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1. Introduction

These Notes base on two short courses and series of lectures held at the University of
Thai Nguyen and the Vietnam Institute for Advanced Study in Mathematics Hanoi in
October – December 2013. For readers, who aim to get a more complete presentation of
the subject, we recommend to consider the notes [6] or [7], which also are available on
the authors homepage at the Institute of Mathematics of the University of Zürich or on
request by e-mail.

Weyl algebras, sometimes called algebras of differential operators, are a fascinating and
important subject, which relates Non-Commutative and Commutative Algebra, Algebraic
Geometry and Analysis in very appealing way. The bridging nature of the Theory of Weyl
Algebras and D-modules shows uo in a number of surprising applications. Let us mention
as an example Luybeznik’s finiteness results for local cohomology modules of regular local
rings in characteristic 0 (see [15] and [16]), which brought a break-through in Commutative
Algebra, as they base on the use of D-modules – and hence present a very important link
between these two fields. A further example is an application to Mathematical Physics
and relating characteristic varieties of D-modules with Castelnuovo-Mumford regularity
(see [2]) – an application lead to the result presented in Section 14 of this course.
Another interesting relation between Weyl algebras and Commutative Algebra is the
Theory of Gröbner bases. Indeed, the Theory of Gröbner bases in Weyl algebras proves
to be a very fertile tool in the study of D-modules and their characteristic varieties. This
lead to the Master and PhD theses of Boldini (see [3], resp. [4]) and the resulting article
[5]. We present some of the basic results in these papers in Sections 12 and 13 of this
course.
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2. Filtered Algebras

Our first preliminary theme are filtered algebras over a field. Throughout N is under-
stood to be the set of Positive integers and N0 is understood to be the set of non-negative
integers.

2.1. Definition and Remark. (A) Let K be a field and let A be an associative unital
K-algebra. By a filtration of A we mean a family

A• = (Ai)i∈N0

such that the following conditions hold:

(a) Each Ai is a K-vector subspace of A;
(b) Ai ⊆ Ai+1 for all i ∈ N0;
(c) 1 ∈ A0;
(d) A =

⋃
i∈N0

Ai;
(e) AiAj :=

∑
(f,g)∈Ai×Aj Kfg ⊆ Ai+j for all i, j ∈ N0.

To simplify notation, we also often set

Ai = 0 for all i < 0

and then write our filtration in the form

A• = (Ai)i∈Z.

If a filtration of A is given, we say that (A,A•) or – by abuse of language – that A is a
filtered K-algebra.

(B) Let (A,A•) be a filtered K-algebra. Then, the degree of an element f ∈ A is defined
by:

degA•(f) :=

{
min{i ∈ N0 | a ∈ Ai} if f 6= 0,

−∞ if f = 0.

Observe that we have
Ai = {f ∈ A | degA•(f) ≤ i}.

(C) Keep the above notations and hypotheses and let A• = (Ai)i∈Z be a filtered K-
algebra. Observe that we have the following statements:

(a) A0 is a K-sub-algebra of A.
(b) For all i ∈ Z the K-vector space Ai is a left- and a right- A0-submodule of A.

2.2. Example. (A) ( Weighted degree filtrations of a commutative polynomial ring) Let
n ∈ N and let A = K[X1, X2, . . . , Xn] be the commutative polynomial algebra over the
field K in the indeterminates X1, X2, . . . , Xn. Let

ω := (ω1, ω2, . . . , ωn) ∈ Nn
0 \ {0}.

Now, for each i ∈ Z we set

Aωi :=
⊕

ν1,ν2,...νn∈N0:
∑n
j=1 νjωj≤i

KXν1
1 X

ν2
2 . . . Xνn

n =
⊕

ν∈N0: ν·ω≤i

KXν .
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Then
Aω• =

(
Aωi
)
i∈Z

defines a filtration on A.
With the convention that sup(∅) = −∞ and using the standard notations

f =
∑
ν∈N0

c(f)
ν Xν (c(f)

ν ∈ K, ∀ν ∈ Nn
0 ) and supp(f) := {ν ∈ Nn

0 | c(f)
ν 6= 0}

we have
degω(f) := degAω• (f) = sup{ν · ω | ν ∈ supp(f)}.

The map
degω : A −→ N0 ∪ {∞}, f 7→ degω(f)

is called degree with weight ω and the filtration Aω• is called the weighted degree filtration
of the polynomial algebra A = K[X1, X2, . . . , Xn] with respect to ω.
Choosing ω = 1 := (1, 1, . . . , 1) we get the standard degree respectively the standard degree
filtration of A = K[X1, X2, . . . , Xn].

Clearly filtrations also may occur in non-commutative algebras. The next example
presents somehow the “generic occurrence” of this.

2.3. Example. (The standard filtration of a free associative algebra) Let n ∈ N, let K be
field and let A = K〈X1, X2, . . . , Xn〉 be the free central associative algebra over K in the
indeterminates X1, X2, . . . , Xn. We suppose in particular that cXi = Xic for all c ∈ K
and all i = 1, 2, . . . , n, so that cf = fc for all c ∈ K and all f ∈ A. Let i ∈ N0. If

σ = (σ1, σ2, . . . , σi) ∈ {1, 2, . . . , n}i

we write

Xσ :=
i∏

j=1

Xσj = Xσ1Xσ2 . . . Xσi .

Then, with the usual convention that the product
∏

j∈∅Xj of an empty family of factors
equals 1 and using the notation

Sn :=
⋃̇

i∈N0

{1, 2, . . . , n}i

we can write A as a K-space over its monomial basis as follows:

A := K〈X1, X2, . . . , Xn〉 =
⊕
σ∈Sn

KXσ.

Clearly, as in the case of a commutative polynomial ring, each f ∈ A may be written
uniquely in the form

f =
∑
σ∈Sn

c(f)
σ Xσ =

∑
σ∈supp(f)

c(f)
σ Xσ (c(f)

ν ∈ K, ∀ν ∈ Nn
0 )

with finite support supp(f) := {σ ∈ Sn | c(f)
σ 6= 0}. Finally, we get a filtration

A• defined by Ai :=
⊕

σ∈
⋃
j≤i{1,2,...,n}j

KXσ for all i ∈ Z
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with corresponding degree

degAω• : A −→ N0 ∪ {∞}, f 7→ sup{i ∈ N0 | ∃σ ∈ supp(f) ∩ {1, 2, . . . , n}i}.
This filtration and its degree are called the standard filtration respectively the standard
degree for A = K〈X1, X2, . . . , Xn〉.

3. Associated Graded Rings

3.1. Remark and Definition. (A) Let K be a field and let A = (A,A•) be a filtered
K-algebra. We consider the K-vector space

Gr(A) = GrA•(A) =
⊕
i∈N0

Ai/Ai−1.

For all i ∈ N0 we also use the notation

Gr(A)i = GrA•(A)i := Ai/Ai−1,

so that we may write

Gr(A) = GrA•(A) =
⊕
i∈N0

GrA•(A)i.

(B) Let i, j ∈ N0, let f, f ′ ∈ Ai and let g, g′ ∈ Aj such that f−f ′ ∈ Ai−1 and g−g′ ∈ Aj−1.
Then we have fg− f ′g′ ∈ Ai+j−1. So in Ai+j/Ai+j−1 = GrA•(A)i+j ⊂ GrA•(A) we get the
relation fg+Ai+j−1 = f ′g′+Ai+j−1. This allows to define a multiplication on the K-space
GrA•(A) which is induced by

(f + Ai−1)(g + Aj−1) := fg + Ai+j−1 for all i, j ∈ N0, all f ∈ Ai and all g ∈ Aj.
(C) Keep the above notations and hypotheses. Observe in particular, that GrA•(A)0 is a
K-subalgebra of GrA•(A), and that there is an isomorphism of K-algebras

GrA•(A)0
∼= A0.

Moreover, with respect to our multiplication on GrA•(A) we have the relations

GrA•(A)iGrA•(A)j ⊆ GrA•(A)i+j for all i, j ∈ Z.
So, the K-vector space GrA•(A) is turned into a (positively) graded ring

GrA•(A) =
(
GrA•(A), (GrA•(A)i)i∈N0

)
=
⊕
i∈N0

GrA•(A)i

by means of the above multiplication. We call this ring the associated graded ring of A
with respect to the filtration A•. From now on, we always furnish GrA•(A) with this
multiplication.

We now introduce a class of filtrations, which will be of particular interest for our
lectures.

3.2. Definition. Let K be a field and let A = (A,A•) be a filtered K-algebra. The
filtration A• is said to be commutative if

fg − gf ∈ Ai+j−1 for all i, j ∈ N0 and for all f ∈ Ai and all g ∈ Aj.
It is equivalent to say that the associated graded ring GrA•(A) is commutative.
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We now shall define three special types of commutative filtrations, which will play a
particularly important rôle in Weyl algebras.

3.3. Definition and Remark. (A) Let (A,A•) be a filtered K-algebra. The filtration
A• is said to be of finite type if it satisfies the following conditions:

(a) The filtration A• is commutative;
(b) A0 is a K-algebra of finite type;
(c) There is an integer δ ∈ N such that Aj is finitely generated as a (left-)module over

A0 for all j ≤ δ and
(d) Ai =

∑δ
j=1 AjAi−j for all i > δ.

In this situation, we call the minimal number δ = δA• ∈ N the generating degree of the
filtration A•.
Observe that now, the associated graded ring GrA•(A) is a commutative Noetherian
graded A0-algebra, which is generated by finitely many homogeneous elements of degree
≤ δ.
If A• is a filtration of A, which is of finite type, we say that (A,A•) is a filtered algebra of
finite type.

(B) A filtration A• of a K-algebra A is called a good filtration, if it is of finite type with
δ = δA• = 1. If in addition it holds A0 = K, we speak of a very good filtration. We then
also say that (A,A•) is a well-filtered respectively a very well-filtered K-Algebra.

3.4. Example and Exercise. (A) Let n ∈ N, let ω = (ω1, ω2, . . . , ωn) ∈ Nn
0 \ {0}, Let

K be a field and consider the commutative polynomial ring A = K[X1, X2, . . . , Xn], fur-
nished with its weighted degree filtration Aω• with respect to ω. Then, it is easy to see,
that A is a very well filtered K-algebra if and only if ω = (1).

More generally A is a well-filtered K-algebra if and only if ωi ∈ {0, 1} for all i ∈
{1, 2, . . . , n}. In this situation we then have K[Xj | ωj = 0] = A0 and an isomorphism of
graded rings

ε : A
∼=−→ GrAω• (A), induced by Xi 7→ Xi + Aδ1,ωi−1 for all i ∈ {1, 2, . . . , n},

where δi,j denotes the Kronecker symbol.
(B) Let n ∈ N, with n > 1, let K be a field and consider the free associative K-

algebra A = K〈X1, X2, . . . , Xn〉, furnished with its standard filtration A•. For each
i ∈ {1, 2, . . . , n}, let X i := (Xi + A0) ∈ A1/A0 = GrA•(A)1 ⊂ GrA•(A). Then it is easy
to see that X iXj = XjX i if and only if i = j. Therefore the filtration A• cannot be
commutative.

4. Derivations

Derivations (or derivatives) are also a basic ingredient for the theory of Weyl algebras.
The present section is devoted to this subject.

4.1. Definition and Remark. (A) Let K be a field, let A be a commutative K-algebra
and let M be an A-module. A K-derivation (or K-derivative) on A with values in M is
a map d : A −→M such that:
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(a) d is K-linear: d(αa+ βb) = αd(a) + βd(b) for all α, β ∈ K and all a, b ∈ A.
(b) d satisfies the Leibniz Product Rule: d(ab) = ad(b) + bd(a) for all a, b ∈ A.

We denote the set of all K-derivations on A with values in M by DerK(A,M), thus:

DerK(A,M) := {d ∈ HomK(A,M) | d(ab) = ad(b) + bd(a) for all a, b ∈ A}.
To simplify notations, we also write

DerK(A,A) =: DerK(A).

(B) Keep in mind, that HomK(A,M) carries a natural structure of A-module, with scalar
multiplication given by

(ah)(x) := a(h(x)) for all a ∈ A, all h ∈ HomK(A,M) and all x ∈ A.
It is easy to verify:

DerK(A,M) is a submodule of the A-module HomK(A,M).

It is also easy to verify that “derivations vanish on constants“, thus if we identify c ∈ K
with c1A ∈ A we have:

d(c) = 0 for all c ∈ K.

Next, we shall look at the arithmetic properties of derivations and gain an important
embedding proceedure for modules of derivations of K-algebras of finite type.

4.2. Exercise and Definition. (A) Let K be a field, let A be a commutative K-algebra
and let M be an A-module. Let d ∈ DerK(A,M), let r ∈ N, let ν1, ν2, . . . , νr ∈ N0 and
let a1, a2, . . . , ar ∈ A. Use induction on r to prove the Generalized Product Rule

d
( r∏
j=1

a
νj
j

)
=

∑
i∈{1,2,...,r|νi>0}

νia
νi−1
i

(∏
j 6=i

a
νj
j

)
d(ai)

and the resulting Power Rule

d(ar) = rar−1d(a) for all a ∈ A.
(B) Let the notations and hypotheses be as in part (A). Assume in addition that A =
K[a1, a2, . . . , ar]. Let d, e ∈ DerK(A,M). Prove that

e = d if and only if e(ai) = d(ai) for all i = 1, 2, . . . , r.

(C) Yet assume that A = K[a1, a2, . . . , ar]. Prove that there is a monomorphism of
A-modules

ΘM
a = ΘM

(a1,a2...,ar)
: DerK(A,M) −→M r, given by d 7→

(
d(a1), d(a2), . . . , d(ar)

)
.

This monomorphism ΘM
a is called the canonical embedding of DerK(A,M) with respect

to the generators a1, a2, . . . , ar.

(D) Let the notations and hypotheses be as in part (C). Assume that M is finitely
generated. Prove, that the A-module DerK(A,M) is finitely generated.

Now, we turn to derivatives in polynomial algebras.
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4.3. Exercise and Definition. (Partial Derivatives in Polynomial Rings) (A) Let n ∈
N, let K be a field and consider the polynomial algebra K[X1, X2, . . . , Xn]. Fix i ∈
{1, 2, . . . , n}. Then, using the monomial basis of K[X1, X2, . . . , Xn] we see that there is a
unique K-linear map

∂i =
∂

∂Xi

: K[X1, X2, . . . , Xn] −→ K[X1, X2, . . . , Xn]

such that for all ν = (ν1, ν2, . . . , νn) ∈ N0 we have

∂i(X
ν) =

∂

∂Xi

( n∏
j=1

X
νj
j

)
=

{
νiX

νi−1
i

∏
j 6=iX

νj
j , if νi > 0

0, if νi = 0.

