ X(m)

i

}

= inf
{

g
P(m)
b (M) : m ∈ T

}

= f
∑

m∈T RmR

b (M) ≤ λ
∑

m∈T RmR

b (M).

(ii) If R admits a dualizing complex or is a homomorphic image of a regular ring, then we can
replace the inequality in part (i) by equality.

Proof. Apply Remark 5.17(iv) to the family (P(m))m∈T of subsets of {1, . . . , r} to conclude that

sup{k ∈ N0 : for all i < k and all m ∈ T , there exists a P(m)-domain X(m)
i in Zr

such that S(Hi
b(M)) ⊆ X(m)

i

}

= inf
{

g
P(m)
b (M) : m ∈ T

}
.
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By Proposition 5.18, we have g
P(m)
b (M) = fRmR

b (M) for all m ∈ T . Therefore, on use of Remark
5.20(ii), we deduce that

inf
{

g
P(m)
b (M) : m ∈ T

}
= inf

{
fRmR

b (M) : m ∈ T
}

= f
∑

m∈T RmR

b (M).

We can now use Faltings’ (Extended) Annihilator Theorem [5] (see Reminder 5.19) to complete the
proof of part (i) and to obtain the statement in part (ii). ¤

5.22. Corollary. Assume that M is finitely generated.
(i) For each non-empty set T ⊆ 1 + N0

r, we have

f
∑

m∈T RmR

b (M) = g
{1,...,r}
b (M).

(ii) For each set T ⊆ N0
r \ {0} such that Nei ∩ T 6= ∅ for all i ∈ {1, . . . , r}, we have

f
∑

m∈T RmR

b (M) = sup
{
k ∈ N0 : S(Hi

b(M)) is finite for all i < k
}

= sup
{
k ∈ N0 : Hi

b(M) is finitely graded for all i < k
}

.

(iii) If M 6= bM , then fR
b (M) = g∅b(M) = gradeM b.

Note. If, in the case where r = 1, we take T = N, so that
∑

m∈T RmR = R+, then the statement in
part (ii) becomes

f
R+
b (M) = sup

{
k ∈ N0 : Hi

b(M) is finitely graded for all i < k
}

,

a result proved by Marley in [14, Proposition 2.3].

Proof. (i) By Theorem 5.21(i), we have f
∑

m∈T RmR

b (M) = inf
{

g
P(m)
b (M) : m ∈ T

}
. But P(m) =

{1, . . . , r} for all m ∈ 1 + N0
r.

(ii) By Theorem 5.21(i), we have

f
∑

m∈T RmR

b (M) = inf
{

g
P(m)
b (M) : m ∈ T

}
.

By the hypothesis, for each i ∈ {1, . . . , r}, there exists mi ∈ T with P(mi) = {i}. It therefore follows
from Remark 5.17(ii) that inf

{
g
P(m)
b (M) : m ∈ T

}
= min

{
g
{1}
b (M), . . . , g{r}b (M)

}
. However, we noted

in Remark 5.17(v) that

min
{

g
{1}
b (M), . . . , g{r}b (M)

}
= sup

{
k ∈ N0 : S(Hi

b(M)) is finite for all i < k
}

.

(iii) Since R = R0R, we can deduce from Theorem 5.21(i) and Remark 5.17(i) that

fR
b (M) = fR0R

b (M) = g
P(0)
b (M) = g∅b(M) = sup

{
k ∈ N0 : Hi

b(M) = 0 for all i < k
}

= gradeM b.

¤

References

1. H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28.
2. M. Brodmann, Cohomological invariants of coherent sheaves over projective schemes: a survey, in Local cohomology

and its applications (Guanajuato, 1999), Lecture Notes in Pure and Appl. Math. 226, Dekker, New York, 2002, pp.
91–120.

3. M. P. Brodmann, Ch. Rotthaus and R. Y. Sharp, On annihilators and associated primes of local cohomology modules,
J. Pure and Applied Algebra 153 (2000), 197–227.

4. M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cam-
bridge Studies in Advanced Mathematics 60, Cambridge University Press, 1998.
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