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PREFACE

These notes are based on introductory courses on Local Cohomology given at
the University of Ziirich in 1997/1998, 2002,/2003, 2005/2006, 2007 and on a
series of lectures held at the Pedagogical University of Quy Nhon in September
1999 under the title “Local Cohomology—Basic Notions and Applications to
Algebraic Varieties”.

The aim of these courses and lectures was to give an initiation to local coho-
mology which could be the basis for deeper penetration in the subject along
the lines of the book [B-S]. They have been designed for an audience having
some basic background in commutative algebra as presented in [S]. Most of
the needed material is recalled in combined reminders and exercises. In the
same way we develop the necessary basic notions from homological algebra.
This way of presentation corresponds to what has shown to be successful in
our courses and lectures. There are only a few basic results from algebra and
algebraic geometry used without previous proof, notably:

e the Lemma of Artin-Rees cf. 1.3);

e the Nullstellensatz (cf. 6.4);

e the graded version and the sheaf theoretic version of the Lemma of
Eckmann-Schopf (cf. 8.13 and 12.6);

e the fact that sheaf cohomology can be calculated using flasque resolu-
tions (cf. 12.8).

Our suggested references are:

e commutative algebra: [S];
e homological algebra: [R];
e algebraic geometry: [H1];
e local cohomology: [B-S].

Our gratitude goes to the Pedagogical University of Quy Nhon for its kind
hospitality, the Institute of Mathematics in Hanoi and the Swiss National
Foundation for their administrative and financial support.

We also thank Franziska Robmann for the careful type setting of the manu-
script, Christian Weber for the index and Tobias Reinmann for his compilation
of misprints and errors.

Ziirich, 2007 Markus Brodmann, Stefan Fumasoli, Fred Rohrer






1. TORSION MODULES AND TORSION FUNCTORS

Torsion modules are a straight forward generalization of torsion subgroups (of
Abelian groups) and shall lead us to the concept of torsion functors. We prove
results on the behaviour of associated primes and of localizations under the
formation of torsion submodules (cf. 1.9, 1.11). We introduce the concept of
torsion functors and we give some basic facts on it (cf. 1.15, 1.19).

1.0. Notation. All rings are assumed to be commutative. Throughout this
chapter, let R be a ring and let a C R be an ideal.

1.1. Notation. For an R-module M and a submodule N C M let
(N:ya):={meM|amC N}.

Observe that (N :js a) is a submodule of M and that N C (N 1/ a).

1.2. Definition. For an R-module M, the a-torsion of M is defined by

To(M) = [ J(0:y a™).

neN

Observe that I'4(M) is a submodule of M.

1.3. Reminder. Let R be Noetherian, let M be a finitely generated R-module
and let N C M be a submodule. The Lemma of Artin-Rees (cf. [M, Theorem
8.5]) says that there exists ny € N such that for n > ng we have

a"MNN=a""(NnNna"M).

1.4. Remarks and Exercise. A) Let M be an R-module and let b C R be
an ideal. Then:

a) I'g(M) =M and I'gr(M) = 0;
b) If a C b, then [y(M) C Tu(M);
c¢) If a and b are finitely generated and v/a = /b, then I'y(M) = T'y(M);
d) Tayp(M) = Ta(M) N Te(M).
)

B

Moreover, for an R-module M we have:

a) If N is an R-module and h : M — N is a homomorphism of R-modules,
then h(I'y(M)) C T(NV);

b) If a is finitely generated or M is Noetherian, then I'o(M/T'y(M)) = 0.

c) If M is Noetherian, then there exists n € N such that ['y(M) = (0 :p; a”);

d) If R is Noetherian and M is finitely generated, then there exists n € N
such that a"M N T4 (M) = 0;

(Hint for “d)”: use 1.3.)
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1.5. Notation. For an R-module M, let ZDg(M ) denote the set of zero divisors
of R on M and let NZDRg(M) denote the set of non-zero divisors of R on M,
thus:

ZDr(M):={zx e R|3Ime M\ {0}:2m =0}
NZDg(M) := R\ ZDg(M).
1.6. Notation and Reminder. A) Let M be an R-module and let U,V C M
be submodules. We write
(U:rgV)={xeR|aV CU}
Observe that this set is an ideal in R. Remember, that
(0:gV)={z e R|aV =0}
is the annihilator of V.
B) Let M be an R-module and let p € Spec(R) be a prime ideal of R. Then,

p is said to be associated to M if it is the annihilator of a cyclic submodule of
M, ie. if
p = (0 :r Rv) for some v € M.
If this is the case, we must have v # 0.
We denote by Assg(M) the set of associated primes of M. Thus:
Asspr(M) :={p € Spec(R) | Jv e M : p = (0 :g Rv)}.

Let us recall the following facts:
a) If R is Noetherian, then ZDg(M) = Ujeasep(ar) s
b) If N C M is a submodule, then
Assp(N) C Assg(M) C Assgr(M/N) U Assg(N);
c) If M is Noetherian, then § Assg(M) < oc;
d) If R is Noetherian, then Assg(M) = () is equivalent to M = 0.
1.7. Lemma. Let M be an R-module. Then:
a) If To(M) % 0, then a C ZDg(M).
b) Let R be Noetherian and let M be finitely generated. If a C ZDg(M), then
Lo(M) # 0.
Proof. “a)”: Is easy and left as an exercise.

“b)”: By 1.6 B) ¢) the set Assg(M) is finite, so that we can write Assg(M) =
{p1,...,p-}. Using 1.6 B) a) we thus get a C p; U---Up,. So, by prime
avoidance there is some i € {1,...,r} with a C p,. As p; € Assr(M), there
is some v € M \ 0 with p, = (0 :g Rv). It follows av C p;v = 0, thus
veTL(M)\DO. O
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1.8. Notations and Reminder. A) The variety of a shall be denoted by
Var(a), thus:

Var(a) := {p € Spec(R) | a C p}.

B) If P C Spec(R) is a set of primes, we denote by Min(P) the set of all
minimal members of P with respect to inclusion, thus:

Min(P):={peP|VaeP:(aSp=p=0a)}
So Min(Var(a)) coincides with the set min(a) of all minimal primes of a:

Min(Var(a)) = min(a).
C) Remember the following facts:

a) If p € Var(a), then there is a q € min(a) with q C p;
b) Assg(M) C Var(0 :g M);
c) If R is Noetherian and M is finitely generated, then

Min(Ass(M)) = min(0 15 M).
1.9. Proposition. Let M be a Noetherian R-module. Then:
a) Assp(L'a(M)) = Assg(M) N Var(a).
b) If R is Noetherian, then Assg(M /T o(M)) = Assg(M) \ Var(a).

Proof. “a)”: “C”: Let p € Assg(I'q(M)). As I'y(M) is a submodule of M, we
have p € Assg(M) (cf. 1.6 B) b)). As M is Noetherian, there is an n € N with
a"T'o(M) =0 (cf. 1.4 B) ¢)) so that a” C (0 :g I'o(M)). By 1.8 C) b) it follows
a” C p, thus a C p, hence p € Var(a).

“D7: Let p € Assg(M) N Var(a). Then, there is some v € M with (0 :g Rv) =
p. As a C p we have av = 0, thus v € T'y(M). It follows p € Assg(I's(M)).

“b)": “D": Let p € Assg(M). We have p € Assg(I'o(M)) U Assp(M/Ty(M))
by 1.6 B) b). If p ¢ Var(a), statement a) gives p ¢ Assg(I's(M)), hence
p € Asspr(M/To(M)).

“C7: Let p € Assp(M/To(M)). As To(M/To(M)) = 0 (cf. 1.4 B) b)) and
M/T4(M) is Noetherian, there is some @ € NZDg(M/T'y(M)) Na (cf. 1.7 b)).
As p C ZDr(M/Ty(M)) (cf. 1.6 B) a)), it follows = ¢ p. By our choice of
p we find an element v € M/T'y(M) with (0 :g Rv) = p. Let v € M be
such that v = v 4+ ['y(M). Then pv = 0 implies pv C ['y(M). As M is
Noetherian, there is some n € N with a"I'y(M) = 0 (cf. 1.4 B) ¢)). It follows
p(Rz™v) = z"pv C a"I'y(M) = 0, thus p C (0 :p Rz"v). Conversely, let

€ (0 :g Rx™). It follows (az™)v = a(z"v) = 0 € T'4(M), thus az"v = 0,
hence ax™ € (0 :g Rv) =p. As z ¢ p we get a € p. Altogether we have shown
that (0 :g Rz™v) = p and hence that p € Assgr(M). As p Z = € a, we also
have p ¢ Var(a). O]
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1.10. Notation. A subset S C R is called multiplicatively closed, if S # () and
if st € S for s,t € S. In this case, we can define the ring of fractions S™'R
and for an R-module M the module of fractions S™1M.

1.11. Proposition. Let S C R be multiplicatively closed and let M be an
R-module. If a is finitely generated, then there is an isomorphism of S™'R-
modules

p=pan ST Ta(M) — Tos15(S™'M),
defined by ™ — = for allm € I'o(M) and all s € S.

Proof. As T'y(M) C M is a submodule, there is an injective homomorphism
p:STITo(M) — S7'M of S~'R-modules given by ™ — 2 for all m € I'q(M)
and all s € S. Tt thus suffices to show that p(S™'T'4(M)) = Tes-1£(S™M).

To prove the inclusion “C”, let u € p(S™'To(M)). We may write u = 2 with
m € ['o(M) and s € S. In particular, there is some n € N with a®m = 0. It
follows immediately that (aS™'R)"u = a"S™'R® = STIR¥™ = (

To prove the inclusion “2”, let u € [qg-15(S7IM). We write u = “ with
m € M and s € S. There is some n € N with (aS™'R)"2 = 0. Let (z1,...,x,)

be a finite system of generators of a™. For each i € {1,...,r} it follows
S = M — () and hence tiz;m = 0 for some t; € S. Let t = [1—, t:-
Then t, st € S and ritm = 0 for all i € {1,...,r}. It follows a"tm = 0, hence
tm € Lq(M) and thus u =2 = &2 — p(&n) ¢ p(S‘IFa(M)). O

1.12. Reminders. A) Let M, N be R-modules and let Hompg(M, N) denote
the set of all homomorphisms of R-modules h : M — N. This set carries a
natural structure of R-module given for h,l € Homgz(M,N) and a € R by

(h+1)(m) :== h(m) +l(m) and (ah)(m) := a(h(m)) for m € M.

B) Let R’ be a second ring. By an additive (covariant) functor from (the
category of ) R-modules to (the category of ) R'-modules we mean an assignment

F=F(e): (M- N)wms (F(M) 22 F(V))

which, to each R-module M assigns an R'-module F'(M) and to each homo-
morphism h : M — N of R-modules assigns a homomorphism of R’-modules
F(h): F(M) — F(N), such that the following properties hold:

(A1) F(idas) = idpr for each R-module M:;
(A2) F(hol) = F(h)o F(l), whenever | : M — N and h : N — P are
homomorphisms of R-modules;

(A3) F(h)+ F(l) = F(h+1), whenever h,l: M — N are homomorphisms of
R-modules.

C) Let f : R — R’ be a homomorphism of rings. By a linear (covariant)
functor from (the category of ) R-modules to (the category of ) R'-modules (with
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respect to f) we mean an additive covariant functor from the category of R-
modules to the category of R’-modules F' = F(e) with the condition

(A4) F(ah) = f(a)F(h) for each a € R and each homomorphism of R-
modules h: M — N.

In the special case, where f = idg : R — R we say that F'is a linear (covariant)
functor (in the category) of R-modules. Clearly in this case, the condition (A4)
may be written in the form

(A4") F(ah) = aF(h) for each a € R and each homomorphism of R-modules
h:M — N.

D) Next, let g : ¥ — R be a homomorphism of rings. By a linear (covariant)
functor from (the category of ) R-modules to (the category of ) R'-modules (with
respect to g) we mean an additive covariant functor from the category of R-
modules to the category of R'-modules F' = F'(e) which—instead of (A4)—
satisfies

(A4") aF'(h) = F(g(a)h) for each a € R and each homomorphism of R-
modules h : M — N.

1.13. Remark and Exercise. Let R’ be a second ring, let F' be an additive
functor from R-modules to R’-modules and let h : M — N be a homomorphism
of R-modules. Then:

a) If h is an isomorphism, then F'(h) is an isomorphism and F(h™!) = F(h)™;
b) If h =0, then F(h) = 0;
c) If M =0, then F(M) = 0.
1.14. Examples and Exercise. A) The assignment
Id: (M - N) > (M -5 N)

defines a linear functor of R-modules—the so called identity functor on R-
modules 1d = 1d(e).

B) Let S C R be multiplicatively closed and let ng : R — S™'R be the
canonical homomorphism defined by x +— 2 for all x € R and any s € S.
Then, the assignment

ST (M S N s (ST 2 51N

(in which S~'h is defined by 2 — @ for all m € M and all s € S) defines

a linear functor from R-modules to S~!R-modules with respect to ng. This
functor S~! = S~'e is called the localization functor with respect to S.

C) Let f: R — R be a homomorphism of rings and let M’ be an R'-module.
By means of the scalar multiplication defined by am’ = f(a)m' for all a € R
and all m’ € M’, M’ becomes an R-module. If we view M’ in this way, we
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denote it by M’ [; or by M’ [g. If ' : M" — N’ is a homomorphism of R’-
modules it then also becomes a homomorphism of R-modules. If we view A’
in this way, we denote it by h’[; or by A’ [gr. Now, the assignment

e (M 25 NYY s (M 1215 N 1)

defines a linear functor [p from R’-modules to R-modules with respect to f.
This functor [gr= e [g is called the scalar restriction functor from R' to R (by

means of f).

D) Fix some R-module U. If h: M — N is a homomorphism of R-modules,
we define a homomorphism of R-modules
Hompg (U, h) : Homg(U, M) — Homg(U, N), | — hol.

Then, it is easy to verify that the assignment

Homp(U, ) : (M~ N) ~s (Homp(U, M) 222m80,

defines a linear functor of R-modules.

1.15. Remark and Definition. A) If h : M — N is a homomorphism of
R-modules, we have h(I'q(M)) C I'4(N) (cf. 1.4 B) a)). So, we may define a
homomorphism of R-modules

Ca(h) : To(M) — To(N), m+— h(m).

Hompg(U, N))

B) Now, it is easy to see that the assignment

To: (M 25 N) s (Do(M) 22 1y (V)

defines a linear functor of R-modules. This functor I'y = I'y(e) is called the
a-torsion functor.

1.16. Reminders. A) A sequence of R-modules (and homomorphisms of such)

hi—1 hi

is said to be ezact at the place i, if Ker(h;) = Im(h;_1). A sequence of R-
modules is said to be ezact, if it is exact at each “inner place” -+ — e — - -
i.e. at each place which is the source and the target of a homomorphism in it.

B) A sequence of R-modules of the shape 0 — N "ML P 0is exact if
and only if h is injective, [ is surjective and Ker(l) = Im(h), and then it is called

a short exact sequence. An exact sequence of the form 0 — N NS VLN R

called a short left exact sequence. Notice that the sequence 0 — N vt p
is exact if and only if A is injective and Ker(l) = Im(h). Similarly, an exact

sequence of the form N ML P 0is called a short right exact sequence.
C) Let R be a second ring, and let F' be an additive functor from R-modules
to R’-modules. Remember that the functor F'is said to be exact, if it preserves
the property of being a short exact sequence, i.e.: If 0 — N ML P ois
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m — F(P) —0

an exact sequence of R-modules, then 0 — F(V)
is an exact sequence of R’-modules.

F(M)

Remember, that F'is said to be left exact if it preserves the property of being
a short left exact sequence, i.e.: If 0 — N oM L Pis an exact sequence
of R-modules, then 0 — F(N) ), F(M) o, F(P) is an exact sequence of
R’-modules.

Finally, F' is said to be right exact if it preserves the property of being a
short right exact sequence, i.e.: If N "ML P — 0 is an exact sequence of

R-modules, then F'(N) M F(M) ﬂ)
R’-modules.

F(P) — 0 is an exact sequence of

1.17. Remark and Exercise. Let R’ be a second ring, and let F' be an additive
functor from R-modules to R-modules. Then, if F' is exact, it preserves the
exactness of arbitrary exact sequences, i.e.:

a) If F is exact and if

hi—1 h;
[e— i—ll—>Mi—Z>Mi+1_>"'

is an exact sequence of R-modules, then

F(hi—1) F(h;)
B

- — F(M;_1) F(M;) — F(Mip) — -+

is an exact sequence of R'-modules.
Also keep in mind that

b) F is exact if and only if F is left exact and right exact.
1.18. Examples and Exercise. A) The identity functor Id of 1.14 A) is exact.

B) Let S C R be multiplicatively closed. Then, the localization functor S—1
(cf. 1.14 B)) is exact.

C) Let f: R — R’ be a homomorphism of rings. Then the functor [g of scalar
restriction from R’ to R (by means of f) (cf. 1.14 C)) is exact.

D) Fix an R-module U. Then, the functor Hompg (U, e) of 1.14 D) is left exact.

Let R = 7Z and U = Z/27Z. Then, it is easy to see that the exact sequence

072577 /27, — 0 does not remain exact, if one applies the functor
Hompg (U, ®). So, the functor Hompg(U, ) is not exact in general.

1.19. Proposition. The a-torsion functor Ty is left exact.

Proof. Left as an exercise. O

1.20. Example and Exercise. Let R = Z and a = 2Z. Use the sequence
072237 7./27. — 0 to show that the functor I'y is not exact in general.
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In a series of reminders and exercises we now present a few basic facts on exact
sequences, additive functors and direct sums.

1.21. Reminder and Exercise. A) Let h : N — M and [ : M — P be homo-
morphisms of R-modules. Show that the following statements are equivalent:

(i) N L M L P = 0is exact and there is a homomorphism of R-modules
r: M — N such that r o h = idy;

(i) 0 = N L M L P s exact and there is a homomorphism of R-modules
s : P — M such that [ o s =idp;

(iii) { o h = 0 and there are homomorphisms of R-modules r : M — N and
s: P — M such that roh =idy, los =idp and sol+ hor = idy;

(iv) There is a commutative diagram with exact first row

T~

0 N—spy—tsp 0
N—=N@&P—=P

in which ¢ and p are the canonical homomorphisms defined by x +— (x,0)
and (z,y) — y respectively.

If the equivalent statements (i)—(iv) hold, one says that the short exact se-
quence 0 — N LML p—o splits.
B) Now, let R’ be a second ring, and let F' be an additive functor from R-

modules to R'-modules. Show (on use of statement A) (iii) for example):

a) f0— N LML PS0isa splitting exact sequence of R-modules, then

0 — F(N) £, F(M) o, F(P) — 0 is a splitting exact sequence of
R'-modules.
Hence:

b) If the short exact sequence of R-modules 0 — N LN VLN - N splits,
the sequence 0 — F(N) b, F(M) o, F(P) — 0 is exact.
1.22. Reminder and Exercise. A) Let R’ be a second ring, and let F' be an
additive functor from R-modules to R’-modules. Let M and N be R-modules.
Consider the natural homomorphisms of R-modules
i:M—M®N, v~ (x,0),
jiN—=M&N, y—(0,y),
p:M&N — M, (z,y) — x,
qg:Me&N—=N, (z,y) —y,



and the homomorphism of R'-modules
MY FE(M)@ F(N) — F(M @ N), (u,v) — F(i)(u) + F(5)(v).
Show that for all u € F(M), all v € F(N) and all w € F(M & N)
F(p) o MY (u,v) = u,
F(q) 0 ™ (u,v) = v,
MY (E(p) (w), F(q)(w)) = w.
Conclude that /M~ : F(M) & F(N) = F(M & N) is an isomorphism.

B) Keep the notations and hypotheses of part A). Let h: M — M, [: N — N
be two homomorphisms of R-modules. Show that we have the commutative
diagram

M,N

F(M)® F(N) —— F(M@®N)

F(h)@F(l)l J/F(h@l)
_ _ MN _ _

F(M)@® F(N) = F(M&N)

in which the vertical homomorphisms are defined in the obvious way.



2. LocaL COHOMOLOGY FUNCTORS

We now introduce local cohomology functors as “right derived functors” of
torsion functors. The notion of right derived functors shall be mostly developed
in exercises.

2.0. Notation. Throughout this chapter, let R be a ring and let a C R be an
ideal.

2.1. Remark and Reminder. A) By a cocomplex of R-modules we mean a
sequence of R-modules and of homomorphisms of R-modules

RN Vs BN VU CANG VS SN ) CL - N
such that Ker(d") 2 Im(d~?!) for all i € Z, and we will denote such a cocomplex
by (M*,d*).

B) Let (M*,d®),(N°®,e®) be two cocomplexes of R-modules. By a homomor-
phism of cocomplezes (of R-modules)

B (M®,d*) — (N*,e*)

we mean a family (h%);cz of homomorphisms h' : M* — N* of R-modules such
that for all i € Z we have h'™! o d* = €’ o h?, so that the diagram

i—1 i
..*)Mi—lgMin.Mi—f—l*)...

ihi—l \Lhz \Lhi-‘—l
i—1

Ni-1 e Ni Nitl

et

commutes.

C) Let h*: (M*®,d*) — (N*®,e®) and [* : (N°*,e*) — (P, f*) be two homomor-
phisms of cocomplexes of R-modules. Then, the family (I’ o h%);cz defines a
homomorphism of cocomplexes of R-modules

l. o h. . (M.’d.) — (P.’f.)’
the so called composition of [* with h®.

Observe furthermore, that the family (idys)iez defines a homomorphism of
cocomplexes of R-modules

id(Mo,do) . (M.,d.) — (M.’d.)
and that we have the composition laws
a) id(N-760) oh®* =h*o id(M’,d') = h.,
b) k*o (I*oh®) = (k*ol®) o h®;
where h® : (M*®,d*) — (N°®,e®), I*: (N°®e*) — (P* f°) and k* : (P°*, f*) —

(Q°, g*) are homomorphisms of cocomplexes.
10
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D) If (M*,d*) and (N°,e®) are two cocomplexes of R-modules, we write
Hompg((M*,d*), (N*,e*)) or just Homg(M®, N*®) for the set of all homomor-
phisms of cocomplexes of R-modules h® : (M*,d*) — (N°*,e®). This set carries
a natural structure of R-module given by

R® +1° = (' + 1")icz, ah® = (ah)iez,
for all h* = (h');ez, I* = (I")jcz € Homp(M*®, N*) and all a € R.

2.2. Reminder. By a linear (covariant) functor from (the category of ) cocom-
plexes of R-modules to (the category of ) R-modules we mean an assignment

F®2),

F=F(o): (M*,d*) == (N*,e%)) = (F(M*,d*) —— F(N*,¢"))

which to a cocomplex of R-modules (M?*,d®) assigns an R-module F(M?*,d*)
and to a homomorphism h® : (M*®,d*) — (N*,e®) of cocomplexes of R-modules
assigns a homomorphism of R-modules F'(h®) : F(M?*,d*) — F(N*,e®) such
that the following properties hold:

(A1®) F(id(ase,gey) = idp(are ey for each cocomplex of R-modules (M*,d*);

(A2°%) F(h*ol®) = F(h®) o F(I*), whenever [* : (M*,d*) — (N°*,e®) and h* :
(N*®,e®) — (P*, f*) are homomorphisms of cocomplexes of R-modules;

(A3®) F(h*) 4+ F(I*) = F(h* 4 [°*), whenever h®,1® : (M*,d*) — (N°*,e®) are
homomorphisms of cocomplexes of R-modules;

(A4*) F(ah®) = aF(h*®) for each a € R and each homomorphism of cocom-
plexes of R-modules h® : (M*®,d*) — (N*,e*).

2.3. Remark and Reminder. A) Fix n € Z, and let (M*, d*) be a cocomplex
of R-modules. Then, the n-th cohomology of (M*,d®) is defined by

H"(M*,d*) = H"(M®*) := Ker(d")/ Im(d"™).

B) Let h* : (M*,d*) — (N°*,e*) be a homomorphism of cocomplexes of R-
modules. Then, an easy calculation shows that h"(Ker(d")) C Ker(e™) and
that h"(Im(d"')) C Im(e"!). So, one can define a homomorphism of R-
modules

n(M®,d*) H"(h®)
Ker(d")/Im(d" ") Ker(e")/Im(e" ™)
w w
m + Im(d" 1) — h"(m) + Im(e"!)

which is called the homomorphism induced by h® in n-th cohomology.
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2.4. Remark and Exercise. A) Fix n € Z. Then, using the notation of 2.1
and 2.3 we have

a) Hn(id(M-,d-)) = idH"(M',d');
b) H™(I* o h*) = H"(I*) o H"(h*);

where h® @ (M?*,d*) — (N°®,e®) and I* : (N*,e*) — (P, f*) are homomor-
phisms of cocomplexes.

B) Moreover, for any two homomorphisms of cocomplexes h®, [* : (M*®, d*) —
(N*,e*) and a € R we have

a) H'(h* +1°) = H(h*) + H"(I*);
b) H™(ah*) = aH"(h*).

C) In view of the observations made in A) and B) we can say (cf. 2.2) that the
assignment

H™ = H"(o) : (M*,d*) 255 (N®, %))~ (H"(M*,d*) 850 Fn (e, e))

defines a linear functor from cocomplexes of R-modules to R-modules, the n-th
cohomology functor.

2.5. Reminder and Exercise. A) Let h®, [* : (M*,d*) — (N*,e*) be two
homomorphisms of cocomplexes. A homotopy from h*® to 1* is a family (¢;)ez
of homomorphisms of R-modules ¢; : M* — N* ! such that for all i € Z we
have

hi — ZZ = ti+1 o) dl + Gi_l e} tz

B) If there is a homotopy (%;)icz from h® to [°, we say that h® is homo-
topic to 1* and we write h®* ~ [*. This defines an equivalence relation on
Hompg((M*®,d®), (N°®,e*)), i.e.

a) h® ~ h;

b) h* ~[* < [* ~ h;

c) h* ~1°1° ~ k* = h* ~ k* (for a further homomorphism of cocomplexes of
R-modules k* : (M*®,d*) — (N*,e*)).

C) A most important feature is that “homotopic homomorphisms of cocom-
plexes are cohomologueous”: If h® [* : (M*®,d*) — (N°,e*) are homomor-
phisms of cocomplexes of R-modules with h® ~ [*, then H"(h*) = H"(I*) for
all n € Z.

2.6. Remark and Exercise. A) Let R’ be a second ring, and let F' be an
additive functor from R-modules to R'-modules. Let (M*,d*) be a cocomplex
of R-modules. Then we obtain a cocomplex of R’-modules

(F(M*), F(d)) : --- — F(MY) 2970 poiy 29, paginy
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B) Keep the notation and hypotheses of part A). If

h® = (h')iez : (M*,d*) — (N°®,e°)
is a homomorphism of cocomplexes of R-modules, then the family (F(h"));ez
defines a homomorphism of cocomplexes of R'-modules

F(h%) - (F(M®), F(d°)) — (F(N*), F(e*)).

C) Now, let h®, [*: (M*,d*) — (N*,e*) be homomorphisms of cocomplexes of
R-modules. Then we have:

a) If (t;)iez is a homotopy from h® to [*, then (F'(¢;))iez is a homotopy from
F(h*) to F(I*).

This fact implies in particular:

b) If h* ~ [°, then F(h®) ~ F(I°).

Combining this statement with 2.5 C) we get

c) If h* ~[°, then H*(F(h*)) = H*(F(I*)) for all n € Z.

2.7. Reminder and Exercise. A) An R-module [ is said to be injective, if
for each monomorphism ¢ : N — M of R-modules and each homomorphism
h : N — I of R-modules there is a homomorphism [ : M — I of R-modules
such that h = [ oi. In diagrammatic form:

I

/"
il

N —— M.
B) Show the following properties of injective modules:

a) If I and J are injective R-modules, so is I & J;

b) If$:0—1 ML P —0is an exact sequence of R-modules in which
is injective, then $ splits (cf. 1.21 A));

c) If I is an injective submodule of an R-module M, then M = I & M/I,

d) If [ is an injective submodule of an injective R-module J, then J/I is an
injective R-module, too.

The next two exercises yield fundamental results about injective modules. The
first is the Baer Criterion, a useful tool to test whether an R-module is injec-
tive. The second is the Lemma of Eckmann-Schopf which says that (in some
sense) “there are enough injective R-modules”.

2.8. Exercise. A) Let I and M be R-modules, let N C M be a submodule
and let f: N — I be a homomorphism of R-modules. Consider the set

M :={(E,g)|F C M is a submodule, N C E,g € Homg(E,I),g [n= f}
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and define on it a binary relation < by setting (E,g) < (E’,¢) if and only
if E C E and ¢’ [g= g. Show that (M, <) is an inductive ordered set, and
conclude by Zorn’s Lemma that there exists a maximal element in M.

B) Keep all the hypotheses of A) and let (£, g) € M with F # M. Choose an
element x € M \ E and consider the ideal b := {r € R|rx € E'}. Assume that
there exists a homomorphism of R-modules ¢ : R — I such that ¢(r) = g(rz)
for all » € b. Show that there can be defined a homomorphism of R-modules
h: E+ Rx — I such that h(e + ax) = g(e) + ¢(a) for e € E and a € R, and
conclude that (F, g) cannot be maximal in M.

C) By A) and B) it follows: Assume that for each ideal b C R and each
homomorphism of R-modules h : b — [ there is an element e € I such that
h(a) = ae for all a € b. Then [ is injective. (Baer Criterion)

2.9. Exercise. A) Let R be a domain. An R-module M is called divisible if the
multiplication homomorphism a- : M — M is surjective for each a € R\ {0}.
Prove the following statements:

a) If R is a principal ideal domain, then an R-module M is injective if and
only if it is divisible;

b) If N is a submodule of a divisible R-module M, then M/N is divisible;

c) If K is an extension field of R, then the R-module K is divisible;

d) If (M;)ies is a familiy of divisible R-modules, then €, ; M; is divisible.

B) Let R be a principal ideal domain and let M be an R-module. Show
that there exists an injective R-module I and a monomorphism of R-modules
M — I.

(Hint: Consider an isomorphism M = (€p,,.,, R)/U and the quotient field ¢
of R.)

C) Let G be an Abelian group and let M be an R-module. Show the following
statements:

a) The Abelian group Homy (M, G) of homomorphisms of groups from the ad-
ditive group of M to G can be turned into an R-module defining (ap)(m) :=
w(am) for a € R, m € M and ¢ € Homyz(M, G);

b) There is an isomorphism Homp (M, Homy (R, G)) — Homy(M,G) of R-
modules;
c) If G is divisible as Z-module, then the R-module Homy(R, GG) is injective;

d) If M is an R-module and if f : M — G is a monomorphism of groups, then
there is a monomorphism of R-modules M — Homy(R, G).

D) Conclude on use of B) and C): For each R-module M there is an injective
R-module I together with a monomorphism M — I of R-modules. (Lemma

of Eckmann-Schopf)
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2.10. Reminder. A) Let M be an R-module. A right resolution of M consists
of a cocomplex of R-modules (E*®,e®) and a homomorphism b : M — E° such
that E* = 0 for all 7 < 0 and that the sequence of R-modules

€0 el

O—>Mi>EO—>E1—>E2—>---
is exact. Such a right resolution will be denoted by ((E*, e®);b). Then, (E*,e*)

is called a resolving cocomplex for M and b is called a coaugmentation.

B) Let M and N be two R-modules, let ((D*,d®);a) be a right resolution of
M and let ((E*®,e®);b) a right resolution of N. Let h : M — N be a homo-
morphism of R-modules. Then, a (right) resolution of h (between ((D*®,d*);a)
and ((E*,e®);b)) is a homomorphism of cocomplexes

h®: (D*,d*) — (E*,e*)

such that h® o @ = bo h, i.e. such that the following diagram commutes:

0—>M—2>po Lo pr Lo ¥ s
b e el e2 .
0 N E° E? E? E3

C) Let M be an R-module. An injective resolution of M is a right resolution
((I°,d®);a) of M such that all R-modules I’ are injective. So, in this case, we
have an exact sequence of R-modules

oML p L pd
with injective R-modules 19, I', 1% I3, ...
2.11. Remark and Exercise. A) By recursion on n and using the Lemma

of Eckmann-Schopf (cf. 2.9), we may construct injective R-modules 1°, I, ...

a 0 1
and homomorphisms of R-modules M % 19, 10 %5 11 11 25 12 such that
the sequence

oMt pdp s

is exact. So we can say: Each R-module M has an injective resolution
((1°,d%);a).

B) Concerning resolutions of homomorphisms we have: Let M L N bea
homomorphism of R-modules, let ((E*,€®);b) be a right resolution of M and
let ((I°,d®);a) be an injective resolution of N. Then h admits a resolution

he:(E*e®) — (I°,d°).

(Here again, the homomorphisms h°, h', h% ... are constructed recursively,
making use of the fact that the modules I°, I', I?, ... are injective.)

C) Finally, let us notice: Let M o N, ((E*,e®);b) and ((I°,d*);a) be as in
B). Moreover let h®, *: (E®,e*) — (I°,d*) be resolutions of h. Then h® ~ [°.
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(Again by recursion one can construct a sequence of ‘homomorphisms of R-
modules ¢ty : E° — [7' =0,¢, : B* — I° ..., t;: B — I'"' ... such that
ht — 1" =d" ' ot; +t;y 0€ for all i € Ny.)

2.12. Reminder and Exercise. A) Let R’ be a second ring, and let F' be

an additive functor from R-modules to R'-modules. Let M 2 N be a homo-
morphism of R-modules, let ((E*,e®);b) be a right resolution of M and let
((1°,d®);a) be an injective resolution of N. Let h®, [*: (E*® e®) — (I°,d*) be
two resolutions of h. Let n € Ny. Then the two homomorphisms of R-modules
HY(F(h)), H(F(") : H"(F(B), F(e*)) — H"(F(I*), F(d))

are equal:

H™(F(h%)) = H"(F(I%)).
(This follows easily by 2.11 C) and 2.6 C) c).)
B) Let M be an R-module, let ((I°,d*);a) and ((J*,€*);b) be two injective
resolutions of M and let ¢* : (I®,d*) — (J*,€®) be a resolution of idy, : M —
M. Then, for each n € N we have an isomorphism

H"(F(i*)) : H"(F(I*), F(d*)) = H"(F(J*), F(e")).