(B) Keep the notations and hypotheses of part (A). Let

µ = (µ1, µ2, . . . , µn), ν = (ν1, ν2, . . . , νn) ∈ Nn
0

and prove that
∂i
(
XµXν

)
= Xµ∂i

(
Xν
)

+Xν∂i
(
Xµ
)
.

Use the K-linearity of ∂i to conclude that

∂i =
∂

∂Xi

∈ DerK
(
K[X1, X2, . . . , Xn]

)
for all 1 = 1, 2 . . . , n.

The derivation ∂i = ∂
∂Xi

is called the i-th partial derivative in K[X1, X2, . . . , Xn].

As we shall see in the proposition below, the canonical embedding introduced in Exercise
and Definition 4.2 (C) takes a particularly favorable shape in the case of polynomial
algebras. The exercise to come is aimed to prepare the proof of this.

4.4. Exercise. Let the notations and hypotheses be as in Exercise and Definition 4.3.
Check that ∂i(Xj) = δi,j, for all i, j ∈ {1, 2 . . . , n}. and show that:

(a) For each i ∈ {1, 2, . . . , n} it holds K[X1, X2, . . . , Xi−1, Xi+1, . . . , Xn] ⊆ Ker(∂i)
with equality if and only if Char(K) = 0.

(b) K ⊆
⋂n
i=1 Ker(∂i) with equality if and only if Char(K) = 0.

4.5. Proposition. (The Canonical Basis for the Derivations of a Polynomial
Ring) Let n ∈ N, let K be a field and consider the polynomial algebra K[X1, X2, . . . , Xn].
Then the canonical embedding of DerK

(
K[X1, X2, . . . , Xn] into K[X1, X2, . . . , Xn]n with

respect to X1, X2, . . . , Xn (see Exercise and Definition 4.2 (C)) yields an isomorphism of
K[X1, X2, . . . , Xn]-modules

Θ := ΘX1,X2,...,Xn : DerK
(
K[X1, X2, . . . , Xn]

) ∼=−→ K[X1, X2, . . . , Xr]
n,

given by
d 7→ Θ(d) := ΘX1,X2,...,Xn(d) =

(
d(X1), d(X2), . . . , d(Xn)

)
,

for all d ∈ DerK
(
K[X1, X2, . . . , Xn]

)
.

In particular, the n partial derivatives ∂1, ∂2, . . . , ∂n form a free basis of the K[X1, X2, . . . , Xn]-
module DerK

(
K[X1, X2, . . . , Xn]

)
.

Proof. We suggest the proof as an exercise. If you need hints, consult [6]. �
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5. Weyl Algebras

Now, we are ready to introduce Weyl algebras.

5.1. Reminder and Remark. Let K be a field and let A be a commutative K-algebra,
let M be an A-module and consider the endomorphism ring

EndK(M) := HomK(M,M)

of M together with the canonical homomorphism of rings

εM : A −→ EndK(M) given by a 7→ εM(a) := aidM for all a ∈ A,

which becomes injective if M = A and hence allows to consider A as a sub-algebra of its
endomorphism ring EndK(A).

5.2. Remark and Definition. (A) Let K be a field and let A be a commutative K-
algebra. We obviously also have DerK(A) ⊆ EndK(A). So we may consider the K-algebra

WK(A) := K[A,DerK(A)] = A[DerK(A)] ⊆ EndK(A),

which is called the Weyl algebra of the K-algebra A.

(B) Keep the hypotheses and notations of part (A). Assume in addition, that the
commutative K-algebra A is of finite type, so that we find some r ∈ N0 and elements
a1, a2, . . . , ar ∈ A such that A = K[a1, a2, . . . , ar]. Then according to Exercise and Defini-
tion 4.2 (D), the A-module DerK(A) is finitely generated. We thus find some s ∈ N0 and
derivations d1, d2, . . . , ds ∈ DerK(A) such that

DerK(A) =
s∑
i=1

Adi.

A straight forward computation now allows to see, that

WK(A) = K[a1, a2 . . . , ar; d1, d2, . . . , ds] ⊆ EndK(A).

In particular we may conclude, that the K-algebra WK(A) is finitely generated.

(C) Keep the above notations and let n ∈ N. The n-th standard Weyl algebra W(K,n)
over the field K is defined as the Weyl algebra of the polynomial ring K[X1, X2, . . . , Xn],
thus

W(K,n) := WK

(
K[X1, X2, . . . , Xn]

)
⊆ EndK

(
K[X1, X2, . . . , Xn]

)
.

Observe, that by Propsition 4.5 and according to the observations made in part (B) we
may write

W(K,n) = K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n] ⊆ EndK
(
K[X1, X2, . . . , Xn]

)
.

The elements of W(K,n) are called polynomial differential operators in the indetermi-
nates X1, X2, . . . , Xn over the field K. They are all K-linear combinations of products of
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indeterminates Xi and partial derivatives ∂j.
The differential operators of the form

Xν∂µ := Xν1
1 . . . Xνn

n ∂
µ1
1 . . . ∂µnn =

n∏
i=1

Xνi

n∏
j=1

∂µj ∈W(K,n)

with
ν := (ν1, . . . , νn), µ := (µ1, . . . , µn) ∈ Nn

0

are called elementary differential operators in the indeterminates X1, X2, . . . , Xn over the
field K.

Next, we aim to consider a class of important relations in standard Weyl algebras: the
so-called Heisenberg relations. We begin with the following preparations.

5.3. Remark and Exercise. (A) If K is a field and B is a K-algebra, we introduce the
Poisson operation, that is the map

[•, •] : B ×B −→ B, defined by [a, b] := ab− ba for all a, b ∈ B.
Show, that the Poisson operation is anti-commutative and K-bilinear, thus:

(a) [a, b] = −[b, a] for all a, b ∈ B.
(b) [[a, b], c] + [[b, c], a] + [[c, a], b] = 0 for all a, b, c ∈ B.
(c) [αa+ α′a′, βb+ β′b′] = αβ[a, b] + αβ′[a, b′] + α′β[a′, b] + α′β′[a′, b′]

for all α, α′, β, β′ ∈ K and all a, a′, b, b′ ∈ B.

(B) Now, let K be a field, let A be a commutative K-algebra and consider the Weyl
algebra WK(A) := K[A,DerK(A)]. Show that the following relations hold:

(a) [a, b] = 0 for all a, b ∈ A.
(b) [a, d] = −d(a) for all a ∈ A and all d ∈ DerK(A).
(c) [d, e] ∈ DerK(A) for all d, e ∈ DerK(A).

(C) Let the notations and hypotheses be as in part (B). Let d, e ∈ DerK(A), let r ∈ N,
let ν1, ν2, . . . , νr ∈ N0 and let a1, a2, . . . , ar ∈ A. Use statement (c) of part (B) and the
Generalized Product Rule of Exercise and Definition 4.2 (A) to prove that

[d, e]
( r∏
j=1

a
νj
j

)
=
∑
i:νi>0

νia
νi−1
i

(∏
j 6=i

a
νj
j

)
[d, e](ai).

Give an alternative proof of this equality, which uses Exercise (c) of the above part (B).

5.4. Proposition. (The Heisenberg Relations) Let n ∈ N, and let Kbe a field. Then,
in the standard Weyl algebra

W(K,n) = K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n]

the following relations hold:

(a) [Xi, Xj] = 0, for all i, j ∈ {1, 2, . . . , n};

(b) [Xi, ∂j] = −δi,j, for all i, j ∈ {1, 2, . . . , n};

(c) [∂i, ∂j] = 0, for all i, j ∈ {1, 2, . . . , n}.
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Proof. (a): This is clear on application of Remark and Exercise 5.3 (B)(a) with a = Xi

and b = Xj.

(b): If we apply Remark and Exercise 5.3 (B)(b) with a = Xi and d = ∂j, and observe
that ∂j(Xi) = δj,i = δi,j we get our claim.

(c): Observe that for all i, k ∈ {1, 2, . . . , n} we have ∂i(Xk) ∈ {0, 1} ⊆ K. So for all
i, j, k ∈ {1, 2, . . . , n} we obtain

[∂i, ∂j](Xk) = ∂i
(
∂j(Xk)

)
− ∂j

(
∂i(Xk)

)
∈ ∂i(K) + ∂j(K) = 0 + 0 = 0.

Now, we get our claim by Exercise and Definition 4.2 (B) and Remark and Exercise 5.3
(B) (c) and (C). �

In the next section we shall establish an important product formula for elementary
differential operators. The exercise to come is is aimed to prepare this.

5.5. Exercise. (A) Let n ∈ N, let K be a field, let B be a K-algebra and let

a1, a1, . . . , an; d1, d2, . . . , dn ∈ B

be elements mimicking the Heisenberg relations, which means:

(1) [ai, aj] = 0, for all i, j ∈ {1, 2, . . . , n};
(2) [ai, dj] = −δi,j, for all i, j ∈ {1, 2, . . . , n};
(3) [di, dj] = 0, for all i, j ∈ {1, 2, . . . , n}.

Let µ, ν ∈ N0. To simplify notations, we set

0bk := 0 for all b ∈ B and all k ∈ Z.

prove the following statements (using induction on µ and ν):

(a) aµi a
ν
j = aνja

µ
i ;

(b) dµi d
ν
j = dνjd

µ
i ;

(c) dµi a
ν
j = aνjd

µ
i for all i, j ∈ {1, 2, . . . , n} with i 6= j.

(d) dia
ν
i = aνi di + νaν−1

i for all i ∈ {1, 2, . . . , n}.
(B) Keep the notations and hypotheses of part (A). For all (λ1, λ2, . . . , λn) ∈ N0 and

each sequence (b1, b2, . . . , bn) ∈ Bn we use again our earlier standard notation

λ := (λ1, λ2, . . . , λn) and bλ := bλ11 b
λ2
2 . . . bλnn =

n∏
i=1

bλii .

Now, let µ, ν, µ′, ν ′ ∈ Nn
0 and prove that the following relations hold:

(a) (aνdµ)(aν
′
dµ
′
) =

(∏n
i=1 a

νi
i

∏n
j=1 d

µj
i

)(∏n
i=1 a

ν′i
i

∏n
j=1 d

µ′j
i

)
=
∏n

i=1 a
νi
i d

µi
i a

ν′i
i d

µ′i
i .

(b) aνdµ =
∏n

i=1 a
νi
i

∏n
j=1 d

µj
i =

∏n
i=1 a

νi
i d

µi
i .
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6. Arithmetic in Weyl Algebras

This section provides the basic tools for computations with differential operators. We
begin with the following auxiliary result.

6.1. Lemma. Let n ∈ N, let K be a field, let B be a K-algebra and let

a1, a2, . . . , an; d1, d2, . . . , dn ∈ B

such that:

(1) [ai, aj] = 0, for all i, j ∈ {1, 2, . . . , n};
(2) [ai, dj] = −δi,j, for all i, j ∈ {1, 2, . . . , n};
(3) [di, dj] = 0, for all i, j ∈ {1, 2, . . . , n}.

Then, the following statements hold:

(a) For all µ, ν ∈ N0 and all i ∈ {1, 2, . . . , n} we have

dµi a
ν
i =

min{µ,ν}∑
k=0

(
µ

k

) k−1∏
p=0

(ν − p)aν−ki dµ−ki .

(b) Let µ, ν, µ′, ν ′ ∈ Nn
0 , set

I := {k := (k1, k2, . . . , kn) ∈ Nn
0 | ki ≤ min{µi, ν ′i} for i = 1, 2, . . . , n},

and let

λk :=
( n∏
i=1

(
µi
ki

))( n∏
i=1

ki−1∏
p=0

(ν ′i − p)
)

for all k ∈ I.

Then, we have the relation

(aνdµ)(aν
′
dµ
′
) = aν+ν′dµ+µ′ +

∑
k∈I\{0}

λka
ν+ν′−kdµ+µ′−k.

Proof. The proof consist of tedious computation making repeatedly use of the exercises
of the previous section. We recommend to consult [6]. �

As an application we now get the announced product formula for elementary differential
operators.

6.2. Proposition. (The Product Formula for Elementary Differential Opera-
tors) Let n ∈ N, let K be a field and consider the standard Weyl algebra

W(K,n) = K[X1, X2, . . . Xn; ∂1, ∂2 . . . , ∂n].

Moreover, let all further notations be as in Lemma 6.1. Then, we have the equality

(Xν∂µ)(Xν′∂µ
′
) = Xν+ν′∂µ+µ′ +

∑
k∈I\{0}

λkX
ν+ν′−k∂µ+µ′−k.

Proof. It suffices to apply Lemma 6.1 (b) with ai := Xi and di := ∂i for i = 1, 2 . . . , n. �

To approach the main result of this section, we need some more preparations.
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6.3. Notation and Remark. (A) Let n ∈ N. For κ := (κ1, κ2, . . . , κn), λ :=
(λ1, λ2, . . . , λn) ∈ Nn

0 we define

κ ≤ λ :⇔
(
∀i = 1, 2, . . . , n : κi ≤ λi

)
and κ < λ :⇔

(
κ ≤ λ ∧ κ 6= λ

)
.

(B) Keep the notations of part (A). Observe that

κ ≤ λ⇔
(
λ− κ ∈ Nn

0

)
and κ < λ⇔

(
λ− κ ∈ Nn

0 \ {0}
)
.

(C) We now introduce a few notations, which we will have to use later very frequently.
Namely, for α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn) ∈ Nn

0 we set

M(α, β) := {(α−k, β−k) | k ∈ Nn
0\{0} with k ≤ α, β} and M(α, β) := M(α, β)∪{(α, β)}.

Moreover, we write

M≤(α, β) := {(λ, κ) ∈ Nn
0 × Nn

0 | λ ≤ ν and κ ≤ µ for some (ν, µ) ∈M(α, β)}.

Observe that M(α, β) ⊆M≤(α, β).

6.4. Exercise. (A) Let n ∈ N, let K be a field and consider the standard Weyl algebra
W(K,n) = K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n]. In addition, let µ, ν, µ′, ν ′ ∈ Nn

0 . Prove that

(Xν∂µ)(Xν′∂µ
′
)−Xν+ν′∂µ+µ′ ∈

∑
(λ,κ)∈M(ν+ν′,µ+µ′)

ZXλ∂κ.

and

(Xν∂µ)(Xν′∂µ
′
) ∈

∑
(λ,κ)∈M(ν+ν′,µ+µ′)

ZXλ∂κ.

(B) Let the notations be as in part (A). Prove that[
Xν∂µ, Xν′∂µ

′] ∈ ∑
(λ,κ)∈M(ν+ν′,µ+µ′)

ZXλ∂κ.

