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The Historic Roots 

Castelnuovo-Mumford regularity has two historic roots:
 
A geometric result of 1893 by Castelnuovo on linear
systems on projecive curves.

An algebraic result - Hilbert's Syzygy Theorem of 1910.

NB: Only Serre's Sheaf Cohomology Theory for
       algebraic varieties of 1955 and Grothendieck's Local
       Cohomology Theory of 1962 furnished the appropriate tools
       to link the geometric and the algebraic root of Castelnuovo-
       Mumford regularity...

NB: Hilbert's Theorem initiated a controversy among the
       algebraists of his time, which culminated in the „Problem of
       the Finitely may Steps“ which was solved in 1923-1926 by
       Hentzelt-Noether and Hermann. 



  

1. The Bounding Result of Castelnuovo

CASTELNUOVO'S BOUNDING RESULT (1893):
Let C be a smooth complete curve of degree d in the
complex projective 3-space P^3. Then, for all n > d-3 and
each surface X of degree n in P^3, the complete linear 
system which is cut out on C by X is spanned by n-forms.
Moreover, if C is rational, this bound is sharp.
 
IN MODERN TERMS (AS OBSERVED BY MUMFORD, 1966): 

The first Serre cohomolgy group H^1(P^3,J(n)) of P^3 with coefficients in the

n-fold twist J(n) of the sheaf of  vanishing ideals J of C equals 0 for all n > d-3.

For rational  curves, this bound is sharp.



  

2. The Syzygy Theorem of Hilbert 
   NOTATION: Let K be a field, let r be a positive integer and let

    S:= K[X_1, .... , X_r]  

                         be the polynomial ring over K in the r indeterminates      

                         X_1, ... , X_r. Let I be a homogeneous ideal of S. 

    

    HILBERT'S SYZYGY THEOREM (1910):
    The ideal I has a minimal free resolution. This resolution 

is unique (up to isomorphism of complexes) and its length 
cannot exceed the number r of indeterminates.     

    NB: We can replace I by any finitely generated S-module.

   

    NOTATION: For a finitely generated graded S-module M  let 

d_i(M) : = d(F_i) 

                          denote the generating degree of the i-th free module F_i    

                          in the minimal free  resolution on M.  
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3. The Problem of the Finitely Many Steps

 PROBLEM OF THE FINITELY MANY STEPS (~ 1910):  Does 

  the generating degree d(I) of the ideal I bound the generating
  degrees d_i(I) = d(F_i)  of all  free modules F_i which occur in
  the minimal free  resolution of I ?
  
  NB: An affirmative answer guarantees that the minimal free

  resolution of I may be computed in „fintely many steps“ from

  a system of generators of I. 

  THE BOUNDING RESULT OF HENTZELT-NOETHER (1923)
  AND HERMANN (1926): The generating degree d(I) of I
  bounds all the degrees d_i(I). 
  So,  the “Problem of the Finitely Many Steps“ is answered
  affirmatively.   



  

The Definition of Castelnuovo
Regularity in Terms of Sheaf 

Cohomology 
 
 In 1966, Mumford defined the notion of Castelnuovo
 regularity for a coherent sheaf of ideals over a projective
 space and established a fundamental upper bound for this
 invariant.

 NB: Mumford's bound can be made explicit and thus
         opened a new view to Grothendieck's construction of the
         Hilbert scheme of 1962.

 NB: Mumfords bounding result made come up again an old
         question of Algebraic Geometry, which was hidden already
         behind the „Problem of the Finitely Many Steps“, namely:

 „What can be computed in Algebraic Geometry ?“ 

        - the title of a joint paper by Bayer and Mumford of 1991. 



  

4. The Definition given by Mumford

 MUMFORD'S DEFINITION OF REGULARITY (1966):
 Let J be a coherent sheaf of ideals over projective s-space
 P^s. Then, the Castelnuovo regularity of J is defined as 

 reg(J) : = min{n : H^i(P^s,J(n-i))=0 for all i > 0},
 where H^i(P^s,J(n-i)) denotes the i-th Serre cohomology 
 group of P^s with coefficients in the (n-i)-th twist of J.
 The Castelnuovo regularity of a closed subscheme X
 (thus i. p. of a projective variety) in P^s is the regularity of 
 its sheaf J_X of vanishing ideals: reg(X) : = reg(J_X).

 MUMFORD'S OBSERVATION: Castelnuovo's Bounding Result says, that the a 

 smooth  complete curve C of degree  d in complex projective  three space P^3  

 satisfies reg(C) <  d, and this bound is sharp if C is rational.