(By 2.11 B) idjy; also admits a resolution j°® : (J*,e*) — (I°,d®). So id* =
id(se gy and j® 0 i® : (I®,d*) — (I°,d*) are both resolutions of idy;. By part
A) it follows that H™(F(id®)) = H™(F(j® 0 *)). Using 2.4 A) we conclude
that H"(F(j*)) o H*(F(i*)) = idgn(p(1+),F(a+))- The claim follows now by
symmetry.)
C) Let M, ((I°,d*);a) and ((J*,€*);b) be as in B). Let

7;.7 j. . ([.’d.) N (J.,e.)
be resolutions of id;. Then, the two isomorphisms

H"(F(i%)), H"(F(5*)) : H"(F(I*), F(d*)) — H"(F(J%), F(e*))

are the same: H"(F(i*)) = H™(F(j*)). (This follows by another use of part
A).)

2.13. Construction and Exercise. A) Let R’ be a second ring, and let F' be
an additive functor from R-modules to R’-modules. For each R-module M we
can choose an injective resolution Iy, = ((I3,d%,); an) (cf. 2.11 A)). So, for
each M we have an exact sequence

d§ d} d3
,Z‘{GM 0 M 1 M 2 M 3
0— — Iy — Iy — Iy — Iy — -+

in which all the modules I}, are injective. We write I, for the assignment
M =T = (I3, diy )5 anr)
and call I, a choice of injective resolutions (of R-modules).

Now, for n € Ny we define
Ry F(M) := H"(F(I3,), F(dy)),
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i.e. we consider the cocomplex of R'-modules

0 20 Py KA Py B ) -

and the R’-modules (cf. 2.3 A)):
Ry, F(M) = Ker(F(dy,))/ Im(F(dj; ).
B) Let h : M — N be a homomorphism of R-modules. Then h admits a

resolution h*® : (I3;,d%,) — (IN,dY) (cf. 2.11 B)), so that we have the following
commutative diagram with exact rows:

anm 0 d?w 1 d}w 92 d?\/f 3
0 M 3 Iy Iy Ly
lh \Lh() \th th ihS
dl dl d?
@N_q0 _N_ g1 "M _ g2 "N_ 13
0 N Iy Iy Iy Iy

Now, by 2.12 A), the homomorphism
H"(F(h*)) - H"(F(I};), F(dy,)) — H"(F(I5), F(dy))

is the same for each such resolution h® of h. So, extending the definition of
part A), we also may define for all n € Ny a homomorphism of R'-modules:

Ry F(h) : Ry F(M) D me (),

Thus, in view of 2.3 B) we can write:

. Ry F(h) .
Ri F( Ry, F(

Ker(F(dj,))/ Im(F (dy; ) Ker(F(dy))/ Im(F(dy ™))

W 0]

m+Im(F(dyY) ———  F(R")(m) + Im(F(d% ).

C) Now, fix some n € Ny. Then one can verify:

a) The assignment

Rn

Ry F =Ry F(e): (M2 N)ws (REF(M) L Ry F(N))
defines an additive functor from R-modules to R’-modules.

b) If F is linear with respect to a homomorphism of rings f between R and
R', then Rf F is linear with respect to f.

(To prove the composition law 1.12 B) (A2) for the assignment Rf F', one
needs 2.4 A) b) and 2.12 A). To prove the properties 1.12 B) (A1), (A3) and
C) (A4) one can use 2.4 A) a), B) a), b).)



18

The functor Rf F' = Rf F'(e) is called the n-th right derived functor of F' with
respect to I,.

D) Next, consider a second choice of injective resolutions J, (of R-modules),
which to each R-module M assigns an injective resolution Jy; = ((J3, €%,); bar)
of M. Now, fix an R-module M and let * : (Iy,,d%,) — (Jy,€l) be a
resolution of idy,; (which exists by 2.11 B)). By 2.12 B) we have isomorphisms
of R'-modules

H"(F(i*)) : H"(F(I3;), F(d3,) = H"(F(J3), F(e3,)).

If we fix n, the isomorphism H"(F'(i*)) is the same for each resolution * :
(I3, d%y) — (Jap,ehy) of idys (cf. 2.12 A)) and so it defines an isomorphism of
R'-modules (cf. part A))

) M ry p(M) D, »e p(ar)

which depends only on I, and J,,.

Let h : M — N be a homomorphism of R-modules and let h® : (I3,,d},) —
(I3, d%) and [* : (Jy,ehy) — (JN, ex) be resolutions of h. Let 5 : (I3, dy) —
(J¥,ex) be a resolution of idy. Then j® o h®, [*0i® : (I3, dY,) — (Jy, eX) are
both resolutions of A, so that

H™(F(5° o h*)) = H"(F(I* 04%))
for all n € Ny (cf. 2.12 A)). From this, we conclude:
b) If h: M — N is a homomorphism of R-modules,
Sy, o REF(h) = Ry, F(h) o .

and hence there is a commutative diagram

n,N
Ry F(N) ———"—~ R F(N)
R]I’*F(h)T TRS’*F(h)
n,M
Ry, F(M) ——=— R} F(M).

In view of this observation we do not have to care about the choice of an
injective resolution I,, when dealing with right derived functors. We thus
write

R"F =Ry F
and call the functor R™F' simply the n-th right derived functor of F.

2.14. Definition and Remark. A) Let n € Nyg. We define the n-th local
cohomology functor HY = H[(e) with respect to a as the n-th right derived
functor R"T"y = R"I'4(e) of the a-torsion functor, thus

H" := R,
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B) Let n € Nyg. Let M be an R-module. The n-th local cohomology module
of M with respect to a is defined as the R-module H}(M). According to the
construction done in 2.13, the module H?(M) may be obtained as follows:
First choose an injective resolution ((I°,d®);a) of M, so that we have an exact
sequence

o-MupPEpdpf s
with injective R-modules I’. Then, apply the functor I'y to the resolving
cocomplex (I°,d*):

S WA (AN S BN £ BN B
in order to obtain the cocomplex (I'(1°*),T'4(d®)) :
La(d™1)
—_—

T'q (d°) Ty (d)
E— E—

—0 Ta(17) Ta(11) To(12) — -
Then, apply n-th cohomology to this cocomplex to end up with
Hi (M) = H"(To(I*), Ta(d?)) = Ker(To(d"))/ Tm(Ta(d" ).

C) Now, let h : M — N be a homomorphism of R-modules. The homomor-
phism induced by h in n-th local cohomology with respect to a is defined as the
homomorphism of R-modules

Hg(h) : Hi(M) — H{(N).
It may be obtained by choosing an injective resolution of ((I},,d%,);ar) and

an injective resolution ((I%,d%);an) of N, by choosing a resolution h® :
(I3, d%;) — (I¥,d%) of h and by defining HJ'(h) as indicated below:

H (M) =i HO(N)
Ker(Ta(d2))/ Im(Ta(di"))  Ker(Ta(d2))/ Tm(To(di™))

m+Im(Ta(d}; ') ——  h"(m) +Im(Ta(dy ).

2.15. Remark and Exercise. Let R’ be a second ring, and let F be an
additive functor from R-modules to R’-modules. Then:

a) If I is an injective R-module, then R"F(I) = 0 for all n > 0.

In particular:

b) If I is an injective R-module, then H}(I) = 0 for all n > 0.

Finally:

c) If Fis exact, then R"F (M) = 0 for each R-module M and all n > 0.

(This can be shown on use of 1.17 a)).



3. Basic PROPERTIES OF LocAL COHOMOLOGY

Some of the fundamental properties of local cohomology modules shall be
presented, notably the cohomology sequence associated to a short exact se-
quence (cf. 3.9), and the behaviour of local cohomology with respect to torsion
(cf. 3.13, 3.17).

3.0. Notation. Throughout this chapter, let R be a ring and let a C R be an
ideal.

3.1. Reminder and Exercise. A) Let R’ be a second ring, and let F' and G
be additive functors from R-modules to R’-modules. A natural transformation
from F' to G is an assignment

B: M~ (By: F(M) — G(M))

which to each R-module M assigns a homomorphism of R’-modules (), :
F(M) — G(M) such that for each homomorphism of R-modules h : M — N
we have

G(h) o By = By o F(h),
so that the diagram

FM) 2 )

iF(h) G(h)l

F(N) -2 G(N)

is commutative. Such a natural transformation is denoted by 3: F — G.

B) A natural transformation 3 : F' — G is called a natural equivalence from F
to G if By : F(M) — G(M) is an isomorphism for all R-modules M.

If there is a natural equivalence 3 from F' to G we write 5 : F = Gor just
F ~ G and say that F' and G are naturally equivalent. Natural equivalence
of functors is indeed an equivalence relation: Namely, if F, G, H are additive
functors from R-modules to R-modules, then

a) F'~ F;

b) FeG oG~ F;

&) FruG, G H= F~H.

3.2. Examples and Exercise. A) For each R-module M, let iy : T'y(M) —

M denote the inclusion map and let Id denote the identity functor on R-
modules. Then the assignment

M v (ipg : To(M) — M)
defines a natural transformation

1: 1 — Id.
20
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B) Let R/, F, I, and J, be as in 2.13 D). Then, for each n € Ny, the functors
Rt I and RY}. F' are naturally equivalent.

3.3. Remark and Exercise. A) Let R’ be a second ring, and let F' be an
additive functor from R-modules to R'-modules. Let M be an R-module and
let ((I°,d®);a) be an injective resolution of M. Observe that we can write

(cf. 1.13 b))
ROF(M) = HY(F(I°%), F(d*)) = Ker(F(d"))/Im(F(d™"))
= Ker(F(d”))/Im(F(0)) = Ker(F(d"))/0
= Ker(F(d)).

As d’oa = 0 we have F(d°)oF(a) = F(d°oa) = F(0) =0 (cf. 1.13 b)) so that
Im(F(a)) C Ker(F(d")). Therefore we get a homomorphism of R’-modules

oy F(M) — RYF(M) = Ker(F(d))

defined by m +— F(a)(m) for all m € F(M). In particular we have a commu-
tative diagram

RYEF(M)= Ker(F(d°))

\/

B) It is easy to verify, that the construction of o}, is natural. More precisely:

a) If h: M — N is a homomorphism of R-modules, then
ROF(h) o ah, = ak o F(h),

so that we have a commutative diagram

F(M) -2 ROP(M)

F(h)l \LROF(h)

F(N) i RYF(N).

Hence, the assignment
M+ (o : F(M) — R°F(M))

defines a natural transformation o' : F — ROF.
Moreover, if I is left exact, we have an exact sequence
d°)
F(M) =% F(1°) 255 (1Y)
showing that Ker(F(dO)) Im(F(a)). By the diagram of part A) we thus see:

b) If F is left exact, then of) : F(M) = ROF(M) is an isomorphism.
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In view of statement a) we now get:

c) If F is left exact, the natural transformation of : F' — R°F is a natural
equivalence.

C) Let F' be left exact. In view of B) ¢) one usually identifies the functors F'
and R°F by means of the natural equivalence o, thus:
RYF = F, if F is left exact.

3.4. Proposition. [',(e) = H (e).
Proof. Clear by 1.19 and 3.3 C). O

Our next aim is to introduce one of the most basic tools in local cohomology:
the cohomology sequence with respect to an ideal a C R associated to a short

exact sequence $: 0 — N 2 M L P — 0 of R-modules (cf. 3.9). We begin
with an excursion in homological algebra and first introduce the cohomology
sequence associated to a short exact sequence of cocomplexes of R-modules.

3.5. Reminder and Exercise. A) A short exact sequence of cocomplezes of
R-modules
0— (N®e*) 25 (m2,d%) 5 (P, f*) — 0,

or just written as 0 — N°*® Mo S ope o 0, is given by two homomorphisms
of cocomplexes of R-modules h* : (N*,e*) — (M*,d®) and [* : (M*,d*) —
(P*, f*) such that for each n € Z one has the short exact sequence

0— N v B pr o,
So, for each n € Z one has the commutative diagram of R-modules

hnfl lnfl

0—— Nn—l Mn—l Pn—l 0
en—l dn—l f”ﬂfl
h™ "
0 N" M™ P 0
en dar fm
hn+l ln+1
0 — Nn! M+ prtt —0
en+1 dn+1 f"+1
hn+2 ln+2
0—— Nn+2 Mn+2 Pn+2 0

with exact rows and such that the composition of two consecutive maps in any
column is 0.

B) Let $° : 0 — (IN°*,e°) 2, (M*,d*) LN (P*, f*) — 0 be a short exact
sequence of cocomplexes of R-modules. Fix n € 7Z. We define a relation “%7”
on P" x N"*! by setting for x € P", y € N"*L:

r %y da’ e MM M) = AdM () = W (y).



23

Show the following facts:

a) If z ¢ y, then = € Ker(f™) and y € Ker(e"*1);
b) If z € Ker(f™), then there exists y € Ker(e"™!) such that = % y;
¢) If z € Im(f"!), then z & 0;
d) If 0 % y, then y € Im(e");
) frvyand 2 g, then e+ % y + y;
f) If x ¢ y and a € R, then ax % ay;
g) If x ¢ y and x & g, then y — gy € Im(e™);
h) If 2 % y and T & ¢ with z — Z € Im(f™!), then y — § € Im(e™).

@

Use statements a), b) and h) to show that there is a map

n—1 — n

Use statements e) and f) to show that 0%. is a homomorphism of R-modules,
the so called n-th connecting homomorphism associated to $°.

C) Keep the hypotheses and notations of part B). Show the following facts:

If 2/ € Ker(d") and ["(2") € Im(f™ '), then 2’ € Im(d"~!) 4+ Im(h™);
If 2’ € Ker(d"), then ["(z') % 0;

If x ¢ 0, then x € I"(Ker(d"));

If x 9 y and y € Im(e™), then = % 0;

If z & y, then "' (y) € Im(d");

If y € N™*! and h""!(y) € Im(d"), then there exists z € Ker(f") with
T y.

~

a
b
c
d
e

f

~—_ —

~—

Use statement a) to show that the sequence

H"™(h*) H™(1*)
e e

H"(N*®) H"(M?*) H"(P*)
is exact. Use statements b), d) and c¢) to show that

n(je 0o
HR(M.) H_(l)) Hn<Po) i) Hn—l—l(No)

is exact. Use statements e) and f) to show that the sequence

5”1. n+1 °
Hn(Po) L Hn+1(N.) H™ (h) Hn+1(Mo)

is exact. Conclude that there is an exact sequence of R-modules

anl(l.)

g) Hnil(M.) anl(Po)
571:1 niLe nije
vy O ey L e ey
0%y
5 Hn—l—l(No)

the so called (long exact) cohomology sequence associated to %°.
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D) Now consider a second short exact sequence of cocomplexes of R-modules
T*: 0 — (N*, &%) 25 (3r*,d*) & (P*, F*) — 0

together with three homomorphisms of cocomplexes u®, v®, w® such that we
have a commutative diagram of cocomplexes of R-modules

0——=(N*e) — (M*,d*) —= (P*, f*) —=0

00— (N',é‘) (M*,d*) — (P°*, f*) —=0.

So, for each n € 7Z we get the following diagram with exact rows and with
commutative squares

hﬂ/ ln

Mm P" 0

/ dn y

1 hn+1 1 anrl 1
0 N Mt Pt 0
u™ o™ w™

un+1 l ,Un+1 l wn+1 l

0 Nn ” Mn o - pn 0
an y y
0 Nn—H o Mn—H — Pn—i—l 0

Show that for z € P" and y € N"™! with z & y, we have w"(z) & u" ! (y).

Conclude that we have the commutative diagram

n

H™(P*) H"(N*)
o) e
H (P — o ()
and hence the commutative diagram
1 (o) S (v D g (o) D ey e e (v
iH“l(w') lH”(u') lH“(v') lH“(w') lH"“(u')
Hr1 (o) T ey D o) O g (pey 5 e (),

This diagram expresses the fact that the formation of cohomology sequence
(of short exact sequences of cocomplexes of R-modules) is natural.

3.6. Reminder and Exercise. A) Consider a short exact sequence of R-
modules

<5>:0—>N£>]\/[L>P—>O.
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An injective resolution of 3 is given by an injective resolution ((J°®,e®);b) of
N, an injective resolution ((I°*,d*); a) of M, an injective resolution ((L°®, f*);¢)
of P, and moreover by resolutions

he o (J%e%) — (I°,d%), 1 : (I°,d°) — (L*, f*)

of h: N — M and of [ : M — P respectively, such that we have a short exact
sequence of cocomplexes of R-modules

S0 (J%e) LS (1,d) S (L0, ) — 0.
In this situation we say that
(8% (b, a,c))

is an injective resolution of & with resolving (short exact) sequence (of cocom-
plezes) $° and with coaugmentation (b, a,c).

B) Let $: 0 — N 2 M L P — 0be a short exact sequence of R-modules.
Let J and L be injective R-modules such that we have the following diagram
with exact rows and columns

0—=J—>JoL—2>1L—>0

0—=N—lspy—tsp—sg
0 0

in which ¢ and p are the canonical maps, given by i(x) := (x,0) and p(z,y) := y.

Show that:

a) There is a homomorphism o : M — J such that o o h = §.

b) There is a homomorphism « : M — J @& L (to be defined by means of o)
such that we have the following commutative diagram with exact rows and
columns

0—=J—>JoL-—L>L—>0

oﬁjlhaﬂllvio
bl

c) There is an exact sequence

0 — Coker(3) LN Coker(«a) LR Coker(y) — 0

in which 7 and p are the maps canonically induced by ¢ and p respectively.
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(Hint for “c)”: consider the diagram of statement b) as part of a short exact
sequence of cocomplexes $* with $' = 0 for all i # 0,1 and then apply the
cohomology sequence 3.5 C) g).)

C)LetS:0— N L ML P — 0be ashort exact sequence of R-modules. Let
((J*,€®);b) be an injective resolution of N and let ((L°®, f*); ) be an injective
resolution of P. For each i € Ny, let

J e L
be the canonical maps given by x +— (z,0) and (z,y) — y respectively.

Apply what is said in part B) to show that there is a commutative diagram
with exact rows and columns

hO 0 0 lO
OHJOHJ @L HLOHO
N

LT

and an exact sequence

0 — Coker(b) 2, Coker(a) LN Coker(c) — 0

in which A° and [° are canonically induced by h° and {°. Then, apply what is
said in part B) to the following diagram with exact rows and columns (!)

hl i1

0 J! J'e L L 0

i -
1O 70

0 — Coker(b) SN Coker(a) SN Coker(c) —=0

T T

0 0

in which € and f° are given by x + Im(b) — €°(z) and y + Im(c) — f°(y)
respectively: you get an injective homomorphism

d’ : Coker(a) — J' @ L

which completes the above diagram commutatively and an induced short exact
sequence

0 — Coker(&) A, Coker(d") Ui Coker(f°) — 0.

Go on recursively and conclude that the injective resolutions ((J*,e®);b) and
((L*, f*);¢) of N resp. P “may be extended to an injective resolution of $”:
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There is an injective resolution of $:0 — N 2 M L P — 0 which has the
shape

(%°:0— (J',e') (I’ d') (L' %) — 0);(b,a,c)).
In particular, each short exact sequence of R-modules has an injective resolu-
tion.

3.7. Reminder and Exercise. A) Consider the following commutative dia-
gram of R-modules with exact rows

G0 N s

L

$:0 N 0.

Let I, : Lv>I7, = ((I7,d3); ar) be a choice of injective resolutions of R-modules.
Let u® be a resolution of u between I and Iy, and let w*® be a resolution of
w between Tp and Ip. Let ((J*,e*),b) and ((J*,e*),b) be injective resolutions
of M and M respectively and let

((S*:0 — (Iy,dy) 5 (7%, ¢*) 5 (13, dp) — 0); (aw, b, ap))

and
T°® o« e\ B° * o o e 7
(80— (I dy) 5 (% &) & (13, d3) — 0); (ay, b, ap))
be injective resolutions of $ and $ respectively (cf. 3.6 C)).
Show the following;:

a) For each n € Ny there are homomorphisms of R-modules 7" : J" — I} and
§" I3 — J" such that r" o h" = idm and [" o 3" = id[g-

For n € Ny set 9" := h"ou™ o r™ + 5" ow” o [™ : J* — J" and show:
b) @™o " = h" ou™ and [" 0 9" = w™ o " for each n € Nj.
)

B) Show the following statements:

a) Im(2° o b — bow) C Im(h%);
) There is a uniquely determined homomorphism of R-modules o : M — ]]%
such that loa =9"ob—bow;

¢) b~ 1(Im(h°)) C Ker(a);
d) There are homomorphisms of R-modules
a: M/b" (Im(h%)) — I3, m+ b~ (Im(h%)) — a(m),
b+ M /b~ (Im(h")) — J°/ Tm(h°), m +b™ ( m(h?)) = b(m) + Im(h")
and (3 : J°/Im(h°) — I% such that 3o b=

e) There is a homomorphism of R-modules (3 : JO — 1%, t — B(t + Im(h?))
such that Sob=a and Boh’ = 0.
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Set 00 := 9" —h% 0 3 : J¥ — J° and show:

f) vob=bowv, o h®=h%ou’ and I’ 0 v = w® o [°.

C) Let n € N. For k € N with k& < n, let v* : J¥ — J* be a homomorphism of
R-modules such that v* o h* = h¥ o ¥, w™ o I¥ = [F o v*, and v* o ¥ = eFv*~ 1,

Show that:

a) Im(3" o e"™t — et o™t C Im(R™);

b) There is a homomorphism of R-modules o™ : J"~! — I% such that hhoa™ =

" o en—l . én—l o Un—l;
c) (e 1) 1 (Im(h™)) C Im(h" ') + Ker(e"1);
d) a™ o h"l = 0;

a”((e"™h) 7 (Im(h™))) € a(Ker(e"™));
a™(Ker(e"™1)) = 0;
g) (")} (Im(h") C Ker(a™);
h) There are a homomorphism of R-modules
@ ) O = I, o+ () Im () s o),
an injective homomorphism of R-modules

et (e H Im(R™)) — J™/ Im(R™),

z+ (") HIm(h™)) = " H(x) + Im(h")
and a homomorphism of R-modules
B " Im(h") — I}

such that " o "1 = a™.
Set p": J" — I%, t— p"(t +Im(h™)) and v" := " — h" o 3" : J® — J", and
show:
i) Btoe" ! =qa"and "o h™ = 0;
j) vtoert =en o™t v o h" = h" o™ and [" o v™ = w" o [".
D) Conclude by recursion and on use of B) e) and C) j) that there is a ho-
momorphism v* : (J*e*) — (J* e®*) of cocomplexes which is a resolution

of v between ((J*,e*),b) and ((J*,&*),b) such that the following diagram of
cocomplexes commutes:

° ° h*® ° ° * ° ° °
8 0° — (I}, dy) — (J*,e*) — (Ip,dp) —=0

go N — (I].f/’d;V) L (j.,é.) L> ([;B,d})) —0°.
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3.8. Construction and Exercise. A) Let R’ be a second ring, and let F' be
an additive functor from R-modules to R'-modules. Let

S:0—>N£>ML>P—>O

be an exact sequence of R-modules. Let (%°; (b, a, ¢)) be an injective resolution
of $ (cf. 3.6) with resolving sequence

80— (J%e?) L5 (10,d°) 5 (L, ) — 0.
Show that for each n € Ny we get the exact sequence (cf. 2.7 B) b) and 1.21 B))

F(h™) Fam)
—_—

0— F(J") F™) 22 P =0

and thus obtain a short exact sequence of cocomplexes

F(h®) F(1°)
—_— —_—

F($°): 0 — (F(J%), F(e*) 25 (p(1), F(d*) 25 (F(L*), F(£%)) = 0.

Now, we may form the cohomology sequence associated to F($°*) (cf. 3.5) and
end up with an exact sequence

0 —H(P(r) 20 g0y P gy T,
1 (F(J%) 5 BYF(1) —— -

Next, let ($°,(b,a,¢)) be a second injective resolution of $ with resolving
sequence

S0 (J0e) M (1 dn DL ) — o
Again we get a short exact sequence of cocomplexes

F(I*)
—_

FS):0— (F(*), Fe) 25 (p(1), F@d*) 255 (P(L*), F(F*) — 0

and thus may form the cohomology sequence associated to F (S'), Finally let
u® : (J*e®) — (J%e®) and w* : (L°, f*) — (L°®, f*) be resolutions of idy
and idp respectively. Show on use of 3.7 D), that for each n € Ny we get a
commutative diagram

HY(F(L*) — 5 e (p( %))
H"(F(w'))i ) 52@.) lH"jl(F(u'))
H(F(E*)) H ().

B) Keep the notations and hypotheses of part A). To each short exact sequence

of Rmodules $:0 - N 5 M L P —0 assign an injective resolution of 5,
say (%°; (bg, as, cs)) with resolving sequence

§* 00— (J3eh) 2 (18, dy) B (L, £2) — 0
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(cf. 3.6 C)). Fix such a choice of injective resolutions of short exact sequences
of R-modules. Then, to each short exact sequence of R-modules

S0 -NLMLPoo
assign the family of connecting homomorphisms (cf. 3.5 B))
(0 gy : H'(F(L§)) — H" ™ (F(J3)))nex,
associated to the short exact sequence of cocomplexes (cf. part A))

- “E (F(L3). F(F2) = 0.

F(5%): 0 — (F(J3), Feg)) — (F(I3), F(dg)) —

Use what has been said in part A) and in 2.13 D) to conclude that (setting
oot = Of(gey) the assignment
$ o (0o + H'(F(LE)) — H"H(F(J3)))nex
gives rise to an assignment
0 (S0 NS ML P—0)m (607 : RVF(P) — R F(N))nexo,
which to each short exact sequence of R-modules
$:0-NLZMLP—0

assigns a family (60" : R"F(P) — R""'F(N))nen, of homomorphisms of
R-modules. Show that this gives rise to an exact sequence

ROF(h) ROF(1)

0 ROF(N) ROF(M) ROF(P)
B RN Y i
Rr1F(P)
S R R mepar) O mep(py

n,F Rn+

S rert () B pns

for each exact sequence of R-modules $:0 — N L poo.

The homomorphism 83" : R*F(P) — R"'F(N) is called the n-th connecting
homomorphism with respect to F' associated to S and the sequence a) is called
the right derived sequence of F' associated to %.

C) Show that—according to its construction—the assignment §%% of part B)
has the following naturality property: For each commutative diagram of R-
modules
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with exact rows $ and %' and for all n € Ny we have the commutative diagram

n,F

6
R"F(P) = R"F(N)

R”F(w)l
6n,F

R"F(P') ¥ s RPHLE(N).

iR’“‘lF(u)

3.9. Definition and Remark. A) Let $: 0 — N LML P S 0bea
short exact sequence of R-modules. Then we write dg'® for the n-th connecting
homomorphism with respect to the torsion functor I'y associated to $ (cf. 3.8):

n,lq

R o(P)———=R"'T4(N)

Hg(P)

n,a
6$

HE (N,
Sometimes we just write dg or 0™ or ¢ for dg*.

B) The right derived sequence of I', associated to & (cf. 3.8 B)) now takes the
form

Hg () H (1)

0—— HI(N) 1o 0 o)
2 o) 2O )
oy~ HE (h) r() e (P)
H(N) Hy(M) Hy(P)
HEL(h)

5 H"(N) =—— HY (M) ——

Usually this sequence is called the (long exact) cohomology sequence with re-
spect to a and associated to 5.

C) The naturality statement 3.8 C) here can be formulated as follows: Given
a commutative diagram of R-modules

$:0 N—">M—>P—>0

0 —= N~ M P 0

with exact rows $ and & we get a commutative diagram

n Ha(h) o, Hy () o ot i m)
.. Ha(N) HHa(M) HHQ(P) L)Hu+1(N) *)Hu+l<M) .
J/HZ?(U) lHﬁ(v) lHZ?(w) lH?“(u) iHa”“(v)
s

H™ (W Hr (! ; HI L (w
N T () B () = e (VS ) -
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3.10. Remark and Exercise. A) Let M be an R-module. Let x € R. Then,
the multiplication map

-
M = M, m— zm

clearly is a homomorphism of R-modules. We also can write x- = xid,;. By
1.12 C) we thus see: If F' is a linear functor of R-modules, then the homomor-
phism F(x-) : F(M) — F(M) and the multiplication map z- : F(M) — F(M)
are the same.

B) Let M be an R-module. Observe that for x € R we have:

a) = € NZDg(M) if and only if M =+ M is injective.

So in particular :

b) If € NZDg(M), then there is a short exact sequence of R-modules
0—-MZME M/xM —0.

C) Now, let M be an R-module and let z € NZDg(M). Then, the cohomology
sequence with respect to a and associated to the short exact sequence of B) b)
takes the form (cf. A) a)):

0
0 ——= HO(M) —=> HO(M) =% gO(M /xM) — HI (M) — -

L (M)~ HR (M) ) (M M) < J (M) —— -

3.11. Definition. An R-module M is said to be a-torsion, if M = T'y(M)
or—equivalently—if for each element m € M there is some n € N such that
a"m = 0.

3.12. Remark and Exercise. A) Observe that

a) [g(Da(M)) =T'y(M) for each R-module M.

As a consequence one sees:

b) If M is an R-module, then I';(M) is a-torsion (in the sense of 3.11).
B) Observe the following fact:

a) If M is a-torsion and N C M is a submodule, then N and M/N are a-
torsion.

More general:

b) If 0 = N — M — P — 0 is a short exact sequence of R-modules and if a
is finitely generated or if NV is Noetherian, then M is a-torsion if and only
if N and P are a-torsion.
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C) Moreover we can say:

a) A finitely generated R-module M is a-torsion if and only if there is some
n € N with a”M = 0.

b) Let x € a and let M be an a-torsion R-module. Then M 2, M is injective
if and only if M = 0.

3.13. Proposition. Let n € Ny and let M be an R-module. Then the local
cohomology module H}(M) is a-torsion.

Proof. This follows easily by 2.14 B) and on use of 3.12 B) a). O]

3.14. Proposition. Let R be Noetherian and let I be an injective R-module.
Then T'y(I) is an injective R-module, too.

Proof. Let b C R be an ideal and let h : b — I'q(I) be a homomorphism of R-
modules. By 2.8, it suffices to find some element e € I'4(I) such that h(b) = be
for all b € b.

Since [ is injective, there is a homomorphism of R-modules [ : R — [ such
that h = [ o4, where i : b - R is the inclusion map. Let f := [(1). Then
h(b) = (loi)(b) =1(i(b)) =1(b) =1(b- 1) = bl(1) = bf, hence h(b) = bf for all
b € b. In particular, we have h(b) = bf C Rf. As h(b) is a submodule of I'y(7),
it is a-torsion (cf. 3.12 B) a)). Therefore obviously h(b) C I',(Rf). As R is
Noetherian and Rf is a finitely generated R-module, there is some n € N such
that a”(Rf) NT4(Rf) =0 (cf. 1.4 B) d)). It follows that a™(Rf) N h(b) = 0,
hence a”f Nbf = 0. This means that the sum a”f + b f is direct so that there
is a homomorphism of R-modules ¢ : a"f +bf — bf given by uf +bf — bf
for all w € a” and all b € b. As (a” 4+ b)f = a"f + bf we thus may define a
homomorphism of R-modules h : a”+b — bf by v — ¢(vf) for all v € a™ + b.

So, for all u € a” and all b € b we get h(u+b) = bf.

As 1 is injective, there is a homomorphism of R-modules [ : R — I such that
h=1oi, where i : (a" + b) — R is the inclusion map. Let e = [(1), so that
for each © € R we have l( ) = l(x 1) = :L‘l( ) = xe, hence l( ) = xze. For any

u € a” it follows ue = I(u) = 1(i(u)) = (I 0 i)(u) = h(u) = h(u+0) = 0f = 0.
Therefore a”e = 0 and hence e € I'y(I). Moreover, for any b € b we have

h(b) = bf = h(0+b) = h(b) = (I o 7)(b) = I(b) = be. 0

3.15. Corollary. Let R be Noetherian and let M be an a-torsion R-module.
Then there is a monomorphism of R-modules M ~— I such that I is injective
and a-torsion.

Proof. By 2.9 there is some monomorphism M s J such that J is an injec-
tive R-module. As the functor I'; is left exact, we obtain a monomorphism

I'W(M) L0, Lo(J). As M is a-torsion, we have I'y(M) = M. By 3.14 we see
that I :=I'y(J) is injective. By 3.12 A) b) the R-module [ is a-torsion. [



34

3.16. Corollary. Let R be Noetherian and let M be an R-module which s
a-torsion. Then M has an injective resolution ((I°,d®);a) in which all the
R-modules I' are a-torsion.

Proof. We must construct an exact sequence
d° d! d?
o-MSI"S TS rrsp ...

in which all the R-modules I* are injective and a-torsion. By 3.15 we have

already an exact sequence 0 — M - I9 in which I° is injective and a-torsion.
Now, by 3.12 B) a), Coker(a) = I°/Im(a) is a-torsion. By 3.15 there is a

0
monomorphism Coker(a) L I' such that I' is an injective a-torsion R-module.
Now, let d° : I — I' be the homomorphism defined by u +— t°(u + Im(a)).

Then Ker(d®) = Im(a). So we have an exact sequence 0 — M % [° i

which I° and I' are injective and a-torsion. Going on recursively, we get the
requested sequence. (This is a “late hint” how to prove 2.11 A)). O

3.17. Theorem. Let R be Noetherian and let M be an R-module which is
a-torsion. Then HJ (M) =0 for all n > 0.

Proof. By 3.16 we know that M has an injective resolution ((I°®,d®);a) in

which all the R-modules I’ are a-torsion and hence satisfy ['y(I’) = I’. But
this means, that the complexes (I'q(1*),4(d®*)) and (I°,d*) are equal. As the
sequence

repde ..
is exact, it follows that the (same) sequence

T (d%) Ty (db)
e —_—

Lo (1°) Lo(1h)
is exact, too. So, for all n > 0 we have
H!"(M) = H"(Do(I*),Ta(d*)) = Ker(o(d™))/ Im(Ty(d" 1)) = 0.

ra([2)_>...