6.5. Theorem. (The Reduction Principle) Let n ∈ N, let K be a field and consider
the standard Weyl algebra W(K,n) = K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n]. Let r ∈ N and let
ν(i), µ(i) ∈ Nn

0 (i = 1, 2, . . . , r). Moreover set

M := M≤
( r∑
i=1

ν(i),
r∑
i=1

µ(i)
)
⊂ Nn

0 × Nn
0

Then, we have
r∏
i=1

Xν(i)∂µ
(i) −X

∑r
i=1 ν

(i)

∂
∑r
i=1 µ

(i) ∈
∑

(κ,λ)∈M

ZXλ∂κ ⊆
∑

λ<
∑r
i=1 ν

(i), κ<
∑r
i=1 µ

(i)

ZXλ∂κ.

Proof. We proceed by induction on r. The case r = 1 is obvious. The case r = 2 follows
from Exercise 6.4 (A). So, let r > 2. We set

M′ := M≤
( r−1∑
i=1

ν(i),

r−1∑
i=1

µ(i)
)
.
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By induction we have

% :=
r−1∏
i=1

Xν(i)∂µ
(i) −X

∑r−1
i=1 ν

(i)

∂
∑r−1
i=1 µ

(i) ∈
∑

(λ′,κ′)∈M′
ZXλ′∂κ

′
=: N.

By the case r = 2 we have (see once more Exercise 6.4 (A))

σ :=
(
X

∑r−1
i=1 ν

(i)

∂
∑r−1
i=1 µ

(i))
Xν(r)∂µ

(r) −X
∑r
i=1 ν

(i)

∂
∑r
i=1 µ

(i) ∈
∑

(λ,κ)∈M

ZXλ∂κ =: M.

As
r∏
i=1

Xν(i)∂µ
(i) −X

∑r
i=1 ν

(i)

∂
∑r
i=1 µ

(i)

= σ + %Xν(r)∂µ
(r)

,

it remains to show that %Xν(r)∂µ
(r) ∈M. Observe that

%Xν(r)∂µ
(r) ∈ NXν(r)∂µ

(r)

=
∑

(λ′,κ′)∈M′
ZXλ′∂κ

′
Xν(r)∂µ

(r)

.

Observe also that (λ′+ν(r), κ′+µ(r)) ∈M for all (λ′, κ′) ∈M′ Therefore we have the inclu-

sion M(λ′ + ν(r), κ′ + µ(r)) ⊆ M for all (λ′, κ′) ∈ M′. Thus, on application of Exercise 6.4
(A) it follows that

Xλ′∂κ
′
Xν(r)∂µ

(r) ∈
∑

(λ,κ)∈M(λ′+ν(r),κ′+µ(r))

ZXλ∂κ ⊆
∑

(λ,κ)∈M

ZXλ∂κ = M,

and this shows that indeed %Xν(r)∂µ
(r) ∈M . �

To prepare what we aim for in the next section, we suggest the following exercise.

6.6. Exercise. (A) Let n ∈ N and consider the polynomial ring K[X1, X2, . . . , Xn]. More-
over, let µ := (µ1, µ1, . . . , µn), ν := (ν1, ν2, . . . , νn) ∈ Nn

0 . Fix i ∈ {1, 2, . . . , n} and prove
by induction on µi, that

∂µii
(
Xν
)

= ∂µii
( i∏
j=1

X
νj
j

)
=

{∏µi−1
k=0 (νi − k)Xνi−µi

i

∏
j 6=iX

νj
j , if νi ≥ µi;

0, if νi < µi.

(B) Let the notations and hypotheses be as in part (A) and use what you have shown
there to prove that

∂µ
(
Xν
)

=
n∏
i=1

∂µii
( n∏
j=1

Xνj
)

=

{∏n
i=1

∏µi−1
k=0 (νi − k)Xν−µ, if ν ≥ µ;

0, otherwise .
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7. The Standard Basis

Now, we are aim prove that – over a base field of characteristic 0 – the elementary
differential operators form a vector space basis of the standard Weyl algebra.

7.1. Theorem. (The Standard Basis) Let n ∈ N and let K be a field of characteristic
0. Then, the elementary differential operators

Xν∂µ =
n∏
i=n

Xνi
i

n∏
i=1

∂µii

form a K-vector space basis of the standard Weyl algebra

W(K,n) = K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n].

So, in particular we can say

(a) W(K,n) =
⊕

ν,µ∈Nn0
KXν∂µ.

(b) Each differential operator d ∈W(K,n) can be written in the form

d =
∑

ν,µ∈Nn0

c(d)
ν,µX

ν∂µ

with a unique family(
c(d)
ν,µ

)
ν,µ∈Nn0

∈
∏

ν,µ∈Nn0

K = KNn0×Nn0 ,

whose support

supp(d) = supp
(
(c(d)
ν,µ)ν,µ∈N0

)
:= {(ν, µ) ∈ Nn

0 × Nn
0 | c(d)

ν,µ 6= 0}

is a finite set.

Proof. We first show that

W(K,n) =
∑

ν,µ∈Nn0

KXν∂µ =: M.

Indeed, each d ∈W(K,n) is a K-linear combination of products of elementary differential
operators. But by the Reduction Principle of Theorem 6.5 each product of elementary
differential operators is contained in the K-vector space M .
It remains to show, that the elementary differential operators are linearly independent
among each other. Assume to the contrary, that there are linearly dependent elementary
differential operators in W(K,n). Then, we find a positive integer r ∈ N, families

µ(i), ν(i) ∈ Nn
0 , (i = 1, 2, . . . , r) with (µ(i), ν(i)) 6= (µ(j), ν(j)) if i 6= j,

and elements

c(i) ∈ K \ {0} (i = 1, 2, . . . , r) such that d :=
r∑
i=1

c(i)Xν(i)∂µ
(i)

= 0.

Using the standard notation |µ| :=
∑n

k=1 µk, for all µ ∈ Nn
0 , we may assume, that

|µ(r)| = max{|µ(i)| | i = 1, 2, . . . , r}, µ(i) 6= µ(r) for all i < s and µ(i) = µ(r) for all i ≥ s
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for some s ∈ {1, 2, . . . , r}. Then, it follows easily by what we have seen in Exercise 6.6
(B), that

Xν(i)∂µ
(i)(
Xµ(r)

)
=

{∏n
j=1 µ

(r)
j !Xν(r) , if s ≤ i ≤ r

0, if i < s.

So, we get

0 = d
(
Xµ(r)

)
=

r∑
i=1

c(i)Xν(i)∂µ
(i)(
Xµ(r)

)
=

r∑
i=s

c(i)

n∏
j=1

µ
(r)
j !Xν(i) .

As Char(K) = 0, and as the monomials Xν(i) are pairwise different for i = s, s+ 1, . . . , r,
the last sum does not vanish, and we have a contradiction. �

7.2. Definition and Remark. (A) Let the notations and hypotheses be as in Theo-
rem 6.5. We call the basis of W(K,n) which consists of all elementary differential opera-
tors the standard basis. If we present a differential operator d ∈W(K,n) with respect to
the standard basis and write

d =
∑

ν,µ∈Nn0

c(d)
ν,µX

ν∂µ

as in statement (b) of Theorem 6.5, we say that d is written in standard form. The support
of a differential operator d in W(K,n) is always defined with respect to the standard form
as in statement (b) of Theorem 7.1. We therefore call the support of d also the standard
support of d.

(B) Keep the above notations and hypotheses. It is a fundamental task, to write an
arbitrarily given differential operator d ∈ W(K,n) in standard form. This task actually
is reduced by the Reduction Principle of Theorem 6.5 to make explicit the coefficients of
the differences

∆ν(•)µ(•) :=
r∏
i=1

Xν(i)∂µ
(i) −X

∑r
i=1 ν

(i)

∂
∑r
i=1 µ

(i) ∈
∑

(λ,κ)∈M

ZXλ∂κ.

This task can be solved by a repeated application of the Product Formula of Propsition 6.2
or – directly – by a repeated application of the Heisenberg relations. Clearly, today this
task usually is performed by means of Computer Algebra systems.

As an application, one has the following result on supports of differential operators:

7.3. Proposition. (Behavior of Supports) Let n ∈ N, let K be a field of characteristic
0 and consider the differential operators

d, e ∈W(K,n) = K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n].

For all (α, β) ∈ Nn
0 × Nn

0 , let the sets

M(α, β) ⊂M(α, β) ⊂ Nn
0 × Nn

0

be defined according to Notation and Remark 6.3 (C). Then, we have

(a)
(
supp(d) ∪ supp(e)

)
\
(
supp(d) ∩ supp(e)

)
⊆ supp(d+ e) ⊆ supp(d) ∪ supp(e).

(b) supp(cd) = supp(d) for all c ∈ K \ {0}.
(c) supp(de) ⊆

⋃
(ν,µ)∈supp(d),(ν′,µ′)∈supp(e) M(ν + ν ′, µ+ µ′).
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(d) supp
(
[d, e]

)
⊆
⋃

(ν,µ)∈supp(d),(ν′,µ′)∈supp(e) M(ν + ν ′, µ+ µ′).

Proof. Statements (a) and (b) are straight forward from our definition of support.
Statements (c) and (d) follow by Theorem 7.1, Exercise 6.4 (A) respectively Exercise 6.4
(B) and an repeated application of statements (a) and (b). For further hints see [6]. �

7.4. Exercise. (A) Let n ∈ N, let K be a field of characteristic 0 and consider the
standard Weyl algebra W(K,n) = K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n]. Prove in detail state-
ments (a), (b), (c) and (d) of Proposition 7.3.

(B) Let the notations and hypotheses be as in part (A). Present in standard form the
following differential operators:

∂2
1X

2
1 −X1∂1X1 − 1, ∂2

1X
2
1∂

2
1 − ∂1X

2
1 , ∂2X1X2∂1 + ∂1X1X2 ∈W(K,n).

(C) Keep the notations of part (A), but assume that n = 1 and Char(K) = 2. Compute
∂1(Xν

1 ) for all ν ∈ N0 and comment your findings in view of the Standard Basis Theorem.

As another application of the Standard Basis Theorem we now can prove

7.5. Corollary. (The Universal Property of Weyl Algebras) Let the notations and
hypotheses be as in Theorem 7.1. Let B be a K-algebra and let

φ : {X1, X2, . . . , Xn, ∂1, ∂2, . . . , ∂n} −→ B

be a map ”which respects the Heisenberg relations“ and hence satisfies the requirements

(1) [φ(Xi), φ(Xj)] = 0, for all i, j ∈ {1, 2, . . . , n};
(2) [φ(Xi), φ(∂j)] = −δi,j, for all i, j ∈ {1, 2, . . . , n};
(3) [φ(∂i), φ(∂j)] = 0, for all i, j ∈ {1, 2, . . . , n}.

Then, there is a unique homomorphism of K-algebras

φ̃ : W(K,n) −→ B

such that
φ̃(Xi) = φ(Xi) and φ̃(∂i) = φ(∂i) for all i = 1, 2, . . . , n.

Proof. According to Theorem 7.1 there is a K-linear map

φ̃ : W(K,n) −→ B given by φ̃
(
Xν∂µ

)
=

n∏
i=1

φ(Xi)
νi

n∏
i=1

φ(∂i)
µi , (µ, ν ∈ Nn

0 ).

Next, we show, that φ̃ is multiplicative, hence satisfies the condition that

φ̃(de) = φ̃(d)φ̃(e) for all d, e ∈W(K,n).

As the multiplication maps

W(K,n)×W(K,n) −→W(K,n), (d, e) 7→ de and B ×B −→ B, (a, b) 7→ ab

are both K-bilinear, it suffices to verify the above multiplicativity condition in the special
case where

d := Xν∂µ and e := Xν′∂µ
′

with µ, ν, µ′, ν ′ ∈ Nn
0 .
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But this can be done by a straight forward computation, on use of the Product For-
mula of Proposition 6.2 and on application of Lemma 6.1 with ai : φ(Xi) and di :=
φ(∂i) for all i = 1, 2, . . . , n.

It remains to show, that φ̃ : W(K,n) −→ B is the only homomorphism of K algebras
which satisfies the requirement that

φ̃(Xi) = φ(Xi) and φ̃(∂i) = φ(∂i) for all i = 1, 2, . . . , n.

But indeed, if a map φ̃ satisfies this requirement and is multiplicative, it must be defined
on the elementary differential operators as suggested above. This proves the requested
uniqueness. �

7.6. Exercise. (A) Let n ∈ N, let K be a field of characteristic 0. Show, that there is a
unique automorphism of K-algebras

α : W(K,n)
∼=−→W(K,n) with α(Xi) = ∂i and α(∂i) = −Xi for all i = 1, 2, . . . , n.

(B) Keep the notations and hypotheses of part (A). Present in standard form all elements
α(Xν

i ∂
µ
i ) ∈W(K,n) with µ, ν ∈ N0.

8. Weighted Degrees and Filtrations

We now study a class of particularly important filtrations of standard Weyl algebras,
induced by weighted degrees.

8.1. Convention. Throughout this section we fix a positive integer n, a field K of char-
acteristic 0 and we consider the standard Weyl algebra

W := W(K,n) = K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n].

8.2. Definition and Remark. (A) By a weight we mean a pair

(v, w) =
(
(v1, v2, . . . , vn), (w1, w2, . . . , wn)

)
∈ Nn

0×Nn
0 with (vi, wi) 6= (0, 0) (i = 1, 2, . . . , n).

For a := (a1, a2, . . . , an), b := (b1, b2, . . . , bn) ∈ Rn we frequently shall use the scalar
product

a · b :=
n∑
i=1

aibi.

(B) Fix a weight (v, w) ∈ Nn
0 × Nn

0 . We define the degree associated to the weight (v, w)
(or just the weighted degree) of a differential form d ∈W by

degvw(d) := sup{v · ν + w · µ | (ν, µ) ∈ supp(d)}.

with the usual convention that sup(∅) = −∞. Observe that for all d ∈W and all µ, ν ∈ N0

– and using the notations of Notation and Remark 6.3 (C)– we can say:

(a) degvw(d) ∈ N0 ∪ {−∞} with degvw(d) = −∞ if and only if d = 0.
(b) If λ ≤ ν and κ ≤ µ for all (λ, µ) ∈ supp(d), then degvw(d) ≤ v · ν + w · µ.
(c) If supp(d) ⊆M≤(ν, µ), then degvw(d) < v · ν + w · µ.
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(C) Keep the notations and hypotheses of part (B). We fix some non-negative integer
i ∈ N0 and set

Wvw
i := {d ∈W | degvw(d) ≤ i} =

⊕
ν,µ∈Nn0 :v·ν+w·µ≤i

KXν∂µ.

8.3. Lemma. Let (v, w) ∈ Nn
0 × Nn

0 be a weight and let d, e ∈W. Then we have

(a) degvw(d+ e) ≤ max{degvw(d), degvw(d)}, with equality if degvw(d) 6= degvw(e);
(b) degvw(cd) = degvw(d) for all c ∈ K \ {0}.
(c) degvw(de) ≤ degvw(d) + degvw(e);
(d) degvw

(
[d, e]

)
< degvw(d) + degvw(e).