  

 6. The Hilbert Scheme of Grothendieck
GROTHENDIECK'S CONSTRUCTION AND DEFINITION OF
THE HILBERT SCHEME (1962): Let p be a polynomial of
degree s. Then, there is a projective scheme Hilb_p (called
the Hilbert scheme of p), which parametrizes all coherent
sheaves J of ideals over P^s which satisfy p_J = p.

NB: An essential step in Grothendieck's construction is to
       show that there is some m = m(p) such that H^i(P^s, J(n)) = 0 for all i>0, all 
       n>m and all J with p_J = p.

NB: Grothendiek's proof of this fact does not hint a possbilty
        to compute such a bound m(p). (The proof of) Mumford's
        Bounding Result allows to compute such a bound. So,
        Mumford's approach emphasizes the computational aspect
        of  Grothendieck's construction...



  

7. Generalizing Castelnuovo's Bound

THE BOUND OF GRUSON-LAZARSFELD-PESKINE (1983):
An irreducible projective curve C of degree d in P^s satisfies 

reg(C) < d – s + 3.

THE CONJECTURE OF EISENBUD-GOTO (1984): An
irreducible projective variety X of degree d in P^s satisfies

 reg(X) < d – s + dim(X) + 2.

THE BOUNDS OF PINKHAM AND LAZARSFELD (1986, 1987):
If X is a smooth surface of degree d in the complex
projective space P^s, the Eisenbud-Goto Conjecture holds.

NB: The Eisenbud-Goto Conjecture is still open for arbitrary
       projective surfaces. However, it has been established in the
       last years for many classes of projective varieties.



  

Joining the Two Roots
 In 1982 Ooishi used Grothendieck's Local Cohomology to 
 define the notion of Castelnuovo-Mumford regularity for
 finitely generated graded modules – an extension of
 Mumford's concept of Castelnuovo regularity. As shown
 by Eisenbud-Goto in 1984, the  Castelnuovo-Mumford
 regularity and the degrees of syzygies of a finitely
 generated graded module are closely related. 
 So, the geometric and the algebraic root of our theory are
 now brought together !

 NB: At the same time, Computational Algebra and 
         Compuational Algebraic Geometry became new and quickly
         growing theories, making both gain from the fact, that now
         highly powered  computers were available to handle
         successfully complex symbolic algorithms. 
         The basic standard task in this field is yet the computation
         of minimal free resolutions. This turns Castelnuovo-
         Mumford regularity into the ultimate measure of complexity
         for algebraic-geometric computations.  
 



  

8. The Use of Local Cohomology
OOISHI'S DEFINITION (1982): Let M be a finetely generated
graded module over the polynomial ring S. Then, the
Castelnuovo-Mumford regularity of M is defined as

reg(M) : = max{end(H^i(M)) : i = 0,1, ...},
where H^i(M) denotes the (graded !) i-th local cohomology
module of M (with respect to the homogeneous maximal
ideal of S) and end(H^i(M)) denotes the largest degree in
which the graded S-module H^i(M) does not vanish. 

NB: The Serre-Grothendieck Correspondence between
        sheaf cohomology and local cohomology yields, that for
        a homogeneous saturated ideal I of S and its induced sheaf
        of ideals J over P^(r-1) we have reg(J) = reg (I).
        As each sheaf of ideals over a projective space is induced
        by a homogeneous saturated ideal in a polynomial ring, 
        Ooishis Definition is more general than Mumford's.



  

9. Relating Regularity to Syzygies

A THEOREM OF EISENBUD-GOTO (1984): Let M be a finitely
generated graded S-module. Then it holds

reg(M) = max{d_i(M) – i : i = 0, ... , r}.

COROLLARY: The cohomological invariant reg(M) governs
the computational complexity of the minimal free resolution
of M.

COHOMOLOGICAL FORMULATION OF THE PROBLEM OF
THE FINITELY MANY STEPS: Let I be a homogeneous ideal
of the polynomial ring S. Is reg(I) bounded in terms of the
generating degree d(I) of I ?

NB: By the Bounding Result of Henzelt-Noether and Hermann,
       and the above theorem of Eisenbud-Goto this holds. But can
       one explicitly compute a satisfactory  upper bound for reg(I)
       in terms of r and d := d(I) ?



  

10. The Pace for a Bound

 THE BOUND OF HERMANN (1926): Working through the
 arguments of Hermann's proof, one obtains

reg(I) < 1 + (2d)^(2^[(r-1)r]).

 THE BOUND OF BAYER-MUMFORD (1991):
 reg(I) < 1 + (2d)^[(r-1)!].