O

3.18. Corollary. Let R be Noetherian. Let M be an R-module and let N C M

be a submodule such that N is a-torsion. Let M > M/N be the map defined
by m — m + N. Then:

a) The induced homomorphism HY(p) : HY(M) — HY(M/N) is surjective.

b) For each n > 0, the induced homomorphism H(p) : H} (M) — HZ}(M/N)
s an isomorphism.

Proof. Consider the short exact sequence $ : 0 — N S MM /N — 0,
in which ¢ denotes the inclusion homomorphism. Then form the cohomology

sequence with respect to a and associated to 5 (cf. 3.9 B)) and observe that
H}Y(N) =0 for all n > 0 (cf. 3.17). O]



4. VANISHING RESULTS

Let R be a ring, let a C R be an ideal and let M be an R-module. In this
situation, two important cohomological invariants may be defined, which are
both related to the vanishing of local cohomology of M with respect to a,
namely the cohomological a-depth of M, given by
to(M) :=inf{i € No | H}(M) # 0},
and the cohomological dimension of M with respect to a, given by
cdo(M) :=sup{i € Nq | HL(M) # 0}.

We shall give a characterization of t4(M) in non-cohomological terms if R
is Noetherian and M is finitely generated (cf. 4.6, 4.7). Also we give two
different upper bounds on cdy(M) in terms of non-cohomological invariants if
R is Noetherian and—for the first one—M is finitely generated (cf. 4.11, 4.21).

4.0. Notation. Throughout this chapter, let R be a ring and let a C R be an
ideal.

4.1. Reminder and Exercise. A) Let M be an R-module. A finite sequence

(x1,...,2,) of elements of R is said to be an M -sequence if
i—1
x; € NZDR(M/ZI’jM) forie{1,...,r}.
j=1

(We use the convention that X9_,z;M = 0.) So, this means that
T € NZDR(M), To € NZDR<M/QZ'1M), xr3 € NZDR(M/(Q]lM + xQM)), c.
In particular x € R forms an M-sequence if and only if x € NZDgz(M). Note

that the empty sequence of elements of a is an M-sequence.

If (z1,...,2,) is an M-sequence such that x; € a for i € {1,...,r}, then
(x1,...,2,) is called an M-sequence in a. If (xq,...,z,) is an M-sequence, r
is called its length.

B) Let z1,...,2, € R,let s € {1,...,r—1} and let M be an R-module. Then,
one has the following composition property of M-sequences:

a) (z1,...,x,) is an M-sequence if and only if (zy,...,z,) is an M-sequence
and (Zgy1,...,2,) is an M/35_ x;M-sequence.

(To prove this, one can fix s and make induction on r, observing the iso-
morphisms M/¥!_ x;M = (M/S5_ M) /S5, (M/Y;_ 2 M) for all i €
{s,...,}.)

As a special case of statement a) we obtain:
b) (x1,...,x,)is an M-sequence if and only if z; € NZDz(M) and (z2, ..., x,)

is an M /x; M-sequence.
35
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4.2. Lemma. Let M be an R-module. Let (xq,...,x,) be an M-sequence in a.
Then

H:(M) =0 for all i <.

Proof. (Induction on r.) Let r = 1. Then z; € a N NZDg(M) (cf. 4.1 A)),
hence T'y(M) = 0 (cf. 1.7 a)). By 3.4 we obtain H)(M) = 0. Let > 1. Then
clearly (z1,...,2,_1) is an M-sequence in a. Hence, by induction, H:(M) = 0
for all i < r — 1. Tt remains to be shown that H.~!'(M) = 0. By 4.1 B) b) we
know that z; € NZDg(M) and that (xs,...,z,) is an M /x;M-sequence in a.
In particular, the cohomology sequence in 3.10 C) (applied with x = ;) gives
us an exact sequence of R-modules

H72 (M [ M) = 7N (M) 25 H7H (M),
As (z9,...,x,) is an M /z1M-sequence in a we get by induction that
HI™*(M/z,M) = 0.

So, the multiplication homomorphism xy- : H:~ (M) — HI='(M) is injective.
As H:7'(M) is a-torsion (cf. 3.13), and as z; € a, we get H.'(M) = 0
(cf. 3.12 C) b)). O

4.3. Proposition. Let R be Noetherian and let M be a finitely generated R-
module. Let r € N. Then the following statements are equivalent:

(i) There is an M-sequence of length r in a;
(i) H: (M) =0 for alli <r.

Proof. “(i) = (ii)”: Clear by 4.2.

“(ii)) = (i)”: Let HY(M) = 0 for i € {0,...,r —1}. We have to find an
M-sequence (x1,...,2,) in a. We construct this sequence by induction on r.
So, let » = 1. Then HY(M) = 0 by our assumption (ii). By 3.4 we have
Lo(M) =0. By 1.7 b) it follows a € ZDr(M) and hence a N NZDg(M) # 0.
So, we find an element € a N NZDg(M). This proves the case r = 1.

Let r > 1. By the case r = 1, there is some z; € a N NZDg(M). The
cohomology sequence 3.10 C) (applied with x = x1) gives exact sequences

Hy (M) — H}(M /2 M) — H™ (M)

for j € Ny. These show that HI(M/x M) = 0 for all j < r — 1. So—by
induction—there is an M/x; M-sequence (z,...,z,) in a. By 4.1 B) b) we
now see, that (xy,zs,...,2,) is an M-sequence in a. So (i) is true. O

4.4. Notation. For a subset A C 7Z we take the supremum and the infimum
of A always in Z U {—o00,00}. Therefore, the supremum and the infimum of
the empty set of integers is —oo and oo respectively.
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4.5. Reminder and Remark. A) Let M be an R-module. We define the
grade of a with respect to M by

grade,,(a) := sup{r € Ng | 3 M-sequence of length r in a}.

B) Observe that:

a) grade,,(a) =0 < a C ZDgr(M);
b) If b C R is a second ideal with b C a, then grade,,(b) < grade,,(a);
c) gradey(a) = oo.

C) If the ring R is local with maximal ideal m, the depth of M is defined by
depthy(M) := grade,,(m).

4.6. Theorem. Let R be Noetherian and let M be a finitely generated R-
module. Then A
grade,, (a) = inf{i € No | Hi(M) # 0}.

Proof. Let p := inf{i € No | H.(M) # 0} € Ny U {oo}. Let g € Ny with
g < grade,,(a). Then, there is an M-sequence (zy,...,x,) in a with r» > g¢.
By 4.3 it follows that H:(M) = 0 for all i < r, so that p > r > g. This proves
that grade,;(a) < p. Now, let r < p. Then H.(M) = 0 for all « < r. By 4.3
there is an M-sequence (z1,...,x,) in a, so that grade,,;(a) > r. This proves
grade,,(a) > p. O]

4.7. Proposition. Let R be Noetherian and let M be a finitely generated R-
module. Then, the following statements are equivalent:

(i) aM = M;
(ii) HL(M) =0 for all i € Ny;
(11i) grade,;(a) = oco.

Proof. By 4.6 it is sufficient to show that statements (i) and (ii) are equivalent.

“(i) = (i1)”: Assume that aM = M. As M is finitely generated, there is some
a € a such that (1 —a)M = 0. Hence, the multiplication homomorphism
M a-a), M is zero. So, for each ¢ € Ny, the multiplication homomorphism
(M) L2 Hi(M) s zero, too (ct. 3.10 A), 1.13 b)). Now, fix some i € Ny
and assume that H (M) # 0. Choose m € Hi{(M) \ {0}. As H(M) is a-
torsion (cf. 3.13), there is some n € N with a”m = 0. As a € a we obtain
a"m = 0. Choose n € N minimal with the property that a™m = 0. Then
we get " 'm = a"'m — a"m = a"" (1 — a)m = 0, a contradiction. Thus
H{(M) =0.

“(ii) = (i)”: It suffices to show, that no finitely generated R-module M satisfies
the condition

(%) aM # M and H.(M) = 0 for all i € N,
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Assume to the contrary, that there is a finitely generated R-module M which
satisfies (). Let

M :={N C M | N submodule, M/N satisfies (*)}.

As M satisfies (x) the zero module 0 belongs to M, so that M # (). As M is
Noetherian, M thus has a maximal member, say N. Then M := M /N_satisﬁes
() but M /U does not satisfy (x) for any non-zero submodule U of M.

As M is finitely generated with H2(M) = 0, there is some x € a N NZDg(M)
(cf. 4.3). As aM # M we have M # 0. As z € NZDgr(M) it thus follows
xM # 0. Therefore, M /xM does not satisfy (x). As x € a and aM # M, we
have a(M /xM) # M /xM. As M /xM does not satisfy (), we thus must find
some i € Ny with H:(M /xM) # 0. By 3.10 C) (applied with M instead of
M) we get an exact sequence of R-modules

H. (M) — H{(M/xM) — H: (M),
showing that Hi(M) # 0 or Hi'(M) # 0. This contradicts the property ()

of M. So, M cannot satisfy (*). O
4.8. Reminder. Let M be an R-module. Then, a mazimal M-sequence in a
is an M-sequence (z1,...,x,) in a, such that there is no z,,; € a for which
(21, ..., 2., x11) is an M-sequence.

4.9. Corollary. Let R be Noetherian and let M be a finitely generated R-
module with aM # M. Then all maximal M-sequences in a have the length

grade,,(a).

Proof. Let g := gradey,;(a). By 4.7 we have g < co. If ¢ = 0, a contains
only the empty M-sequences and so our claim is clear. Thus, let ¢ > 0. Let

(1,...,2,) be an M-sequence in a. Then r < g. It therefore is sufficient
to show, that the M-sequence (xi,...,z,) is not maximal if » < g. For each
t € {1,...,r} we have a short exact sequence of R-modules

t—1

O—>M/leM—>M/ZxZM—>M/ZxZM—>O

=1 =1 =1
as Ty € NZDR(M/Zt lle) and

M/le )/ M/le M/ZI[M

So, in cohomology we get exact sequences

(x)  HE(M/SZ{zM) — HE(M/S]_ o M) — HiP' (M) M)

for t € {1,...,r} and k € Ng. As H.(M) = 0 for all i < g (cf. 4.6) and
as M M/Zl (T M, the sequences (*) show that H:(M/x1M) = 0 for all
i < g— 1. But then the sequences (x) show that H:(M/(z1M + 25M)) = 0

for i < g — 2. Inductively we see that Hi(M/X;_ ;M) = 0 for all i < g —r.
If r < g, this means that HJ(M/X_,z;M) = 0. So, there is some element
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Trp1 € aNNZDp(M/E]_ 2 M) (cf. 4.3). But then (z1,...,2,,2,41) is an
M-sequence in a. So, (z1,...,x,) was not a maximal M-sequence in a. O]

4.10. Reminder and Exercise. A) Let M be a finitely generated R-module.
Then, the dimension of M is defined as the supremum of lengths of chains of
primes in the variety of the annihilator of M:

dim(M) :=sup{l € No | Ipo,...,p; € Var(0:g M) :po & --- & pi }.
B) Observe the following facts:
a) dim(M) = —ocoe M =0;
b) If N C M is a finitely generated submodule, then
dim(N),dim(M/N) < dim(M);
c) If R is Noetherian and x € NZDg(M), then dim(M/zM) < dim(M) — 1.

(Hints: For b) observe that (0 :g N),(0:g M/N) 2 (0:g M). For c) observe
that « ¢ p for all p € min(0:g M) (cf. 1.6 B) a), 1.8 C) ¢).)

4.11. Theorem. Let R be Noetherian and let M be a finitely generated R-
module. Then '
H,(M) =0 for all i > dim(M).

Proof. Let d :=dim(M). For M = 0 our statement is clear by 1.13 ¢). So, let
M # 0. Then, by 4.10 B) a), d > 0. Obviously we may assume that d < occ.
We proceed by induction on d. Let d = 0. We have to show, that H:(M) = 0
for all i > 0. Let M := M/Tq(M). Then Hi{(M) = Hi{(M) for all i > 0
(cf. 3.18 b), 3.12 A) b)). So, it suffices to show that Hi(M) = 0 for all i > 0.
By 1.4 B) b) we have ['y(M) = 0, hence HY(M) = 0 (cf. 3.4). So, there is
some z € a N NZDgr(M) (cf. 4.3). By 4.10 B) b) we have dim(M) < d = 0.
So, by 4.10 B) ¢) dim(M /xM) < 0 — 1, hence M /zM = 0 (cf. 4.10 B) a)) so
that tM = M. As x € a it follows aM = M. By 4.7 we get H:(M) = 0 for
all i € Ny, hence in particular H{(M) = 0 for all i > 0.

Now, let d > 0. We have to show that H(M) = 0 for all i > d. Again, let
M := M/T'4(M), so that Hi(M) = H.(M) for all i > 0. It thus suffices to
show that H{(M) = 0 for all i > d. By 4.10 B) b) we have dim(M) < d.

If dim(M) < d, by induction, H:(M) = 0 for all i > dim(M) and hence for
all i > d. So, assume that dim(M) = d. Again we see by 3.4, 1.4 B) b)
and by 4.3 that there is some # € a N NZDg(M). By 4.10 B) c) we obtain
dim(M /zM) < dim(M) — 1 = d — 1. So, by induction, H{(M /xM) = 0 for
all i > dim(M /xM), hence for all i > d — 1. On the other hand 3.10 C) gives
us exact sequences

HI(N /M) 25 HITV(N) 25 HIY(M)

for j € No which show that z- : H{(M) — Hi(M) is injective for all i > d. As
x € a it follows that H (M) =0 for all i > d (cf. 3.12 C) b), 3.13). O
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The above result is often called the Vanishing Theorem of Grothendieck for
Local Cohomology (cf. [G]). It can be shown that its conclusion still holds if
the R-module M is not finitely generated (cf. [B-S, Theorem 6.1.2]).

Now, in order to prove further vanishing results we have to develop another
tool from homological algebra, the so called triad sequence. This will lead us to
a fundamental exact sequence of local cohomology theory, the Mayer-Vietoris
sequence. As usual, we perform these constructions in a series of combined
reminders and guided exercises.

4.12. Reminder and Exercise. A) Let R’ be a second ring, and let F' and
G be two additive functors from R-modules to R'-modules. Moreover, let

p:F — G, M (uy: F(M) — G(M))

be a natural transformation (cf. 3.1). Now, let M be a R-module with injective
resolution ((/*,d*);a). Then:

a) The family pupe = (psn)nez is a homomorphism of cocomplexes of R'-
modules

pre = (F(I7), F(d%)) — (G(I7),G(d")).

Let N be a second R-module with injective resolution ((J°,e®);b), let h :
M — N be a homomorphism of R-modules and let h* : (I°,d*) — (J*,e*) be
a resolution of h. Then:

b) For all n € 7Z we have the commutative diagram

H"(uye)

H"(F(I*), F(d*))
H”(F(h‘))l
H"(F(J*), F(e"))

H"(G(I*), G(d))
lH"(G(h'))
H™(G(J*), G(e")).

H"™(pye)

B) Keep the notations and hypotheses of part A) and let
Lo: M~ Tp = (I3, d5y); anr)

be a choice of injective resolutions of R-modules. Use what has been said in
part A) and in 2.13 D) to show that for each n € Ny, the assignment

M v (H™(uy,) « H'(F(I3,), F(d3y)) — H™(G(I3), G(dy,)))
defines a natural transformation
R'u:R"F — R"G, M v~ (R"un := H"(purg,))-
The transformation R"u is called the n-th right derived (transformation) of p.
C) Keep the above notations and hypotheses. Show that in the notation of 3.3:
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a) For each R-module M, we have the commutative diagram
F(M) —— G(M)

F G
Qg l lO‘M
ROuns

ROF (M) X ROG(M).

Also show that in the notation of 3.8 B):

b) For each short exact sequence $ : 0 — N 2 ML P — 0 of R-modules
and each n € Ny we have the commutative diagram

st
R"F(P) ——> R"™F(N)
Rnupi anJrl/JN
n,G

R"G(P) —= R""'G(N).

Statements a) and b) express the fact that the formation of right derived
transformations is natural. Finally prove:

c) If u is a natural equivalence, so are its right derived transformations R"pu
for n € Ny.

4.13. Reminder, Exercise and Construction. A) Let R’ be a second ring,
and let ', G, H be three additive functors from R-modules to R’-modules.
Also, let 4 : FF— G and v : G — H be two natural transformations (cf. 3.1).
We say that

A:FSGHH
is an (admissible) triad of (additive covariant) functors (from R-modules to
R'-modules) if the sequence

0— F(I) u—I>G(I) V—I>H(I) — 0
is exact for each injective R-module I.

B) Assume that A : % G % H is a triad of functors from R-modules to R'-
modules. Let I = ((I°,d®); a) be an injective resolution of some fixed R-module
M. Then, we get a short exact sequence of cocomplexes of R'-modules

Az 0 — (F(I%), F(d%) =5 (G(I%),G(d*) = (H(I*), H(d")) — 0
in which pe and vje are the homomorphisms of cocomplexes defined accord-
ing to 4.12 A) a). Now, we form the cohomology sequence associated to Ap
(cf. 3.5 C) g)) and end up with an exact sequence

0

0 —HO(E(1*) 2412 (G () P (1)) =

HY(P1)) ) g Gty —— -
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where d3 ~denotes the n-th connecting homomorphism associated to the se-
quence Ay (cf. 3.5 B)). Next, let h : M — N be a homomorphism of R-
modules, let J = ((J*,€%);b)) be an injective resolution of N and let h*® :
(I°,d*) — (J*,€®) be a resolution of h. We can form the short exact sequence
of cocomplexes

Ag:0— (F(J*),F(e”) 25 (G(J*), G(e*)) 225 (H(J®), H(e*)) — 0,

and consider the associated cohomology sequence and the associated connect-
ing homomorphisms 03 . Then, for each n € Ny we get the commutative
diagram

n

HO(H(I) ——t i (1)
H"(H(h'))l
H(H(J%)

iH”“(F(h’))
H"Y(F(J*)).

671
Ag

C) Keep the above notations and hypotheses. Let
Lo: M~ Tp = ((Iyg,d3y); anr)

be a choice of injective resolutions of R-modules. Use what has been said in
part B) and in 2.13 D) to show that (setting &7;" := 5ZHM) the assignment

M (03, H'(H(I},)) — H"(F(I3)))
gives rise to an assignment
5;’A M > ((5}\147A : RnH(M) - Rn+lF(M))n€1N07

and hence to an exact sequence

0 OV
0 ROF(M) — " ROG(M) —M - ROH (M)
§0.8 1
M RUF(M) —M L RIG(M)
RVH(M)
EZFLA n Rnul\/[ n Rnij n
R*F(M) R"G(M) RH(M)

7,

Ry

é
— s RMIE(M) —5 RMLG(M)

for each R-module M.
The homomorphism
§uA L RYH(M) — R™WF(M)

is called the n-th connecting homomorphism with respect to A associated toM

and the above sequence is called the right derived sequence of A associated
to M.
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D) Show that—according to its suggested construction—the assignment of part
C) has the following naturality property: If o : M — N is a homomorphism
of R-modules, the diagrams

n,A

1)
RMH(M) >R 1 F(M)
R"H(h)l
n,A

R"H(N) —=R"1F(N)

iR"“F(h)

commute for all n € Np.

After this fairly general excursion in homological algebra we now focus our
interest to local cohomology with the goal to establish the Mayer-Vietoris
sequence.

4.14. Proposition. Let R be Noetherian, let b C R be a second ideal and let
I be an injective R-module. Then

Lane(1) = Ta(l) + De(1).

Proof. “27: is obvious (cf. 1.4 A) b)).

“C”: Let z € T'gnp(I). There is some n € N with (aNb)"z = 0. Applying
the Lemma of Artin-Rees (cf. 1.3) to the pair of R-modules b C R and the
ideal a, we find some my € N such that a” Nb" = a™RNb" C a™ "0b" for all
m > mg. Choosing m = n+mg we obtain a™Nb™ C a™Nb™ C a”b™ C (aNb)”
and hence (a™ Nb™)z = 0.
Now, consider the injective homomorphism of R-modules

e:R/a™"NbB™ — R/a™ S R/6™, x+a"Nb" — (z+a™ x4+ b™).
As (a™ N b™)z = 0, there is a homomorphism of R-modules

h:R/a™Nb™ — 1, x+a"Nb" — x2.

As [ is injective, there is a homomorphism of R-modules [, which appears in

the commutative diagram
h
I

R/a™Nb"™ —= R/a™ © R/b™.
Consider the two elements
w:=11+am0), v:=10,1+06") € I
For each x € a™ we have zu = [(z(1 4+ a™),0) = [(0,0) = 0, so that a”u = 0,
and hence u € I'y(]). Similarly we have v € I'y(I). As z = h(1 +a™ Nb™) =

l(e(T+amnb™) =1(1+am1+0™) =1(14+a™0)+(0,1+b6™) =u-+uv,
we obtain z € ['y(1) + [y(1). O
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4.15. Remark and Exercise. A) Let M* = (M?*,d*) and N* = (N°*,e®) be
two cocomplexes of R-modules. Consider the direct sum of these cocomplexes

M.@N.:(M.@N.,d.@e.):~--—>Mn@NnM>Mn+l@Nn+l—>”-
in which d"@e"™ : M"®N™ — Mt N is given by (z,y) — (d"(z), e"(y)).

Show, that for each n € Z one has an isomorphism of R-modules

(=23

De et HY(M®, d*) @ H'(N®,¢*) S H*(M* & N*, d* @ e*),
given by (z + Im(d"™ '),y + Im(e"™!)) — (z,y) + Im(d" ' @ " ).

Observe that these canonical isomorphisms have the expected naturality prop-
erty: If h* . (M*®,d*) — (M*,d*) and [* : (N*®,e*) — (N*® é*) are homomor-
phisms of cocomplexes of R-modules, we get a homomorphism of cocomplexes
of R-modules

R DI = (R"® 1) per : (M®* D N®,d* ®e®) — (M* DN, d° ©e*).
Then, for each n € Z, we have the commutative diagram

L’VL
Me® N®

H"(M®,d*) & H"(N*, e*)

H"(h‘)GBH”(l’)i

H"(M* @ N°*,d* @ e®)
iH"(meaz')

H"(M*® N°*,d* @ e*).

n
YA1e Ne

HA(M*, d*) & H(N*, &%)

B) Let R’ be a second ring, and let F' and G be two additive functors from
R-modules to R'-modules. Then we may define a new additive functor from
R-modules to R'-modules

(h)eG(h)
ey

FeG: (ML N)wm (FONe () £ F(N)® G(N)),

the direct sum of F and G. If F and G are linear with respect to some
homomorphism of rings between R and R/, then so is F' & G.

Now, let I, : M~ Iy = ((13;,d%,); anr) be a choice of injective resolutions of
R-modules. Fix n € Nj. Use what has been said in part A) and in 2.13 D) to
show that the assignment

M v (g, - HM(F () © HY(GI3) = H'(E(L) & G(I3)))
gives rise to a natural equivalence of functors
PG RPE G RYG S RY(F @ G).
In particular, if b C R is a second ideal, we get a natural equivalence
(= Tl 1 g HY S RMT @ Ty)

for each n € Nj.
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4.16. Construction and Exercise. A) Fix a second ideal b C R. Then, for
each R-module M we may define homomorphisms of R-modules

13 Tapp(M) — To(M) @ Ty(M), m — (m,m);
Ve Do(M) @ Ty(M) — Danp(M), (m,n) — m —n.
Observe, that in this way we get two natural transformations
p*: Tasp — Do Ty
v Ta® Ty — Ly
Show that:

a) For each R-module M we have the exact sequence

a,b a,b

0 — Tayo(M) 25 To(M) & Ty(M) 2 Torp(M).
Use 4.14 to show:
b) If R is Noetherian and [ is an injective R-module, the homomorphism
vi®  To(I) @ Ty(I) = Carp(])
is surjective.
Conclude that we have the triad of functors
Agp: Tarp L Fa® T il Lane.
B) Keep the notations and hypotheses of part A), and let R be Noetherian.

Fix an R-module M. Then, we may form the right derived sequence of Ay

associated to M (cf. 4.13 C)) and identify the R-modules H} (M) & Hy (M)
with R™"(T'y @ I'y) (M) by means of the natural equivalence

e HE @ HY = RMTe @ Ty)
(cf. 4.15 B)). Then, setting
M;‘z}a,b - Rnu?\;[b’ V]r‘z/}a,b - Rnyjc‘}b and 5}/}&[3 — 5]7\147Aa,b

for all n € Ny, we end up with an exact sequence

0;a,b 0;a,b
00— HY, (M) " HY(M) & HY(M) —— HY (M)
6?\;;,{) 1;a,b

I
—— Hey (M) ——— Hy(M) & Hy(M)

- b — Hig (M)
(;n/f a, " “n;a, " " s .
M- H (M) 2 HY(M)® H{ M) —~ H™ (M)

5;@“’[} n+1;a,b

M TN (M) P Y (M) @ HPPY (M) ———

the Mayer-Vietoris sequence with respect to a and b associated to M.
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C) Clearly, in the obvious sense we can say, that the formation of the Mayer-
Vietoris sequence with respect to a and b is natural.

4.17. Remark and Exercise. Let b C R be a second ideal. If a and b are
finitely generated, as a consequence of 1.4 A) c¢) we have:

a) If v/a = /b, then H?(e) = H?(e) for all n € N;
b) H (e) = Hl (e) for all n € Nj.

4.18. Lemma. Let R be Noetherian, let a € R and let M be an R-module.
Then HZ@(M) =0 for all i > 1.

Proof. Let M := M/Toy(M). Let n, : M — M,, m — = be the canonical
homomorphism of R-modules. Then

Ker(n,) ={me M |3Inc N:a"m =0} =T (M).
Hence there is a short exact sequence of R-modules
0— ML M, — M,/7(M) — 0,

in which 7 is given by m +1I'(4y(M) + n,(m). But now we can apply cohomol-
ogy to this sequence and get exact sequences
Hiy (Mo /A(N) = HUSH (M) — LS (M) — HS (M /()

for all j € Ny. Clearly M, /7(M) is {a)-torsion. Therefore Hk ) (M, /(M) =
for all £ > 0 (cf. 3.17). The above sequences now show that H2 ) ( 1)
H,(M,) for all i > 1. By 3.18 b) and 3.12 A) b) we also have HZ (M)
Hfa>(]\_4) for all ¢ > 0. So, we only have to show that HZ@(Ma) = O for all
i > 1. As a-: M, — M, is an isomorphism, so is a- : Hj, (M,) — H{, (M,)
(cf. 1.13 A) a), 3.10 A)). Now, we conclude by 3.13 and 3.12 C) b). O

O

11

4.19. Proposition. Let R be Noetherian, let a = (ay,...,a,) and let M be an
R-module. Then H.(M) =0 for all i > r.

Proof. (Induction on r.) The case r = 0 is clear by 1.4 A) a) and 2.15 ¢), and
the case r = 1 is clear by 4.18. So, let » > 1. Let b := (ay,...,a,_1). As
a = b+ (a,), the Mayer-Vietoris sequence with respect to b and (a,) associated
to M gives us exact sequences

Hig o,y (M) — Hy(M) — Hy(M) & Hi, (M)

for all i € N (cf. 4.16 B)). By 4.17 b) we can write Hy, (M) = Hy '\ (M) =

. , b(ar)
H Z;llw ..... ar_vary(M). Hence it follows by induction, that H EE%M(M ) = 0 when-

ever i —1 > r —1, thus for all i > r. By induction we also have Hi(M) = 0 for
all i >r —1. By 4.18 we know that [, ,(M) = 0 for all i > 1. So the above
sequences show that indeed H:(M) = 0 for all i > r. O]
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4.20. Reminder. Let a be finitely generated. Then, the arithmetic rank of
a is defined as the minimal number of elements of R which generate an ideal
radically equal to a. Thus

ara(a) := min{r € No | Jay,...,a, € R:\/{ay,...,a,) = /a}.
Observe that ara(a) = 0 is equivalent to /a = V0.
4.21. Theorem. Let R be Noetherian and let M be an R-module. Then
H.(M) =0 for all i> ara(a).

Proof. Let r := ara(a). We thus find elements ai,...,a, € R such that

va = y/{a,...,a,). By 4.17 a) and 4.19 we therefore obtain H.(M) =
' (M) =0 forall i >r. O]

The above result is an algebraic version of a result shown by Hartshorne
(cf. [H2]).



5. LOCALIZATION AND FINITENESS

We first show that “taking local cohomology commutes with localization”
(cf. 5.6). Then, we show that “the first non-finitely generated local coho-
mology module has finitely many associated primes” (cf. 5.11). As an applica-
tion of this we prove Fultings’ Local-Global Principle for finiteness dimensions
(cf. 5.14).

5.0. Notation. Throughout this chapter, let R be a ring and let a C R be an
ideal.

5.1. Proposition. Let R be Noetherian, let S C R be multiplicatively closed
and let I be an injective R-module. Then S™'I is an injective S~ R-module.

Proof. Let b € S™'R be an ideal and let h : b — S~'I be a homomorphism
of S7'R-modules. By the Baer Criterion (cf. 2.8) we must find an element
e € S7 such that h(b) = be for all b € b. Let n: R — S™'R be the canonical
ring homomorphism defined by z +— 2 for all z € R and any s € S. Let
a:=n!(b) C R. Then it is immediate that b = aS™'R. As R is Noetherian,
we find elements aq,...,a, in R with a = {(a4,...,a,).

Now, we consider S~'I as an R-module by means of 7 and introduce the
homomorphism of R-modules 7 : I — S™!I given by z Zforallw € 1
and any s € S. Then, for each i € {1,...,r} we find elements b; € I,t, € S
such that h(n(a;)) = +7(b;). Let t :=[[;_,t; € S and ¢; := [1;.it;bi € 1 for

ie{l,...,r}. Then cllearly th(n(ai)) = £7(bi) = [1;t;7(bi) = 7(c;) for all
ie{l,...,r}.

Let N := 3"  Re; € I. As N is a Noetherian R-module, Ker(7) N N is a
finitely generated R-module. Write Ker(7) N N = 25:1 Rd; with dy,...,d; €
Ker(r) N N. For each j € {1,...,k} there is some s; € S such that s;d; = 0.
Let s := H?=1 s; € S. Then s(Ker(r) N N) = 0. If we apply the Lemma of
Artin-Rees (cf. 1.3) to the R-modules Ker(7) NN and N and the ideal (s) C R
we find some mq € Ny such that

(s)™N N (Ker(r) N N) C (s)™ ™ (Ker(r) N N)

for all m > my. Choosing m = mgy + 1 we get (s)™N N (Ker(7) N N) C
(s)(Ker(7) N N) = 0, thus s™N N Ker(7) = 0. So, there is an isomorphism of
R-modules

o:5"N S 7(s"N), z — 7(x).
Let v := st € S. As h(n(va)) = s™> .| Rth(n(a;)) = s™Y ., R7(c;) =
7(s™> 0, Re;) = 7(s™N) we may define a homomorphism of R-modules

hova— 1, y— o (h(n(y))).

Let i : va »— R denote the inclusion homomorphism. As [ is injective, there

is a homomorphism of R-modules [ : R — I with h = [ o4. Set e := 7(I(1)).
48
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Now, let b € b. Then, with appropriate a € a and u € S we may write b = ¢
It follows

= r((Tod)(va)) = Fr(l(va)) = 2r(I(1)) = $e = be.

To exploit this result for local cohomology, we need a few further facts on
homological algebra which we shall develop now in a series of reminders and
exercises.

5.2. Exercise. A) Let R’ be a second ring, and let I be an exact additive func-
tor from R-modules to R'-modules. Let (M*,d®) be a cocomplex of R-modules.
Let i : Ker(d") — M™, j : Im(d"™') »» M™ and k : Im(d" ') — Ker(d") be
the inclusion homomorphisms and let p : Ker(d") — Ker(d")/Im(d"!) be the
canonical homomorphism of R-modules. Show that F(k) : F(Im(d"™')) —
F(Ker(d™)) is injective and that Im(F(i)) = Ker(F(d")) and Im(F(d"')) =
Im(F(j5)) =Im(F(iok)) = F(i)(Im(F(k))). Conclude that there are isomor-
phisms of R-modules

¢t F(Ker(d®))/Im(F(k)) = F(Ker(d")/Im(d" "))
z +Im(F(k)) — F(p)(x);

W s F(Ker(d™))/ Im(F(k)) = Ker(F(d"))/Im(F(d*™)),
z+Im(F(k)) — F(i)(z) + Im(F(d")).

B) Keep the hypotheses and notations of part A) to conclude (with 4}t =
Ui © (@hre)71):

a) There is an isomorphism of R'-modules
Yaie : F(H"(M®,d%)) — H"(F(M*), F(d"))
for each n € Z.
Show in addition, that the above isomorphisms are natural, namely:

b) If h* : (M*®,d*) — (N°®,e®) is a homomorphism of cocomplexes of R-
modules, we have the commutative diagram

F(H™(M?®,d%)) H”(F(Ml'),F(d'))
H™(F(h*))

H"(F(N®), F(e*)).

F(H"(h'))l
F(H"(N*,¢*))
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5.3. Reminder and Exercise. A) Let R’ and R” be two further rings. Let F'
be an additive functor from R-modules to R’-modules and let I’ be an additive
functor from R’-modules to R”-modules. Then:

a) The assignment

F'oF =F(F(e)): (M2 N) v (F/(F(M)) 22 pr(F(V)))

defines an additive functor from R-modules to R”-modules. If there are
homomorphisms of rings f between R and R’ and f” between R’ and R”
such that f and f’ may be composed and if F' and F” are linear with respect
to f and f’ respectively, then F'oF is linear with respect to the appropriate
composition of f and f’.