Proof. We Leave the proof to the reader, with the hint to eventually consult [6]. �

8.4. Theorem. (Weighted Filtrations) Let
(
(v1, v2, . . . , vn), (w1, w2, . . . , wn)

)
= (v, w) ∈

Nn
0 × Nn

0 be a weight. Then, the family

Wvw
• :=

(
Wvw

i = {d ∈W | degvw(d) ≤ i}
)
i∈N0

is a commutative filtration of the the K-algebra W = W(K,n). Moreover, the following
statements hold:

(a) Wvw
0 = K[Xi, ∂j | vi = 0, wj = 0].

(b) If i > δ := max{v1, v2, . . . , vn, w1, w2, . . . , wn}, then Wvw
i =

∑δ
j=1 W

vw
j Wvw

i−j.

(c) The filtration Wvw
• =

(
Wvw

i

)
i∈N0

is of finite type.

Proof. It is clear from our definitions and by Lemma 8.3 (c) that for all i, j ∈ N0 we have:

1 ∈Wvw
0 , Wvw

i ⊆Wvw
i+1, W =

⋃
i∈N0

Wvw
i , Wvw

i Wvw
j ⊆Wvw

i+j.

So the family
(
Wvw

i

)
i∈N0

constitutes indeed a filtration on the K-algebra W.

Now, let i, j ∈ N0, let d ∈Wvw
i and let e ∈Wvw

j . Then by Lemma 8.3 (d) we have

degvw
(
de− ed

)
≤ degvw(d) + degvw(e)− 1 ≤ i+ j − 1, hence de− ed ∈Wvw

i+j−1.

This proves, that our filtration is commutative (see Definition 3.2).

(a): We define S := {i = 1, 2, . . . , n | vi 6= 0}, T := {j = 1, 2, . . . , n | wj 6= 0}, S :=

{1, 2, . . . , n} \ S, T := {1, 2, . . . , n} \ T and chose ν, µ ∈ Nn
0 . Then

v · ν + w · µ = 0 if and only if νi = 0 for all i ∈ S and µj = 0 for all j ∈ T.
But this means that

Wvw
0 =

∑
(νi)i∈S∈N

S
0 and (µj)j∈T∈N

T
0

K
∏

i∈S and j∈T

Xνi
i ∂

µj
j = K[Xi, ∂j | vi = 0, wj = 0].

(b): Let i > δ. Let ν, µ ∈ Nn
0 with σ := degvw

(
Xν∂µ

)
= v · ν + w · µ ≤ i. We aim to

show that

Xν∂µ ∈
δ∑
j=1

Wvw
j Wvw

i−j =: M.
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If σ ≤ 0 this is clear as

Wvw
0 = Wvw

0 Wvw
0 ⊆Wvw

1 Wvw
i−1 ⊆M.

So, let σ > 0. Then either

(1) there is some p ∈ {1, 2, . . . , n} with vp > 0 and νp > 0, or else,
(2) there is some q ∈ {1, 2, . . . , n} with wq > 0 and µq > 0.

In the above case (1) we can write

Xν∂µ = Xpd, with d :=
( n∏
k=1

X
νk−δk,p
k

)
∂µ.

As degvw(Xp) = vp ≤ δ and degvw(d) = σ − vp it follows that

Xν∂µ = Xpd ∈Wvw
vp W

vw
σ−vp ⊆Wvw

vp W
vw
i−vp ⊆M.

In the above case (2) we may first assume, that we are not in the case (1). This means in
particular that either vq = 0 or νq = 0, hence vqνq = 0, so that degvw(X

νq
q ∂q) = wq ≤ δ.

Now, in view of the Heisenberg relations, we may write

Xν∂µ = Xνq
q ∂qe with e :=

∏
s 6=q

Xνs
s

n∏
k=1

∂
µk−δk,q
k .

As vqνq = 0, we have degvw(e) = σ − wq, and it follows that

Xν∂µ = Xνq
q ∂qe ∈Wvw

wqW
vw
σ−wq ⊆Wvw

wqW
vw
i−wq ⊆M.

But this shows that Xν∂µ ∈M.

(c): This is an immediate consequence of statements (a) and (b) (see Definition and
Remark 3.3 (C)). �

8.5. Definition. Let the notations and hypotheses be as in Theorem 8.4. Then, the
filtration

Wvw
• =

(
Wvw

i

)
i∈N0

=
(
{d ∈W | degvw(d) ≤ i}

)
i∈N0

is called the filtration induced by the weight (v, w). Generally, we call weighted filtrations
all fltrations which are induced in this way by a weight.

8.6. Definition and Remark. (A) We consider the strings

0 := (0, 0, . . . , 0), 1 := (1, 1, . . . , 1) ∈ Nn
0

and a differential form d ∈W. We define the standard degree or just the degree deg(d) of
d as the weighted degree with respect to the weight (1, 1) ∈ Nn

0 × Nn
0 , hence

deg(d) := deg11(d).

Observe that
deg(d) := sup{|ν|+ |µ| | (ν, µ) ∈ supp(d)}.

The corresponding induced weighted filtration

Wdeg
• := W11

• =
(
W11

i

)
i∈N0

=
(
{d ∈W | deg(d) ≤ i}

)
i∈N0
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is called the standard degree filtration or just the degree filtration of W.

(B) Keep the notations and hypotheses of part (A). The order of the differential oper-
ator d is defined by

ord(d) := deg01(d).

Observe that

ord(d) = sup{|µ| | (ν, µ) ∈ supp(d)}.
The corresponding induced weighted filtration

Word
• := W01

• =
(
W01

i

)
i∈N0

=
(
{d ∈W | ord(d) ≤ i}

)
i∈N0

is called the order filtration of W.

Now, as an immediate application of Theorem 8.4 we obtain:

8.7. Corollary. Let the notations be as in Convention 8.1. Then it holds

(a) The degree filtration Wdeg
• is very good.

(b) The order filtration Word
• is good and Word

0 = K[X1, X2, . . . , Xn].

Proof. In the notations of Theorem 8.4 (b) we have

δ(1, 1) = 1 and δ(0, 1) = 1.

Moreover, by Theorem 8.4 (a) we have

W11
0 = K and W01

0 = K[X1, X2, . . . , Xn]

This proves our claim (see Definition and Remark 3.3 (C)). �

8.8. Exercise. (A) Show that the degree filtration is the only very good filtration on W.

(B) Write down all weights (v, w) ∈ Nn
0 × Nn

0 for which the induced filtration Wvw
• is

good.

9. Weighted Associated Graded Rings

This Section is devoted to the study of the associated graded rings of weighted filtrations
of standard Weyl algebras.

9.1. Convention. Again, throughout this section we fix a positive integer n, a field K of
characteristic 0 and consider the standard Weyl algebra

W := W(K,n) = K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n].

In addition, we introduce the polynomial ring

P := K[Y1, Y2, . . . , Yn;Z1, Z2, . . . , Zn]

in the indeterminates Y1, Y2, . . . , Yn;Z1, Z2, . . . , Zn with coefficients in the field K.



A SHORT COURSE ON WEYL ALGEBRAS AND D-MODULES 21

9.2. Definition and Remark. (A) Fix a weight (v, w) ∈ Nn
0 × Nn

0 and consider the
induced weighted filtration Wvw

• . To write down the corresponding associated graded
ring, we introduce the following notation:

Gvw =
⊕
i∈N0

Gvw
i := GrWvw

•

(
Wvw

)
=
⊕
i∈N0

GrWvw
•

(
Wvw

)
i
.

(B) Keep the above notations and hypotheses. For each j ∈ Z we introduce the
notations:

Ivw≤j := {(ν, µ) ∈ Nn
0 × Nn

0 | v · ν + w · µ ≤ j};
Ivw=j := {(ν, µ) ∈ Nn

0 × Nn
0 | v · ν + w · µ = j}.

Fix some i ∈ N0. Observe that

Gvw
i = Wvw

i /Wvw
i−1 =

(
(
⊕

(ν,µ)∈Ivw≤i−1

KXν∂µ)⊕ (
⊕

(ν,µ)∈Ivw=i

KXν∂µ)
)/( ⊕

(ν,µ)∈Ivw≤i−1

KXν∂µ
)
.

As a consequence, we get an isomorphism of K-vector spaces

εvwi :
⊕

(ν,µ)∈Ivw=i

KXν∂µ
∼=−→ Gvw

i

given by

εvwi
(
Xν∂µ

)
=
(
Xν∂µ + Wvw

i−1

)
∈Wvw

i /Wvw
i−1 = Gvw

i ,
(
(ν, µ) ∈ Ivw=i

)
.

In particular we can say:

The family
(
(Xν∂µ)∗ := εvwi (Xν∂µ)

)
(ν,µ)∈Ivw=i

is a K-basis of Gvw
i .

We call this basis the standard basis of Gvw
i . Its elements are called standard basis ele-

ments of the associated graded ring Gvw.

(C) Keep the previously introduced notation. We add a few more useful observations
on standard basis elements. First, observe that we may write

(a) (Xν∂µ)∗ ∈ Gvw
v·ν+w·µ for all (ν, µ) ∈ Nn

0 × Nn
0 .

(b) X∗i ∈ Gvw
vi

and ∂∗j ∈ Gvw
wj

for all i, j ∈ {1, 2, . . . , n}.
Moreover, by the observations made in part (B) we also can say that all standard basis
elements form a basis of the whole associated graded ring, thus:

(c) The family
(
(Xν∂µ)∗

)
(ν,µ)∈Nn0×Nn0

is a K-basis of Gvw.

Finally, as the associated graded ring is commutative, and keeping in mind how the
multiplication in this ring is defined (see Remark and Definition 3.1 (B)) we get the
following product formula

(d) (Xν∂µ)∗ =
(∏n

i=1X
νi
i

∏n
j=1 ∂

µj
)∗

=
∏n

i=1

(
X∗i
)νi∏n

j=1

(
∂∗j
)µj =:

(
X∗
)ν(

∂∗
)µ

.

9.3. Exercise and Definition. (A) We fix a weight (v, w) ∈ Nn
0 ×Nn

0 , use the notations
of Definition and Remark 9.2 (A) and consider the K-subspace

Pvwi :=
⊕

(ν,µ)∈Ivw=i

KY νZµ ⊆ P for all i ∈ N0.
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Prove the following statements:

(a) K ∈ Pvw0 ;
(b) Pvwi Pvwj ⊆ Pvwi+j for all i, j ∈ N0.
(c) P =

⊕
i∈N0

Pvwi .

(B) Let the hypotheses and notations be as in part (A). Conclude that the family(
Pvwi
)
i∈N0

defines a grading of the ring P.

We call this grading the grading induced by the weight (v, w) ∈ Nn
0 ×Nn

0 . If we endow our
polynomial ring with this grading we write it as Pvw, thus

P = Pvw =
⊕
i∈N0

Pvwi .

9.4. Theorem. (Structure of Weighted Associated Graded Rings) Let (v, w) ∈
Nn

0 × Nn
0 be a weight. Then there exists an isomorphism of K-algebras, which preserves

gradings

ηvw : P = Pvw
∼=−→ Gvw, given by ηvw(Yi) := X∗i , ηvw(Zj) := ∂∗j , (i, j = 1, 2, . . . , n).

Proof. We leave this as an exercise, giving eventually hint to [6]. �

9.5. Corollary. (Additivity of Weighted Degrees) Let (v, w) ∈ Nn
0 ×Nn

0 be a weight
and let d, e ∈W. Then

degvw(de) = degvw(d) + degvw(e).

Proof. (We slightly shorten some arguments with respect to the original exposition in [6]).
If d = 0 or e = 0 our claim is clear. So let d, e 6= 0 and observe that i := degvw(d), j :=
degvw(e) ∈ N0. Using our previously introduced notations, we set

M :=
⊕

(ν,µ)∈Ivw=i

KXν∂µ and N :=
⊕

(ν,µ)∈Ivw=j

KXν∂µ.

We then may write

d = a+ r with a ∈M \ {0}, degvw(r) < i and e = b+ s with b ∈ N \ {0}, degvw(s) < j.

We thus have de = ab+ (as+ br + rs). By what we know already about degrees we have
degvw(as + br + rs) < i + j (see Lemma 8.3 (a), (c)). So, in view of Lemma 8.3 (a) it
suffices to show that degvw(ab) = i+ j. To do so, we write

a =
∑

(ν,µ)∈supp(a)

c(a)
ν,µX

ν∂µ, with c(a)
ν,µ ∈ K \ {0} for all (ν, µ) ∈ supp(a) and

b =
∑

(ν′,µ′)∈supp(b)

c
(b)
ν′,µX

ν′∂µ
′
, with c

(b)
ν′,µ′ ∈ K \ {0} for all (ν ′, µ′) ∈ supp(b).

It follows that

ab =
∑

(ν,µ)∈supp(a) and (ν′,µ′)∈supp(b)

c(a)
ν,µc

(b)
ν′,µX

ν∂µXν′∂µ
′
.
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By Exercise 6.4 (A) and Definition and Remark 8.2 (B)(c) we have degvw
(
Xν∂µXν′∂µ

′ −
Xν+ν′∂µ+µ′

)
< i+ j for all (ν, µ) ∈ supp(a) and all (ν ′, µ′) ∈ supp(b). If we set

h :=
∑

(ν,µ)∈supp(a) and (ν′,µ′)∈supp(b)

c(a)
ν,µc

(b)
ν′,µ′X

ν+ν′∂µ+µ′ .

and on repeated use of Lemma 8.3 (a) and (b) we thus get

degvw(ab− h) =

degvw
[ ∑

(ν,µ)∈supp(a) and (ν′,µ′)∈supp(b)

c(a)
ν,µc

(b)
ν′,µ′(X

ν∂µXν′∂µ
′ −Xν+ν′∂µ+µ′)

]
< i+ j.

So, we may write
ab = h+ u with degvw(u) < i+ j.

By Lemma 8.3 (a) it thus suffices to show that degvw(h) = i+ j. As

h =
∑

(ν,µ)∈supp(a) and (ν′,µ′)∈supp(b)

c(a)
ν,µc

(b)
ν′,µ′X

ν+ν′∂µ+µ′ ∈
⊕

(ν,µ)∈Ivw=i+j

KXν∂µ

It suffices to show that h 6= 0. To do so, we consider the two polynomials

f :=
∑

(ν,µ)∈supp(a)

c(a)
ν,µY

νZµ ∈ Pvwi , g :=
∑

(ν′,µ′)∈supp(b)

c
(b)
ν′,µ′Y

ν′Zµ′ ∈ Pvwj .

As supp(a) and supp(b) are non-empty, and all coefficients of f and g are non-zero. As P
is an integral domain, it follows that fg 6= 0. We set

h∗ := (h+ Wvw
i+j−1) =

∑
(ν,µ)∈supp(a) and (ν′,µ′)∈supp(b)

c(a)
ν,µc

(b)
ν′,µ′

(
Xν+ν′∂µ+µ′

)∗ ∈ Gvw
i+j.