 THE BOUND OF GALIGO (1979), GIUSTI (1984) AND
 CAVIGLIA-SBARRA (2005): 

reg(I) < 1 + (2d)^(2^[r-1]).
 NB: Galligo and Giusti established only the case Char(K) = 0.

 MAYR-MEYER (1982):  For each r > 3 there is an ideal I such
 that with c := 2^0.2 one has

 reg(I) > 1 + (2d)^(c^[r-1]).  

QUESTION: Can we replace 2^[r-1] by C^[r-1] with c<C<2 ?  



  

11. Computational Algebra

THE REGULARITY TEST OF BAYER-STILLMAN (1987): The 
Castelnuovo-Mumford regularity reg(I) of the homogenous
ideal I of S is the maximum degree of all reduced Gröbner
bases of I  and this maximum is attained for some standard 
term order on S. 

NB: This results relates Castelnuovo-Mumford regularity to
       Gröbner bases. These bases are the fundamental tool for all
       algorithms of Computational Algebra in polynomial algebras
       and related objects. These algorithms are implemented in
       high power programs like MACAULAY, SINGULAR , COCOA
       and a number of commercial programs. They allow to
       compute minimal free resolutions, Ext-, Deficiency-, Tor-
       modules and other satellite objects, but also the Hilbert
       functions and -polynomials and other numerical invariants
       of finitely generated graded modules over polynomial rings.

NB: All modules are given by their presentation matrix, hence a matrix  whose
       entries are homogeneous  polynomials.  



  

Two Recent Bounding Results
 
 In his opening address to a workshop on Castelnuovo-
 Mumford regularity in 2007 at the Max Planck Institute for
 Applied Mathematics Leipzig (Germany) E. Zeidler –
 mathematical physisist and at that time director of the
 institution – said:
 „Mathemathical physicists like Algebraic Geometry because
 it produces so many invariants – and one of the most 
 important among these is Castelnuovo-Mumford regularity.“ 

 In 2009 a problem related to characteristic varieties of D-
 modules came up in the research group of Mathematical
 Physics of our Institute in Zürich, which could be solved
 if a particular bounding result for the Castelnuovo-Mumford
 regularity were available. We could establish this particular
 result, and in doing so were lead to prove a number of other
 bounding results for the Castelnuovo-Mumford regularity *).
 We shall present two of these.

  *) M. Brodmann, C.H.Linh, M.-H. Seiler: Castelnuovo-Mumford regularity of
     annihilators, Ext- and Tor- modules;  to appear in: „Commutative Algebra:
     Expository Papers Dedicated to David Eisenbud on the Occasion of His 65th

        Birthday“ (I. Peeva Editor), Chapter 6, 25 pp.; Springer Science & Business Media, 
     New York 2013. 



  

12. A Hint from Mathematical Pysics

A BOUNDING RESULT FOR THE REGULARITY OF
ANNIHILATORS (#- LINH-SEILER, 2012): 
Let M be a finitely generated graded S-module generated by
homogeneous elements of degree 0.
Then, the Castelnuovo-Mumford regularity reg(Ann(M)) of
the annihilator ideal Ann(M) of M is bounded by the Hilbert
function h_M of M.
NB: The bound is given explicitly.

COROLLARY: Let Char(K) = 0 and let W be a D-module over
the r-th Weyl algebra A_r = K[X_1, ... , X_r, D_1,... , D_r].
Let V(W) in P^(2r-1) be the characteristic variety of W. Let F
be an admissible filtration of W. Then, the degree of the
polynomials needed to define the set V(W) is bounded in
terms of the Hilbert function h_(W,F) of W with respect to F. 

NB: This helps to solve a problem from Mathematical
        Physics related to certain systems of PDE's. 



  

 13. A Regularity Bound for Tor-Modules 

A BOUNDING RESULT FOR THE REGULARITY OF CERTAIN
TOR-MODULES: (# - LINH-SEILER 2012): 
Let M and N be finitely  generated graded S-modules whose
induced coherent sheaves over P^s have only finitely many
singular points in common. Then 

reg(Tor_k(M,N)) < reg(M) + reg(N) + k + 1 for all k = 0,1, ... . 

COROLLARY: If M and N are the total modules sections of
vector bundles, then the above inequality holds.

NB: The above result follows from a more general bounding result, in which S is     
        replaced by an arbitrary homogeneous K-algebra R whose underlying      
        projective scheme X has only finitely many singular points. The condition on 
        the singularities of the sheaves induced by M and N has to be replaced by the 
        condition that Tor_1(M,N) has at most Krull dimension 1.  Moreover, at least 
        one of M or N should be of finite projective dimension p. Then, in the above 
        estimate one has to add

p (k+1) reg(R) 

        to the right hand side of the inequality.  
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