The functor F' o ' = F'(F(e)) is called the composition of F' with F.

b) Composition of functors is associative and composition with the identity
functor does not change anything.

c) f F~Gand F' ~ G then F'o F' '~ G oG.
B) Keep the notations and hypotheses of part A). Moreover let
Lo: M w1y = (I3, dYy);am)

be a choice of injective resolutions of R-modules. Assume in addition that the
functor F’ is exact. Then, according to 5.2 B), for each n € Ny there is an
isomorphism of R”-modules

nE L F(HMEIY), F(dSy)) = H(F' o F(IY), F' o F(d3,)).

Tr(13,)
Use what is said in 5.2 B) b) and 2.13 D) to show that on use of the assignment
M +~ WXJF/’F = 'y;’(l;].u) we can say: For each n € Ny, there is a natural

equivalence of functors
AW EE L F o (RPF) S R™MF o F).

5.4. Exercise. Let R, R” and F and F’ be as in 5.3 A). Assume that F' is
exact and that F([) is an injective R’-module for each injective R-module
I. Let I, : M~ Ty = ((I3,d%); an) be a choice of injective resolutions of
R-modules. Use 2.13 D) to conclude that the assignment

M s (H'(F' o F(I3;), F' o F(d3)) = H"(F'(F(I3)), F'(F(d3,))))
defines a natural equivalence of functors
S RMEF 0 F) S (RPF') o F

for each n € Nj.

Now, we focus our interest on local cohomology and localization. We begin
with a preliminary remark.
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5.5. Remark. Let S C R be multiplicatively closed. Then the assignments

STy (h)
_

ST Tg(e) : (M 25 N e (S71To(M) S™Ta(N)),

Pos—15(S7'h)
L LA N

Tas-1r(S7'e) : (M = N) ~» (Cag-1r(S™'M) Las-1r(ST'N))

both define functors from R-modules to S~!R-modules which are linear with
respect to the canonical homomorphism of rings ng (cf. 1.14). Indeed, these
assignments may both be understood as composition of functors:

ST q(e) = (S7'e)oTy; Tas-1r(S 'e) =Tag-1r0 (S e).
Now, if a is finitely generated, the assignment
Pa: M v~ (pa,M : Silra(M) i FaS—lR(SilM»

in which pg s is defined according to 1.11, defines a natural equivalence of
functors

pa: ST Ta(8) = Tag-15(S o).

5.6. Theorem. Let R be Noetherian and let S C R be multiplicatively closed.
Then, for each n € Ny, there is a natural equivalence of functors

P STH(9) = Hig1p(S™'e).
In particular, for each n € Ny and each R-module M there is an isomorphism
of S~LR-modules

o)

P+ STUHE(M) S Hi o p(ST'M),

Proof. By 5.5 and 4.12 C) ¢) we may form the n-th right derived transformation
of pq (cf. 5.5) and obtain a natural equivalence

Rpa: RS T4(e)) = R™*(Lag-15(S7"e)).
If we apply 5.3 B) with F =T’y and F' = S~'e, we get—observing 1.18 B)—a
natural equivalence
n,5 le g

STTH" = (S 'e) o R"Ty T—— R"((S7 @) o T'y) = R™(S™'T4(e)).

o)

If we observe 5.1 and 1.18 B) and apply 5.4 with F' = S~'e and F' = I'ys-15
we get a natural equivalence

n,Silo,FasilR

R"(Tas-11(S7 ")) —— (R"Tas-15) 0 (S7'e) = H''s 1 (S ).

Setting pll := (187 0 Tas=1r) 0 R™pg o (7”7571"“) we get our claim. OJ

5.7. Remark. Theorem 5.6 may be expressed by saying simply: Local coho-
mology commutes with localization. This is a special case of a far more general
result, namely the so-called Flat Base Change Property of Local Cohomology
(cf. [B-S, Chapter 4.3]).
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After this rather general result of functorial nature we now shall establish
the announced finiteness result for the set of associated primes of the “first
non-finitely generated local cohomology module”.

5.8. Lemma. Let M L N % P be an evact sequence of R-modules and let
U C P be a submodule. If M and U are Noetherian, then so is the submodule
g~ '(U) of N.

Proof. Left as an exercise.

0
5.9. Lemma. Let M 5 N % P be an exact sequence of R-modules, let U C N
be a submodule such that g(U) = 0, and let p € Assp(N/U)\ Assg(M/f~H(U)).
Then, there exists n € N such that (0 :g R(n+U)) =p € Assg(Rg(n)).

Proof. Let p : N — N/U be the canonical homomorphism of R-modules.
There are an n € N such that p = (0 :g p(n)) = (0 :g R(n +U)) and a
homomorphism of R-modules f : M/f~Y(U) — N/U with f(m + f~4(U)) =
p(f(m)) for m € M. Setting V := f~1(Rp(n)), there is an exact sequence of
R-modules

O—>Vi>Rp(n)—g>P,

where g is defined by g(m+U) = g(m) form € N. Asp € Assg(Rp(n)), we get
p € Assg(V)UAssg(g(Rp(n))) by 1.6 B) b). As Assp(V) C Assg(M/f~Y(U)) Z
p, it follows p € Assg(g(Rp(n))) = Assgr(Rg(n)). O

5.10. Proposition. Let R be Noetherian and let M be a finitely generated
R-module. Let i € Ny be such that HI(M) is finitely generated for all j €
{0,...,i—1} and let N C HL(M) be a finitely generated submodule. Then

t Assp(HL(M)/N) < oo.

Proof. (Induction on i.) The case i = 0 is clear as HY(M) = T'y(M) C M

is finitely generated (cf. 1.6 B) ¢)). So, let i > 0 and set M = M/T'(M).
Then HY(M) = Tq(M) = 0 (cf. 1.4 B) b)) and H¥(M) = HF(M) for all
k > 0 (cf. 3.12 A) b), 3.18 b)). Thus HI(M) is also finitely generated for
j€{0,...,i—1} and H{(M) = Hi(M). So, we may replace M by M and
hence assume that H(M) = 0. We thus find some element y € a NNZDg(M)
(cf. 4.3). As N is finitely generated, there is some m € N with y™ N = 0. We

set x = y™.

~— —

So, we may apply 3.10 C) in order to get the following commutative diagram
with exact rows

Hi Y (M) — = Him (M /zM) ———— Hi(M) —"—~ Hi(M)

i oo

Hi Y (M /aM) /6 (N) —>= Hi(M)/N —“= Hi(M)

0
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in which e := H:"!(p) is induced by the natural homomorphism p : M —
M /xM, pis the canonical homomorphism, § is the connecting homomorphism,
§ is defined by m+8"1(N) — d(m) and ¢ is defined by u+ N +— zu. By 5.8 it
follows, that 6~*(N) is finitely generated. By 3.10 C) we have exact sequences

H7H (M) — H7H (M /aM) — H (M)
for all j € N which show that H¥(M/xM) is finitely generated for all k < i—1.
By induction it thus follows, that T':= H:~'(M/xM)/§~(N) has only finitely
many associated primes. As N is finitely generated, we also have f Assg(N) <
oo (cf. 1.6 B) ¢)). So, it suffices to show:

Assp(HL(M)/N) C Assg(T) U Assp(N).

To do so, let p € Assg(HL(M)/N) \ Assg(T). By 5.9 we find an element
h € H.(M) such that (0 :gr Rp(h)) = p € Assg(Rzxh). So, there is some s € R
with p = (0 :g Rxsh).

As z € a and as H.(M) is a-torsion there is some n € N with z"(zsh) = 0,
hence with 2™ € (0 :g Rxsh) = p, and as p is prime this implies z € p =
(0:r Rp(h)). It follows xh + N = p(xh) = xp(h) = 0, hence xh € N and thus
xsh € N. As p = (0 :g Rxsh), it follows p € Assg(N) and this proves our
claim. 0

5.11. Theorem. Let R be Noetherian and let M be a finitely generated R-
module. Let i € Ng be such that HI(M) is finitely generated for all j €
{0,...,i—1}. Then §Assg(HL(M)) < oo.

Proof. Apply 5.10 with N = 0. 0J

The results 5.10 and 5.11 are shown in [B-L]|. Observe that if R is Noetherian
and M is a finitely generated R-module, the sets Assgr(H:(M)) need not be
finite in general (cf. [K], [Si]).

Now, we have paved the way to attack the last main result of this section, the
Local-Global Principle for finite generation of local cohomology modules. We
begin with two auxiliary results.

5.12. Lemma. Let R be Noetherian. Let L be an R-module such that 0 <
t Assp(L) < co. Assume that for each p € Assg(L) there is some n, € N such
that (a™ L), = 0. Let n := max{n, | p € Assg(L)}. Then a”L = 0.

Proof. Let x € L and let ¢1,...,t, € L be such that a"z = ). | Rt;. Let
p € Assg(L). By our choice of n we have (a"z), C (a"L), C (a™ L), = 0,
hence (3, Rt;), = (a"z), = 0. So, for each i € {1,...,r} there is some
element s;, € R\ p with s;,t; = 0. Let s, := [[/_; sip- Then s, € R\ p
and spt; = 0 for ¢ € {1,...,r}. It follows s,a”z = 0. Now, consider the
ideal b := 3" _\ ) Rsp. Clearly ba"s = 0. As b > s, ¢ p we have b ¢ p
for all p € Assg(L). As the set Assg(L) is finite, prime avoidance gives b ¢
Upcassnz)? = ZDr(L) (cf. 1.6 B) a)). So, there is some b € b N NZDp(L).
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But now ba"x C ba"x = 0 shows that a”z = 0. As x € L was arbitrary, this
proves our claim. O]

5.13. Lemma. Let R be Noetherian, let r € N and let M be a finitely generated
R-module. Then, the following statements are equivalent:

(i) HL(M) is finitely generated for all i < r;

(i) a C \/(0:g HI(M)) for alli <.

Proof. “(i) = (ii)”: As H(M) is always a-torsion, this implication is clear
(cf. 3.12 C) a)).

“(ii) = (i)”: Assume that a C /(0:p Hi(M)) for all i < r, so that for
each i < r there is some n; € N with a™ C (0 :g H.(M)). Put n =
max {n; | i € {0,...,r —1}}. Then clearly a"H:(M) = 0 for all i < r. By
induction on r we prove that H!(M) is finitely generated for all i < r. As
HY(M) =T, (M) C M is finitely generated, the case r = 1 is obvious and we
may assume that r > 1 and restrict ourselves to show that H:(M) is finitely
generated for i € {1,...,r —1}.

Let M := M/T4(M). As observed many times we have H’(M) = 0 and
Hi(M) = H{(M) for all i > 0. In particular we have a"H:(M) = 0 for all
i < r. So, we may replace M by M and hence assume that H?(M) = 0.
But once more this means that there is some x € a N NZDg(M). It follows
" € a" N NZDg(M). As 2" € a™ we have z"H{(M) = 0 for all i < r. As
™ € NZDg(M), the sequence 3.10 C) thus gives exact sequences

0 — HI7' (M) — Hi7 (M/2"M) 2= Hi(M) — 0
for all ¢ € {1,...,r — 1}. These first show that a**H. (M /z"M) = 0 and
hence a C /(0 :g H: (M /2nM)) for all i € {1,...,r — 1}. So, by induction,
the modules H.™'(M/z™M) are finitely generated for all ¢ € {1,...,r — 1}.

Another use of the previous sequences shows that H:(M) is finitely generated
for all i € {1,...,r —1}. O

5.14. Theorem. Let R be Noetherian and let r € N. Let M be a finitely
generated R-module. Then, the following statements are equivalent:

(i) HL(M) is finitely generated for all i < r;

(ii) The Ry,-module H.(M), is finitely generated for all i < r and all p €
Spec(R?);

(i1i) The Ry,-module HéRp(Mp) is finitely generated for all i < r and all p €
Spec(R).

Proof. “(i) = (ii)”: Clear by the basic properties of localization.

“(ii) < (iii)”: Clear by the isomorphism of Ry-modules Hy(M), = Hip (My)
obtained from 5.6 applied with S = R\ p.
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“(ii) = (i)”: (Induction on r.) The case r = 1 is obvious as HY(M) = T'y(M) C
M is finitely generated. So, let > 1. By induction we know that H(M) is
finitely generated for all i < r — 1. So we have to show that L := H."*(M) is

finitely generated. By 5.13 it is equivalent to show that a C /(0 :x L), hence,
to find an n € N with a”L = 0. By 5.11 we see that § Assg(L) < co. If L =0,
our claim is clear. Let L # 0 and let p € Assg(L). By our hypothesis, L, is
finitely generated as an Ry-module. As L is a-torsion, L, is aR,-torsion. So
there is some n, € N with (a™ L), = a™ R,L, = (aR,)"™ L, = 0 (cf. 3.12 C) a)).
Now, we conclude by 5.12. OJ

The previous result first has been proved by Faltings [F]. It can be formulated
as a “Local-Global Principle” as follows.

5.15. Definition. The a-finiteness dimension of M is defined by
fa(M) :=inf{r € N | H;(M) is not finitely generated}.

5.16. Corollary. Let R be Noetherian and let M be a finitely generated R-
module. Then

fa(M) = inf{ far,(M,) | p € Spec(R)}.

Proof. This follows easily from the equivalence “(i) < (iii)” in 5.14. O

5.17. Exercise. Let R and M be as in 5.16. Prove that
Ja(M) = inf{ far, (M,) | p € Var(a) N Var(0 :z M)}.
5.18. Remark. Let R be Noetherian and let M be a finitely generated R-
module. Let
Ao(M) = inf{depth, (My) + ht((a+p) /) | p € Spec(R) \ Var(a)}.

(Here, depthy (My) is defined according to 4.5 C), whereas the height of an
ideal b of a ring A is defined by

ht(b) := inf{dim(A,) | q € Var(b)}.)

Then it is known that

fa(M) < Ao(M).
Moreover, if R is a homomorphic image of a regular ring, equality holds. So,
whenever R is a homomorphic image of a polynomial ring K[X7, ..., X,] over
a field, we have fo(M) = A\o(M) (cf. [B-S, Chapter 9]). This finiteness criterion
for the modules H:(M) is due to Grothendieck (cf. [G]).



6. EQUATIONS FOR ALGEBRAIC VARIETIES

The arithmetic rank of the vanishing ideal of an algebraic set is the minimal
number of equations needed to define this set (cf. 6.6). We use this to translate
the vanishing result 4.21 to the context of algebraic sets.

6.0. Notation. Throughout this chapter, let K be an algebraically closed
field, let n € Ny and let R := K[Xy,...,X,] denote the polynomial ring in n
indeterminates over K.

6.1. Reminder and Exercise. A) We define the set of zeros of a set M C R
by

VM) :=={p=(p1,-..,pn) € K" |V f &€ M: f(p) = 0}.
Note that V() = K™. A set V C K" is said to be an algebraic set if there is
a set of polynomials M C R such that V = V(M).

B) For M C R let (M) C R as usual denote the ideal generated by M. Note
that (()) = 0. Then one has:

a) V(M)) =V(M) for M C R.
An important consequence of this is:

b) Each algebraic set V' C K™ is the set of zeros of an ideal, hence of the form
V =V(a), where a C R is an ideal.

C) If r € N and fi, ..., f. are finitely many polynomials in R we write

V(fl; . 7fr) = V({fl; R ,f,«}).
As R is Noetherian, it follows from B) b) that each algebraic set V' C K™ is the
set of zeros of finitely many polynomials, hence of the form V- =V (f1,..., f.)
where fi,..., f. € R.

UtV =v(f,...,f) with fi,..., f € R, we say that f; =0, ..., f, =0 are
defining equations for V and that V' can be defined by r equations.

6.2. Reminder and Exercise. A) The following hold:

a) V(0) = K™ and V(R) = (;

b) V(O e @) = i V(a), where (a;);es is a family of ideals of R;

c) Viepn---Na.) =V(a)U---UV(a,), where ay,...,a, are finitely many
ideals of R.

B) The above statements imply:

a) K" and () are algebraic sets;
b) Intersections of arbitrary families of algebraic sets are algebraic sets;

¢) Unions of finite families of algebraic sets are algebraic sets.

But this means:
56
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d) On K™ we can define a topology whose closed sets are precisely the algebraic
sets V C K™,

C) The topology mentioned in B) d) is called the Zariski topology. We write
A™(K) for the space K™ furnished with the Zariski topology. So keep in mind
that instead of algebraic sets in K™ we can speak of closed sets in A™(K).

D) A closed set V' C A"(K) is said to be irreducible if it is non-empty and if
it may not be written as the union of two proper closed subsets. Irreducible
closed sets V' C A™(K) are called affine algebraic varieties.

6.3. Examples and Exercise. A) Let p € A"(K). Then {p} is an irreducible
closed subset of A™(K).

B) The closed subsets of A'(K) are precisely A'(K) and all finite sets, includ-
ing ().

C) The Zariski topology on A%(K) is not the same as the product topology on
AYK) x AY(K).

6.4. Reminder and Exercise. A) Let V' C A™(K) be closed. Then the set
I(V):={feR|VpeV: f(p) =0}

is a radical ideal of R, i.e. an ideal which is equal to its radical. It is called the
vanishing ideal of V. Note that I(()) = R.

B) It is easy to verify that

a) V(I(V)) =V for each closed set V C A™(K).

On the other hand, the Nullstellensatz (cf. [H1, Theorem 1.3A]) says:
b) I(V(a)) = y/a for each ideal a C R.

C) Finally, let us notice: A closed set V' C A"™(K) is irreducible if and only if
I(V) C R is a prime ideal.

Indeed, let I(V') be prime and assume that V' is not irreducible. As I(V') # R
we have V' # (). So, we can write V = V; U V5 with Vi, V5 closed in A™(K)
and Vi, Vo & V. Clearly I(Vy), I(Va) 2 I(V). By B) a) it follows that
I(V1),1(Va) 2 I(V). So, there are polynomials f; € I(Vy) \ I(V) and fy €
I(Va) \ I(V). Obviously fifs € I(V1UVa) =1(V). As I(V) is prime, this is a

contradiction.

Conversely, assume that [(V') is not prime. If I(V) = R, then B) a) and
6.2 A) a) show that V' = ) and so V is not irreducible. So, let I(V) & R.
We then find polynomials f, fo € R\ I(V) with fif; € I(V). Let V} :=
V(I(V)+ (f1)) and V5 := V(I(V) + (f2)). Then clearly V;, V5 are closed
in A"(K) with Vi, Vo ¢ V. Now, let p € V. As fifs € I(V) we have
fi(p) f2(p) = 0, thus fi(p) = 0 or fo(p) = 0. In the first case p € Vi, in the
second p € V5. This shows that V' =1V, U V5. So V is not irreducible.
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6.5. Examples and Exercise. A) Let p = (p1,...,p,) € A"(K). Then
I({p}) = <X1 — D1y - aXn _pn>-
B) I(A™(K)) = 0. So A™(K) is irreducible.

6.6. Theorem. Let V C A™(K) be a closed set. Then, the minimal number of
equations needed to define V' is equal to the arithmetic rank of I(V'), thus:

min{r € No | 3f1,...,fr e R:V =V (f1,..., f)} =ara(I(V)).

Proof. On use of 6.4 B) a), b) we obtain
V=V(fi,.- ' ) =IV)=1IV(f1,.... f-) =V {fr,-- - [r)

for fi,..., f, € R and moreover

I(V): \% <f17~'7f7'> :>V:V(I(V)) :V(\/ <f17'--7fr>)'

By the relation V( (fi,... ,fr>) =V(fi1,..., fr) we thus obtain

V:V(f177fr)<:>](v): V <f17'--7f1">'

This proves our claim. O

6.7. Exercise. A) Let M be a finitely generated module over a Noetherian
ring A. Let (z1,...,x,) be an M-sequence in A such that (xq,...,z,.)M # M.
Show that

Hiy  any(M)#0&i=r
(Here is a hint: Use 4.3, 4.19 and 4.7.)

B) Let A be aring, let € Ny and consider the polynomial ring A[ X7, ..., X,].
Show that (Xi,...,X,) is an A[Xq,..., X,]-sequence. Conclude that, if A is
Noetherian,

Hix, xy(AXy, . X)) #0&i=r

6.8. Example and Exercise. A) Let n = 4, and consider the closed set
V= V(X1 X35, X1 Xy, Xo X3, XoX,) € AY(K).
The relations
(X2 X3)? = (X1 X4+ X5 X3) Xo X3 — X1 X3 X0 X,
(X1X4)? = (X1 Xy 4 XoX3) X1 Xy — X1 X3X0X,
and 6.4 B) a), b) show that
V =V (X1X3, X1 Xy + X0 X3, X0 Xy),

hence V' can be defined by 3 equations. But is it possible to define V' by 2
equations only?
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B) By 6.6 the above question finds its answer if we can determine ara(I(V)).
Again by 6.6 we see already that ara(/(V)) < 3. On the other hand we have
by the Nullstellensatz 6.4 B) b)

I(V) = /(X1 X5, X1 X4, Xo X5, XoXa) = v/ (X1, Xo) (X3, X4)
= (X1, X2) N (X5, Xy).

The Mayer-Vietoris sequence with respect to the ideals (X7, X5) and (X3, Xy)
associated to the R-module R gives us an exact sequence

H?(V)(R> - H<4X1,X2,X3,X4)(R) - H?Xl,X2>(R> D HZLXS,XAL)(R)
(cf. 4.16 B)). By 4.19 and by 6.7 B) we see that H;’(V)(R) # 0. By 4.21 it follows

ara(/(V')) > 3 and hence ara(/(V')) = 3. So one needs exactly 3 equations to
define V.

C) Let V; = V(X1, X5) and Vo = V(X3, Xy). Then, V; and V, are planes in
the 4-space A*(K). Moreover
VinVy =V(Xy, Xy, X3, Xy) = {0}
and
VUV =V({X,X2)N (X3, X)) =V{I(V)) =V

(cf. B), 6.2 A) ¢), 6.4 B) a)). So V is the union of two planes which intersect
each other precisely at the origin. Unlike to what we have met in linear algebra,
the “surface” V' C A*(K) cannot be defined by 2 equations. But V clearly is

not irreducible. There are indeed examples of irreducible surfaces in A*(K)
which cannot be defined by two equations (cf. [B-S, Example 4.3.7]).



7. EXTENDING REGULAR FUNCTIONS

Let U be a (Zariski-) open subset of an affine algebraic variety V. We show
that a certain first local cohomology module is the obstacle for the extension
of regular functions from U to V' (cf. 7.8, 7.9).

7.0. Notation. Throughout this chapter, let K be an algebraically closed
field, let n € Ny, let R := K[X,...,X,] denote the polynomial ring in n
indeterminates over K and let V' C A"(K) be an affine algebraic variety.

7.1. Convention and Notation. Let W C A™(K) and let p € W. We always
furnish W with its induced topology and use the following notations:

Uw :={U C W | U is open in W};
Uwyp :={U € Uw |p € U};
Uy ==Uw \ {0}.

7.2. Reminder and Exercise. A) As V is irreducible, one has:
a) If Ul, UQ S @\/, then U1 N U2 € ugjv.

Let f,g € R. Then {p € A™(K) | f(p) # 9(p)} = A"(K)\V(f —g) € Unnx).
As a consequence one has:

b) If f,g € R, then {p € V' | f(p) # g(p)} € Uy.

As a consequence of a) and b) one gets:

c) Let f,g € Rand let U € Uy be such that f(p) = g(p) for all p € U. Then
f(p) =g(p) forallpe V.

B) A function h : V — K is called a polynomial function on V if there is a
polynomial f € R such that h(p) = f(p) for all p € V. The set

K[V]:={h:V — K | his a polynomial function}

obviously is a subring of the ring of all functions V' — K. As K is algebraically
closed we have §K = 0o, and therefore we may identify

a) K[A"(K)] = R=KI[Xy,...,X,].
Now we can conclude:

b) There is a surjective ring homomorphism
elv: R— K[V], f [flv,

the restriction homomorphism. This homomorphism satisfies Ker(e [y) =
I(V). In particular K[V] = R/I(V), so that

KV]=K[X\]v,..., X V]

is a finitely generated extension domain of K and hence Noetherian.
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The ring K[V] of polynomial functions on V' is also called the coordinate ring of
V' as it is generated over K by the restrictions Xy[y, ..., X,Jy of the coordinate
functions Xy, ..., X, € K[A"(K)].

C) The quotient field of K[V],

E(V) := Quot(K[V]) = (K[V]\ {0}) " K[V],
is called the function field of V. There is a canonical embedding K[V]| C K (V).

Now, for f € K[V] we set

U(f) =Uv(f)={peV[fp)#0}
As Uy (f) ={p e V| f(p) # 0(p)} we conclude from A) b):

a) If f e K[V]\ {0}, then Uy (f) € Uy.

Now, fix some element r € K (V). We define:
r)={(f9) e K[V [g#0Ar=1};

D(T) = U Uv( ) Gugjv.
(f,.9)eC(r)
By A) a) one easily sees:

b) Let r € K(V) and let (f,g),(f',¢') € C(r). Then Uy(g) NUy(g') #  and

for each p € Uy (g) N Uy (g') we have fgg = %'

So, we may define a function 7 : D(r) — K such that 7(p) = % whenever

(f,g9) € C(r) with p € Uy(g). Moreover, by A) ¢) it follows in the previous
notations:

¢) Let r,s € K(V) such that there is some U € Uy with U C D(r) N D(s)
and 7(p) = 5(p) for all p € U. Then r = s (hence D(r) = D(s) and 7 = 3).

This means that r is determined by the function 7. So we may identify r with
7 and consider r : D(r) — K as a function. If this is done, we say that r is a

rational function on V. Then, D(r) € Uy is the range of definition of r and
V' \ D(r) is the set of poles of r.

7.3. Reminder and Exercise. A) If Z C V is a closed subset, we may
introduce the set

Iv(Z) :={f e K[V]|Vpe Z: f(p) =0}
This is a radical ideal of K[V, called the vanishing ideal of Z in V. Comparing
with our earlier notion of vanishing ideal we can say:

a) Ian K)(Z) 1(2);
b) If (e]y) : R — K[V] denotes the restriction homomorphism, then I(Z) =
(o 1v) " (Iv(2)) and Iy(Z) = (e Iv)(1(Z)).
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B) For p € V| we can say:

a) Iy ({p}) is the kernel of the surjective ring homomorphism
o(p): K[V] = K, f— f(p)

As a consequence of a), we get:

b) Iy ({p}) is a maximal ideal of K[V].

Now, one can define the local ring of V at p by
Ovyp = KV]r gy € K(V).

The unique maximal ideal of Oy, is given by

my, = Iy ({p})Ov,p.
It is easy to verify:

c) Let r € K(V) be a rational function on V. Then, p € D(r) if and only if
re Ov’p.

7.4. Reminder and Exercise. A) Let U € . A reqular function on U is a
function f : U — K which is the restriction of a rational function on V. More
precisely: f : U — K is a regular function on U if there is some r € K (V)
such that U C D(r) and f(p) =r(p) for all p € U, i.e. if f =r|yp.

It follows easily from 7.2 C) c¢):

a) If f:U — K is a regular function and if » € K (V') is such that U C D(r)
and f = r [y, then r is uniquely determined by f.

So, in view of a) we may identify a regular function f : U — K with the
uniquely determined rational function r € K (V') for which U C D(r) and
f=rlu. If we write

OWU) :={f:U — K| f is a regular function}
we thus get

b) O(U) ={re K(V) |U S D(r)}.
It is easy to see that
c) O(U) is a subring of K (V).

We thus refer to O(U) as the ring of reqular functions on U. By 7.3 B) ¢) we
may write:

d) O(U) =N,ev Ovip-
B) Next, let us note:

a) If m C K[V] is a maximal ideal then there is some p € V with m = Iy, ({p}).
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(Hint: Let m := (o [y/)"!(m), where o [y, is as in 7.2 B) b). Use 6.4 B) b) to
show that there is a p € V(m). Use I(V) C m to show that p € V. Show
m C Iy ({p}) and use the maximality of m.)

As a consequence of this we see:

b) Max(K[V]) = {Iv({p}) |p € V}.
This finally leads to

c) K[V]=0(V).

(Hint: Use b), A) d) and the fact that for any domain A we have A =
ﬂmEMaX(A) Am)

7.5. Proposition. Let U € Uy and let a := I,/(V \U). Then,
o) = |J (KIV] k) a™).

meN

Proof. “C”: Let f € O(U). For each p € U we then have f € Oy, =
KWVl y € K(V) (cf. 74 A) d)). So, for each p € U there is some
gp € K[V \ Iv({p}) such that g,f € K[V]. Now, consider the ideal b :=
> pev K[V1]gy. Then clearly bf C K[V].

Let o [y: R — K[V] denote the restriction homomorphism (cf. 7.2 B) b)).
Then, for each p € U we find a polynomial g, € R with g, [y= g,. Consider
the ideal b:=3_ ., Rg, + (V) C R. As I(V) = Ker(e]y) (cf. 7.2 B) b)) and

as e [y is surjective, we may write b = (e[y)!(b) and b[v= (e [y)(b) = b.

Now, let W := V(b) C A™(K). As I(V) C b, we have W C V(I(V)) = V
(cf. 6.4 B) a)). We want to show that W C V' \ U. Assume to the contrary,
that W € V\U. As W C V it follows that there is some p € W NU. But
then g, € b shows that 9p(p) = §p(p) = 0 and thus leads to the contradiction
that g, € Iy ({p}). Therefore we have indeed W C V \ U. This implies in
particular that I(V \ U) C I(W).

But now, by 7.3 A) b) we can write
IVAT) = (o 1) (I (VAD)) = (o) ! (a) = &

By 6.4 B) b) we have I(W) = I(V (b)) = Vb. Altogether we obtain a C Vb.
So, there is some m € N with a™ C b. As (e [v) is surjective, it follows a [y= a
and hence a™ = a™ |yC b[y=b. So a™ C b and hence a™f C bf C K[V] so
that f € (U,,en (K[V] ik(vy a™).

27 Let f € U, en(K[V] :xv) ™). So, we find some m € N with a™f €
K[V]. Let p € U. Again, let a := (o [y) " t(a) = [(V\U) (cf. 7.3 A) b)), so
that V(a) = V([ (V\U)) =V \U. Asp € U we have p ¢ V(a) and so there
is some polynomial h € & with iz(p) £ 0. Let h := h|y. Then h € a and
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h(p) # 0. So, ™ € a™ \ Iy ({p}). As h"f € K[V] we find some k € K[V]
with h™ f = k. Tt follows by h™ ¢ I ({p}) that f = £ € K[V] (m) = Ovp
(cf. 7.3 B)).

As p € U was arbitrary we get f € () oy Ov,. By 7.4 A) d) we therefore have
feoW). O

7.6. Remark. Let U € Uy. Then, by 7.4 B) ¢) and by 7.4 A) b) we get
a) K[V]=0(V)CO(W).

In particular, we may consider O(U) as a module over the ring O(V') = K[V].
Moreover, using the definition of regular function we may consider the inclusion
map O(V) — O(U) as the restriction homomorphism, thus:

b) resvy : O(V) 25 O(U), f > flu.

7.7. Lemma. Let U € Uy and let a := I,,(V \ U). Then:
a) a#0 and HX(O(V)) = 0.

b) H(K(V)) =0 for all i € Ny.

Proof. “a)”: As U # (), we have V' \ U & V, hence
VIV \U) = VAU £V = V(I(V))

(cf. 6.4 B) a)) and hence I(V \ U) # I(V). The relation V' \ U & V implies
I(V\U) D I(V). Let (e ]y) : R — K[V] be the restriction homomorphism,
so that (V) = Ker(e [y) (cf. 7.2 B) b)). Then, in view of 7.3 A) b) we have
a=1Iy(V\U)=(e]y)I(V\U)) #0, hence a # 0.

As O(V) = K[V] is a domain, it follows T'o(O(V)) = 0, hence HY(O(V)) = 0.
“b)”: By 4.7 it suffices to show that aK (V) = K(V). The inclusion “C” is

trivial. Let g € K(V'). By statement a), there is an element f € a such that
f#O.Hence,g:%:f-%eK(V). O

7.8. Theorem. Let U € Uy and let a := I/(V \ U). Then, there is a short
exact sequence of O(V')-modules

0— O(V) 2% O(U) — HYO(V)) — 0.
Proof. In view of 7.6 b) we may consider resyy as the inclusion map i : O(V') —
O(U). Consider the short exact sequence of O(V')-modules
(1) 0— O(V) - O(U) 2 OU)/O(V) — 0
in which p is the canonical homomorphism. As O(V) = K[V]| we may use 7.5
to write
0W)/0) = (| (KIV] :xq) &™) /KV].

meN



65

This first shows that O(U)/O(V) is a-torsion, thus (cf. 3.4):

(2) O(U)/O(V) =Ta(O(U)/O(V)) = H(O(U)/O(V)).
Next, consider the short exact sequence of O(V)-modules
(3) 0— OU) L K(V) -5 K(V)/O(U) — 0

in which j is the inclusion map and ¢ is the canonical homomorphism. We
may use 7.5 to write

K(V)/0U)=KWV)/(J (KV] xw) a™).

meN
Using the right hand side of this equality, it is easy to see that

K(V)/0U)
has no a-torsion, thus
HJ(K(V)/O(U)) = To(K(V)/OU)) =
By 7.7 b) we have H.(K(V')) = 0 for all i € Ny. Now, the long exact cohomol-

ogy sequence with respect to a and associated to (3) shows that H(O(U)) = 0
and gives us an isomorphism of O(V')-modules

HY(K(V)/O(U)) = Hy(O(U)).

It follows that H.(O(U)) = 0. But now, the long exact cohomology sequence
with respect to a and associated to (1) gives us an isomorphism

H)(O(U)/O(V)) = Hy(O(V)).