Applying the isomorphism ηvw : P = Pvw
∼=−→ Gvw of Theorem 9.4, we now get

0 6= ηvw(fg) = ηvw
([ ∑

(ν,µ)∈supp(a)

c(a)
ν,µY

νZµ
][ ∑

(ν′,µ′)∈supp(b)

c
(b)
ν′,µ′Y

ν′Zµ′
])

=

=
∑

(ν,µ)∈supp(a) and (ν′,µ′)∈supp(b)

c(a)
ν,µc

(b)
ν′,µ′

(
Xν+ν′∂µ+µ′

)∗
= h∗.

But this clearly implies that h 6= 0. �

9.6. Corollary. (Integrity of Standard Weyl Algebras) The standard Weyl algebra
W is an integral ring: If d, e ∈W \ {0}, then de 6= 0.

Proof. Apply Theorem 9.4. �

9.7. Exercise. (A) We fix a weight (v, w) ∈ Nn
0 ×Nn

0 and set Γv,w := {v · ν+w ·µ | ν, µ ∈
Nn

0}. Prove the following statements

(a) 0 ∈ Γvw ⊆ N0.
(b) If i, j ∈ Γvw, then i+ j ∈ Γvw.
(c) Gvw

i 6= 0⇔ Pvwi 6= 0⇔ i ∈ Γvw.
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Γv,w is called the degree semigroup associated to the weight (v, w).

(B) Let n = 1, v = (p) and w = (q), where p, q ∈ N are two distinct prime numbers.
Determine Γv,w and the standard bases of all K-vector spaces

Pvwi and Gvw
i for i ∈ Γvw,

at least for some specified pairs like (p, q) = (2, 3), (2, 5), (5, 7), . . .
(C) Show, that the ring EndK

(
K[X1, X2, . . . , Xn]

)
is not integral.

10. Filtered Modules

10.1. Definition and Remark. (A) Let K be a field and let A = (A,A•) be a filtered
K algebra. Let U be a left-module over A. By a filtration of U compatible with A• or just
an A•-filtration of U we mean a family U• = (Ui)i∈Z such that the following conditions
hold:

(a) Each Ui is a K-vector subspace of U ;
(b) Ui ⊆ Ui+1 for all i ∈ Z;
(c) U =

⋃
i∈Z Ui;

(d) AiUj :=
∑

(f,u)∈Ai×Uj Kfu ⊆ Ui+j for all i ∈ N0 and all j ∈ Z.

If an A•-filtration U• of U is given, we say that (U,U•) or – by abuse of language – that
U is a A• filtered A- module or just that U is a filtered A-module.

(B) Keep the notations and hypotheses of part (A) and let U• = (Ui)i∈Z be a filtered
A-module. Observe that

For all i ∈ Z the K-vector space Ui is a leftA0-submodule of U.

(C) We say that two A•-filtrations U
(1)
• , U

(2)
• are equivalent if there is some r ∈ N0 such

that

(a) U
(1)
i−r ⊆ U

(2)
i ⊆ U

(1)
i+r for all i ∈ Z.

Later, we shall use the following observation.

Assume that the above condition (a) holds, let i ∈ N and let a ∈ Ai. Then we have the
following statements, whose prove is left as an exercise to the reader (see [6] if necessary).

(b) aU
(1)
j ⊆ U

(1)
j+i−1 for all j ∈ Z ⇒ akU

(1)
j ⊆ U

(1)
j+k(i−1) for all j ∈ Z and all k ∈ N0.

(c) aU
(1)
j ⊆ U

(1)
j+i−1 for all j ∈ Z ⇒ a2r+1U

(2)
j ⊆ U

(2)
j+(2r+1)i−1 for all j ∈ Z.

10.2. Remark and Definition. (A) Let K be a field and let A = (A,A•) be a filtered K-
algebra and let U = (U,U•) be an A•-filtered A-module. We consider the corresponding
associated graded ring

Gr(A) = GrA•(A) =
⊕
i∈N0

GrA•(A)i,
(
GrA•(A)i := Ai/Ai−1

)
.

and the K-vector space

Gr(U) = GrU•(U) =
⊕
i∈Z

Gr(U)i,
(
Gr(U)i := Ui/Ui−1

)
.
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(B) Let i ∈ N0, let j ∈ Z let f, f ′ ∈ Ai and let g, g′ ∈ Uj such that h := f − f ′ ∈
Ai−1 and k := g − g′ ∈ Uj−1. It follows that fg − f ′g′ − fk − hg − hk ⊆ Ui+j−1. So in
Ui+j/Ui+j−1 = GrU•(U)i+j ⊂ GrU•(U) we get the relation fg + Ui+j−1 = f ′g′ + Ui+j−1.
This allows to define a GrA•(A)-scalar multiplication on the K-space GrU•(U) which is
induced by

(f + Ai−1)(g + Uj−1) := fg + Ui+j−1

(
i ∈ N0, j ∈ Z, f ∈ Ai, g ∈ Uj

)
.

(C) Keep the above notations and hypotheses. With respect to our scalar multiplication
on GrU•(U) we have the relations

GrA•(A)iGrU•(U)j ⊆ GrU•(U)i+j for all i, j ∈ Z.

So, the K-vector space GrU•(U) is turned into a graded GrA•(A)-module

GrU•(U) =
(
GrU•(U), (GrU•(U)i)i∈Z

)
=
⊕
i∈Z

GrU•(U)i

by means of the above multiplication. We call this GrA•(A)-module GrU•(U) the associated
graded module of U with respect to the filtration U•. From now on, we always furnish
GrU•(U) with this structure of graded GrA•(A)-module.

10.3. Definition. Let K be a field and let A = (A,A•) be a filtered K-algebra. Assume
that the filtration A• is commutative. Moreover, let U = (U,U•) be an A•-filtered A-
module and consider the corresponding associated graded module Gr(U) = GrU•(U).
Finally, consider the annihilator ideal

AnnGrA• (A)

(
GrU•(U)

)
:= {f ∈ GrA•(A) | fGrU•(U) = 0}

of the GrA•(A)-module GrU•(U). We define the characteristic variety VU•(U) of the A•-
filtered A-module U = (U,U•) as the prime variety of the annihilator ideal of GrU•(U),
hence

VU•(U) := Var
(
AnnGrA• (A)(GrU•(U))

)
⊆ Spec(GrA•(A)).

We also call this variety the characteristic variety of the left A-module U with respect to
the A• filtration U• or just the characteristic variety of U with respect to U•.

10.4. Proposition. (Equality of Characteristic Varieties for Equivalent Fil-
trations) Let K be a field and let A = (A,A•) be a filtered K-algebra. Assume that the
filtration A• is commutative. Let U be an A-module which is endowed with two equivalent

A•-filtrations U
(1)
• and U

(2)
• . Then

V
U

(1)
•

(U) = V
U

(2)
•

(U).

Proof. We have to show that√
AnnGrA• (A)

(
Gr

U
(1)
•

(U)
)

=
√

AnnGrA• (A)

(
Gr

U
(2)
•

(U)
)
.

By symmetry, and in view of the fact that the formation of radicals of ideals is idempotent,
it suffices even to show that

AnnGrA• (A)

(
Gr

U
(1)
•

(U)
)
⊆
√

AnnGrA• (A)

(
Gr

U
(2)
•

(U)
)
.
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As Gr
U

(1)
•

(U) is a graded GrA•(A)-module, its annihilator is a graded ideal of GrA•(A).

So, it finally is enough to show, that

a ∈
√

AnnGrA• (A)

(
Gr

U
(2)
•

(U)
)

for all i ∈ N0 and all a ∈ AnnGrA• (A)

(
Gr

U
(1)
•

(U)
)
i
.

So, fix some i ∈ N0 and some a ∈ AnnGrA• (A)

(
Gr

U
(1)
•

(U)
)
i
⊆ GrA•(A)i = Ai/Ai−1. We

chose some a ∈ Ai with a = a + Ai−1 ∈ Ai/Ai−1.. For all j ∈ Z we have in GrU•(U) the
relation

aU
(1)
j + U

(1)
j+i−1 = (a+ Ai−1)(U

(1)
j /U

(1)
j−1) = a(U

(1)
j /U

(1)
j−1) = aGrU•(U)j = 0,

and hence aU
(1)
j ⊆ U

(1)
j+i−1 for all j ∈ Z. According to our hypotheses we find some r ∈ N0

such that U
(1)
k−r ⊆ U

(2)
k ⊆ U

(1)
k+r for all k ∈ Z. Thus, by Definition and Remark 10.1 (C)(c)

we therefore have

a2r+1U
(2)
j ⊆ U

(2)
j+(2r+1)i−1 for all j ∈ Z.

So, for all j ∈ Z we get in U
(2)
j+(2r+1)i/U

(2)
j+(2r+1)i−1 = GrU•(U)j+(2r+1)i the relation:

a2r+1GrU•(U)j = (a2r+1 + A(2r+1)i−1)(U
(2)
j /U

(2)
j−1) ⊆ a2r+1U

(2)
j + U

(2)
j+(2r+1)i−1 = 0.

This shows that a2r+1 ∈ AnnGrA• (A)

(
Gr

U
(2)
•

(U)
)
, whence a ∈

√
AnnGrA• (A)

(
Gr

U
(2)
•

(U)
)
.

�

The previous result allows us to define in an intrinsic way the notion of characteristic
variety of a finitely generated (left-) module over a (commutatively) filtered ring A. We
work this out in the following combined exercise and definition.

10.5. Exercise and Definition. (A) Let (A,A•) be a filtered K-algebra and let U be a
(left) module over A. Let V ⊆ U be a K-subspace such that U = AV. Prove the following
claims:

(a) AiV = 0 for all i < 0.
(b) The family A•V :=

(
AiV

)
i∈Z is an A•-filtration of U .

The above filtration A•V is called the A•-filtration of U induced by the subspace V .

(B) Let the notations and hypotheses be as above and assume in addition that s :=
dimK(V ) <∞. Prove that

(a) U is finitely generated an an A-module;
(b) AiV is a finitely generated (left-) module over A0.
(c) The graded GrA•(A)-module GrA•V (U) is generated by finitely many elements

g1, g2, . . . , gs ∈ GrA•V (U)0.

Keep in mind that we can always find a vector space V ⊆ U of finite dimension with
AV = U if the A-module U is finitely generated.

(C) Let the notations and hypotheses be as above. Let V (1), V (2) ⊆ U be two K-
subspaces such that AV (1) = AV (2) = U and dimK(V (1)), dimK(V (2)) <∞. Prove that

(a) The two induced A•-filtrations A•V
(1) and A•V

(2) are equivalent.
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(b) If the filtration A• is commutative, it holds

VA•V (1)(U) = VA•V (2)(U).

(D) Keep the above notations and hypotheses. Assume that the filtration A• is com-
mutative and that the (left) A-module U is finitely generated. By what we have learned
by the previous considerations, we find a K-subspace V ⊆ U of finite dimension such
that AV = U , and the characteristic variety VA•V (U) of U with respect to the induced
filtration A•V is independent of the choice of V . So, we may just write

VA•(U) := VA•V (U),

and we call VA•(U) the characteristic variety of U with respect to the (commutative !)
filtration A• of A. This is the announced notion of intrinsic characteristic variety.

(E) Keep the above notations. Assume that the filtration A• is of finite type (see
Definition and Remark 3.3 (C)) and that the (left) A-module U is finitely generated. The
A• filtration U• of U is said to be of finite type if

(a) Ui = 0 for all i� 0;
(b) There is an integer σ such that Uj is finitely generated as a (left) A0-module for

all j ≤ σ and
(c) Ui =

∑
j≤σ AjUi−j for all i > σ.

In this situation σ is again called a generating degree of the A•-filtration U• (compare
Definition and Remark 3.3 (C)). In this situation, we also may chose a K-subspace V ⊆
U such that dimK(V ) < ∞ and A0V = Uσ. For this choice of V one now can say:
U = AV and the filtrations U• and A•V are equivalent. As a consequence it follows by
Proposition 10.4 and the observations made in part (D), that

VU•(U) = VA•(U) for each A•-filtration U• which is of finite type.

11. D-Modules

11.1. Convention. (A) As in section 9, we fix a positive integer n, a field K of character-
istic 0 and the standard Weyl algebra W := W(K,n) = K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n],
together with the polynomial ring P := K[Y1, Y2, . . . , Yn;Z1, Z2, . . . , Zn].

(B) Let (v, w) ∈ Nn
0 ×Nn

0 be a weight. We consider the induced weighted filtration Wvw
•

and also the corresponding associated graded ring Gvw (see Definition and Remark 9.2
(A)).

(C) Moreover, we shall consider the polynomial ring P = Pvw =
⊕

i∈N0
Pvwi . furnished

with the grading induced by our given weight (v, w) (see Exercise and Definition 9.3 (B)),

as well as the canonical isomorphism of graded rings (see Theorem 9.4) ηvw : P = Pvw
∼=−→

Gvw.

11.2. Definition and Remark. (A) By a D-module we mean a finitely generated left
module over the standard Weyl algebra W.
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(B) Let U be a D-module. If U• is a Wvw
• -filtration of U , we may again introduce

the corresponding associated graded module GrU•(U) of U with respect to the filtra-
tion U• (see Definition 10.3). which is indeed a graded module over the associated
graded ring Gvw and hence a graded Pvw-module by means of the canonical isomorphism

ηvw : P = Pvw
∼=−→ Gvw.

(C) Keep the notations and hypotheses of part (B). Then, we may again consider the
characteristic variety of U with respect to the filtration U•, but under the previous view,
that GrU•(U) is a graded module over the graded polynomial ring P = Pvw. So, we define
this characteristic variety by

VU•(U) := Var
(
AnnPvw(GrU•(U))

)
= Var

(
(ηvw)−1

[
AnnGvw(GrU•(U))

])
⊆ Spec(P).

Observe in particular, that the ideal

AnnPvw
(
GrU•(U)

)
= (ηvw)−1

[
AnnGvw

(
GrU•(U)

)]
⊆ Pvw

is graded.
(D) Finally, as U is finitely generated, we may again chose a finite dimensional K-

subspace V ⊆ U such that WV = U , and then consider the induced filtration Wvw
• V of

U and the corresponding intrinsic characteristic variety (see Exercise and Definition 10.5
(D)) of U with respect to the weight (v, w), hence:

Vvw(U) := VWvw
•

(U) = VWvw
• V (U).

11.3. Example. (A) Keep the above notations and let

d :=
∑

(ν,µ)∈supp(d)

c(d)
νµX

ν∂µ ∈W \ {0} and δ := degvw(d),

with c
(d)
νµ ∈ K \ {0} for all (ν, µ) ∈ supp(d). We also consider the so-called leading

differential form of d with respect to the weight (v, w), which is given by

hvw :=
∑

(ν,µ)∈supp(d):v·ν+w·µ=δ

c(d)
νµX

ν∂µ ∈W \ {0}.

Moreover, we introduce the polynomial

f vw :=
∑

(ν,µ)∈supp(d):v·ν+w·µ=δ

c(d)
νµY

νZµ ∈ P \ {0}.

Now, consider the cyclic left W-module U := W/Wd, furnished with the filtration

U• := Wvw
• K(1 + Wd/Wd) =

(
Ui := (Wvw

i + Wd/Wd)
)
i∈Z.

(B) Keep the above notations and hypotheses. Observe first, that for all i ∈ Z we
may write Ui/Ui−1 = Wvw

i /Wvw
i−1 + Wd∩Wvw

i . By the additivity of weighted degrees (see
Corollary 9.5) we have Wd ∩Wvw

i = Wvw
i−δd for all i ∈ Z. So, we obtain

GrU•(U)i = Ui/Ui−1 = Wvw
i /
(
Wvw

i−1 + Wvw
i−δd

)
for all i ∈ N0.
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Consequently, there is a surjective homomorphism of graded Gvw-modules

π : Gvw =
⊕
i∈Z

Wvw
i /Wvw

i−1 � GrU•(U) =
⊕
i∈Z

Wvw
i /
(
Wvw

i−1 + Wvw
i−δd

)
.

If we set h
vw

:= hvw + Wvw
δ−1 ∈Wvw

δ /Wvw
δ−1 = Gvw

δ it follows that

AnnGvw
(
GrU•(U)

)
= Ker(π) =

⊕
i∈Z

(
Wvw

i−1 + Wvw
i−δd

)
/Wvw

i−1 =

=
⊕
i∈Z

(
Wvw

i−1 + Wvw
i−δh

vw
)
/Wvw

i−1 = Gvwh
vw
.

Consequently we get GrU•(U) ∼= Gvw/Gvwh
vw
. As ηvw(f vw) = h

vw
and if we consider

GrU•(U) as a graded Pvw-module by means of ηvw, we thus may write GrU•(U) ∼=
Pvw/Pvwf vw and AnnP

(
GrU•(U)

)
= Pf vw. In particular we obtain:

VU•(U) = Vvw(U) = Vvw
(
W/Wd

)
= Var(Pf vw) ⊆ Spec(P).

11.4. Exercise. (A) Let n = 1, K = R and let d := X4
1 + ∂2

1 −X2
1∂

2
1 . Determine the two

characteristic varieties

Vvw(W/Wd) for (v, w) = (1, 1) and (v, w) = (0, 1).

(B) To make more apparent what you have done in part (A), determine and sketch the
real traces

Vvw
R (W/Wd) := {(y, z) ∈ R2 | (Y1 − y, Z1 − z)K[Y1, Z1] ∈ Vvw(W/Wd)}

for (v, w) = (1, 1) and (v, w) = (0, 1). Comment your findings.

Now, we will show that standard Weyl algebras are left Noetherian. We begin with the
following preparation.

11.5. Definition and Remark. (A) Let I ⊆W be a left ideal. We consider the following
K-subspace of Gvw:

Gvw(I) :=
⊕
i∈N0

(
I ∩Wvw

i + Wvw
i−1

)
/Wvw

i−1 ⊆
⊕
i∈N0

Wvw
i /Wvw

i−1 = Gvw.

It is immediate to see, that Gvw(I) ⊆ Gvw is a graded ideal. We call this ideal the graded
ideal induced by I in Gvw.

(B) Let the notations and hypotheses as in part (A). It is straight forward to see, that
the family

Ivw• :=
(
I ∩Wvw

i

)
i∈Z

is a filtration of the (left) W-module I, which we call the filtration induced by Wvw
• .

Observe, that for all i ∈ Z we have a canonical isomorphism of K-vector spaces

Gvw(I)i :=
(
I ∩Wvw

i + Wvw
i−1

)
/Wvw

i−1
∼= I ∩Wvw

i /I ∩Wvw
i−1 = Ivwi /Ivwi−1 = GrIvw• (I)i.
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It is easy to see, that these isomorphisms of K-vector spaces actually give rise to an
isomorphism of graded Gvw-modules

Gvw(I) :=
⊕
i∈Z

(
I ∩Wvw

i + Wvw
i−1

)
/Wvw

i−1
∼=
⊕
i∈Z

Ivwi /Ivwi−1 = GrIvw• (I).

So, by means of this canonical isomorphism we may identify Gvw(I) = GrIvw• (I).

11.6. Lemma. Let I, J ⊆W be two left ideals with I ⊆ J . Then we have

(a) Gvw(I) ⊆ Gvw(J).
(b) If Gvw(I) = Gvw(J), then I = J .

Proof. (a): This is immediate by Definition and Remark 11.5 (A).

(b): Assume that I ( J . Then, there is a least integer i ∈ N0 such that Ivwi = I∩Wvw
i (

Jvwi = J∩Wvw
i .As Ivwi−1 = Jvwi−1 it follows that Gvw(I)i = Ivwi /Ivwi−1 is not isomorphic to Ivwi /Ivwi−1 =

Gvw(J)i, so that indeed Gvw(I) 6= Gvw(J). �

11.7. Theorem. (Noetherianness of Weyl Algebras) The Weyl algebra W is left
Noetherian.

Proof. : This is immediate by Lemma 11.6 as Gvw ∼= Pvw = P is Noetherian. �

11.8. Corollary. (Finite Presentability of D-Modules) Each D-module U admits a
finite presentation

Ws −→Wr −→ U −→ 0.

Proof. This follows immediately by Theorem 11.7. �

11.9. Example. (A) Consider the polynomial ring U := K[X1, X2, . . . , Xn]. As W ⊆
EndK(U), this polynomial ring can be viewed in a canonical way as a left module over
W, the scalar multiplication being given by d · f := d(f) for all d ∈W and all f ∈ U. As
f ·1 = f for all f ∈ U it follows that U = W1U . So, the W-module U := K[X1, X2, . . . , Xn]
is generated by a single element, and hence in particular is a D-module.

(B) Keep the previous notations and hypotheses. Observe that
n∑
i=1

W∂i =
⊕

ν,µ∈Nn0 :µ6=0

KXν∂µ and hence W = U ⊕
n∑
i=1

W∂i.

We thus have an exact sequence of K-vector spaces

0 −→
n∑
i=1

W∂i −→W π−→ U −→ 0,

in which W π−→ U is the canonical projection map given by

π
(
Xν∂µ

)
=

{
Xν , if µ = 0,

0, if µ 6= 0.

Our aim is to show:

W π−→ U is a homomorphism of left W-modules.
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To do so, it suffices to show that for all ν, µ, ν ′, µ′ ∈ Nn
0 it holds

π(dd′) = dπ(d′), where d := Xν∂µ and d′ := Xν′∂µ
′
.

If µ = µ′ = 0, we have

π(dd′) = π
(
XνXν′

)
= π

(
Xν+ν′

)
= Xν+ν′ = XνXν′ = Xνπ

(
Xν′
)

= dπ(d′).

If µ = 0 and µ′ 6= 0 we have

π(dd′) = π
(
XνXν′∂µ

′)
= π

(
Xν+ν′∂µ

′)
= 0 = Xνπ

(
Xν′∂µ

′)
= dπ(d′).

So, let µ 6= 0. By the Product Formula of Proposition 6.2 we have

dd′ = Xν∂µXν′∂µ
′
= Xν+ν′∂µ+µ′ + s,

with

s :=
∑

k∈Nn0 :0<k≤µ,ν′
λkX

ν+ν′−k∂ν+ν′−k and λk =
( n∏
i=1

(
µi
ki

))( n∏
i=1

ki−1∏
p=0

(ν ′i − p)
)
.

Assume first, that µ′ 6= 0. Then we have

π
(
Xν+ν′∂µ+µ′

)
= 0 and π

(
Xν+ν′−k∂ν+ν′−k) = 0 for all k ∈ Nn

0 with 0 < k ≤ µ, ν ′.

It thus follows, that π(dd′) = 0 = d0 = dπ
(
Xν′∂µ

′)
= dπ(d′). So, finally let µ′ = 0. Then

dd′ = Xν+ν′∂µ
′
+ s, and

s =

{∏n
i=1

∏µi−1
p=0 (ν ′i − p)Xν+ν′−µ, if µ ≤ ν ′;

0, otherwise.

So, by what we have learned in Exercise 6.6 (B), we have s = Xν∂µ
(
Xν′
)
. As s is a

K-multiple of a monomial in the Xi’s we have π(s) = s. It thus follows

π(dd′) = π
(
Xν+ν′∂µ

′)
+ π(s) = s = Xν∂µ

(
Xν′
)

= Xν∂µXν′ = dπ(d′).

This proves, that π is indeed a homomorphism of left W-modules.

(C) Keep the previous notations and hypotheses. Then, according the above observa-
tions, we have an exact sequence of left W-modules

0 −→Wn h−→W π−→ U −→ 0,

in which h is given by

(d1, d2, . . . , dn) 7→ h(d1, d2, . . . , dn) =
n∑
i=1

di∂i.
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This sequence clearly constitutes a presentation of the left W-module U. and the corre-
sponding presentation matrix for U is the row

∂ :=


∂1

∂2

. . .
∂n

 ∈Wn×1.

11.10. Exercise. (A) We consider the polynomial ring U = K[X1, X2, . . . , Xn] canonically
as a D-module, as done in Example 11.9. Fix a weight (v, w) ∈ Nn

0 × Nn
0 . Consider the

K-suspace K ⊂ U , observe that WK = U and endow U with the induced filtration
U• := Wvw

• K. Show, that there is an isomorphism of graded P-modules

GrU•(U) = GrWvwK(U) ∼= U v =
⊕
i∈N0

U v
i , with U v

i :=
∑
v·ν=i

KXν for all i ∈ N0.

Determine the characteristic variety Vvw(U) ⊆ Spec(P).
(B) Keep the notations and hypotheses of part (A). Show, the left W-module U is

simple.

11.11. Remark and Definition. (A) We furnish the polynomial ring K[X1, X2, . . . , Xn]
with its canonical structure of D-module (see Example 11.9). We now consider a ring O
with the following properties

(1) O is commutative;
(2) O is a left W-module;
(3) K[X1, X2, . . . , Xn] ⊆ O is a left submodule.

In this situation, we call O a ring of C∞-functions (or a ring of smooth functions) in
X1, X2, . . . , Xn over K.
The idea covered by this concept is that for all d ∈W and all f ∈ O the product df ∈ O
should be viewed as the result of the application of the differential operator d to the
function f . Therefore, one often writes

d(f) := df for all d ∈W and all f ∈ O.
(B) Let the notations and hypotheses be as in part (A). By a system of polynomial

differential equations in O we mean a system of equations

d11(f1) + d12(f2) + . . .+ d1r(fr) = 0

d21(f1) + d22(f2) + . . .+ d2r(fr) = 0

. . . . . . . . . . . . . . . . . .

ds1(f1) + ds2(f2) + . . .+ dsr(fr) = 0

with r, s ∈ N such that dij ∈W and fj ∈ O for all i, j ∈ N with i ≤ s and j ≤ r.
The above system of differential equations can be understood as a linear system of equa-
tions over the ring O. We namely may consider the matrix

D :=


d11 d12 . . . d1r

d21 d22 . . . d2r

. . . . . . . . . . . .
ds1 ds2 . . . dsr

 ∈Ws×r.
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Then, the above system may be written in matrix form as

D


f1

f2

·
fr

 =


0
0
·
0

 .

We call D the matrix of differential operators associated to our system of differential
equations. So, systems of differential equations correspond to matrices with entries in a
standard Weyl algebra.

(C) Keep the previous notations and hypotheses, then the matrix of differential opera-
tors D ∈Ws×r gives rise to an exact sequence of left W-modules

0 −→Ws hD−→Wr πD−→ UD −→ 0
(
(a1, a2, . . . , as)

hD7→ (a1, a2, . . . , as)D
)
.

In particular UD is a D-module and the previous sequence is a finite presentation of
UD. We call this presentation the presentation induced by the matrix D and we call UD
the D-module defined by the matrix D – or the D-module associated with our system
of differential equations. So, each system of differential equations defines a D-module.
Obviously, one is particularly interested in the solution space of our system of differential
equations, hence in the space

SD(O) := {(f1, f2, . . . , fr) ∈ Or | D


f1

f2

·
fr

 =


0
0
·
0

}.
Observe, that S(D) is a K-subspace of Or.

11.12. Proposition. Let r, s ∈ N, let

D =


d11 d12 . . . d1r

d21 d22 . . . d2r

. . . . . . . . . . . .
ds1 ds2 . . . dsr

 ∈Ws×r

be a matrix of differential operators, consider the induced presentation

0 −→Ws h=hD−→ Wr π=πD−→ UD −→ 0

and the corresponding solution space SD(O). For all i = 1, 2, . . . , r let ei := (δi,j)
r
j=1 ∈Wr

be the i-th canonical basis element. Then, there is an isomorphism

εD : HomW
(
UD,O

) ∼=−→ SD(O),

given by

m 7→ εD(m) :=
(
m(π(e1)),m(π(e2)), . . . ,m(π(er))

)
for all m ∈ HomW

(
UD,O

)
.

Proof. Observe, that there is indeed a K-linear map

ε := εD : HomW
(
UD,O

)
−→ Or,m 7→ εD(m) :=

(
m(π(e1)),m(π(e2)), . . . ,m(π(er))

)
.
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If ε(m) = 0, then m(π(ei)) = 0 for all i = 1, 2, . . . , r. As π is surjective, the elements
π(ei) (i = 1, 2, . . . , r) generate the left W-module U = UD. So, it follows that m = 0
and this proves, that the map ε is injective. It remains to show that ε

(
HomW

(
UD,O

))
=

SD(O) =: S(O). Do do so, let bj := (δj,k)
s
k=1 ∈ Ws (j = 1, 2, . . . , s) be the canonical

basis elements of Ws. First, let m ∈ HomW
(
UD,O

)
. We aim to show, that ε(m) ∈ SD(O).

We have to check that the column
g1

g2

·
gs

 := D


m(e1)
m(e2)
·

m(er)


vanishes. For each i = 1, 2, . . . , s we can write

∑r
j=1 dijej = biD = h(bi), and hence get

indeed

gi =
r∑
j=1

dijm(π(ej)) = m
( r∑
j=1

dijπ(ej)
)

= m
(
π(

r∑
j=1

dijej)
)

= m
(
π(h(bi))

)
= m(0) = 0.

Conversely, let (f1, f2, . . . , fr) ∈ S(O), so that
∑r

i=1 dijfj = 0. We aim to show that
(f1, f2, . . . , fr) ∈ ε

(
HomW(U,O)

)
.

To this end, we consider the homomorphism of left W-modules

k : Wr −→ O, given by (u1, u2, . . . , ur) 7→
r∑
j−1

ujfj.