In view of (2) we thus get H(O(V)) = O(U)/O(V). But now, the sequence
(1) gives our claim. O

7.9. Corollary. Let U € Uy and let a := Iy (V \ U). Then, the following
statements are equivalent:

(i) Fach reqular function f € O(U) may be extended to a regqular function
feow)

(i) The restriction map resyy : O(V) — O(U) is surjective;

(i1i) The restriction map resyy : O(V) — O(U) is an isomorphism;

(iv) Hy(O(V)) = 0;

(v) gradepq(a) > 1.

Proof. “(i) < (ii) < (iii) < (iv)” are clear from 7.8.
“(v) = (iv)” follows from 4.6

“(iv) = (v)” is clear from 4.6 and 7.7 a). O

To those readers who would like to see examples which illustrate the results of
this section, we recommend [B-S, Example and Exercises 2.3.7-10].



8. LocaL COHOMOLOGY AND GRADINGS

We now look at the case where our ring R carries a Z-grading, a C R is a
graded ideal and M is a graded R-module. We shall establish the fact, that
the local cohomology modules H:(M) carry a grading in this situation.

We start with a series of reminders and exercises about graded rings and
modules and homomorphisms between them.

8.1. Reminder and Exercise. A) Let R be a ring. A (Z-)grading on R
is a family (R,)nez of additive subgroups R, C R such that the following
properties hold:

(Gl) For any m,n € Z, if a € R,,, and b € R,,, then ab € R, ,;
(G2) R =D,y Ru-

B) A ring R together with a grading (R,,),ez on R is called a (Z-)graded ring.
We usually express this by saying “R = €, ., R» is a graded ring”. If we just
say “R is a graded ring”, then we mean that we are given a grading on R, and
we will denote this grading usually by (R,,)nez.

C) Let R be a graded ring. It then follows from the axioms (G1) and (G2)
that 1 € Ry. From this, we immediately obtain that Ry is a subring of R and
that R, is an Ryp-submodule of R for all n € Z.

D) Let R be a graded ring. Assume that there are finitely many elements
Y1,---,Yr € R such that R = Rylyr,...,y.]. We may write each of these
elements as a sum of finitely many homogeneous elements, i.e. for i € {1,...,r}
we have y; = Y ", y;; with n; € Ng and d;; € Z and y;; € Rg,, for j €
{1,...,n;}. Then clearly R = Ro|y11, .-, Yiny, Y21, - - - s Yrn, |- LTherefore: As an
Rp-algebra, R is finitely generated over Ry if and only if R is generated by
finitely many homogeneous elements of R.

8.2. Reminder and Exercise. A) Let R be a graded ring. Let M be an R-
module. A grading on M is a family (M, )nez of additive subgroups M,, C M
such that the following properties hold:

(G1) For any m,n € Z, if a € R,,, and b € M, then ab € M, ,;

(G2) M =8,y M,.

B) An R-module M together with a grading (M, ),cz is called a graded R-
module. We usually express this by saying “M = @, ., M, is a graded R-
module”. If we just say “M is a graded R-module”, then we mean that we are
given a grading on M, and we will denote this grading usually by (M,,),cz.

C) Let M be a graded R-module. If n € 7Z, then clearly M, is an Ry-submodule
of M, and this Ry-module is called the n-th graded component of M.

D) Let M be a graded R-module. An element x € M is said to be homogeneous,

if there is some n € 7Z such that x € M,,. If in this situation x # 0, then n
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is unique and is called the degree of x. We then also write deg(z) := n. We
write MPom =, _, M, for the set of homogeneous elements of M.

E) Let M be a graded R-module. If 2 € M, then there is a unique presentation
x =) x, with z, € M, forn € Z and §{n € Z | z,, # 0} < oo. In this
situation, for n € 7Z we call x,, the n-th homogeneous component of x, and
the above presentation of x is called the decomposition of x in homogeneous
components.

F) If M is a graded R-module and if e, is used to denote n-th homogeneous
components, forn € Z, x,y € M and a € R we have:

a) (‘T + y)n =x, + Yn;
b) (az)n =, -, €iT;.

G) Clearly R may be viewed as a graded R-module in a canonical way. So,
the notions and observation made in C)-F) apply to R in the obvious way.

H) Let M be a finitely generated graded R-module. Then, there are finitely
many elements my,...,m, € M such that M = "' Rm;. Decomposing
each of these in homogeneous components, for ¢ € {1,...,r} we may write
m; = 27;1 my; with n; € Ng and d;; € Z and my; € Mg, for j € {1,...,n;}.
It follows M = 371, > 7%, Rmjj. So we can say: A graded R-module M is
finitely generated if and only if it is generated by finitely many homogeneous
elements.

8.3. Reminder and Exercise. A) Let R be a graded ring and let M be a
graded R-module. Let N C M be a submodule. Then, the following state-
ments are equivalent:

(i) (M, N N)pez is a grading on N;
(ii) N is generated by homogeneous elements;
(iii) If y € N, then all homogeneous components of y belong to N.

If N satisfies the above conditions (i)—(iii), it is called a graded submodule of
M. In this situation we always write N,, := M,, N N for n € 7Z and say that
N =@,,c4, N» is a graded submodule of M.

B) It is easy to check that for a family (N®);c; of graded submodules of M
one has:

a) > ,c; N@ is a graded submodule of M such that (3,; N(i))n = el NS
for all n € Z;

b) Nie; N is a graded submodule of M such that (., N@) =, N
for all n € Z.

C) Let N C M be a graded submodule. Then it is easy to check that the
family ((M,, + N)/N)nez is a grading on the R-module M/N. This grading is
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called the canonical grading on M/N. We write M/N = @, ., (M/N), with
(M/N),, :== (M, +N)/N for n € Z and keep in mind the natural isomorphisms
of Rop-modules (M/N),, = M, /N, for n € Z.

D) A graded ideal of R is an ideal a C R which is graded as a submodule of R.
In this situation it is easy to verify that the canonical grading ((R,+a)/a),cz =
((R/a),)nez turns R/a into a graded ring.

E) If a C R is a graded ideal, then aM is a graded submodule of M.

8.4. Reminder. A) Let R be a graded ring. Let M and N be graded R-
modules. A homomorphism h : M — N of R-modules is said to be graded or
a homomorphism of graded R-modules if h(M,) C N,, for alln € Z. If n € Z
and if h: M — N is a homomorphism of graded R-modules, the map

hp:=h an3 M, — N,

is a homomorphism of Ry-modules and is called the n-th graded component of
h.

B) If M is a graded R-module, the map idy; : M — M is a homomorphism
of graded R-modules. The composition of two homomorphisms of graded R-
modules is again a homomorphism of graded R-modules.

C) A homomorphism of graded R-modules h : M — N is called an isomor-
phism of graded R-modules if there is a homomorphism of graded R-modules
l: N — M with hol =idy and [ o h = idy;. Clearly, a homomorphism of
graded R-modules is an isomorphism of graded R-modules if and only if it is
an isomorphism of R-modules.

D) For each graded submodule L C M the inclusion homomorphism L — M
and the canonical homomorphism M — M/L are homomorphisms of graded
R-modules.

E) Let h : M — N be a homomorphism of graded R-modules. Then clearly
Ker(h) € M and Im(h) C N are graded submodules. So, in view of 8.3 C) we
see that Coker(h) = N/Im(h) is a graded R-module.

F) Clearly:

a) The sum h + [ of two homomorphisms of graded R-modules h,l: M — N
is again a homomorphism of graded R-modules.

b) If h: M — N is a homomorphism of graded R-modules and x € Ry, then
xh is a homomorphism of graded R-modules.

8.5. Reminder. A) Let R be a graded ring, let M be a graded R-module
and let » € Z. For n € Z let M(r),, := Myy,. Then, M(r) = @, c; M(7)n
obviously is a graded R-module. This graded R-module is called the r-th shift
of M. It is the same R-module as M but furnished with the grading which is
obtained by “shifting the original grading (M, )nez by 7 places to the left”.
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B) It is immediately checked that the identity map idy : M — M gives
isomorphisms of graded R-modules

M(0) = M;
M(r+s) = M(r)(s) = M(s)(r) for r,s € Z.

Finally we can say: If N C M is a graded submodule, then N(r) is a graded
submodule of M (r) and (M/N)(r) = M(r)/N(r).

C) Let N be a second graded R-module and let h : M — N be a homomor-
phism of graded R-modules. If h(r) : M(r) — N(r) denotes the same map as
h, then h(r) is a homomorphism of graded R-modules and is called the r-th
shift of h. For n € Z we have h(r), = hyyn : M1 — N,1p. Clearly, in these
notations h(0) = h and h(r +s) = h(r)(s) = h(s)(r) for all r, s € Z.

D) We have idy/(r) = idpy), and if h : M — N and [ : N — P are homo-
morphisms of graded R-modules, we have (I o h)(r) = l(r) o h(r). Moreover,
if h: M — N is a homomorphism of graded R-modules, then Ker(h(r)) =
Ker(h)(r) and Im(h(r)) = Im(h)(r).

E) Let z € R.. If h: M — N is a homomorphism of graded R-modules, then
we have a homomorphism of graded R-modules zh : M — N(r), y — zh(y)
(cf. 1.12 A)). Applying this with ¢ € Z and h = idy ) we get the graded
multiplication homomorphisms z- : M (t) — M(t +r), y — xy.

8.6. Definition and Remark. A) Let R be a graded ring. By an additive
(covariant) functor (in the category) of graded R-modules we mean an assign-
ment

F=F(e): (ML N)wm (F(M) 22 P(V))

which to each graded R-module M assigns a graded R-module F'(M) and to
each homomorphism of graded R-modules h : M — N assigns a homomor-
phism of graded R-modules F'(h) : F(M) — F(N), such that the following
properties hold:

(*Al) F(ida) = idpar) for each graded R-module M;
(*A2) F(hol) = F(h)o F(l), whenever [ : M — N and h : N — P are
homomorphisms of graded R-modules;

(*A3) F(h)+ F(l) = F(h+1), whenever h,l : M — N are homomorphisms of
graded R-modules.

B) Let r € Z. Then, by

o(r) : (M2 N) s (M(r) 22 N(r))

there is defined an additive functor of graded R-modules, the functor of taking
r-th shifts.
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C) We can define the composition of two additive functors of graded R-modules
analogously to 5.3 A). Therefore, if F' is an additive functor of graded R-
modules, for any r € Z the compositions F o (e(r)) and (e(r)) o F" are additive
functors of graded R-modules.

D) By a linear (covariant) functor (in the category) of graded R-modules we
mean an additive functor of R-modules

F=F(e): (M N)ws (F(M)
such that the following properties hold:

= F(N)

(*A4) Fo(e(r)) = (e(r)) o F for each r € Z;
(*A5) F(zh) = xF(h) for r € Z, * € R, and for each homomorphism of
graded R-modules h: M — N.

E) By an additive (covariant) functor from (the category of ) graded R-modules
to (the category of) Ro-modules we mean an assignment

F=F(e): (M2 N)wm (FO) 22 F(N))
which, to each graded R-module M assigns an Ry-module F'(M) and to each
homomorphism of graded R-modules h assigns a homomorphism of Ry-modules
F(h) such that the following properties hold:

(*Aol) F(idar) = idp(ar for each graded R-module M:;

(*Ag2) F(hol) = F(h)o F(l), whenever [ : M — N and h : N — P are
homomorphisms of graded R-modules;

(*Ag3) F(h)+ F(l) = F(h+1), whenever h,l : M — N are homomorphisms
of graded R-modules;

F) By a linear (covariant) functor from (the category of) graded R-modules
to (the category of) Rp-modules we mean an additive functor from graded
R-modules to Ryg-modules

F=F(e): (M2 N)wm (F(r) 22

such that the following property holds:

F(N))

(*Apd) F(xh) = zF(h), whenever h : M — N is a homomorphism of graded
R-modules and x € Rj.

G) For functors as defined in A) or in E), the notion of (left and right) exactness
is defined in the obvious way (cf. 1.16).

8.7. Examples. A) Let R be a graded ring and let r € Z. Then, the functor
of taking r-th shifts
h(r)

— N(r))

(cf. 8.6 B)) is an exact linear functor of graded R-modules.

o(r): (M LA N) s (M(r)
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B) The functor of taking r-th graded components
o (M2 N)ws (M, 22 N,)
is an exact linear functor from graded R-modules to Ry-modules.

8.8. Exercise and Definition. A) Let R be a graded ring and let a C R be

a graded ideal. Show that, if M is a graded R-module, I';(M) is a graded

submodule of M and I'q(M(r)) = [o(M)(r) for all » € Z. Show that by the
assignment

h La(h)

(M = N) ~> (Ta(M) == T4(N))

a left exact linear functor of graded R-modules is defined.

B) The linear functor of graded R-modules described in part A) is denoted by
“I'y and called the graded a-torsion functor.

8.9. Definition and Remark. A) Let R be a graded ring, let F be an additive
functor of R-modules and let *F' be an additive functor of graded R-modules.
F is said to be *equivalent to *F' (by means of 1) if for each graded R-module M

there is an isomorphism of R-modules (* : *F(M) = F(M) such that for each
homomorphism of graded R-modules h : M — N one has the commutative
diagram

B) If F'is left exact and *equivalent to *F, it is easy to see that *F is left exact
too.

8.10. Example. By what we said in 8.8 we may conclude: If R is a graded
ring and a C R is a graded ideal, the a-torsion functor I', is *equivalent to the
graded a-torsion functor *I'.

(Hint: If M is a graded R-module, set /™ : *T'y(M) — [o(M), m — m.)

8.11. Reminder and Exercise. Let R be a graded ring. Let h: N — M and
l: M — P be homomorphisms of graded R-modules. Show that the following
statements are equivalent:

i) N 2 M L P — 0is exact and there is a homomorphism of graded
R-modules r : M — N such that r o h = idy;

(i) 0 - N 2 M 4 P is exact and there is a homomorphism of graded
R-modules s : P — M such that [ o s = idp;

(iii) loh = 0 and there are homomorphisms of graded R-modules r : M — N
and s : P — M such that roh =idy, los =idp and sol+ hor = idy;
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(iv) There is a commutative diagram of graded R-modules with exact first
row

Tg

N——N&P——P
in which ¢ and p are the canonical homomorphisms defined by x +— (x,0)
and (z,y) — y respectively;

0—=N—spy—tsp—sp

(v) The sequence 0 — N 2 ML P 0is exact and splits.

8.12. Definition, Exercise and Remark. A) Let R be a graded ring. A
graded R-module [ is said to be *injective if for each monomorphism of graded
R-modules i : N ~— M and each homomorphism of graded R-modules h : N —
I there is a homomorphism of graded R-modules [ : M — I such that h = [ oi.
In diagrammatic form:

I

h A
‘i

N == M.
Observe that (cf. 8.11, 2.7 and 8.5):

a) f$:0—1 LML P 0is an exact sequence of graded R-modules in
which [ is *injective, then $ splits.

b) If I is a *injective submodule of a graded R-module M, there is an isomor-
phism of graded R-modules M =1 & M/I.

c) If I is a *injective submodule of a *injective R-module J, then J/I is
*injective.

d) If I is a *injective R-module and r € Z, then I(r) is *injective.

B) By following the proof of 2.8, prove the graded version of the Baer Criterion:
A graded R-module [ is *injective, if for every r € Z, every graded ideal a C R
and every homomorphism of graded R-modules h : a — I(r) there is an
element e € I(r)o such that h(a) = ae for all a € a.

8.13. Remark. Also in the graded case, one has a version of the Lemma of
Eckmann-Schopf (cf. [Br-H, Theorem 3.6.2]): For each graded R-module M
there is a *injective R-module [ together with a monomorphism of graded R-
modules M — I. So, each graded R-module M is a graded submodule of a
*injective R-module [.

8.14. Reminder and Remark. A) Let R be a graded ring. By a cocom-
plex of graded R-modules we mean a sequence of graded R-modules and of
homomorphisms of graded R-modules

e MY ﬂMid_i)Mi—i—l ﬂ)Mi-ﬂ_)_”

such that, disregarding the gradings, (M?®,d®) is a cocomplex of R-modules.
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B) Let (M*,d*), (N°®,e®) be two cocomplexes of graded R-modules. By a ho-
momorphism of cocomplezes of graded R-modules h® : (M®,d*) — (N*, e*) we
mean a homomorphism of cocomplexes of R-modules h® = (h');ez : (M*,d*) —
(N*,e*) (cf. 2.1 B)) such that A’ is a homomorphism of graded R-modules for
all i € Z.

C) What has been said in 2.1 C) holds literally for homomorphisms of cocom-
plexes of graded R-modules.

D) If (M*®,d*) and (N°, e®) are cocomplexes of graded R-modules, if h®,[® :
(M*®,d*) — (N°*,e*) are homomorphisms of cocomplexes of graded R-modules
and if @ € Ry, the homomorphisms of cocomplexes of R-modules

h® + 1% ah® : (M*,d*) — (N*,e°)
(cf. 2.1 D)) are in fact homomorphisms of cocomplexes of graded R-modules.

E) Let r € Z. If (M*,d®) is a cocomplex of graded R-modules, then so is
(M*d*)(r) : e = M) S M) = -

This cocomplex is called the r-th shift of (M*®,d*) and is sometimes denoted

by (M*(r),d*(r)). If (N°®e*) is a second cocomplex of graded R-modules,

and if h® : (M*,d*) — (N°*,d*) is a homomorphism of cocomplexes of graded

R-modules, then so is

he(r) == (W'(r))iez « (M*,d°)(r) — (N*,¢e*)(r),
the r-th shift of h*.

F) Let h® : (M*®,d*) — (N°*,e*) be a homomorphism of cocomplexes of graded
R-modules. Let r € Z and let x € R,. Then one has the homomorphism of
cocomplexes of graded R-modules

wh® = (xh')iez - (M*®,d*) — (N*®,¢*)(r)
(cf. 2.1 D), 8.5 E)).

8.15. Reminder. Let R be a graded ring. By a linear (covariant) functor from
(the category of ) cocomplexes of graded R-modules to (the category of) graded
R-modules we mean an assignment
F=F(e): (M*,d*) 25 (N*,¢*)) ~ (F(M*,d%) 220 P(N*,e®))

which to a cocomplex of graded R-modules (M*, d*) assigns a graded R-module
F(M*,d*) and to a homomorphism h*® : (M*,d*) — (N°®,e®) of cocomplexes
of graded R-modules assigns a homomorphism of graded R-modules F'(h®) :
F(M?*,d*) — F(N*, e*) such that the following properties hold:

(*A1®) F(id(aeas)) = idp(se,asy for each cocomplex of graded R-modules
(M*,d*);

(*fA2°%) F(h* ol*) = F(h*) o F(I*), whenever [* : (M*®,d*) — (N°®e*) and
h® : (N°®,e*) — (P°, f*) are homomorphisms of cocomplexes of graded
R-modules;
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(*A3°%) F(h*) + F(I*) = F(h* +1°), whenever h* {®: (M*,d*) — (N*,e*) are
homomorphisms of cocomplexes of graded R-modules;

(*A4®) F((M*,d*)(r)) = (F(M*,d*))(r) for each cocomplex of graded R-
modules (M*,d*) and each r € Z, and F(h*(r)) = (F(h*))(r) for each
homomorphism of cocomplexes of graded R-modules h® : (M?® d*) —
(N*,d*) and each r € Z.

(*A5®) F(zh*) = zF(h®) for r € Z, x € R, and for each homomorphism of
cocomplexes of graded R-modules h® : (M® d*) — (N° e*).

8.16. Reminder and Remark. A) Let R be a graded ring and let n € Z.
Let (M*,d*) be a cocomplex of graded R-modules. Then, according to 8.4 E),
the n-th cohomology H™(M?*,d*) of (M*,d*) (cf. 2.3 A)) is a graded R-module
in a canonical way. In this situation, we always furnish H"(M?*, d*) with this
grading.

B) Let h®: (M?*,d*) — (N°*,e®) be a homomorphism of cocomplexes of graded
R-modules. Then, an easy calculation shows that the induced homomorphism
of R-modules H"(h*) : H"(M*,d*) — H"(N*,e®) (cf. 2.3 B)) are graded, too.

C) Clearly, for each r € Z we have:

a) H"(M*(r),d*(r)) = H™(M?*,d*)(r) for each cocomplex of graded R-mo-
dules (M*,d*);

b) H"(h*(r)) = H"(h*)(r) for each homomorphism of cocomplexes of graded
R-modules h® : (M*®,d*) — (N°*,e°).

Moreover, statements A) a), b) and B) a) of 2.4 hold as well for cocomplexes
of graded R-modules and homomorphism between such. Instead of 2.4 B) b)
and in view of 8.14 F) we get for each r € Z and each = € R,

c) H"(zh*) = xH™(h*): H"(M*,d*) — H™(N*,e*)(r),

where h® : (M*,d*) — (N°®,€®) is a homomorphism of cocomplexes of graded
R-modules.

So, altogether, similar to what we said in 2.4 C), the assignment

h*)

H" = H (o) : (M*,d*) 25 (N*,e%)) wo (H"(M*, %) 50 F7(N® )

defines a linear functor from cocomplexes of graded R-modules to graded R-
modules.

8.17. Reminder and Exercise. A) Let R be a graded ring. Let h*®/I*® :
(M*,d*) — (N°®,e®) be two homomorphisms of cocomplexes of graded R-
modules. A graded homotopy from h® tol® is a family (¢;);cz of homomorphisms
of graded R-modules t; : M* — N*~! which is a homotopy from A® to [* in the
sense of 2.5 A). If such a graded homotopy exists, we say that h® and [* are
graded homotopic and write h* ~ [*. Now, clearly, all what is said in 2.5 B),
C) remains valid for graded homotopies.
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B) If F' is an additive functor of graded R-modules, then all what is said in 2.6
applies literally if one considers cocomplexes of graded R-modules, homomor-
phisms between such and graded homotopies of them. Also, if F'is an additive
functor from graded R-modules to Ry-modules, the statements of 2.6 hold in
the “graded context”.

8.18. Remark. A) Let R be a graded ring. Let M be a graded R-module.
A graded right resolution of M consists of a cocomplex of graded R-modules
(E*,e®) and a homomorphism of graded R-modules b : M — E° such that,
disregarding the grading, ((E*®,e®);b) is a right resolution of M (cf. 2.10 A)).

B) Let N be a second graded R-module, let h : M — N be a homomorphism
of graded R-modules, let ((D*®,d®);a) be a graded right resolution of M and let
((E*,e*);b) be a graded right resolution of N. A graded (right) resolution of
h (between ((D*,d*);a) and ((E*®,€*);b)) is a homomorphism of cocomplexes
of graded R-modules h® : (D*,d*) — (E*,e®) such that h’ oa = bo h.

C) A *injective resolution of M is a graded right resolution ((I°*,d*);a) of M
such that all R-modules I’ are *injective. Now, on use of 8.13 and following
the hints of 2.11 one immediately sees that all the statements made in 2.11
also apply in an obvious way in the “graded context”, if “injective” is replaced
by “*injective”.

D) Finally, let F' be an additive functor of graded R-modules, or an additive
functor from graded R-modules to Ryp-modules. Then it is a mere matter of
translation and an easy exercise to formulate and to establish the statements
2.12 A), B), C) in the “graded context”.

8.19. Reminder. Let R be a graded ring. Let F' and G be additive functors
of graded R-modules or from graded R-modules to Ry-modules. A natural
transformation from F to G is an assignment

B: M (Bur - F(M) — G(M))

which to each graded R-module M assigns a homomorphism of graded R-
modules resp. of Ry-modules By : F(M) — G(M) such that for each homo-
morphism of graded R-modules h : M — N we have G(h) o By = By o F(h).
Such a natural transformation is called a natural equivalence from F to G if
B : F(M) — G(M) is an isomorphism for all graded R-modules M. Clearly
all the further notations and statements made in 3.1 apply in the “graded
context”.

8.20. Reminder and Exercise. A) Let R be a graded ring and let F’ be an ad-
ditive functor of graded R-modules or from graded R-modules to Ry-modules.
As in 2.13 A) one can choose a *injective resolution Iy, = ((I3,,d%,); an) for
each graded R-module M and thus define the notion of a choice of *injective
resolutions (of graded R-modules). Then, one can formulate and perform the
“graded analogues” of all what is done in 2.13 A)-D) to end up with the
notion of the n-th right derived functor of F, denoted by R"F. Here, R"F
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is an additive functor of graded R-modules resp. from graded R-modules to
Ro-modules. If F' is moreover linear, then so is R"F'.

B) Asin 3.3 A), for each graded R-module M one can define a homomorphism
of graded R-modules resp. of Ry-modules

ol F(M) — RYF(M) = Ker(F(d")), m +— F(a)(m),

where I = ((I°,d®);a) is a *injective resolution of M. Again, these homomor-

phisms o, constitute a natural transformation o' : F — R°F. Moreover,

again as in 3.3 B), we can say: If F is left exact, then of, : F(M) — RF(M)
is an isomorphism for each graded R-module M. So, as in 3.3 C) we convene
to identify F' and R°F by means of the natural equivalence o, whenever the
functor F' is left exact.

C) As in 2.15 we obtain:

a) If I is a *injective R-module, then R"F'(I) = 0 for all n > 0;

b) If F is exact, then R"F(M) = 0 for each graded R-module M and all
n > 0.

D) As expected, 3.5, 3.6 and hence 3.8 “translate” to the “graded context”:
So, finally there is again an assignment

0T ($:0 N ML P —0)m (087 RUF(P) — R™IF(N))

nelNg’

which to each short exact sequence of graded R-modules
S:0-NLEML PO

assigns a family (52" : R"F(P) — R""'F(N))nen, of homomorphisms of
graded R-modules resp. of Rp-modules such that we have an exact sequence
(cf. 3.8 B))

0 ROF(N) — W popry — 20 Roppy
Y RPN Ripn)
| - Ri-LF(P)
%ﬁw RIF(N) — 2 pipny — 2 Rip(p)
8" RHLE(N) RTIE(R) R F(M) RTIE(D)

This sequence is called the right derived sequence of F' associated to S. The
graded homomorphism 5§’F is called the n-th (graded) connecting homomor-
phism with respect to F associated to 8. Moreover, the assignment 627 again
has the expected naturality properties (cf. 3.8 C)).

E) We now consider the case in which F"is a linear functor of graded R-modules.
Then, as R™F is again such a functor, we have R"F(M(r)) = R"F(M)(r) and
R"F(h(r)) = R"F(h)(r) for each r € 7Z and each homomorphism of graded
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R-modules h : M — N. Moreover, if r € 7Z and « € R,, then R"F(zh) =
TR"F(h) for each h : M — N as above.

An essential step toward the goal of this section is to have a criterion which
allows to “lift” the *equivalence of two functors F' and *F' to their right derived
functors R'F and R’ *F. We now shall give such a criterion.

8.21. Proposition. Let R be a graded ring, let F be a left exact additive
functor of R-modules and let *F be an additive functor of graded R-modules.
Assume that R'F(I) = 0 for each i € N and each *injective R-module I, and
assume that F is *equivalent to *F. Then, for each i € Ny, the functor R'F
is *equivalent to R**F.

Proof. For each graded R-module M there is an isomorphism of R-modules (M :
*F(M) — F(M) such that F is *equivalent to *F' by means of ¢ : (M r (M).
As *F is left exact by 8.9 B), we may identify R'F = F and R°*F = *F.
Now, we show our claim by induction on 2.

The case ¢ = 0 is clear from the above. So, let ¢ > 0. For each graded R-module
M there is a short exact sequence of graded R-modules

in which I, is *injective (cf. 8.13). Also, for each graded R-module M, by
induction, there is some isomorphism AM : R*=1*F(M) — R*'F(M) such
that RI"1F is *equivalent to Ri"1*F by means of A : (M ~ AM). We can
assume that A = ¢ it i = 1.

As Iy is *injective, by 8.20 C) a) and by our hypotheses we have R *F(I)) =
RIF(Iy) =0 for all j > 0. We set 6/* := 6% " and &/ := 647 . If i = 1, we get
the following commutative diagram with exact rows

0 —= ROF(M) —= ROF(I;) —= ROF(Ky) s RVF(M) —> 0

s o] o

0 ——= ROF(M) —= ROF(Iny) —= ROF(Ky;) —> R'F(M) —= 0
and thus a unique isomorphism
M RYF(M) S RYVF(M)
which occurs in the commutative diagram
60,*
RY*F(Ky ) —= RYE(M)
LKI\l:)\K]Ml% glVM

ROF(Ky) ——= R'F(M).
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If i > 1, we get the isomorphisms

RITVF(Ky) — 2 RUF (M)
AE M \L%
RITF(Ky) — = RUF(M)

and thus the isomorphism
VM = 571 o NEM o (571 RUE(M) S RIF(M).
Our aim is to show, that R'F is *equivalent to R'*F by means of the assign-

ment v : (M r ™). So, let h : M — N be a homomorphism of graded
R-modules. We have to show, that the diagram

RIF(M) > RIF(M)
R *F(h) l lRiF(h)
RIF(N) —>RiF(N)
commutes.

As Iy is *injective, we get the following commutative diagram of graded R-
modules

hl iu \Lu
SNZO N IN KN 0.

Applying cohomology, we get a “cube” diagram:

i—1,*F
Sy

RV (K)yy) RF (M)
. oy " .
RF(Ky) R*F(N) | M
El)\KM ol N
. v .
AEN |2 R (Ky) RIF(M)
A) s REF(h)
RF(Ky) al RIF(N)

The top and the bottom square are commutative by the naturality of the right
derived sequence. The back and the front square are commutative by the
definition of vy; resp. vy. The left hand side square is commutative as R~ F'
is *equivalent to R~ *F' by means of \. As 5;;11’ T is surjective, the right hand
side square becomes commutative. O
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Our next step is to show that, for a graded ideal a of a Noetherian graded ring
R, our “lifting criterion” 8.21 applies to the functors F' = I'y and *F = *I',
(cf. 8.8). We begin with a preparatory exercise.

8.22. Exercise. A) Let R be a graded ring. Let I be a graded R-module.
Show that [ is *injective if and only if I(r) is *injective for all r € Z.

B) Let I be a *injective R-module and let a C R be a graded ideal. Use 8.12 B)
and follow the traces of the proof of 3.14 in order to show:

a) If R is Noetherian, then I'y(1) is *injective.
Conclude that:

b) If R is Noetherian, then I/T'4(I) is *injective.

C) Let I be a *injective R-module and let r € Z. Prove:

a) If v € R, N NZDg(I), then the multiplication map z- : I — I(r) is an
isomorphism.

Conclude on use of B) b):

b) If R is Noetherian and if x € R,, then the multiplication map
z: IfT gy (1) — (1/Tiay (1))(r)

is an isomorphism.

D) Let I be a *injective R-module and let b C R be a second graded ideal.
Consider the canonical homomorphism of graded R-modules

i =gy I/Tall) N (1) — 1/Ta(1) & I/To(1),
y+Ta(I) NTe(1) = (y + Tall),y + To(1)).

Let R be Noetherian. Show that there is a homomorphism of graded R-
modules \ = )‘ﬁ,b which occurs in the following commutative diagram:

I/To(I)NTy(I)
idyra (DT (1 I/To(I) ® I/T(1)

I/To(1) N Te(1).

8.23. Theorem. Let R be a Noetherian graded ring, let a C R be a graded ideal
and let I be a *injective R-module. Then, for each i € N we have Hi(I) = 0.

Proof. As R is Noetherian, there are n € N, r;, € Z and z; € R,, for
i € {1,...,n} such that a = (x1,...,2,). Let t € {1,...,n}. We prove
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by induction on ¢, that for each ¢ € N we have

Assume first, that ¢t = 1. Then, according to 8.22 C) b) we have an isomor-

phism of R-modules z1- : I/T;,y(I) = I/Ty(I). So, for each i € N we get
an isomorphism

Ty = Hé(ml') : Hé(I/F(m)(I)) - H;(I/F(m)([))‘
As zy € a and HL(I/T 5,y (1)) is a-torsion, it follows HE(I/T (1)) = 0.
So, let t > 1 and fix 7 € N. By induction we have
Hy(I/T oy, cwry) (1)) = Hy(I /T 0 (1)) = 0
and hence (cf. 1.22 A))
(*) Ho(I/T g1,y (1)) ® (I/T (1)) = 0.

77777

Hi(j)

H(id)=id H((I/T oy (1) @ (/T oy (1)) 2 0

~

Hg ()

Applying this with ¢ = n, we get H.(I/T4(I)) = 0. In view of the natural

isomorphism H(T) = HI(I/T4(M)) for each i € N (cf. 3.18) we thus get our
claim. O]

By 8.23 we now may apply the “lifting criterion” 8.21 to the functors I'y and
“T"y and use this to perform the final step of this section: To furnish the modules
Hi{(M) with a grading, if a is a graded ideal of a Noetherian graded ring R
and M is a graded R-module.
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8.24. Corollary. Let R be a Noetherian graded ring, let a C R be a graded
1deal and let i € Ny. Then,

H' is *equivalent to *H := R"*T,.

Proof. Clear by 8.10, 8.21 and 8.23. O

8.25. Convention and Remark. A) Let R be a Noetherian graded ring and
let a C R be a graded ideal. Then, for each i« € Ny we have an assignment
'+ M M which to each graded R-module M assigns an isomorphism of
R-modules N

M H (M) — Ho(M)
such that for each homomorphism of graded R-modules h : M — N we have
the commutative diagram

“He (h)

*Hé(M) *Hz
| l
Hy (M) = H{(N)

(cf. 8.9 and 8.24). In this diagram *H!(h) : *H:(M) — *H.(N) is a homomor-
phism of graded R-modules.

B) For each i € Ny we once for all choose an assignment ¢ as described in
part A). Then, for each graded R-module M we identify H:(M) with *H:(M)
by means of (*™. If h : M — N is a homomorphism of graded R-modules, we
then may identify H:(h) in a natural way with *H:(h). So, we can write

Hy(M) —— s Hi(N)
Li,]w H Li’N

*TT1 *Hci‘(h) *TT1

Heo (M) Hy(N).

In this way, for each graded R-module M the R-module H:(M) carries a
grading (induced by (%) and for each homomorphism of graded R-modules
h: M — N the induced homomorphism

Hy(h) : Hy(M) — Hy(N)
is graded, too.

C) If M is a graded R-module, then for i € Ny and for each n € Z the n-th
graded component of H:(M) is given by

Hy(M),, = M ("Hy(M)n).
Correspondingly, if h : M — N is a homomorphism of graded R-modules, for
1 € Ny and for each n € Z we have

Hy(R)n + Hy(M)n — Hy(N), @ (2% 0 "H(R)n 0 (")) ().
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D) Let M be a graded R-module, let i € Ny and let
K2 M s (59 ] (M) S HY(M)

be such that H!(e) becomes *equivalent to *H’(e) by means of . Then there
are isomorphisms of Ry-modules

P (CH(M)n) 2 5YY ("Ho(M),)
for all n € Z. So, in view of C) we can say:

a) Up to an isomorphism of Ry-modules, the n-th graded component H:(M),,
of H{(M) is independent of the chosen assignment %, for all i € Ny and all
n € 4.

Thus:

b) For all i € Ny and all n € 7Z, the Ry-isomorphism class of Hi(M), is an
invariant of M, a, ¢ and n.

E) Let M be a graded R-module and let r € Z. Then, by 8.20 E) we may
write H:(M(r)) = H{(M)(r) and H.(M(r)), = H.(M ), for all i € Ny and
all n € Z.

8.26. Remark. A) Let R be a Noetherian graded ring and let a C R be a
graded ideal. Consider a short exact sequence of graded R-modules

$:0-NLmLP—o
According to 8.20 D) we then get an exact sequence of graded R-modules

*170 h *170 1
0 HO(N) —=0 ppo(ary — =0 oo p)
x50,a *r7l
=g (V) ——= 8 g ()
HI-L(P)
oyt Hi(h) Hy() o
e HY(N) o H(M) Hi(P)
O | } A
s *Hé-i-l(N) Hg" " (h) *H;+1<M) -

the right derived sequence of *I', associated to 5. Performing the identifica-
tions of 8.25 B), we thus get an exact sequence of graded R-modules

0 0
0 HON) —= oy — 2 o)
*60,11 1
=gV —= ()
wgr-be Hi(h Hi(l Hé_l(P)
S H(N) 2 iy — 20 i)

’ (h)

. a h X
HH(N) = gy ———~
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This sequence is called the (long ezact) graded cohomology sequence with re-
spect to a and associated to . The homomorphism *0¢® is called the i-th
graded connecting homomorphisms and is denoted often by d% or just by 4"

As the formation of right derived sequences of *I'; has the expected naturality
property, the same is true for the formation of graded cohomology sequences
with respect to the graded ideal a.

B) Let M be a graded R-module, let ¢ € 7Z and let x € R, N NZDgr(M).
Then, “applying graded cohomology” to the short exact sequence of graded
R-modules

0— M=% M(t) — (M/zM)(t) — 0
and on use of 8.20 E) and 8.25 B) we get an exact sequence of graded R-
modules

| —— H 7N (M/xzM)(t)
O HY(M) —E HI(M)(t) —— Hi(M /2 M)(t)

s HIF(M) —E HEFY(M) () ———

Passing to individual graded components, for each n € 7Z we get an exact
sequence of Ry-modules

00— Hc?(M>n —— HS(M)nth - HE(M/xM)nth
L) Hl(M)n . Hcll(M)n+t

a

—— Hi Y (M/xM), 14
—— Hi(M),, ——= H{(M) s — H(M /M),
= HIF (M), = H (M)




9. COHOMOLOGICAL HILBERT FUNCTIONS

We now consider the special case in which R is a homogeneously graded algebra
over a field, a = R, is the so called irrelevant ideal of R and M is a graded
R-module. In this context we can introduce the so called cohomological Hilbert
functions, which provide important numerical invariants of graded R-modules.

9.0. Notation. Throughout this chapter, let R = &, _, R, be a graded ring.

neZ

9.1. Reminder and Exercise. A) The grading (R, )necz on R is said to be
positive, if R, = 0 for all n < 0. We usually express this by saying “R is
positively graded” or “R = @neNo R, is graded”. It is easy to see, that in this
case the subgroup

R+ = eanelN Rn = @n>0 Rn g R = @TLENO Rn
is a graded ideal of R. This ideal R, is called the irrelevant ideal of R.

B) If R be positively graded, then there is a canonical isomorphism of rings
Ry — R/Ry, vz + Ry

C) Let R be positively graded and let M C R:™ be a set of homogeneous
elements of R. Then, R = Ry[M] if and only if R, = (M). As a consequence
of this, the following statements are equivalent (cf. 8.1 D) and 8.2 H)):

(i) R is Noetherian;

(ii) Ry is Noetherian and the ideal R, is generated by finitely many (homo-
geneous) elements;

(iii) Ry is Noetherian and the ring R is generated over Ry by finitely many
(homogeneous) elements.

9.2. Reminder and Exercise. A) Let R be positively graded. By 9.1 C)
it follows that R = Ry[R] if and only if R, = (R;). If these equivalent
conditions hold, the grading (R,).cz is said to be homogeneous. We usually
express this by saying “R is homogeneously graded” or “R is homogeneous”.

If A is a ring, by saying “R is a homogeneous algebra over A” or “R is a
homogeneous A-algebra” we mean that R is homogeneous and that Ry = A.
Then, the ring Ry = A is also called the base ring of R.

B) If R is positively graded, then the following statements are equivalent
(cf. 9.1 C)):

(i) R is homogeneous and Noetherian;

(ii) Ry is Noetherian and the ideal R, is generated by finitely many elements
of Rl;

(iii) Rp is Noetherian and the ring R is generated over Ry by finitely many
elements of R;.
84
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9.3. Examples. A) Let R = Ry[x] = Ry[Xo, .- .,X,] be a polynomial ring over
Ry. For each n € Z set

Then, the family (R, ),ez is @ homogeneous grading on R, and hence together
with this grading R is a homogeneous Ry-algebra. This grading is called the
standard grading of the polynomial ring R = Ro[x].

B) Let a C R be a graded ideal and let the ring R/a be furnished with its
canonical grading (cf. 8.3 C), D)). If R is positively graded, then so is R/a; in
this case

(R/a); = Ri(R/a) = (Ry +a)/a.

In particular: If R is homogeneous, then so is R/a.

9.4. Exercise and Remark. A) A graded mazimal ideal of R is a proper
graded ideal m ¢ R such that for a proper graded ideal a & R the relation
m C a implies m = a. Note that a graded maximal ideal of R is not necessarily
a maximal ideal of R.

B) Let R be positively graded. Then, the graded maximal ideals of R are
precisely the ideals of the form my + R, with my a maximal ideal of Ry. In
particular, the graded maximal ideals of R are maximal ideals of R. Moreover,
each proper graded ideal of R is contained in such a graded maximal ideal.

C) Let R be positively graded and let Ry be a field. Then R, is the unique
graded maximal ideal of R. In particular each proper graded ideal a & R
satisfies a C Ry.

9.5. Notation. If A(n) is a statement about an integer n, then by saying “A(n)
holds for all n < 0” we mean that there exists ng € 7 such that A(n) holds
for each n € Z with n < ng. The notation “n > 0” is defined analogously.

9.6. Reminder and Exercise. A) Let M be a graded R-module. If R is
positively graded, it is easy to see that the Ry-module

MZm = @ Mn
n>m
is a graded R-submodule of M for each m € Z.

B) Clearly we have: If R is positively graded and M is finitely generated, then
M, =0 for all n <« 0.

C) Assume that R is positively graded and in addition Noetherian. Then,
there are positive integers dy,...,d, € N and homogeneous elements x; € Ry,
for i € {1,...,d,} such that R = Ry[xy,...,x,] (cf. 9.1 C)). Moreover, if M
is finitely generated, by 8.2 H) there are integers si,...,s; € 7Z and elements
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m; € M, for j € {1,...,t} such that M = Z;Zl Rm;. Now, for each n € Z

t r
M":Zl > RO(Hﬂf?“)mj-
j= i=

V1jyeens l/rjENo
T
Sj+z~;:1 l/ijdi:n

In particular, M, is a finitely generated graded Rp-module. This shows: If
R is positively graded and Noetherian and M is finitely generated, then the
Ro-modules M,, are finitely generated for all n € Z.

D) We define the generating degree of M by

gendeg(M) :=inf{t € Z | M = ZRMn} € Z U {£o0}.

n<t
Clearly, if M is finitely generated, gendeg(M) < oc.
E) Let R be positively graded. For m,n € Z we use the notation

RyM, = > Roxy C Myin

yeMy,
xeRm

to denote the Ry-submodule of M, , spanned by all products xy with = €
R,.,y € M,,. In this notation, for m,n € Z one has:

a) If R is homogeneous and gendeg(M) < m < n then M, = R,_,,M,,.
In particular one can say:

b) If R is homogeneous and M is finitely generated, then the following are
equivalent:

(i) There exists r € Ny such that (R} )"M = 0;
(i) M, =0 for all n > 0;
(iii) M is R-torsion.

9.7. Reminder. A) Let R be Noetherian and positively graded and let M
be a graded R-module. Then, according to 8.25, for each ¢ € N we may
consider Hj, (M) = @,,c5 H, (M), with Hy, (M), = *Hp (M), for n € Z
as a graded R-module such that for each homomorphism of graded R-modules
h: M — N the induced homomorphism Hp, (h) : Hp (M) — Hp (N) is
graded.

B) We have Hp (M/Tg, (M)) =g (M/Tg, (M)) =0 (cf. 1.4 B) b)). More-
over by 3.18, the homomorphism Hp (p) : Hp, (M) — Hp (M/Tg, (M))
(induced by the canonical homomorphism p : M — M/T'g, (M)) is an epimor-

phism of graded R-modules if i = 0 and an isomorphism of graded R-modules
if + > 0.
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C) Let x € RyNNZDg(M) for some t € Ny. Then, by 8.26 B), for each n € Z
we have the following exact sequences of Ry-modules:

0 —— Hp, (M) > Hp (M)nss —— Hp (M/xM),
— H11%+(M)n LA H}h (M)yyy —
- Hzi%jrl(M/ﬂfM)nth
e Hip, (M)~ Hiy (M)t — Hip (M2 M)y
- Hgl(M)n N

D) According to 8.25 A) the above grading of the modules Hj, (M) is not
necessarily unique, as it depends on a choice of an appropriate assignment ¢°.
But in view of 8.25 D) b), the individual graded components Hy (M), are
unique up to isomorphisms of Ry-modules, and this is enough for our later
purposes.

9.8. Lemma. Let K be a field, let V be a finite dimensional K -vector space,
and let (V;)ier be a family of proper K-subspaces of V with 1 < #1 < #K.
Then:

a) Ui, Vi & V.
b) There exists a K-subspace W C V with W N (|
dimg (W) = min{codimy (V) | ¢ € I}.

Vi) = {0} and with

el

Proof. (Induction on d := dimg(V').) As 1 < #I we haved > 0. If d = 1, then
a) is trivial, and for b) take W := V. Thus, we assume that d > 1. It is easy
to see that V has at least # K different subspaces of dimension d — 1. Hence,
there exists a subspace V' C V of dimension d — 1 such that V' # V; for all
iel. Forie IsetV/ :=VNV, Byinduction there exists a subspace W/ C V'
with W' N (U,e; Vi) = {0} and with dimg(W’) = min{codimvf(V’) |1 eI}
In particular W' N (U,c; Vi) = W' NV N (Ui, Vi) = W N (Ui, Vi) = {0} and
thus | J,c; Vi € V. This shows a).

Set m := min{codimy (V;) | i € I}. If dimg(W') = m, we set W := W', and
the proof of b) is finished. So, we assume that dimg(W’) # m. For i € I we
have codimy/(V}) = codimy (V;) — codimy (V; + V’). As

min{codimy(V)|i € [} =

min{inf{codimy (V;)|i € I,V; € V'}, sup{codimy (V;)|i € I,V; C V'} — 1}
we get dimg(W’') = m — 1. For ¢ € I we have dimg((V; + W')/W') =
dimg (V;/(V; N W) = dimg (Vi) < d —m and dimg(V/W')=d—-—m+ 1 <d.
Hence (V; + W’)/W' is a proper subspace of V/W' for all i € I and we may

apply a). Choose an element u € V such that u + W' & (J,., (Vi + W')/W".
Now, set W := W'+ (u) . Then dimg (W) = dimg(W’) 4+ 1 = m. In order to
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prove W N (U,e; Vi) = {0}, assume that there exists v € W N (U, Vi) \ {0}.
Let w € W/, k € K and i € I such that w+ ku = v € V;. Since v # 0 and
V;n W’ = {0}, we conclude k # 0. Thus u — k~*v € W’ and k~'v € V,

therefore uw + W' € (V; + W') /W', a contradiction. O

9.9. Lemma. Let K be a field, let R be a Noetherian homogeneous K -algebra
and let M be a finitely generated R-module such that I'r, (M) = 0 and that
t Assp(M) < K. Then, there is an element v € Ry N NZDgr(M).

Proof. As T'r, (M) = 0 we have R, ¢ ZDgr(M) (cf. 1.7 b)) and therefore
Ry ¢ p for each p € Assg(M) (cf. 1.6 B) ¢), a)). As R is homogeneous we
have R, = (R;) (cf. 9.2 A)). It follows that p N Ry & Ry is a proper K-
subspace for each p € Assp(M). As fAssp(M) < #K it follows from 9.8 a)
that Upcasen(n(P N R1) & Ri. So, there is some € Ri \ Upeasepan P+ BY
1.6 B) a) we have x € NZDg(M). O

9.10. Proposition. Let K be an infinite field, let R be a Noetherian homoge-
neous K-algebra, let M be a finitely generated graded R-module and let i € Ny.
Then:

a) For each n € 7, the K -vector space H}é+ (M), is of finite dimension;
b) Hy, (M), =0 for all n> 0.

Proof. (Induction on i.) As Hp (M) = Tr (M) € M is a finitely gener-
ated graded R-module, the claim for ¢ = 0 follows from 9.6 C), E) b). Now,
let i > 0. In view of the isomorphism of graded R-modules Hj, (M) =
Hy, (M/Tr (M)) (cf. 9.7 B)) we may replace M by M/Tr, (M) and hence
assume that I'p, (M) = 0. So, by 9.9 there is an element x € Ry N NZDg(M).
Hence, for each n € Z there is an exact sequence of K-vector spaces (cf. 9.7 C))

H}l):,_l (M/xM)n‘i“l - H}L%+<M)n $—> H}L%+<M)n+1

By induction there is some ny € Z such that HIZI(M/xM)nH = 0 for all
n > ng and hence such that the multiplication map

vt iy, (M), — Hiy, (M) 1
is injective for all n > ng. As z € Ry C R, and as H};ur(M ) is R,-torsion
(cf. 3.13) it follows easily that Hp (M), = 0 for all n > ng. This proves
statement b). By induction we also know that H}al(M JxM ),y is of finite
dimension over K for all n € Z. Now statement a) follows from statement b) by
descending induction on n on use of the above three term exact sequence. [J

9.11. Remark. Proposition 9.10 is a special case of the following much more
general result (cf. [B-S, Proposition 15.1.5]): Let R be Noetherian and posi-
tively graded and let M be a finitely generated graded R-module. Then:

a) For each i € Ny and each n € Z the Ry-module Hy,, (M), is finitely gener-
ated.
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b) There is some ny € Z such that Hy (M), = 0 for all i € Ny and all n > ny.

9.12. Exercise. Let R be Noetherian and homogeneous, and assume that the
Ro-module R, is generated by 7 elements. Show that Hj (M) = 0 for each
1 > r and each graded R-module M.

9.13. Definition and Remark. A) Let K be an infinite field, let R be a
Noetherian homogeneous K-algebra, let M be a finitely generated graded R-
module and let i € Ng and n € Z. Then, according to 9.10 we may define the
number

hy(n) := dimg (Hp (M),) = dimg (*Hp, (M),) € No

which—according to 9.7 D)—depends only on ¢, n and M, but not on the
assignment ¢ of 8.25 A). So, h',(n) is a proper numerical invariant of M.

Correspondingly we may define the function
R, : Z — No, n+— ki, (n),

the i-th cohomological Hilbert function of M.

B) By 9.10 and 9.12 we have:

a) hi, =0 for all i > dimg(Ry);

b) There exists ng € Z such that for all ¢« € Ny and all b > ng we have

hY,(n) = 0.

C) By 8.25 E) there are isomorphisms of graded R-modules
Hpy (M(r)) = Hp (M)(r)

for all r € Z and hence isomorphisms of K-vector spaces
Hp, (M(r))n = Hg, (M),

for all r,n € Z. These clearly imply

hZM(T) (n) = ki, (n+ 1) for r,n € Z.

D) By 9.7 B), for i € N and n € Z we have hi,(n) = h§\4/FR+(M)(n)'

9.14. Definition and Remark. A) Let K be an infinite field, let R be a
Noetherian homogeneous K-algebra, and let M be a finitely generated graded
R-module. Then, according to 9.6 C) and 9.13 A), B) a), for each n € 7, we
may define the number

Xu(n) = dimg (M,) =Y (=1)'hiy,(n) € Z.

i>0
Correspondingly we may define the function
XML — Z, n— xpu(n),

the characteristic function of M.



90

B) From 9.13 B) b) it follows immediately that x(n) = dimg(M,,) for all
n > 0.

C) One has the following equivalence:
xum =0< M is R -torsion.

Indeed, if xj); = 0 we conclude by part B) that M, = 0 for all n > 0, and
hence that M is R,-torsion (cf. 9.6 E) b)). Conversely, if M is R.-torsion
we have Hy (M) = 0 for all i > 0 and Hp (M) = M (cf. 3.4, 3.17) so that

hi; = 0 for all i > 0 and h%;(n) = dimg(M,) for all n € Z. This implies
Xm = 0.

D) By 9.13 C) one immediately gets x () (n) = xm(n + 1) for n,r € Z.

9.15. Theorem (Additivity of the characteristic function). Let K be an infinite

field, let R be a Noetherian homogeneous K-algebra and let 0 — L — M —
N — 0 be a short exact sequence of finitely generated graded R-modules. Then

XM = XL+ XN

Proof. For each n € Z one has an exact sequence of K-vector spaces (of finite
dimension) 0 — L,, — M,, — N,, — 0 which shows that

(A) dimg (M,,) = dimg (L) + dimg (V).
If we apply cohomology to the short exact sequence 0 - L — M — N — 0

and then pass over to n-th graded components, by 8.26 A) we get an exact
sequence of K-vector spaces

0— H%+(L)n — H%+(M)n — H%+(N)n — H}%+(L)n — .
T H}L{_JFI(N)R - H;ﬁ(L)n - H;%+(M)n —
By 9.10 all K-vector spaces in this sequence are of finite dimension. By
9.13 B) a) also Hy, (L), = Hy, (M), = Hp (N), = 0 for all i > dimg(R;).
So using the additivity of K-vector space dimension we get
D (1R (n) =Y (=1)hiy(n) + Y (=1)'hiy(n)
i>0 i>0 i>0
=dimg (Hy, (L)n) — dimg (Hy, (M),) + dimg (Hp, (N),)
— dimg (Hp, (L)y) + dimg (Hp, (M),) — dimg (Hg, (N)n) +--- =0
and hence
(B) D (=)hhy(n) =Y (1) 'hi(n) + Y (=1)hi(n).
i>0 i>0 i>0
Combining (A) and (B) for all n € Z we get our claim. O
9.16. Reminder. A function f : Z — 7 is said to be presented by a polynomial
if there is a polynomial P € Q[x] with P(n) = f(n) for all n € Z. As any

polynomial in Q[x] is determined by its values at infinitely many places, such
a P is unique.
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9.17. Theorem. Let K be an infinite field, let R be a Noetherian homoge-
neous K-algebra and let M be a finitely generated graded R-module. Then, the
characteristic function of M is presented by a polynomial.

Proof. In order to prove the claim, assume that xj,; is not presented by a
polynomial. Let S be the set of all graded submodules N C M such that
Xm/n is not presented by a polynomial. Then 0 € S and hence S # 0. As
M is Noetherian, S has a maximal member, say N. So xa/n is not presented
by a polynomial, whereas X/ is presented by a polynomial for each graded
submodule U C M with N ¢ U. This means that with M := M/N the
function x,; is not presented by a polynomial, whereas x5 is presented
by a polynomial for each non-zero graded submodule U C M. By replacing
M with M we thus may assume that y,; is not presented by a polynomial,
whereas x7/v is presented by a polynomial for each non-zero graded submodule
UCM.

If we apply 9.15 to the exact sequence
0—-Tp (M)—>M—M/Tgr,(M)—0

and keep in mind that XTr, (M) = 0 (cf. 9.14 C)) we get XM/Tp, (M) = XM-
By our assumptions on M this implies I'g, (M) = 0. So, by 9.9 there is some
x € Ry NNZDg(M). The exact sequence of graded R-modules

0— M(—1) = M — M/xM — 0
shows that xar — Xm(—1) = Xmyzm (cf. 9.15). As xps is not presented by a

polynomial, we have M # 0. As z € NZDg(M) it follows M # 0. So,

by our assumptions on M, there is some polynomial Q € Q[x] such that
Xm/zm(n) = Q(n) for all n € Z. On use of 9.14 D) we now get for all n € Z

xm(n) = xu(n —1) = xu(n) = xu-1(n) = Qn).
But it is easy to see that this implies that x,, is presented by a polynomial, a
contradiction. OJ

9.18. Definition. Under the hypotheses of 9.17, the unique polynomial in Q[x]
which coincides on Z with y,, is denoted by Py, and is called the Hilbert-Serre
polynomial of M.

9.19. Corollary. Let K be an infinite field, let R be a Noetherian homoge-
neous K-algebra and let M be a finitely generated graded R-module. Then,
dimg (M,,) = Py(n) for alln > 0.

Proof. Use 9.14 B). O

9.20. Remark. The concepts developed in 9.13 and 9.14 can be worked out
in a much more general context, namely for Noetherian homogeneous rings R
whose base ring Ry is of dimension 0. What is said in 9.15 and 9.17 then also
holds in this more general setting (cf. [B-S, Chapter 17]), using the length of
Ro-modules instead of the K-vector space dimension.



10. LEFT-VANISHING OF COHOMOLOGY

Let R be a Noetherian homogeneous algebra over an infinite field and let M
be a finitely generated graded R-module. According to 9.10 the cohomolog-
ical Hilbert functions h%, are all right-vanishing, i.e. have the property that
hi;(n) = 0 for all n >> 0. In this section we are interested in the left-vanishing
of these functions, hence the property that h’,(n) = 0 for all n < 0.

10.0. Notation. Throughout this chapter, let R = €, _,,

10.1. Reminder and Notation. A) The graded spectrum of R, denoted by
*Spec(R), is the set of graded prime ideals of R, i.e.

*Spec(R) = {p € Spec(R) | p is graded}.

R, be a graded ring.

B) Let R be positively graded. A graded prime p € *Spec(R) is called essential
if p 2 Ry. The projective spectrum of R, denoted by Proj(R), is defined to be
the set of all essential graded primes of R, i.e.

Proj(R) := *Spec(R) \ Var(R,).

C) Let R be positively graded. The mazimal projective spectrum of R, denoted
by mProj(R), is defined to be the set of all elements of Proj(R) which are
maximal with respect to inclusion, i.e.

mProj(R) := {p € Proj(R) | #q € Proj(R) : p & q}.

10.2. Reminder and Exercise. Let a & R be a proper graded ideal. Show
that a is a prime ideal if and only if fg ¢ a for f,g € R™™\ a.

10.3. Reminder and Exercise. A) Let M be a graded R-module and let
m € M\ {0}. For each n € Z let m, € M, be the n-th homogeneous
component of m. Then, clearly v(m) := inf{n € Z | m,, # 0} € Z, u(m) =
sup{n € Z | m, # 0} € Z and v(m) < p(m) with equality if and only if
m € M. If v(m) < p(m), then m — My (my, M — Myen) # 0 and moreover

V(m) < (m - mu(m))a :u(m) = N(m - mu(m))a
m) >

p(m) > p(m —myam)), v(m) = v(m — mym).

B) Let p € Spec(R) be such that p = (0 :zp Rm). Assume that (0 :g Rmym)) C
p. Let y € p\{0}. Show that y,,) € (0 :gr Rmym)) and hence that y—y,,) € p.
Use this argument to show by induction on u(y) — v(y) that in this case all
homogeneous components of y belong to p. Conclude that p € *Spec(R).

Assume now that (0 :g Rmymy) € p and let s € (0 :g Rmyn))™™ \ p. Show
that u(sm) — v(sm) < u(m) —v(m) and p = (0 :g Rsm).

C) Let p be as in part B). Show by induction on p(m) — v(m) (and on use of
the observations of part B)) that p is graded and conclude:

If M is a graded R-module and p € Assg(M), then p € *Spec(R) and p =

(0 :g Rm) for some m € M"m™\ {0}.
92
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10.4. Reminder and Exercise. A) Let K be a field and let R be a homoge-
neous K-algebra. Then (cf. 9.4 C)):

Proj(R) = "Spec(R) \ {R+} = {p € "Spec(R) [ p & R}.

B) Let p € Spec(R) be such that dimg(R;/p N Ry) = 1 and let x be an
indeterminate. Show that there is a surjective homomorphism of K-algebras
® : K[x] — R/p. Use the fact that ®~'(q/p) € Spec(K[x]) for each q € Var(p)
to conclude that the dimension of the R-module R/p is at most 1.

C) Use the observations of part A) and B) to show that if p € *Spec(R) with
dimg(Ry/p N Ry) = 1, then p € mProj(R).

10.5. Lemma. Let K be a field, let R be a Noetherian homogeneous K -algebra
and let M # 0 be a finitely generated graded R-module such that I'r, (M) =0,
# Assp(M) < #K and Assg(M)NmProj(R) = 0. Then, there is a K-subspace
L C Ry such that dimg (L) =2 and L\ {0} C NZDg(M).

Proof. Let p € Assp(M). By 10.3 C) we have p € *Spec(R). AsT'g, (M) =0
we have Ry € p (cf. 1.6 B) a), 1.7 b)). As Ry = (Ry) it follows pN Ry & Ry
and hence dimg(R;/p N Ry) > 1. As p ¢ mProj(R) we see by 10.4 C) that
dimg(R1/p N Ry) > 2. As 1 < # Asspr(M) < #K it follows from Lemma
9.8, that there is a K-subspace L. C Ry with dimg(L) = 2 and such that

L(Upeasspan PNE1) = {0}. In particular we have L\{0} C R\ e nsspn P =
NZDg(M) (cf. 1.6 B) a)). O

10.6. Definition and Remark. A) Let K be an infinite field, let R be a
Noetherian homogeneous K-algebra and let M be a finitely generated graded
R-module. For each n € Z we set

d,(n) := dimg (M,) — hS,(n) + h},(n),
so that (cf. 9.14 A))
xu(n) = di(n) = Y (=1)'hy(n).
i>2
So, we may define a function
&S % — T, mos dY(n).
B) We have
059\4/%+ (M) (n)

= dimg ((M/Tr, (M))n) — hg/[/FR+(M) (n) + h}wrm o (n)

= dimg (M) — dimg (I'r, (M),) — h%/I/FR+(M) (n) + h}\/[/FR+(M) (n).
As T'g, (M) = H?h(M)’ H%+(M/FR+(M)) = 0 and H11%+(M/FR+(M)) o
Hp,, (M) we conclude:

a) d9

_ 0
M/r, () = -
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As 1Y, (n) < dimg(M,,) for all n € Z we conclude:
b) 0 < hl;(n) < d5;(n) for all n € Z.

10.7. Exercise. Let K be an algebraically closed field and let V', W be two
K-vector spaces such that 0 < dimg (W) < oco. Let f,g : V — W be two
K-linear maps. Show that if the map af + g : V — W is injective for all

(o, 3) € K*\ {(0,0)}, then dimg (V) < dimg (W).

(Hint: Assume that dimg (V) > dimg (W), show that f and g are isomor-
phisms and use the fact that ¢g=' o f has an eigenvalue in K).

10.8. Proposition. Let K be an infinite field, let R be a Noetherian homoge-
neous K-algebra and let M be a finitely generated graded R-module. Then, for
tel:

a) dS;(n) < d5;(t) for alln < t.
b) If K is algebraically closed and Assgr(M) N mProj(R) = 0, then d3,(n) =0
for allm <t —2d%,(t).
Proof. By 10.6 B) a) the function d3, does not change if we replace M by
M/Tg, (M). As

Assp(M /TR, (M)) = Assg(M) \ Var(R.)
and Var(R,) NProj(R) =0 (cf. 1.9 b), 10.1 B)), the condition

Assp(M) NmProj(R) = ()

is not affected, if we replace M by M/T'g, (M) and hence assume Hp, (M) =
I, (M) = 0. So, in particular we then have h9, = 0 and hence

(A) dyy(n) = dimy (M) + hy(n)

for all n € Z. Now, by 9.9, there is some x € Ry N NZDg(M). For each such
x the short exact sequence of graded R-modules

0— M M) — (M/zM)(1) — 0
and the induced exact sequences of K-vector spaces (cf. 9.7 C))
(B) 0 — HY (M/M)nir — Hy, (M) > Hy, (M)
show that for all n € 7Z we have

dlmK(Mn> = dlmK(Mn+1)—dlmK((M/ﬂfM)n+1),
hir(n) < hyr(n+1) +h{ . (n+1).

As Hy (M/xM)=Tg, (M/xM) C M/xM we also have
() W+ 1) < dime(M/2M)11)

for all n € Z. Combining (A), (C) and (D) we thus get d5,(n) < d%;(n + 1)
for all n € 7Z. This proves statement a).

(©)
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Assume now that K is algebraically closed and that Assg(M)NmProj(R) = 0.
If M =0, then d, = 0 and hence the claim is clear. So, let M # 0. By 10.5
there is a K-subspace L C Ry of dimension 2 such that L\ {0} C NZDg(M).
Let f,g € L form a K-basis of L. Then af + g € L\ {0} C NZDg(M) for
all (a, 8) € K*\ {(0,0)}. So, for each n € Z and each pair («, 3) the linear
map aof + Bg : M, — M, is injective. Hence by 10.7 we can say

M1 # 0 = dimg (M,) < dimg(M,41),
Mn+1:O:>Mn:0.

This implies that M, = 0 for all n < ¢t — dimg(M;). As dimg(M,;) <
dimg (M) + hi, () = d§,(t) it follows

(E) M, =0 for all n <t —d3,(t).
In particular on use of (A) we get:
(F) dS;(n) = hj,(n) for all n <t —df,(t).

Let (o, 3) € K*\ {(0,0)}. If we apply (D) with z = a.f + 8g we get
0 < Pyjagssgn (0 +1) < dimg ((M/(af + Bg)M)ni1) < dimg (Myi1),

so that by statement (E) we have hY, ), 1 g (n+1) = 0 for all n <t —dj(t).
If we apply (B) with x = af + Sg we thus get a monomorphism of K-vector
spaces of + Bg @ Hp (M), — Hp (M)ny for all n < t — dj,(t) and all
(o, 3) € K*\ {(0,0)}. By 10.7 we thus can say for n <t — d3,(¢):

hy (n+1) # 0 = hy(n) < hy,(n+1),

hy/(n+1) =0 = hy(n) = 0.
From this we conclude that h},(n) = 0 for all n < t—d%,(t)—h},(t—d},(t)). By

statement a) we have h},(t —dS,(t)) < d5,(t —dS;(t)) < d5,(t) (cf. 10.6 B) b)).
So, in view of (F) we get d%;(n) = hi;(n) =0 for all n <t — 2d3,(t). O

10.9. Definition and Remark. A) Let K be an infinite field, let R be a
Noetherian homogeneous K-algebra and let M be a finitely generated graded
R-module. For k£ € N and n € Z set

Bt (n) = dS,(n) + Xk: <l::11> his(n —i+1).

i=2
So, for k € N we may define a function BY, : Z — Z, n — B%(n).

B) Clearly (cf. 10.6 B) b)):

a) By = diy;
b) 0 < d%,(n),h%,(n—1),...,h% (n —k+1) < BY(n) for k € N and n € Z.

Also, in view of 10.6 B) a) and as iy p (s = hiy for all i > 0 (cf. 9.13 D))
+
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10.10. Lemma. Let K be an infinite field, let R be a Noetherian homoge-
neous K-algebra, let M be a finitely generated graded R- module, let x €
Ry NNZDg(M) and let k > 2. Then, for n € Z we have BM/ y(n) < Bk (n).

Proof. As x € Ry N NZDg(M), we have Hy (M) = T, (M) = 0. The short

exact sequence 0 — M = M(1) — (M/xM)(1) — 0 of graded R-modules
and the induced exact sequences of K-vector spaces

RN H§§+(M)m+1 — HA(M/IM)mH N H}f(M)m BN
(cf. 9.7 C)) show that for all n € Z and all i € N
(B)  Plyjps(n =i+ 1) < hiy(n—i+1) + b (n — ).
So, on use of (A) and of (B) (applied with ¢ = 1) we first get
dygjear(n) = dimg (M/2M)n) = By jans () + Ry /ans (1)

< dimg ((M/xM),) +hM/zM( n)

= dimg (My) — dimg (Mp_1) + hyy /e (0)

< dimg (M,) + h}w/xM(n) < dimg(M,) + hy,(n) + k3 (n —1).
As Hp (M) = 0, we have dimg(M,) + hj(n) = dj,;(n). By the previous
inequalities we get

(C)  Bijan(n) = dypp(n) < dy(n) + 03, (n — 1) = B3, (n) for all n € Z.

This proves the case k = 2. So, let & > 2. On use of (B) and the Pascal
formula for binomial coefficients, for each n € Z we obtain
k—1

Z((k;_l)l—l) (=i 41

=2

Mw

<2_1> w(n—i+ 1)+ R (n — i)

:(k—2)h2 (n—1)+ht(n—k+1)

o (G ey et

=(k —2)h3,(n —1) +i< ) (n—j+1)

k

< —h3( n—1+2:(lC ) (n—i+1).