Observe that k(h(bi)) = k(biD) = k(di1, di2, . . . , dir) =
∑r

j=1 dijfj = 0 for all i =
1, 2, . . . , s. It follows that k ◦ h = 0. Therefore k induces a homomorphism of left W-
modules m : U −→ O, such that m ◦ π = k. It follows that m(π(ej)) = k(ej) = fj for all
j = 1, 2, . . . , r. But this means that (f1, f2, . . . , fr) = ε(m) ∈ ε

(
HomW(U,O)

)
. �

11.13. Exercise. (A) Let n = 1, K = R and let O := C∞(R) be set of smooth functions on
R. Fix d ∈W = W(R, 1) = R[X, ∂] and consider the matrix D = (d) ∈W1×1. Determine
UD,SD(O) and Vv,w(UD) for all weights (v, w) = (v, w) ∈ N0 × N0 \ {(0, 0)} and for

d = ∂1, d = ∂2 − 1, d = ∂2 − 1, d = ∂ − x2 and d = ∂2 + c∂ − b with c, b ∈ R \ {0}.

(B) Let n,m ∈ N, O := K[X1, X2, . . . , Xn] and consider the matrix

D :=


∂m1
∂m2
·
∂mn

 ∈Wn×1.

Determine UD,SD(O) and V11(UD).
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12. Gröbner Bases

In this section, we introduce and treat Gröbner bases of left ideals in standard Weyl
algebras with respect to so-called admissible orderings of the set of elementary differential
operators. Indeed a great deal of what we shall present in the sequel could also be deduced
from the theory of Gröbner bases in commutative polynomial rings. Nevertheless, we
prefer to introduce the subject in a self contained way for Weyl algebras. As for Gröbner
bases in polynomial rings and their applications, there are is a number of sources, for
example [1], [11], [12], [13], [14], [17] and [20].
The main goal of the present section is to prove that left ideals in Weyl algebras admit
so-called universal Gröbner bases. This existence result can actually be proved in the
more general setting of admissible algebras. Readers, who are interested in this, should
consult for example Boldini’s thesis [3] or else [18], [19] or [21].

12.1. Convention. (A) As previously, we fix a positive integer n, a field K of charac-
teristic 0 and consider the standard Weyl algebra W := K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n]
and the polynomial ring P := K[Y1, Y2, . . . , Yn;Z1, Z2, . . . , Zn] in the indeterminates
Y1, Y2, . . . , Yn;Z1, Z2, . . . , Zn over K.

(B) In addition, we fix the isomorphism of K-vector spaces

Φ : W
∼=−→ P given by Xν∂µ 7→ Y νZµ for all all ν, µ ∈ Nn

0

and the sets:

E := {Xν∂µ | ν, µ ∈ Nn
0} and M := {Y νZµ | ν, µ ∈ Nn

0} = Φ(E).

12.2. Definition, Reminder and Exercise. (A) (Total Orderings) Let S be any set. A
total ordering of S is a binary relation ≤ on S such that for all a, b, c ∈ S the following
requirements are satisfied:

(a) (Reflexivity) a ≤ a.
(b) (Antisymmetry) If a ≤ b and b ≤ a, then a = b.
(c) (Transitivity) If a ≤ b and b ≤ c, then a ≤ c.
(b) (Totality) Either a ≤ b or b ≤ a.

We write TO(S) for the set of total orderings on S. If ≤∈ TO(S) and a, b ∈ S, we write

a < b if a ≤ b and a 6= b, b ≥ a if a ≤ b, b < a if a < b.

(B) (Well Orderings) Keep the above notations and hypotheses. A total ordering
≤∈ TO(S) is said to be a well ordering of S, if it satisfies the following additional
requirement:

(e) (Existence of Least Elements) For each non-empty subset T ⊆ S there is an
element (clearly unique) t := min≤(T ) ∈ T such that t ≤ t′ for all t′ ∈ T – called
least element or the minimum of T with respect to ≤ .

We write WO(S) for the set of all well orderings of S.
(C) (Admissible Orderings) A total ordering ≤∈ TO(E) of the set of all elementary

differential operators is called an admissible ordering of E if it satisfies the following
requirements:
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(a) (Foundedness) 1 ≤ Xν∂µ for all ν, µ ∈ Nn
0

(b) (Compatibility) For all λ, λ′, κ, κ′, ν, µ ∈ Nn
0 we have the implication:

If Xλ∂κ ≤ Xλ′∂κ
′
, then Xλ+ν∂κ+µ ≤ Xλ′+ν∂κ

′+µ.

We write AO(E) for the set of all admissible orderings of E. Prove the following facts:

(c) If ν, ν ′, µ, µ′, λ, λ′, κ, κ′,∈ Nn
0 with Xν∂µ ≤ Xν′∂µ

′
and Xλ∂κ < Xλ′∂κ

′
, then

Xλ+ν∂κ+µ < Xλ′+ν′∂κ
′+µ′ .

(d) AO(E) ⊆WO(E).

(D) (Leading Elementary Differential Operators and Related Concepts) Keep the above
notations and hypotheses. If ≤∈ AO(E) and d ∈W\{0}, we define the leading elementary
differential operator of d with respect to ≤ by:

LE≤(d) := max
≤

supp(d), so that LE≤(d) ∈ supp(d) and e ≤ LE≤(d) for all e ∈ supp(d).

Moreover, we define the leading coefficient LC≤(d) of d with respect to ≤ as the coeffi-
cient of d with respect to LE≤(d) and – correspondingly the leading differential operator
LD≤(d) of d with respect to ≤ . Hence:

(a) LC≤(d) ∈ K \ {0} with LE≤(d− LC≤(d)LE≤(d)
)
< LE≤(d).

(b) LD≤(d) = LC≤(d)LE≤(d).
(c) LE≤

(
d− LD≤(d)

)
< LE≤(d).

Finally, we define the leading monomial and the leading term of d with respect to ≤
respectively by

LM≤(d) := Φ
(
LE≤(d)

)
and LT≤(d) := Φ

(
LD≤(d)

)
= LC≤(d)LM≤(d).

Prove the following statements:

(d) If d, e ∈ W \ {0}, with d 6= −e, then LE≤(d + e) ≤ max≤{LE≤(d),LE≤(e)}, with
equality if and only if LD≤(d) 6= −LD≤(e).

12.3. Examples and Exercises. (A) (Well Orderings) Keep the above notations and
hypotheses. Prove the following statements:

(a) Let ϕ : N0 −→ Nn
0 × Nn

0 be a bijective map. Show that the binary relation ≤ϕ
defined on on E by Xν∂µ ≤ϕ Xν′∂µ

′ ⇔ ϕ−1(ν, µ) ≤ ϕ−1(ν, µ) (∀ν, µ, ν ′, µ′ ∈ Nn
0 )

is a well ordering.
(b) Show that in the notations of exercise (a) the well ordering ≤ϕ is discrete, which

means that the set {e ∈ E | e ≤ϕ d} is finite for all d ∈ E.
(c) Show, that there uncountably many discrete well orderings of E.
(d) Let n = 1, set X1 =: X, ∂1 =: ∂ and define the binary relation ≤ on the set of

elementary differential operators E = {Xν∂µ | ν, µ ∈ N0} by

Xν∂µ ≤ Xν′∂µ
′

if either

{
ν < ν ′ or else

ν = ν ′ and µ < µ′

for all ν, µ ∈ N0. Show, that ≤ is a non-discrete well ordering of E.

(B) (Admissible Orderings) Keep the above notations and hypotheses.
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(a) We define the binary relation ≤lex⊆ E×E by setting (again for all ν, µ, ν ′, µ′ ∈ Nn
0 ):

Xν∂µ ≤lex X
ν′∂µ

′
if either

(1) ν = ν ′ and µ = µ′, or

(2) ν = ν ′ and ∃j ∈ {1, 2, . . . , n} :
[
µj < µ′j and µk = µ′k, ∀k < j

]
, or else

(3) ∃i ∈ {1, 2, . . . , n} :
[
νi < ν ′i and νk = ν ′k,∀k < i

]
.

Prove that ≤lex∈ AO(E). The admissible ordering ≤lex is called the lexicographic
ordering of the set of elementary differential operators.

(b) Set n = 1, X1 =: X, ∂1 =: ∂ and write down the first 20 elementary differential
operators d ∈ E = {Xν∂µ | ν, µ ∈ N0} with respect to the ordering ≤lex.

(c) Solve the similar task as in exercise (b), but with n = 2 instead of n = 1 and with
30 instead of 20.

(d) We define another binary relation ≤deglex⊆ E× E by setting

d ≤deglex e if either

{
deg(d) < deg(e) or else

deg(d) = deg(e) and d ≤lex e.

Show, that ≤deglex∈ AO(E). This admissible ordering is called the degree-
lexicographic ordering of the set of elementary differential operators.

(e) Solve the previous exercises (b) and (c) but this time with the ordering ≤deglex.
(f) We introduce a further binary relation ≤degrevlex on E by: setting (ν, µ, ν ′, µ′ ∈ Nn

0 ):

Xν∂µ ≤degrevlex X
ν′∂µ

′
if either

(1) deg
(
Xν∂µ

)
< deg

(
Xν′∂µ

′)
, or else

(2) deg
(
Xν∂µ

)
= deg

(
Xν′∂µ

′)
and either

(i) ν = ν ′ and µ = µ′, or

(ii) µ = µ′ and ∃i ∈ {1, 2, . . . , n} :
[
νi > ν ′i and νk = ν ′k,∀k > i

]
, or else

(iii) ∃j ∈ {1, 2, . . . , n} :
[
µj > µ′j and µk = µ′k,∀k > j

]
.

Prove, that ≤degrevlex∈ AO(E). This admissible ordering is called the degree-
reverse-lexicographic ordering of the set of elementary differential operators.

(g) Solve the previous exercise (e) but with ≤degrevlex instead of ≤deglex.
(h) An admissible ordering of the set M = {Y νZµ | ν, µ ∈ Nn

0} of all monomials in P
is a total ordering ≤ of M which satisfies the requirements
(1) (Foundedness) 1 ≤ m for all m ∈M.
(2) (Compatibility) For all m,m′ and t ∈M we have the implication:

If m ≤ m′, then mt ≤ m′t.

For any ≤∈ AO(E) we define the binary relation ≤Φ on M by:

m ≤Φ m
′ ⇔ Φ−1(m) ≤ Φ−1(m′) for all m,m′ ∈M.

Prove, that ≤Φ∈ AO(M) and that there is indeed a bijection

•Φ : AO(E)
∼=−→ AO(M), given by ≤7→≤Φ .
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The names given in the previous exercises (a), (d) and (f) to the three admissible
orderings of E introduced in these exercises are ”inherited“ from the ”classical“
designations used in polynomial rings, via the above bijection.

(i) Prove, that ≤deglex and ≤degrevlex are both discrete in the sense of Exercise (A) (b),
where as ≤lex is not.

(C) (Leading Elementary Differential Operators and Related Concepts) Keep the previous
notations and hypotheses.

(a) Let n = 1, set X1 =: X, ∂1 =: ∂, Y1 =: Y and Z1 =: Z. Write down the lead-
ing elementary differential operator, the leading differential operator, the leading
coefficient, the leading monomial and the leading term of each of the following
differential operators, with respect to each of the admissible orderings ≤lex,≤deglex

and ≤degrevlex:
(1) 5X6 + 4X4∂ − 2X2∂3 +X∂4 − 3∂6.
(2) ∂4 − 4X∂3 + 6X2∂2 − 4X∂ +X4.
(3) ∂12 −X5∂7 +X7∂5 −X9∂3 +X12.

(b) Let n = 2 solve the task corresponding to exercise (a) above for the differential
operators
(1) X3

1X
2
2 + 2∂3

1∂
2
2 .

(2) X2
1X

3
2∂

2
1∂

3
2 − ∂4

1∂
6
2 .

(3) Xk
1 +Xk

2 + ∂k1 + ∂k2 with k ∈ N.

The next proposition will play a crucial role for our further considerations.

12.4. Proposition. (Multiplicativity of Leading Terms) Let ≤∈ AO(E) and let
d, e ∈W \ {0}. Then it holds

(a) LT≤(de) = LT≤(d)LT≤(e).
(b) LM≤(de) = LM≤(d)LM≤(e).

Proof. The product formula for elementary differential operators of Proposition 6.2 yields
that LE≤

(
Xν∂µXν′∂µ

′)
= Xν+ν′∂µ

′+µ′ for all ν, ν ′, µ, µ′ ∈ Nn
0 . We may write

d =
∑

(ν,µ)∈supp(d)

c(d)
νµX

ν∂µ and e =
∑

(ν′,µ′)∈supp(e)

c
(e)
ν′µ′X

ν′∂µ
′

with c
(d)
νµ , c

(e)
ν′µ′ ∈ K \ {0} for all (ν, µ) ∈ supp(d) and all (ν ′, µ′) ∈ supp(e). With appro-

priate pairs (ν(0), µ(0)) ∈ supp(d) and (ν ′(0), µ′(0)) ∈ supp(e) we also may write

LE≤(d) = Xν(0)∂µ
(0)

,LE≤(e) = Xν′(0)∂µ
′(0)
,LC≤(d) = c

(d)

ν(0)µ(0)
and LC≤(e) = c

(e)

ν′(0)µ′(0)
.
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Now, bearing in mind the previous observation on leading elementary differential operators
we may write

de =
∑

(ν,µ)∈supp(d),(ν′,µ′)∈supp(e)

c(d)
νµX

ν∂µc
(e)
ν′µ′X

ν′∂µ
′
=

=
∑

(ν,µ)∈supp(d),(ν′,µ′)∈supp(e)

c(d)
νµ c

(e)
ν′µ′X

ν∂µXν′∂µ
′
=

=
∑

(ν,µ)∈supp(d),(ν′,µ′)∈supp(e)

[
c(d)
νµ c

(e)
ν′µ′X

ν+ν′∂µ+µ′ + rνν′µµ′
]
,

with rνν′µµ′ ∈W, such that for all (ν, µ) ∈ supp(d) and all (ν ′, µ′) ∈ supp(e) it holds

LE≤(rνν′µµ′) < Xν+ν′∂µ+µ′ , whenever rνν′µµ′ 6= 0.

By Definition, Reminder and Exercise 12.2 (C)(c) we have

Xν+ν′∂µ+µ′ < Xν(0)+ν′(0)∂µ
(0)+µ′(0) , for all(

(ν, µ), (ν ′, µ′)
)
∈ supp(d)× supp(e) \ {

(
(ν(0), µ(0)), (ν ′(0), µ′(0))

)
}.

By Definition, Reminder and Exercise 12.2 (D)(d) it now follows easily that

LE≤(de) = Xν(0)+ν′(0)∂µ
(0)+µ′(0) and LC≤(de) = c

(d)

ν(0)µ(0)
c

(e)

ν′(0)µ′(0)
= LC≤(d)LC≤(e).