Adding this inequality and (C) we get BM/ v(n) < Bh(n). O]
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10.11. Reminder and Exercise. A) Let A be a ring and let M be an A-
module. If A is local with maximal ideal m, according to 4.5 C) we write
depth 4 (M) = grade,;(m).

B) Let A be Noetherian and local with maximal ideal m and let M be finitely
generated. Use 4.7 to show:

a) depth (M) =00 < M = 0.

Use 4.11 to show:

b) depth (M) < dim(M) < M # 0.

Use 4.9 to show:

c) If : e mNNZD (M), then depth,(M/xM) = depth (M) — 1.

C) Let A be Noetherian, let M be finitely generated and let p € Spec(A). Use
the fact that
Assa, (My) = {9, | q € Assa(M),q C p}

together with prime avoidance to prove that p € Assy(M) if and only if
depth 4 (My) = 0.

10.12. Definition and Remark. A) Let R be positively graded and let M
be a graded R-module. We define the global subdepth of M by
6(M) := inf{depthp (M,) | p € mProj(R)}.

B) Let R be Noetherian and let M be finitely generated. From 10.11 C) it
follows immediately:

a) 0(M) =0 < Assg(M)NmProj(R) # 0.
As I'g, (M), = 0 (and hence (M/T'g, (M)), = M,) for p € Spec(R) \ Var(R.)

we clearly have:
b) 6(M/Tr, (M)) = 6(M).

10.13. Exercise (Homogeneous prime avoidance). Let a C R be a graded
ideal which is generated by homogeneous elements of positive degrees. Let
P1,...,pr € Spec(R) such that a & p,; for i € {1,...,r}. Then, there is a
homogeneous element of positive degree = € a \ J;_; p;-

10.14. Lemma. Let R be Noetherian and positively graded and let M be a
finitely generated graded R-module. Then:

a) 6(M) =00 M =Tg, (M),
b) If x € NZDg(M) is homogeneous, then 6(M/xM) > 6(M) — 1;

c¢) Let R be homogeneous and let Ry be a field. If I'r, (M) =0 and 6(M) > 0,
then there exists x € R™ N NZDg(M) such that 6(M/xM) = 6(M) — 1.
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Proof. “a)”: “«<": Assume that M = I'g, (M). Then by 10.12 C), A) and
10.11 B) a) we have §(M) = 5(M/FR+(M)) 5(0) =

“=”: Assume that 6(M) = co and M # T'g, (M). Let M := M/Tg, (M).
Then M # 0 and therefore
() # Assp(M) = Assg(M) \ Var(Ry) C *Spec(R) \ Var(R,) = Proj(R)

(cf. 1.9 b), 10.3 C), 1.6 B) d) and 10.1 B)). Now, let q € Assgp(M). Then
depthp (M) = 0 (cf. 10.11 C)) and hence M, # 0 (cf. 10.11 B) a)). On the
other side g € Proj(R) implies that there is some p € mProj(R) with q C p.
As 6(M) = 6(M) = oo (cf. 10.12 C)) we have M, = 0 (cf. 10.11 B) a)). As M
is finitely generated, we find some s € R\ p with sM = 0. As s ¢ q we get the
contradiction that My = 0.

“b)”: Let p € mProj(R). If x ¢ p, T € R, is a unit so that M, = M, =
and hence depthy ((M/xM),) = depthp (M,/xM,) = depthp (0) = oo
S(M) —1.

If x € p, then § € pR, N NZDg, (M,). So, on use of 10.11 B) c) we get in this
case depthp ((M/xM),) = depthy (M,/TM,) = depthy (M,)—1 > 6(M)—
Altogether this proves our claim.

M,
Z

“c)”: If (M) = oo statement a) gives M = 0 and any = € R; will do. So,
let 6(M) < oo. Then, there is some p € mProj(R) with depthy (M) = 6(M).
As T'r, (M) = 0 we have R} ¢ Assp(M) and so 10.3 C) and 10.4 A) imply
that Assg(M) C Proj(R). As depthy (M) = (M) > 0 we have p ¢ Assg(M)
(cf. 10.11 C)). As p € mProj(R) it follows that p & q for all q € Assg(M). So,
by 10.13 there exists z € phom\ Useasspan) 9- As p € Ry we have z € R and
in view of 1.6 B) a) we also have x € NZDg(M).

So, statement b) gives 0(M/zM) > §(M)—1. Also, as § € NZDg, (M,) NpR,,
as in the proof of statement b) we get depthp ((M/xM),) = 6(M) — 1 and
hence 6(M/xM) < §(M) — 1. O

10.15. Proposition. Let K be an algebraically closed field, let R be a Noether-
1an homogeneous K -algebra and let M be a finitely generated graded R-module.
Them, for k € N such that k < §(M):

a) dy(n), hip(n), h3,(n—1),..., ks (n—k+1) < 1(2B%(0)*" for alln < 0.
b) BY,(n) =0 for all n < —(2B%,(0))>"".

Proof. (Induction on k.) We write B := B%,(0). As 6(M) > 1 we have
Assgr(M)NmProj(R) = 0 (cf. 10.12 B) a)). So, in view of 10.9 B) b) and 10.8
we get d3;(n) < d,(0) < B for all n < 0 and hence d3;(n) for all n < —2B.
This proves in particular that

{h}wm), &, (n) < 1(2B)?" for all n < 0;

) A, (n) = d9,(n) =0 for all n < —(2B)2"""
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(cf. 10.6 B) b)). Clearly, this proves the case k = 1 as we know that B}, = d9,
by 10.9 B) a).

So, from now on, let £ > 1. By 10.6 B) a), 10.9 B) ¢), 10.12 C) and 9.12 D) we
may replace M by M/T'g, (M) and hence assume that I'r, (M) = 0. If M =0,
our claim is clear. So, let M # 0. By 10.5 there is a K-subspace L C Ry of
dimension 2 such that L\ {0} C NZDg(M). Let f,g € L form a K-basis of
L. Let (o, 3) € K?\ {(0,0)}. Then z := af + 39 € Ry N NZDg(M) and the
short exact sequence of graded R-modules 0 — M(—1) =5 M — M/xM — 0
induces exact sequences of K-vector spaces

(B) i (M /oMyt — Hig, (M) = Hiy, (M)

for i € N and n € Z. In particular we have

(C) R, (n) < hﬁwlxM(n + 1)+ Ry (n+1) for all i € N and all n € Z.
By 10.14 b) we have k — 1 < §(M/zM).

Now, fix i € {2,...,k} so that i — 1 € {1,...,k — 1}. By induction and as
B]’;[;M(O) < B (cf. 10.10) we have

—_

th/le( —i+2) < 5(23)2#2 for all m <0

and
BﬁﬂlM( m) =0 for all m < —(2B)*"",
and hence (cf. 10.9 B) b))

(D) Wi oyr(m —i+2) =0 for all m < —(2B)*"".

Also, by 10.9 B) b) we have hi,;(—i + 1) < B. So, the inequalities (C) allow
to conclude by induction on —n that for all n < 0 we have

) _ 1 _
Wiy(n—i+1) < B+ZhM/xM —i+2) < B+ (2B ~1)-5(2B)*
1 - 1 1 1
=B (2B "+ (2B ) < (2B ) =z 2B)* .
2 2 2 2
Together with (A) this proves statement a).
Next we prove statement b). If B = 0 we conclude by statement a) and

the definition of B%,(n) (cf. 10.9 A)). So, let B > 0. Then, by (B) and
(D), for any i € {2,...,k} and any m < —(2B)*°, we get an injection
H§+ (M>m—i+1 >x—> H§+<M)m—i+2' SO, by ].07,

By (m —i+1) < max{0, b}, (m — i +2) — 1} for all m < —(2B)*" .
Consequently
hiy(n—i+1)=0forall n < —(2B)% " — hiy, (—(2B)*" " —i +2).
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So, by statement a) we get that

2k72 1 2](:71)‘

Riyy(n—i+1)=0foralln < —((2B)>  + 5(zB)

As the right hand side term is greater or equal than (23)2k_1, and in view
of (A) we get BY,(n) = d(n) + S5, ("D hiy(n —i+1) = d}(n) = 0 for

)

n < —(2B)¥"". This is statement b). O

10.16. Lemma. Let K be an infinite field, let R be a Noetherian homogeneous
K-algebra and let M be a finitely generated graded R-module with 6(M) = 0.
Then hi;(n) # 0 and d3;(n) # 0 for alln < 0.

Proof. Tt suffices to show that hl,(n) # 0 for all n < 0 (cf. 10.6 B) b)). By
10.12 B) a) there is some p € Assg(M) NmProj(R). By 10.3 C) there is some
t € Z and some m € M, \ {0} such that p = (0 :g Rm). So, the multiplication
map -m : R — M(t), = — xm has kernel p and hence gives rise to a short
exact sequence of graded R-modules 0 — R/p — M (t) — N — 0. Applying
cohomology we get exact sequences of K-vector spaces

Hy (N)y — Hp (R/p)n — Hp, (M)ns

for all n € Z. As N is finitely generated, Hy (N), =g, (N), € N, = 0 for
all n < 0. Therefore it is enough to show that h}%/p(n) # 0 for all n < 0. As
p & Ry = (Ry) we have p N Ry & Ry and hence find some z € Ry \ p. As p
is prime, we have x € NZDg(R/p) and hence get an exact sequence of graded

R-modules
® 0— Rfp = (R/p)(1) — (R/(p + 2R))(1) — 0.
As x € Ry NNZDg(R/p) we have Hy (R/p) =g, (R/p) = 0.

Now, let ¢ € min(p + zR). As p+ 2R = (0 :g R/(p + zR)) it follows by
1.8 C) ¢) that q € Assg(R/(p +zR)). By 10.3 C) it follows q € *Spec(R). As
p & qC R, and as p € mProj(R) we get ¢ = R,. Therefore min(p + zR) =
{R.,} and thus Ry = /p + zR. So, there is some r € N with (R,)" Cp+ xR
so that (Ry)"(R/(p +xR)) =0. So (R/(p+zR))(1) is R,-torsion and hence
oy, ((R/(p + =R))(1)) = (R/(p + xR))(1) and Hp, ((R/(p + zR))(1)) = 0
(cf. 3.17). So, if we apply cohomology to (%) and pass to graded components,
we get exact sequences of K-vector spaces for all n € Z

0— (R/(p+2R))ps1 — Hp, (R/p)n = Hp, (R/P)ni1 — 0.
As (R/(p+xR))o = K # 0 it follows that hy (R/p), # 0 foralln <0. O

10.17. Theorem. Let K be an algebraically closed field, let R be a Noetherian
homogeneous K-algebra and let M be a finitely generated graded R-module.
Then:

a) h%]M)H(n) # 0 for all n < 0.

98(M)—1

b) If (M) > 0, then B3 (n) = 0 for all n < —(2B3*"(0))
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c) If 5(M) > 0, then d;(n) = 0 and hiy(n —i+ 1) = 0 for all n <
6(M) 26(M)—1 .
—(2By; 7 (0)) and all i € {1,...,6(M)}.

Proof. b) and ¢) are clear from 10.15 b), 10.6 B) b) and 10.9 B) b) applied
with k = 6(M).

We show statement a) by induction on § := 6(M). If § = 0 we conclude by

10.16. So, let § > 0. By 10.12 B) b) and as hjj/lpR+(M) = 3/t (cf. 9.13 D))

we may replace M by M/T'r, (M) and hence assume that I'z, (M) = 0. So,
by 10.14 c) there is some ¢t € N and some x € R; N NZDg(M) such that
d(M/xM) =6 — 1. Thus, by induction h‘]s\/[/xM(n) # 0 for all n < 0.

By 9.7 C) we have exact sequences of K-vector spaces
H?%Jr (M), — Hfﬁ (M/zM), — H?{tl(M)n—t‘

By statement c) the first term in these sequences vanishes for all n < 0, so
that o (n —t) > h(JSW/sz) > 0 for all n < 0. This proves statement a). [

10.18. Corollary. Let K be an algebraically closed field, let R be a Noetherian
homogeneous K-algebra and let M be a finitely generated graded R-module.
Then:

a) Wy, (n) =0 for alln < 0 and all i < 6(M).
b) BN (n) £ 0 for alln < 0. O

This latter result is an algebraic version of a fundamental theorem on coho-
mology of projective varieties (or schemes): The Vanishing Theorem of Severi-
Enriques-Zariski-Serre (cf. [H1, Chapter I11], [B-S, Theorem 20.4.20], [Se] and
also 10.19 D), 10.20 and 12.16 below).

10.19. Remark. A) Let K be an infinite field, let R be a Noetherian homo-

geneous K-algebra and let M be a finitely generated graded R-module. We
write diy, := h’t! for all i € N. For i € Ny, the function

d?w :Z — Ng, n— dé\/[(n)
is called the i-th geometric cohomological Hilbert function of M.

If dim(M) < 0, we have M,, = 0 for all n > 0, so that M is R, -torsion, and
hence d;, = d) = 0 (cf. 10.6 B) a)). Combining this with 4.11, for ¢ > dim(M)
we get di; = 0.

Finally, for £k € N and n € Z we may write:
k—1
Bl =3 (" atn -
=0

B) The sequence
diag(M) = (dj (~i))iZ5 ™™
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is called the cohomology diagonal of M. 1f 6 € {0,...,dim(M) — 1}, the
sequence

diag(M)<* == (dj(~1))iZ
is called the cohomology diagonal of M below level §.
Now, fix t € Ny and § € {0,...,t}. We consider the polynomial

G? = GO(ug, ..., us_1) € Zlug, . .., us_1]

given by
0, if § =0,
(2505 (*w)” L a0,

926—1

GO (ug, . .., us_1) i= {

Observe in particular: If § > 0, then G°(diag=°(M)) = (2B3,(0))

C) We write &, for the class of all pairs (R, M) in which R is a Noetherian
homogeneous algebra over an algebraically closed field and M is a finitely
generated graded R-module with dim(M) =t + 1. In addition, we introduce
the class € := {(R, M) € €, | §(M) = §}. Then, as an immediate consequence
of 10.15 we get:

a) If (R,M) e ¢ andie€ {0,...,6 — 1}, then:
(o)  diyy(n) < %G‘S(diagé(M)) for all n < —1;
() diy(n) =0 for all n < —G(diag®(M)) —i.

This may concisely be expressed as follows:

b) The cohomology diagonal below level §(M) bounds cohomology left of the
diagonal below level 6(M).

D) The above statement C) a), 10.15 and 10.17 are special cases of results
which are established in [B-M-M]. We call the type of bounds which are given
in these results a priori bounds of Severi type.

We speak of a priori bounds as these bounds apply to arbitrary finitely gen-
erated graded modules. We speak of bounds of Severi type as these bounds
concern the numbers d;(n) in the range ¢ < §(M). This has historic reasons:
In 1942, Severi proved a completeness result for linear systems on smooth sur-
faces in complex projective three-space which can be formulated algebraically as
follows (the hypotheses in Severis original result were more restrictive, indeed):

a) Let f € Clxo,x1, 22, 23] be a homogeneous polynomial of positive degree
and let R = Clzo, x1,z2, 23]/(f). Let M be a finitely generated graded
R-module such that M, = R, for all p € mProj(R). Then, d},(n) = 0 for
all n < 0.

For us, this result is an exercise. Namely, for all p € mProj(R) the ring R, is
a CM-ring of dimension 2, so that (M) = 2.
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In 1949, Enriques generalized Severi’s result to polynomial rings in more than
4 indeterminates. In 1952, this was again generalized by Zariski, who showed
that the ring R of statement a) may be replaced by the homogeneous coor-
dinate ring of an arbitrary normal projective variety X of dimension greater
than 1 over an algebraically closed field. Using a bit of basic local algebraic
geometry, this generalization is still an easy exercise for us now: We namely
have depthp (R,) > 2 for all p € mProj(R), as R, is a normal Noetherian
domain of dimension greater than 1.

It was finally Serre, who proved 1955 in geometric terms (cf. [Se|):
b) For all (R, M) € € and all i < § it holds di,(n) = 0 for all n < 0.

This is in fact nothing else than statement 10.18 a). In view of the sketched
genealogy Serre’s result often is quoted as the Vanishing Theorem of Severi-
Enriques-Zariski-Serre, as stated already above. Observe that 10.15 is a “quan-
titative version” of this latter theorem.

E) Let us also mention here (cf. [B-M-M], [B-S, Chapter 16]):

a) The cohomology diagonal bounds cohomology right of the diagonal: There
is a polynomial H(ug, ..., u;) € Zlug, . .., us] such that for alli € {1,...,t}
and all (R, M) € €, it holds:

(a)  di(n) < $H'(diag(M)) for all n > —i;
(B)  diy(n) =0 for all n > H'(diag(M)) — 1.

The bound of statement a) is referred to as an a priori bound of Castelnuovo
type. This refers to Castelnuovo’s Regularity Bound for smooth space curves
of 1893. Let us rephrase this latter bound in purely algebraic terms:

b) Let q C R := Clxg, x1, 22, 3] be a graded prime ideal such that R,/q, is a
principal ideal domain for each p € mProj(R) N Var(q). Let e € N be the
leading coefficient of the Hilbert-Serre polynomial Pg/q(z) € Q[z] of R/qg.
Let i € {1,2,3}. Then di(n) =0 for alln > e —i+ 1.

Contrary to the classical reference bounds of Severi-Enriques-Zariski, the above
result is not recovered by our a priori bounds. These are too general to be
sharp enough in the very particular situation of statement b).

On the other hand, 9.10 yields
c¢) For each (R, M) € €, for each i € N and all n >> 0 it holds di,(n) = 0.

This result was shown by Serre [Se| in geometric terms. In view of its historic
roots it sometimes is called the Vanishing Theorem of Castelnuovo-Serre.

10.20. Remark and Exercise. A) The striking fact around 10.15, 10.17 and
10.18 is that these results relate the local behaviour of a finitely generated
graded R-module M along Proj(R) (measured in terms of the invariant §(M))
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to the global cohomological behaviour of M (expressed in terms of the left-
vanishing of the geometric cohomological Hilbert functions dj,).

B) To illustrate the previous statement, we mention an application of 10.18,
the cohomological criterion for vector bundles. We keep the notations of 10.19.
Let (R, M) € &,. We say that M defines a vector bundle or that M is locally
free along Proj(R) if the Ry,-module M, is free for all p € Proj(R). We say
that Proj(R) is smooth if the local ring R, is regular for all p € Proj(R). Now,
the announced criterion takes the following form:

Let (R, M) € &, be such that R is a domain with dim(R) = dim(M) and
Proj(R) is smooth. Then, M defines a vector bundle if and only if the function
di; is left-vanishing for all ¢ < t.

This follows by 10.18 and the fact that dim(R,) = ¢ for all p € mProj(R) and
the formula of Auslander-Buchsbaum.



11. LocAL FAMILIES OF FRACTIONS

In this section we develop the basic concepts which allow to link local cohomol-
ogy to sheaf cohomology. We restrict ourselves to a fairly particular situation.
For a general and more conceptual introduction of the theme we recommend
to consult [B-S, Chapter 20].

11.0. Notation. Throughout this chapter, let R = @__, R, be a graded ring.

nez

11.1. Reminder and Exercise. A) Let M be a graded R-module. Fix
n € 7Z and let U C M, be an Ryp-submodule. Then it is easy to verify that
(> uey Bu) N M,, = U. As a consequence of this we see:

a) If U® ¢ UM ¢ ... ¢ UM is a strictly ascending sequence of Rg-sub-
modules of M, then > o Ru & >, com Ru & ... & > cpm Ruis a
strictly ascending sequence of R-submodules of M

b) If UO > UM > ... D UM is a strictly descending sequence of Ry-
submodules of M,, then Y _ o Ru 2 > o0 Ru 2 -+ 2 > e Ru
is a strictly descending sequence of R-submodules of M.

B) For each n € Z we may conclude from A) a), b):

a) If M is Noetherian, then M, is a Noetherian Ry-module;
b) If M is Artinian, then M, is an Artinian Rg-module.

C) Applying the previous statements to M = R with n = 0, we get:

a) If R is Noetherian, then Ry is a Noetherian ring;
b)

If R is Artinian, then Ry is an Artinian ring.
As a consequence of a) and B) a) we now get a generalization of 9.6 C):

c) If R is Noetherian and M is finitely generated, then M, is a finitely gener-
ated Rp-module for each n € Z.

11.2. Reminder and Exercise. A) Let S C R"™ be a multiplicatively closed
set of homogeneous elements of R. Let M be a graded R-module and let n € Z.
We define the set of homogeneous fractions of degree n with numerator in M
and denominator in S by

(ST'M), :=={ye ST'M|3teZIse€ S;TImeE My y =2}

It is easy to verify that for each n € Z, the set (S~*M),, is an additive subgroup
of S7'M. Show that S™'M = @, ,(S™'M), and that for m,n € Z, y €
(S7'R),, and z € (S7'M),, we have yz € (S™* M), 1n.

B) Applying the statements of A) to M = R we now get that the family

((ST'R)y)nez defines a grading on S™'R, so that S™'R = @, ,(S™'R), is a

graded ring. If we apply the above statements to M, we obtain that S™'M =
105
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D,z (S71M), is a graded S~'R-module. Moreover S~ (M(r)) = (S~'M)(r)
for all r € Z.

C) It is easy to verify that if h : M — N is a homomorphism of graded
R-modules, then the induced homomorphism S='h : S™'M — S7!N is a
homomorphism of graded S~!R-modules. Finally, as the functors S~'e of
localization with respect to S and e, of taking n-th graded components are

both exact, we can say: If 0 — N ML P — 0is an exact sequence of

graded R-modules, then 0 — (S™'N), 57 Pn, (S7'M), AGULR (S7'P), — 0
is an exact sequence of (S~ R)g-modules for each n € 7Z.

D) If R is Noetherian, then so is ST!R. By 11.1 C) a) it thus follows that if R is
Noetherian, then (S~ R), is a Noetherian ring. If M is finitely generated, then
S~IM is a finitely generated S~'R-module. By 11.1 C) ¢) we therefore obtain
that if R is Noetherian and M is finitely generated, then the (S™!R)o-module
(S7'M),, is finitely generated for all n € Z.

11.3. Remark and Definition. A) Let R be positively graded and let p €
Proj(R). Then, S(p) := (U,en, Fn) \ p is a multiplicatively closed set of
homogeneous elements of R. So, according to 11.2 B) we may consider the
graded ring S(p) 'R = @, ,(S(p)"'R), and its 0-th graded component
Ry == (S(p)"'R)o. The ring Ry is called the homogeneous localization of
R at p. Keep in mind that

Ry ={yeSp)'R|3teNy3z€ R \p3Ize R :y=1}.

B) Let M be a graded R-module. Then, according to 11.2 B) we may consider
the graded S(p) ' R-module S(p) ' M = ,,.,(S(p) "' M), and its 0-th graded
component, that is the R)-module M, := (S(p)"'M)y. The R,-module
My is called the homogeneous localization of M at p. Keep in mind that

My ={we Sp)'M|3teNgIz€ R \pIme M, : w= "2}

C) Let h: M — N be a homomorphism of graded R-modules. According to
11.2 C) we have an induced homomorphism of graded S(p)~ ! R-modules

S(p)~th:S(p)'M — S(p)~'N
and thus may consider its 0-th graded component
hp = (S(p) ™ h)o + My — Ny,
which we call correspondingly the homogeneous localization of h at p. Accord-

ing to 11.2 C) we can say: If 0 — N 2 ML P — 0is an exact sequence of

h !
graded R-modules, then 0 — N o, My ), Py — 0is an exact sequence

of R(y)-modules.

D) Let a C R be a graded ideal and let i : @ — R be the inclusion homomor-
phism. By C) we have a monomorphism of R,-modules i(y) : ag) — Ry). So,
we may identify a(,) with its image in R, and thus write:
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a) ap ={y € Ry | It e NgIze Ry \pIzeca 1y =2}
Using this convention we can say:
b) R, is a local ring with maximal ideal p ).

Indeed, as S(p) Np = 0, we have S(p)~'p & S(p) 'R and consequently (as
L1 € (S(p) "' R)o)

Py = (S(P)"'p)o & (S(p)'R)o = Ryy).

So P(p) is a proper ideal of R(y,. Now, let y € R, \ p¢p). With appropriate
t € No, z € Ry\pand z € R, we have y = Z. According to a) we have z ¢ p. It
follows 2 € Ry, and yZ = 1, hence y € (R))*. Therefore R, \ ppy € (Rp))*
and this proves our claim.

E) According to 11.2 D) we can say:

a) If R is Noetherian, then Ry is Noetherian.

b) If R is Noetherian and M is finitely generated, then My is finitely gener-
ated over Ry).

11.4. Remark and Exercise. A) Let R be positively graded. We furnish
Proj(R) with its Zariski topology so that the closed sets of Proj( R) are precisely

the sets of the form ZNProj(R), where Z C Spec(R) is closed. If W C Spec(R),

let WSpeC(R) denote the topological closure of W in Spec(R). Then, we may

say: If Z C Proj(R) is closed, then Z = Proj(R) N 7,

B) Keep in mind that a topological space X is said to be Noetherian if any
open subset U C X is quasi-compact. It is equivalent that any descending
sequence Zy O 41 O Zy O --- of closed subsets eventually becomes stationary,
that is we find an ny € Ny such that Z, = Z,, for all n > ng. Moreover
keep in mind that Spec(R) is a Noetherian topological space, whenever R is a
Noetherian ring. So, it follows from A) that if R is Noetherian, then Proj(R)
is a Noetherian topological space.

C) If a C R is a graded ideal, we set Z(a) := Var(a) N Proj(R) and U(a) :=
Proj(R) \ Z(a). Then:

a) If Z C Proj(R) is closed, then there is a graded ideal a C R, of R such
that Z = Z(a).

Indeed, there is some ideal b C R such that Z = Var(b) N Proj(R). Let b’ be
the graded hull of b, i.e. b’ = N c. Then by 83 B)b) b’ C Risa

¢CR graded ideal
bCec

graded ideal such that b C b’ and Var(b’)NProj(R) = Z. Now, let a := R, Nb’.
Then clearly Z C Z(a). Conversely, if p € Z(a), then Ry Nb C p and hence
R, Cporb Cp. Asp € Proj(R) we have Ry € b and hence b’ C p, thus
p € Var(b') N Proj(R) = Z. So Z = Z(a).
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Now, obviously we have:

b) If U C Proj(R) is open, then there is a graded ideal a C R, of R such that
U=U(a).

11.5. Remark, Exercise and Definition. A) Let R be positively graded and
let U C Proj(R) be an open set. Let M be a graded R-module. Consider the
direct products [ [, Rp) and [ [,c;; M(p), which by convention are 0 if U = 0.
Then, clearly [],.; R is a ring and [], .., M(y) is a modul over this ring in a
natural way.

pelU pelU

B) A family (2p)pev € HpeU My is called a local family of homogeneous frac-
tions over U with numerators in M if for each p € U there are an open neigh-
bourhood W C U of p in U, an integer t € Ny and homogeneous elements
m € M, s € Ry such that for each q € W we have s ¢ q and zg = =

We write M (U) for the set of all local families of homogeneous fractions over
U with numerators in M. We may apply this concept in the case M = R and
thus consider the set R(U) of all local families of homogeneous fractions over
U with numerators in R. Now, it is not hard to verify:

a) R(U) is a subring of [Toer R

b) M(U) is an R(U)-submodule of HPGU

C) There is a homomorphism of Abelian groups
M = 1y« Mo — M(U), m = (7 )pev

Moreover, 1% is a homomorphism of rings. From now on, we view M (U) as
an Ryp-module be means of the homomorphism of rings 7%. Then, it is easy to

prove that n{, : My — M (U) is a homomorphism of Ry-modules.

D) Let h: M — N be a homomorphism of graded R-modules. Then, it is not
hard to see that there is a homomorphism of Ryp-modules

h(U) : M(U) — N(U), (zp)pev — (hp)(2p))pev-
Now, without any further difficulties but with a bit of work one may verify:

a) The assignment o(U) : (M LA N) r (]/\\/[/(U) MO, N(U)) defines a linear

functor from graded R-modules to Ry-modules.
Moreover:

b) The functor e(U) is left exact: If 0 — N 2 M L P s an exact sequence

of graded R-modules, then 0 — N(U) Gl ﬂ

— ]\7(U) P(U) is an exact
sequence of Ry-modules.
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h !
Indeed, by the exactness of the sequences 0 — N, ), My, SR P, for

all p € U it is easy to see that the homomorphism h(U) is injective and that
1(U) o h(U) = 0. Tt remains to show that Ker(I(U)) C Im(h(U)). So, let z =
(2p)pev € Ker(I(U)). Then 2p € Ker(l(y) for all p € U. As Ker(ly)) = Im(hp)
there is some y, € N,y with the property that h,)(y,) = 2, for all p € U. It
suffices to show that the family of fractions (yp)pevr € [[,err M(p) is local (in

the sense of B)). So, fix p € U. As z € M(U), there is an open neighbourhood
W C U of p, an integer t € Ny and a pair of elements (m,s) € My x R, such
that for each g € W we have s ¢ qand 2z = = € Mq). As @ =l (%) =01in
Py, there is an integer r € N and a homogeneous element v € R, \p such that
ul(m) = 0, hence [(um) = 0. By the exactness of our original sequence we thus
find some element n € N,,; with h(n) = um. Now, clearly V := W NU(uR)
is an open neighbourhood of p in U and for all ¢ € V' we have us ¢ ¢ and
hi(yg) = 29 =% =42 = hiz) = h(g)(;%). By the injectivity of hg it follows
Yg= - forallge V.

E)If h: M — N is a homomorphism of graded R-modules, then there is a

commutative diagram
U

MO%M(U)

hol lﬁ(U)
U

No —2 N(U).

U —~
Hence, the assignment n = n¥ : M r (MO N M(U)) is a natural transfor-
mation of functors (from graded R-modules to Ro-modules) 7V : ¢y — o(U).

11.6. Remark and Exercise. Let R be Noetherian and let a,b C R be graded
ideals. Let I be a *injective R-module. Then I'yp(1) = T'o(Z) + [e(L). We
leave the proof of this equality as an exercise, which can be done along the
traces of the proof of 4.14.

11.7. Exercise. Let R be positively graded and let b, ¢ C R, be graded ideals
of R. Show that U(b) NU(c) =U(bN ).

11.8. Proposition. Let R be Noetherian and positively graded, let a C R be a
graded ideal with a C R, and let U := U(a) C Proj(R) be the open set defined
by a. Then:

a) For each graded R-module M we have Ker(nY; : My — M(U)) =T4(M)o.

b) For each *injective R-module M the homomorphism nY : Iy — I1(U) is
surjective.

Proof. a): “C”: Let m € Ker(nf;), so that 2 = 0 in M, for all p € U. So, for
each p € U there is some s, € S(p) with s,m = 0. Consider the graded ideal
b:=> ,cp sy of R. It follows brn = 0.
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Now, let g € min(b). We aim to show that a C q. Assume to the contrary that
aZq. Asa C R, it follows Ry € q. As q € min(b) C Assg(R/b) C *Spec(R)
(cf. 1.8 C) ¢) and 10.3 C)), it follows q € Proj(R). But now a ¢ q implies that
q € U and we get the contradiction that ¢ Z s € b C q. So, indeed a C q
whenever q € min(b). But this yields min(b) C Var(a) and hence

aC ﬂ pC ﬂ q:\/E.

peVar(a) g€min(b)

So, there is some n € N with a™ C b and it follows a”m C bm = 0, whence
m € I'y(M).

“D7: Let m € T'y(M)o. Then, there is some n € N with a”m = 0. Let
p € U=U(a). As p 2 a there is some element s, € a\ p. At least one
homogeneous component of s, is not contained in p. As a is graded, this

component is yet contained in a. This allows to assume that s, is homogeneous.
Sym

P 0
s sy OEM(p). AS]J

It now follows that sgm = 0 and hence that % =

was arbitrary it follows m € Ker(n{,).

b) Let (2p)per € I(U). For each p € U there is an open neighbourhood W, C U
of p, an integer ¢, € Ny and a pair of elements (s,,m,) € Ry, x Iy, such that
for each q € W, we have s, ¢ q and z4 = ?—; Now, fix p € U. According to
8.22 C) b) the multiplication homomorphism sy, : 1/T(sy(1) — (I /T,y (1))(tp)
is an isomorphism of graded R-modules. So, in particular the homomorphism
Iy — I, /T (s, (1)s, given by m +— sym + ', y(I)y, is surjective. Therefore, we
have elements n, € Iy and y, € ['(,)(I)y, such that m, = syn, + y,. Now,
there is some v, € N with s,"y, = 0. It thus follows for all q € W,

Vp Vp vp+1
L= Sp e _ S (Spmp +¥p) _ Sy Mp _ My
q T v+l T vp+1 - vp+1 :
Sp Sp Sp Sp 1

So, for each p € U there is some n, € Iy such that for all ¢ € W, we have
zq = 2.

As Proj(R) is a Noetherian topological space (cf. 11.4 B)) there are finitely
many primes pi, ..., p, € U such that W, U---UW, = U. We now prove

our claim by induction on 7.

If » = 0 the claim is clear. Let r > 0. We set V := W, U---UW, . By

induction, the homomorphism 7} : Iy — I(V) is surjective. Observe that

2lvi= (2q)qev € I(V). So, there is some m € Iy with nf (m) = 2]y and hence

T =zgforallgeV.

We set p := p, and W := W,. Then, by the above observation there is some
n = n, € Iy such that zq = 7 for all g € W. According to 11.4 C) b) there are
graded ideals b, ¢ C R, of R such that V =U(b), W = U(c). Now, by 11.7 we
have VNW =U(b)NU(c) =U(bN¢). For each g € U(bNc¢) = VNI we have
m VAW VoW

B = zg = % so that /™" (m) = /™" (n), hence m —n € Ker(n/™). By a) it
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follows m —n € I'yne(1)o. According to 11.6 we have I'yno (1) = T'o(1) + (1)
so that
m—n e (Fb(I) + FC<I))O = Fb(I)o + FC<I)0

So, there are elements p € T'y(I)o and g € T'((I)g such that m —n = p — g,
hence m —p = n — q¢ =:y. According to a) we have n} (p) = 0 and hence
B=0¢€ [, forall g€ V. Similarly £ =0 € [, for all ¢ € W. Therefore, for
1 (a) 1 (a)
each g € V we have

y m-—p m p m m

1 1 1 1 1 1
in [(q). Similarly, for each g € W we have & = z; in I(y). It follows that & = z,
for all g € VUW = U. This shows that n¥ (y) = (2q)qev- It follows that ¥ is
surjective. 0

11.9. Remark and Exercise. A) Let F and G be two additive functors

from graded R-modules to Ro-modules. Let pu: M v~ (F(M) LN G(M)) be
a natural transformation of functors from graded R-modules to Rg-modules
(cf. 8.19). Let I, : M~ ((13,,d%,); anr) be a choice of *injective resolutions on
graded R-modules (cf. 8.20 A)). Now, we can form the right derived functors
R'F := R} F and R"G := R} G (cf. 8.20 A)). Now, completely analogue as
in 4.12 A), B) we may define the n-th right derived (transformation) of u for
each n € Ny, that is

R : R"F — R"G, M r~ Ry
with Rg i= H"(ury,) + HY(F(I3), F(d3,)) — HY(G(I3), G(ds,))

B) Let H be a third additive functor from graded R-modules to Ry-modules.
Let v : G — H be a natural transformation. In accordance with 4.13 A) we

say that A : ' 5 G 5 H is an (admissible) triad of (additive covariant)
functors (from graded R-modules to Ry-modules) if the sequence

0— F(I) 5 G % H(I) — 0
is exact for each *injective R-module I.

Assume now, that A : F 5 G 5 H is such a triad of functors. Then, we may
perform the construction of 4.13 B), C) and end up again (for each graded
R-module M) with a (natural) exact sequence of Ry-modules

0 ROF(M) — M ROG(M) — 2~ RO (M)
5%1A Rl
RIF(M) RIG(M)
RVH(M)
5;{1’A R™unr R v
M RUE(M) R"G(M) R*H(M)

n,A
Ry

J;
Rn+lF(M) - Rn-i—lG(M)

Again, we call this sequence the right derived sequence of A associated to M.
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11.10. Notation and Remark. A) Let R be positively graded and let a C
R, be a graded ideal of R. Let %, : T'4(M)y — My denote the inclusion
map for each graded R-module M. It is easy to verify that the assignment

i+ M r (Ta(M)o N M) defines a natural transformation of functors from
graded R-modules to Ry-modules

i : Ty(e)g — ey.

B) Let U :=U(a) C Proj(R) and consider the linear functor

S(U) : (M2 N e (31(0) 2 R(1))

from graded R-modules to Ry-modules (cf. 11.5 D) a)).

For each n € Ny let R™(e(U)) be the n-th right derived functor of e(U), which
is again a linear functor from graded R-modules to Ry-modules (cf. 8.20 A)).

We use the notation H"(U,e) := R"(e(U)), so that R"(e(U)) is given by the
assignment

(M 25 N) ws (H™(U, M) 2290, O, g, N)).
)

As the linear functor O(U is left exact (cf. 11.5 D) b)) we can and do identify
HO(U, M) = RO(M(U)) = M(U) for each graded R-module M (cf. 8.20 B)).

C) Next consider the linear functor I'y(e)y from graded R-modules to Ry-
modules and its right derived functors R"(I'y(e)g) for n € Ny (cf. 8.20 A)).
Observe that T'y(e)y is the composition of the linear functor of graded R-
modules *T'; (cf. 8.8 B)) with the exact linear functor from graded R-modules

to Ro-modules o (cf. 8.7 B)), i.e. T'y(8)g = (89)0 *I'y. We leave it as an exercise
to show along the traces of 5.3 B), that for each n € Ny we can say:

a) There is a natural equivalence of functors from graded R-modules to Ry-
modules 7" : (8g) o (R™*Tg) = R™(Ta(e)o).

So if R is Noetherian, writing *H? = R"(*T'y) (cf. 8.24), and on use of the
gradings described in 8.25 B) we get:

b) For each graded R-module M and each n € Ny there are isomorphisms of
Ry-modules R"™(I'y(®)o)(M) = *H(M)o = H (M)o.

11.11. Corollary. Let R be Noetherian and positively graded, let a C R be a
graded ideal with a C R, and let U := U(a) C Proj(R) be the open set defined
by a. Then,

i U —
A% : Tq(e)g = (e0) = (s(U))
s an admissible triad of linear covariant functors from graded R-modules to

Ro-modules.

Proof. Clear by 11.8. 0J
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11.12. Theorem. Let R be Noetherian and positively graded, let a C R be a
graded ideal with a C R, , and let U := U(a) C Proj(R) be the open set defined
by a. Then, for each graded R-module M we have:

a) There is an exact sequence of Ry-modules
0 — H(M)y — My — H(U, M) — H(M), — 0.
b) For each i € N there is an isomorphism of Ro-modules
H(U, M) = H*'(M),.
Proof. Consider the right derived sequence of the triad

% U —
A®: Tu(e) = (%) = (3(1))
associated to the graded R-module M (cf. 11.9 B)):

0 ROT(w)o) (M) ' ROo0) (M) 1 RO (M)

— RI(L'a(®)o) (M) —— R'(e0)(M)

. — =R
M RY(Tq(0)0) (M) —> R7(00)(M) — = R"(3(U)) (M)

n,A% n+la

on LY,
—— R"(Ta(@)o) (M) —=R"" () (M)

Then, use the isomorphisms
R"(Ta()o)(M) = H(M)o

(cf. 11.10 C) b)) and the notation H™(U, ) = R"(e(U)) (cf. 11.10 B)). More-
over, observe that the functor e is exact, so that R'(eg)(M) =0 for all i € N
(cf. 8.20 C) b)). O

11.13. Corollary. Let R be Noetherian and positively graded, let a C R be a
graded ideal with a C R, and let U :==U(a) C Proj(R) be the open set defined
by a. Let M be a graded R-module and lett € Z. Then:

a) There is an exact sequence of Ry-modules

—_~—

0— HY (M), — M, — H°(U M(t)) — H:(M), — 0.

b) For each i € N there is an isomorphism of Ro-modules

H'(U,M(t)) = H (M)

Proof. Apply 11.12 to the graded R-module M(t) and observe that M (t), =
M; (cf. 8.5 A)) and Hi{(M(t))o = (HL(M)(t))o = HLM); for all i € Ny
(cf. 8.25 E)). O
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11.14. Corollary. Let R be Noetherian and positively graded, let M be a graded
R-module, let t € 7. and let X := Proj(R). Then:

a) There is an exact sequence of Ry-modules

—_~—

0— H%Jr(M)t — M; — H°(X, M(t)) — H}%+(M)t — 0.

b) For each i € N there is an isomorphism of Ro-modules

P

H'(X, M(t)) = H}{ | (M),.

Proof. Apply 11.13 and observe that X =U(R). OJ

11.15. Remark. Let the notations and hypotheses be as in 11.12. We will
see in the next section that H*(U, M) is the i-th cohomology module of U with
coefficients in the sheaf M induced by M on Proj(R) (cf. [H1, Chapter III]).
Then we may conclude that 11.12 (and its corollaries 11.13 and 11.14) estab-
lishes a correspondence between sheaf cohomology and local cohomology. This
correspondence sometimes is referred to as the Serre-Grothendieck correspon-
dence.



12. COHOMOLOGY OF PROJECTIVE SCHEMES

We shall give a few applications of the results of the previous section to co-
homology of projective schemes. We first briefly mention a few basic facts on

sheaves over projective schemes. For the corresponding details we refer to [H1,
Chapters II, III].

12.1. Reminder and Exercise. A) Let X be a topological space. We write
Uy for the set of open subsets U C X. A presheaf of Abelian groups over X,
denoted by F, is given by an assignment

U s F(U)

which to each open set U € Ux assigns an Abelian group F(U), and an
assignment

(U V) 0 (ply : FU) — F(V))

which to each pair of open subsets (U, V) € U% with V' C U assigns a homo-
morphism of Abelian groups pf;, : F(U) — F(V) such that:

(PSl) pﬁU = ld]:(U) forall U € UX,
(PSe) If U, V, W € Ux with U 2 V O W, one has the commutative diagram

F(U) i FW).
FV)

In this case F(U) is called the group of sections of F over U. The homo-
morphism pf; : F(U) — F(V) is called the restriction homomorphism from
(sections of F over) U to (sections of F over) V.

B) Let F be a presheaf of Abelian groups over X. Let U C Uy and let
(fo)vevu € [[yey F(U) be a family of sections (of F over U). This family is
called compatible if

Pg,Umv(fU) = P&Unv(fv) for all U,V € Ux.

A preasheaf F of Abelian groups over X is called a sheaf, if it satisfies the
following “gluing axiom”:

(S) For any set U C Uy and any compatible family of sections (fy)yey €
[Iycy F(U) there exists a unique section f € F(|Uyey U) such that

Py v (F) = fu for all W € U.

12.2. Reminder and Exercise. A) Let R be a positively graded ring and
let X = Proj(R). Let M be a graded R-module. For each open set U € Ux

we may consider the Ry-module M (U) (cf. 11.5 B), C)), and in particular its
115
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additive group. Moreover, for any pair (U,V) € U% with V C U there is a
map obtained by restriction:

oty M(U) = M(V), 2 = (zp)per = 2 vi= (2p)pev

Clearly, this map is a homomorphism of Ry-modules, hence in particular of
Abelian groups. Now, it is easy to verify that the assignments

U rs M(U) forlU € Uy
and

(U, V)~ (pily « M(U) — M(V)) for U,V € Ux with V C U

define a sheaf M of Abelian groups over X.

As the groups M (U) are actually Rp-modules and the homomorphisms p%/

are actually homomorphisms of Ro-modules, we say that M is a sheaf of Ry-
modules. This sheaf M is called the sheaf (over X ) induced by M.

B) We now may apply what was done above to the graded R-module R and

consider the sheaf Ox = Opyojr) = R induced by R. This special sheaf is
called the structure sheaf of X, and the pair (X, Ox) = (Proj(R), Opwjr)) is
called the projective scheme induced by R.

Observe that here all the Ry-modules Ox(U) are indeed Ry-algebras (hence
rings) and that the maps pg’{/ are indeed homomorphisms of Ry-algebras (and
hence of rings). So, we say that the structure sheaf Ox is a sheaf of Ry-algebras
or a sheaf of rings.

The notion of a scheme is in fact defined in a much more general context. For
this and for a proof of the fact that (Proj(R), Opyjr)) is indeed a scheme, we
refer to [H1, Section I1.2]. For our purposes it is sufficient to take the wording
“(Proj(R), Oproj(r)) is the projective scheme induced by R” as a definition.

C) A sheaf of Ox-modules is a sheaf F of Abelian groups over X such that:

(M;) F(U) is an Ox(U)-module for all U € Ux;

(My) plry : F(U) = F(V)loxw) is a homomorphism of Ox (U)-modules for
all UV € Uy with V C U.

In (Ma), scalar restriction is understood with respect to the homomorphism

oy - Ox(U) = Ox(V))

Now, one easily sees that if M is a graded R-module, then M is a sheaf of
O x-modules.

D) We say that a sheaf of Ox-modules is quasicoherent if it is induced by a
graded R-module, that is of the form M for some graded R-module M.



117

Let R be Noetherian and homogeneous. Then, we say that a sheaf of Ox-
modules is coherent if it is induced by a finitely generated graded R-module,
that is of the form M for some finitely generated graded R-module M.

If one uses the standard definition of quasicoherent and coherent sheaves, the
above characterizations of these types of sheaves need to be proved. For this
we refer to [H1, Section II.5].

E) A sheaf F of Abelian groups over a topological space is said to be flasque
if all its restriction maps pﬁ v F(U) — F(V) are surjective. Now, it follows
form 11.8 b):

If R is a Noetherian, positively graded ring and [ is a "injective R-module,
then the induced sheaf I over Proj(R) is flasque.

12.3. Reminder and Exercise. A) Let X be a topological space and let
x € X. We consider the set

Ux, ={Ue€Ux |zeU}

of open neighbourhoods of z in X. Moreover, we consider a sheaf F of Abelian
groups over X. We consider the set

SE={(U,f)|U€eUx,, feFU)}
On this set, we introduce a binary relation ~, by

(U, f) ~e (V,g) & 3W e Ux, : W CUNV and pfy (f) = plw(9)

for (U, f), (V,g) € 8. Tt is easy to verify, that ~, is an equivalence relation
on 8. So we may consider the set of equivalence classes

Foi=8T/~, .

This set F, is called the stalk of F at x. Also, whenever U € Ux,, we may
introduce the canonical map

In this situation f, = pﬁx(f) is called the germ of f at x. So in particular:

a) Let U,V € Uy, and f € F(U), g € F(V). Then f, = g, if and only if
there is some W € Uy, with W CUNV and pf;w (f) = plw(9).

Moreover, by the gluing axiom 12.1 B) (S) one has the following local criterion
for the equality of sections:

b) Let U € Uy and let f, g € F(U). Then f = g if and only if f, = g, for all
reU.

B) Letz € X. If (U, f), (U, f), (V,g), (V',¢") € ST with f, = f/ and g, = ¢_,
and if W, W' € Ux, with W CUNV and W' C U " NnV’, then

Bl () + pvw (9)e = (0l (f) + PV (9))a-
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This allows to define a binary operation 4+ on F, by

fx + G = (pg,W(f> + pu\}/—,W(g))w
where U, V,W € Ux, with W CUNV, f e F(U) and g € F(V). It is easy

to check now that F, furnished with the above binary operation + becomes
an Abelian group, and then the map of taking germs pﬁx :FU) — Fpis a
homomorphism of Abelian groups. Similarly, if F is a sheaf of rings over X,
the stalks F, all carry a canonical structure of rings and the maps of taking
germs are all homomorphisms of rings.

12.4. Reminder and Exercise. A) Let R be a positively graded ring and let
X = Proj(R). Let z € X. Then, the stalk Ox, := (Ox), is a ring, and for
each U € Uy, the map pg’; : Ox(U) — Ox, is a homomorphism of rings.
The stalk Oy, is called the local ring of X at x.

Now, let F be a sheaf of Ox-modules. Then it is obvious how to define a
canonical structure of Ox,-module on the stalk F, of 7 at x. Then, the
map of taking germs pf;, : F(U) — F, lo w) becomes a homomorphism of
Ox (U)-modules for all U € Ux,.

B) Let M be a graded R-module and let z € X. Then:

a) There is a bijective map Ei\/l : Mm — M) such that for each U € Uy, and
each z = (2 )zev € M(U) we have e} (o, (2)) = 2

b) The map ef' : Ox e — R(y) is an isomorphism of rings.
As a consequence we get (cf. 11.3 D) b)):

¢) Ox, is a local ring with maximal ideal my , = (e5)7!(z(,)).

This ideal mx , of Ox, is called the (local) mazimal ideal (of X ) at x.

We now identify Ox, and R, by means of the isomorphism 55. Then, it
follows readily:

d) For each graded R-module M the map & : Mw — M,y is an isomorphism
of Ox z-modules.

We thus again identify ]\75,; and M ;) by means of eM_ Now, as a consequence
of 11.3 E) we get:

e) If R is Noetherian, then
(i) For each z € X, the local ring Oy, is Noetherian;
(ii) For each z € X and each finitely generated graded R-module M, the
stalk ]\N/[x is a finitely generated Ox ,-module;

(iii) If in addition R is homogeneous, for each € X and each coherent
sheaf of Ox-modules F, the stalk F, is a finitely generated Ox ,-
module.
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12.5. Construction and Exercise. A) Let R be a homogeneously graded
ring, so that R = Ro[Ry], and let X = Proj(R). If z € X we have Ry € z
and thus find some [ € Ry \ z. Tt follows that = € U(l) :== U(RI) (cf. 11.4 C)).
Now, for each U € Uy and each [ € Ry let U; :== UNU(l). Then, by the above
observation we have U = Ule Ry U, for all U € Ugy.

Let U € Ux, let [, h € R; and let x € U; N U,. Then % is a unit in the local
ring Ox .. Now, let F be a sheaf of Ox-modules and let n € Z. We consider
a family of sections

(fier, € T] F (W),

lERy
where f; € F(U,) for each | € R;. We say that this family is a family of
n-sections (of F over U) if
(Sn) Vh,l e RiVveeU,NU;: (%)nfh’m = fl,m e F,.

(Here, fh, and f;, are the germs of the sections f;, and f; at the point x.)
We now set

Fn)U) :=={(fi)ier, € H F(U) | (fi)ier, is a family of n-sections}.
leR

Observe that the additive group [ ]z, F(U;) actually carries a canonical struc-
ture of an Ox(U)-module with scalar multiplication given by

F(er, = (0%, (f) - fiier,

for f € Ox(U) and (fi)ier, € [l,cg, F(Ui). Now, it is easy to verify that
F(n)(U) is an Ox(U)-submodule of ], F(Ui).

Also, if V' C U is a second open set, there is defined a homomorphism of
Abelian groups

o Fn)(U) — F)(V), (fier, — (05 v (f)icr, -

Now, one verifies without further difficulties that the assignments Ur~F(n)(U)
for U € Uy and (U, V) 0 (pp5" : F(n)(U) — F(n)(V)) for U,V € Ux with
V' C U define a sheaf of Ox-modules F(n). This sheaf F(n) of Ox-modules
is called the n-th twist of F.

B) Observe that the property of being a 0-section over U means nothing else
than that the family of sections (f})icr, € [[;cr, F(U) is compatible. So, by
the gluing axiom (S) of 12.1 B) we get a canonical bijection

iy F(U) = FO)NU), | (ol (FHier-
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In fact, ¢f; is an isomorphism of Ox(U)-modules. If V' C U is a second open
set we have in addition the commutative diagram

F

F(U) —2 F(0)(U)
pfl lpzﬁ@

F(V) —% FO)(V).

We use this to identify F(0) = F.

C) Let n € Z, let M be a graded R-module and let z € X. Then, according
to the definition of the grading of the S(z)~'R-module S(z)"'M (cf. 11.3 B))
and according to the identification 12.4 B) we have

a) M(n), = (M(n))s = (S(x)~ M)y

Now, let U € Uy and | € Ry, and assume that « € U;. Then L € (S(z)"'R),
is a unit in the ring S(x)"'R. Therefore, we have two homomorphisms of
(S(z)"'R)o = R(z) = Ox-modules

LM, = Mgy = (S(2)""M)o — (S(x)"" M),

& (S(@)TIM), = (S(x) 7T M)g = Mgy = M,,
which are inverse to each other. So, we obtain an isomorphism of Ox ,-modules

—_—
o

b) & M, = M(n),.

Now, it is easy to verify that these isomorphisms give rise to an isomorphism
of Ox(W)-modules

¢) 1" M(W) = M(n)(W), (za)sew — (520)ew

1

for any open set W C U,. In particular, if h, [ € Ry and g € M (n)(U), then
ol N

d) (B Mo (@) = (7)Mol (9))s for all @ € U, N U

But this means:

—_—

e) Y(g) == ((I" )*1(pg/{$)(g)))legl € [Lier, M(UZ) is a family of nm-sections
over U in M for each g € M(n)(U).

It now is easy to check that the induced map

A M(n)(U) — Mn)(U), g+ o (g)

is a homomorphism of Oy (U)-modules.
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Conversely let f = (fi)ier, € M(n)(U), so that f; € M(U) for all [ € R; and

condition (S,,) of part A) is satisfied. Then clearly, by ¢), I" - (fi) € M (n)(U))
for all [ € R;. Moreover, if x € U, N U; for some elements h, | € Ry, by
statement c) and the mentioned condition (S,) we have

(ln : (fl))ai = % : fl,m = % ' (%)nfh,a: = % : fh,;t = (hn ' (fh))x

—_——

But this means that (I" - (fi))ier, € [[M(n)(U,) is a compatible family of

sections over U and thus defines a unique section ¥V (f) € M(n)(U), given as
a local family by

DY) = (WY ()a)eco = (I" - (f1))e for z € Uy and | € Ry.

Now, it is easy to check that the induced map

WU M(n)(U) — M(n)(U), f 4V (f)

is a homomorphism of Ox(U)-modules. Also, ¢V and ¥V are inverse to each
other. So, we finally end up with an isomorphism of Ox(U)-modules

—_—— —~

f) Y : M(n)(U) z M(n)(U).
If V C U is a second open set, we have the commutative diagram

—_— —

M(n)(U) —== M(n)(U)

M(n)
J/pU,V

We use this to identify M(n) = M(n)
D) As an easy consequence of this we now may conclude:

a) If F is a quasicoherent sheaf of Ox-modules, then so is F(n) for all n € 7Z.

b) If R is Noetherian and F is a coherent sheaf of Ox-modules, then F(n) is
a coherent sheaf of Ox-modules for all n € Z.

12.6. Remark and Exercise. A) Let X be a topological space and let F and
G be two sheaves of Abelian groups over X. A homomorphism of sheaves (of
Abelian groups over X ) h : F — G is given by an assignment

U s (W(U) : F(U) = G(U))

which to each open set U of X assigns a homomorphism of Abelian groups
h(U) such that for any pair (U,V) € U% with V C U there is a commutative
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diagram

If F is a sheaf of Abelian groups over X, the identity homomorphism idr is
given by the assignment

Ut (idp(U) == idgw) : F(U) — F(U)) for U € Uy,

Moreover, if h : F — G and | : G — 'H are homomorphisms of sheaves
of Abelian groups over X, the composition l o h : F — H of these is the
homomorphism of sheaves given by the assignment

Urs ((Loh)(U):=1U)oh(U): F(U) — H(U)) for U € Uy.
B) Let € X and let h : F — G be a homomorphism of sheaves of Abelian
groups over X. Then, there is a homomorphism of Abelian groups
hey : Fo — Gzy for—= h(U)(f), for any U € Uy, and any f € F(U).

This homomorphism is called the homomorphism induced by h in the stalks
over x. Clearly we have (idf), = idx, and (hol), = h, o l,.

Now, a homomorphism of sheaves h : F — G is called injective respectively
surjective if all the induced homomorphisms h,, : F, — G, have this property.
A sequence of homomorphisms of sheaves

FLgtn
is said to be ezact if the induced sequence of Abelian groups

Fols 0, 5 H,
is exact for all z € X.
C) In particular, in the above context one can speak again of cocomplexes of
sheaves (of Abelian groups over X ), that is of sequences
dnfl

(Fo,d*):- - — F ! e &t
of homomorphisms of sheaves such that for all n € Z and for each z € X one
has d” o d"~1 = 0.

Moreover, as in the case of modules, one may define the notion of a right
resolution of a sheaf. Such a right resolution ((G®,d®);a) is said to be flasque
if the sheaves G" are flasque (cf. 12.2 D)) for all n € N.

By the same diagrammatic condition as in the case of modules, one may define
the notion of injective sheaves of Abelian groups over X. It is a nice exercise
to show:

a) Injective sheaves are flasque.
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It is more than just an exercise to show that for any sheaf F there is an injective
homomorphism of sheaves F — 7 such that Z is injective (cf. [H1, Corollary
I11.3.2]). As a consequence of this sheaf theoretic version of the Lemma of
Eckmann-Schopf one gets:

b) Each sheaf of Abelian groups over X admits an injective resolution, that is
a right resolution ((Z*,d®);a) in which the sheaves Z™ are injective for all
n e NQ.

12.7. Reminders. A) Let X be a topological space and let F and G be sheaves
of Abelian groups over X. If h,g : F — G are homomorphisms of sheaves, we
define their sum h + g by the assignment U ~ (h(U) + g(U)).

B) Let X be a topological space. By an additive (covariant) functor from (the
category of ) sheaves over X to (the category of) Abelian groups we mean an

assignment
F(h)
—

F o (F 2 G)w (F(F) = F(G))
which to each sheaf F of Abelian groups over X assigns an Abelian group
F(F) and to each homomorphism h : F — G of sheaves of Abelian groups
overX assigns a homomorphism of Abelian groups F'(h) : F(F) — F(G) such
that the following properties hold:

(A1) F(idr) = idp(r) for each sheaf F of Abelian groups over X;

(A2) F(hol) = F(h)o F(l), whenever | : F — G and h : G — H are
homomorphisms of sheaves of Abelian groups over X;

(A3) F(h) 4 F(l) = F(h +1), whenever h,l : F — G are homomorphisms of
sheaves of Abelian groups over X.

C) Let R be a graded ring and let X be a topological space. By an additive
(covariant) functor from (the category of ) graded R-modules to (the category
of ) sheaves of Abelian groups over X we mean an assignment

Fo (M5 N) e (F(M) 22 P(V))

which to each graded R-module M assigns a sheaf F'(M) of Abelian groups
over X and to each homomorphism h : M — N of graded R-modules assigns
a homomorphism F'(h) : F(M) — F(N) of sheaves of Abelian groups over X
such that the following properties hold:

(*A1) F(idy) = idp(ar) for each graded R-module M;

(*A2) F(hol) = F(h) o F(l), whenever [ : M — N and h : N — P are
homomorphisms of graded R-modules;

(*A3) F(h)+ F(l) = F(h+1), whenever h,l : M — N are homomorphisms of
graded R-modules.

D) For functors as defined in B) and C), there is an obvious notion of exactness
and of left and right exactness (cf. 1.16).
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12.8. Remark and Exercise. A) Let X be a topological space. Let U € Uy.
Then it is easy to verify that the assignment

U

T(U,e) = o(U) : (F 2 G) 0 (F(U) X2 g(17))
defines an additive functor from sheaves of Abelian groups over X to Abelian
groups. This functor is called the functor of taking sections over U. It is not
hard to verify that the functor I'(U, e) is left exact.

Now, similar as we did this for modules, one now has the concept of right
derived functor. In particular, we may define the i-th right derived functor of
['(U,e), that is
H (U, o) :=RYT(U,e)).

This functor is called the i-th cohomology functor of U with coefficients in
sheaves of Abelian groups—or shorter—the i-th sheaf cohomology functor over
U. (Note the use of the same notation here and in 11.10 B), which is deliberate
(cf. 12.9 C) b)).)

So, if F is a sheaf of Abelian groups, H'(U, F) is calculated by first choosing an
injective resolution ((Z*,d*);a) of F (cf. 12.6 C) b)), then applying the functor
['(U, o) to the resolving cocomplex (Z°, d*) and then taking the i-th cohomology
group H(T'(U,Z°),T(U,d*)) of the resulting cocomplex (I'(U,Z°*),T(U, d*)) of
Abelian groups.

B) For us it is important to notice that in the above calculation the injective
resolution ((Z°*,d*); a) of F may be replaced by an arbitrary flasque resolution
(cf. [H1, Corollary I11.3.2]): If ((£°,d®);a) is a flasque resolution of a sheaf of
Abelian groups F, then for all i € N

HY(U,F) = H(T(U,E*),T(U,d*)).

12.9. Remark and Exercise. A) Let R be a positively graded ring and let
X = Proj(R). Then it is clear that the assignment

o (ML N~ (ML N)
defines a functor from graded R-modules to sheaves of Abelian groups over X,

the functor of taking induced sheaves. On use of 11.3 C) and 12.4 B) d) it is
not hard to prove that the functor e of taking induced sheaves is exact.

B) Let U € Uyx. For any sheaf of Ox-modules F and any i € Ny we may
consider the i-th cohomology group H'(U, F) of U with coefficients in F, de-
fined according to 12.8 A). In fact, H*(U,F) is not only an Abelian group,
but also carries a natural structure of an Ryp-module. Indeed, for any a € R,
and any sheaf of Ox-modules F (in fact even of Ry-modules) there is a mul-
tiplication homomorphism a- : F — F, given by a-(W) : F(W) & F(W) for
each W € Uy. Clearly a- : F — F is a homomorphism of sheaves of Abelian
groups. So, we may define an Rg-operation on H'(U, F) by

ah := H'(U,a-)(h)
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for a € Ry and h € H'(U,F). We leave it as an exercise to show that the
above Ry-operation turns H*(U, F) into an Ry-module.

C) Let U € Ux. We leave it as a slightly more involved exercise to prove by
means of 12.2 E), of 12.8 B) and of the previous part A):

a) If M is a graded R-module and ((I*,d®);a) is a *injective resolution of M,
then H(U, M) = H\(D(U,1°),T(U, d*)).

(Here (I*,d*) denotes the cocomplex - - - — =1 Y0 n s .. of sheaves of
Ox-modules.)

As a consequence of this we get:

b) If M is a graded R-module, the Ry-modules H*(U, M) are the same (up to
isomorphism) if calculated according to 11.10 B) or according to 12.8 A):

—~

Ri(e(U))(M) = RYT'(U,e))(M) for all i € Ny.

12.10. Proposition. Let K be an infinite field, let R be a Noetherian homo-
geneous K-algebra, let M be a finitely generated graded R-module, let X =
Proj(R) and let F := M. Then:

a) For all n € Z there is an exact sequence of K -vector spaces

0— H%+(M)n — M, — H(X, F(n)) — H}Q+(M)n — 0.

b) For alln € Z and all i € N there is an isomorphism of K -vector spaces
H'(X, F(n)) = Hg (M),

Proof. By 12.9 C) b) and 12.5 C) we can write

H'(X, F(n)) = H'(X, M(n)) = H'(X, M(n)).
Therefore 11.14 yields the claim. O

12.11. Theorem. Let K be an infinite field, let R be a Noetherian homogeneous
K-algebra, let X = Proj(R) and let F be a coherent sheaf of Ox-modules.
Then:

a) For each i € Ny and each n € Z the K -vector space H' (X, F(n)) is of finite
dimension.

b) For each i € N an all n > 0 we have H (X, F(n)) = 0.

Proof. We conclude by 12.10 and 9.10. 0

12.12. Remark and Definition. A) Let K be an infinite field, let R be a
Noetherian homogeneous K-algebra, let X = Proj(R) and let F be a coher-
ent sheaf of Ox-modules. Then, according to 12.11 a) the K-vector space
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H(X,F(n)) is of finite dimension for all i € Ny and all n € Z. Therefore, we
may define the number

RY(X,F(n)) = dimg H (X, F(n)) € N,.
For i € Ny, the function
Wyt Z — No, n s W(X, F(n))

is called the i-th cohomological Hilbert function of (X with respect to the co-
herent sheaf of coefficients) F. According to 12.11 b) we may say: If i > 0,
the cohomological Hilbert function h’ : Z — Ny is right-vanishing.

B) Let M be a finitely generated graded R-module such that F = M. Then,
12.10 yields (in the notations of 10.6 A) and 10.19 A))

a) h'(X,F(n)) = dy;(n) for i € Ny and n € Z,

and hence h’x = d, for i € Ny. This justifies the expression of geometric
cohomological Hilbert function used in 10.19 A). Moreover, we now see that
12.11 b) is the proper geometric (and original) form of the Vanishing Theorem
of Castelnuovo-Serre, whose algebraic version we mentioned in 10.19 E) ¢).

Finally, it follows by statement a), that in the notation of 9.14 A) we have

b) xm(n) = Zizo(_l)idz}w(”) = Zizo(_lyhi(X? F(n)).
Writing
xz(n) = Z(—l)ihi()ﬂ F(n))

we thus have

c) XM = XrF-

The function xr : Z — Z, n — xx(n) is called the characteristic function of

F.

12.13. Theorem. Let K be an infinite field, let R be a Noetherian homogeneous
K-algebra, let X = Proj(R) and let F be a coherent sheaf of Ox-modules.
Then, the characteristic function of F s presented by a polynomial.

Proof. Let M be a finitely generated graded R-module such that F = M.
Conclude by 12.12 B) ¢) and 9.17. O

12.14. Definition and Remark. Let K be an infinite field, let R be a Noe-
therian homogeneous K-algebra, let X = Proj(R) and let F be a coherent
sheaf of Ox-modules. Then, the unique polynomial in Qx| which coincides
on 7 with yz is denoted by Pr € Q[z]| and is called the Serre polynomial of
F. Tt follows immediately from 12.11 b) that Pr(n) = x#(n) = h°(X, F(n))
for n > 0.
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We assign the name of Serre to the polynomial Pz as the above result 12.13
is due to him (cf. [Se]).

12.15. Remark, Exercise and Definition. A) Let R be a Noetherian ho-
mogeneous algebra over a field K and let X = Proj(R). Let M be a finitely
generated graded R-module. It is a somehow involved exercise in commutative
algebra to show:

a) depthp (M,) = depthR(p)(M(p)) for p € X.

Now, let F = M be the coherent sheaf of Ox-modules induced by M. It now
follows easily from the above equality and from 12.4 B) that

b) depthp, (M,) = depthy,  (F;) for all z € X.

B) We set mX := mProj(R). Then, mX is the set of “closed points of X”.
More precisely, denoting topological closure in X by ®, for z € X we have
r € mX if and only if {z} = {x}.

If F is a coherent sheaf of Ox-modules we define the subdepth of F by

6(F) = inf{depthy, (F) [z € mX}.
According to A) b) we can say: If M is a finitely generated graded R-module
with F = M, then §(F) = §(M).

12.16. Theorem. Let K be an algebraically closed field, let R be a Noetherian
homogeneous K-algebra, let X = Proj(R) and let F be a coherent sheaf of
Ox-modules. Then:

a) W'(X,F(n)) =0 for alli < 6(F) and all n < 0.
b) W)X, F(n)) # 0 for alln < 0.

Proof. There is a finitely generated graded R-module M such that M= F.
Observe that §(M) = 6(F) (cf. 12.15 B)). Then conclude by 12.10 and by
10.18. O

12.17. Remark. A) The above result 12.16 is nothing else than (essentially)
Serre’s original form of the Vanishing Theorem of Severi-Enriques-Zariski-Serre
(cf. [Se]). In a purely algebraic context we already have spoken on this result
after 10.18 has been established, in 10.19 D) and in 10.20.

B) We now leave it to the reader to formulate and to prove the bounding
results 10.17, 10.19 C) in the purely sheaf theoretic context.
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