We thus obtain LM≤(de) = Φ
(
Xν(0)+ν′(0)∂µ

(0)+µ′(0)
)

= Y ν(0)+ν′(0)Zµ(0)+µ′(0) =

= Y ν(0)Zµ(0)Y ν′(0)Zµ′(0) = Φ
(
Xν(0)∂µ

(0))
Φ
(
Xν′(0)∂µ

′(0))
= Φ

(
LE≤(d)

)
Φ
(
LE≤(e)

)
=

= LM≤(d)LM≤(e). But now it follows immediately that LT≤(de) = LC≤(de)LM≤(de) =
= LC≤(d)LC≤(e)LM≤(d)LM≤(e) = LC≤(d)LM≤(d)LC≤(e)LM≤(e) = LT≤(d)LT≤(e). �

The next result may be understood as an extension of the classical division algorithms
of Euclid for uni-variate polynomials to the case of differential operators.

12.5. Proposition. (The Division Property) Let ≤∈ AO(E), let d ∈ W and let
F ⊂W be a finite set. Then, there is an element r ∈W and a family (qf )f∈F ∈WF such
that

(a) d =
∑

f∈F qff + r;

(b) Φ(s) /∈ PLM≤(f) for all f ∈ F \ {0} and all s ∈ supp(r).
(c) LE≤(qff) ≤ LE≤(d) for all f ∈ F with qff 6= 0.

Proof. We clearly may assume that F ⊂W\{0}. If d = 0, we choose r = 0 and qf = 0 for
all f ∈ F . Assume, that our claim is wrong, and let U ( W be the set of all differential
operators d ∈W which do not admit a presentation of the requested form. As ≤∈WO(E)
and U ⊂W \ {0}, we find some d ∈ U such that

LE≤(d) = min≤{LE≤(u) | u ∈ U}.
We distinguish the following two cases:

(1) There is some f ∈ F such that LM≤(d) ∈ PLM≤(f).
(2) f /∈

⋃
f∈F PLM≤(f).
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In the case (1) we find some e ∈ E such that LM≤(d) = Φ(e)LM≤(f) and so we can
introduce the element

d′ := d− LC≤(d)

LC≤(f)
ef ∈W.

If d′ = 0, we set

r = 0, qf :=
LC≤(d)

LC≤(f)
e, and qf ′ = 0 for all f ′ ∈ F \ {f}.

But then

d =
LC≤(d)

LC≤(f)
ef = qff + r

is a presentation of d with the requested properties. So, let d′ 6= 0. Observe, that by
Proposition 12.4 (a) we can write

LT≤
(LC≤(d)

LC≤(f)
ef
)

=
LC≤(d)

LC≤(f)
LT≤(ef) =

LC≤(d)

LC≤(f)
LT≤(e)LT≤(f) =

LC≤(d)LM≤(e)LM≤(f) = LC≤(d)Φ(e)LM≤(f) = LC≤(d)LM≤(d) = LT≤(d).

If follows that LD≤
(LC≤(d)

LC≤(f)
ef
)

= LD≤(d), and hence by Definition, Reminder and Exer-

cise 12.2 (D)(d) we obtain that LE≤(d′) < LE≤(d) = min≤{LE≤(u) | u ∈ U}. Therefore,
d′ /∈ U and so we find an element r′ ∈W and a family (q′f ′)f ′∈F ∈WF with

(a)′ d′ =
∑

f ′∈F q
′
f ′f
′ + r′;

(b)′ Φ(s′) /∈ PLM≤(f ′) for all f ′ ∈ F and all s′ ∈ supp(r′).
(c)′ LE≤(q′f ′f

′) ≤ LE≤(d′) for all f ′ ∈ F with q′f ′ 6= 0.

Now, we set

r := r′ and qf :=

{
q′f ′ if f ′ 6= f,

q′f +
LC≤(d)

LC≤(f)
e if f = f ′.

As

LE≤(q′f ) ≤ LE≤(d′) < LE≤(d) and LE≤
(LC≤(d)

LC≤(f)
e
)

= LE≤(e) ≤ LE≤(d),

we get

LE≤(qf ) = LE≤
(
q′f +

LC≤(d)

LC≤(f)
e
)
≤ LE≤(d).

Now, it follows easily, that the requirements (a),(b) and (c) of our proposition are satisfied
in the case (1).
So, let us assume that we are in the case (2). We set d′ := d− LD≤(d). If d′ = 0 we have
d′ = LD≤(d) and it suffices to choose qf := 0 for all f ∈ F and r = d.
So, let d′ 6= 0. Then, we have LE≤(d′) < LE≤(d) (see Definition, Reminder and
Exercise‘12.2 (D)(c)), so that again d′ /∈ U . But this means once more, that we get
elements r′ and q′f ′ ∈ W (for all f ′ ∈ F ) such that the above conditions (a)′, (b)′

and (c)′ are satisfied. Now, we set r := r′ + LD≤(d) and qf := q′f for all f ∈ F. As
supp(r) ⊆ supp(r′) ∪ {LE≤(d)} and LE≤(qff) ≤ LE(d′) ≤ LE≤(d) for all f ∈ F with
qf 6= 0 the requirements (a),(b) and (c) are again satisfied for the suggested choice. �
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Now, we are ready to introduce the basic notion of this section: the concept of Gröbner
basis.

12.6. Definition, Reminder and Exercise. (A) (Monomial Ideals) An ideal I ⊆ P is
called a monomial ideal if there is a set S ⊂M = {Y νZµ | ν, µ ∈ Nn

0} such that

I =
∑
s∈S

Ps.

Show that in this situation for all m ∈M \ {0} we have

(a) If m =
∑t

i=1 fisi with s1, s2, . . . , st ∈ S and f1, f2, . . . , ft ∈ P, then there is some
i ∈ {1, 2, . . . , t} and some ni ∈ supp(fi) such that m = nisi.

(b) m ∈ I if and only if there are n ∈M and some s ∈ S such that m = ns.

(B) (Leading Monomial Ideals) Let ≤∈ AO(E) and T ⊂W. Then, the ideal

LMI≤(T ) :=
∑

d∈T\{0}

PLM≤(d)

is called the leading monomial ideal of T with respect to ≤ T .
Prove that for all m ∈M, we have the following statements.

(a) If m =
∑s

i=1 fiLM≤(ti) with t1, t2, . . . , ts ∈ T and f1, f2, . . . , fs ∈ P, then there is
some i ∈ {1, 2, . . . , s} and some ni ∈ supp(fi) such that ti 6= 0 and m = niLM≤(ti).

(b) m ∈ LMI≤(T ) if and only if there are elements u ∈ E and t ∈ T such that
m = LM≤(u)LM≤(t).

(C) (Gröbner Bases) Let ≤∈ AO(E) and let L ⊆ W be a left ideal. A Gröbner basis
of L with respect to ≤ (or a ≤-Gröbner basis of L) is a subset G ⊆ L such that

#G <∞ and LMI≤(L) = LMI≤(G).

Prove the following facts:

(a) If G is a ≤-Gröbner basis of L and G ⊆ H ⊆ L with #H < ∞, then H is a
≤-Gröbner basis of L.

(b) If G is a ≤-Gröbner basis of L, then for each d ∈ L \ {0} there is some u ∈ E and
some g ∈ G \ {0} such that LM≤(d) = LM≤(u)LM≤(g) = LM≤(ug).

(c) If G is a ≤-Gröbner basis of L, then for each d ∈ L \ {0} there is some monomial
m = Y νZµ ∈ P and some g ∈ G \ {0} such that LM≤(d) = mLM≤(g).

Now, we prove that Gröbner bases always exist, and that they deserve the name of
”basis“, as they generate the involved left ideal.

12.7. Proposition. (Existence and Generating Property of Gröbner Bases) Let
≤∈ AO(E) and let L ⊆W be a left ideal. Then the following statements hold.

(a) L admits a ≤-Gröbner basis.
(b) If G is any ≤-Gröbner basis of L, then L =

∑
g∈GWg.

Proof. (a): This is clear as the ideal LMI≤(L) is generated by finitely many elements of
the form LM≤(g) with g ∈ L.
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(b): Let G ⊆ L be a ≤-Gröbner basis of L and assume that
∑

g∈GWg ( L. As

≤∈WO(E), we find some e ∈W \
∑

g∈GWg such that

LE(e) = min
≤
{LE≤(d) | d ∈ L \

∑
g∈G

Wg}.

By Definition, Reminder and Exercise 12.6 (C)(b) we find some u ∈ E and some g ∈ G
such that LM≤(e) = LM≤(u)LM≤(g). Setting

v := −LC≤(e)

LC≤(g)
u

we now get on use of Proposition 12.4 (a) that

LT≤(e) = LC≤(e)LM≤(e) = LC≤(e)LM≤(u)LM≤(g) =

= LC≤(e)LT≤(u)
1

LC≤(g)
LT≤(g) =

LC≤(e)

LC≤(g)
LT≤(u)LT≤(g) =

= −LT≤(v)LT≤(g) = −LT≤(ve).

As e /∈
∑

g∈GWg and g ∈ G, we have e + vg ∈ L \
∑

g∈GWg. In particular e + vg 6= 0.

So by Definition, Reminder and Exercise 12.2 (D)(d) we get the contradiction

LE≤(e+ vg) < LE≤(e)LE(e) = min
≤
{LE≤(d) | d ∈ L \

∑
g∈G

Wg}.

�

12.8. Examples and Exercises. (A) (Leading Monomial Ideals) Keep the above nota-
tions and hypotheses. Prove the following statements:

(a) Let d ∈W \ {0} and ≤∈ AO(E). Prove that LMI≤(Wd) is a principal ideal.
(b) Let n = 1, X1 =: X and ∂1 =: ∂. Set L := W(X2 − ∂) + W(X∂) and determine

LMI≤(L) for ≤:=≤lex,≤deglex and ≤:=≤degrevlex.

(B) (Gröbner Bases) Keep the above notations and hypotheses. Prove the following
statements:

(a) Let the notations be as in exercise (a) of part (A) and prove that {cd} is a ≤-
Gröbner basis of Wd for all c ∈ K \ {0}, and that any singleton ≤-Gröbner bases
of Wd is of the above form.

(b) Let the notations and hypotheses be as in exercise (b) of part (A) and compute a
≤-Gröbner basis for ≤:=≤lex,≤deglex and ≤:=≤degrevlex

For our next main result, we need some notation.

12.9. Notation. (A) For any set S ⊆W we write supp(S) :=
⋃
s∈S supp(s).

(B) Let ≤∈ TO(E) (see Definition, Reminder and Exercise 12.2 (A)) and let T ⊂ E.
We write ≤�T for the restriction of ≤ to T , thus – if we interpret binary relations on a
set S as subsets of S × S:

≤�T := ≤ ∩(T × T ), so that : d ≤�T e⇔ d ≤ e for all d, e ∈ T.
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12.10. Proposition. (The Restriction Property of Gröbner Bases) Let L ⊆ W
be a left ideal. Let ≤,≤′∈ AO(E) and let G be a ≤-Gröbner basis of L. Assume that

≤�supp(G) = ≤′�supp(G) .

Then G is also a ≤′-Gröbner basis of L.

Proof. Let d ∈ L \ {0}. We have to show that LM≤′(d) ∈ LMI≤′(G). We may assume
that 0 /∈ G. If we apply Proposition 12.5 to the ordering ≤′, we find an element r and a
family (qg)g∈G ∈WG such that

(1) d =
∑

g∈G qgg + r;

(2) Φ(s) /∈ PLM≤′(g) for all g ∈ G and all s ∈ supp(r).
(3) LE≤′(qgg) ≤′ LE≤′(d) for all g ∈ G with qg 6= 0.

Our immediate aim is to show that r = 0. Assume to the contrary that r 6= 0. As r ∈ L
and G is a ≤-Gröbner basis of L, we get LM≤(r) ∈ LMI≤(G). So, there is some g ∈ G
such that qg 6= 0 and LM≤(r) = nLM≤(g) for some n ∈M (see Definition, Reminder and
Exercise 12.6 (B)(a)). As ≤�supp(G) = ≤′�supp(G) it follows that

Φ
(
LT≤(r)

)
= LM≤(r) ∈ PLM≤′(g).

As LT≤(r) ∈ supp(r), this contradicts the above condition (2). Therefore r = 0.
But now, we may write

d =
∑
g∈G∗

qgg, whith G∗ := {g ∈ G | qg 6= 0}.

By the above condition (3) we have LE≤′(qgg) ≤′ LE≤′(d) for all g ∈ G∗. So, there is
some g ∈ G∗ such that LE≤′(d) = LE≤′(qgg) (see Definition, Reminder and Exercise 12.2
(D)(d)), and hence LM≤′(d) = LM≤′(qgg). Thus, on use of Proposition 12.4 (b) we get
indeed LM≤′(d) = LM≤′(qg)LM≤′(g) ∈ LMI≤′(G). �

Now, we shall introduce the central concept of this section.

12.11. Definition. (Universal Gröbner Bases) Let L ⊆ W be a left ideal. A universal
Gröbner basis of L is a (finite) subsetG ⊂W which is a≤-Gröbner basis for all≤∈ AO(E).

Following an approach which relies on an idea of Sikora, and performed in greater
generality in Boldini’s thesis [4] we now aim to prove that universal Gröbner bases in
Weyl algebras always exist. We begin with a few preparations.

12.12. Definition, Exercise and Convention. (A) (The Natural Metric on the Set
TO(E)) For all i ∈ Z we introduce the notation

Ei := {e ∈ E | deg(e) ≤ i} = {Xν∂µ | |ν|+ |µ| ≤ i}.
We define a map

dist : TO(E)× TO(E) −→ R, given by for all ≤,≤′∈ TO(E) by

dist(≤,≤′) :=

{
2− sup{r∈N0|≤�Er = ≤′�Er}, if ≤6=≤′,
0, if ≤=≤′ .

Prove that
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(a) For all ≤,≤′∈ TO(E) and all r ∈ N0 we have

dist(≤,≤′) < 1

2r
if and only if ≤�Er+1 = ≤′�Er+1 .

(b) The map dist : TO(E)× TO(E) −→ R is a metric on TO(E).

From now on, we always endow TO(E) with this metric and the induced Hausdorff topol-
ogy.

(B) (Completeness of the Metric Space TO(E)) Let (≤i)i∈N0 be a Cauchy sequence in
TO(E). This means:

For all r ∈ N0 there is some n(r) ∈ N0 such that dist(≤i,≤j) <
1

2r
for all i, i ≥ n(r).

We introduce the binary relation ≤ on E given for all d, e ∈ E by

d ≤ e if and only if d ≤i e for all i� 0.

Prove the following statements:

(a) If r ∈ N0, d, e ∈ Er+1, and i, j ≥ n(r), then d ≤i e if and only if d ≤j e.
(b) If r ∈ N0, d, e ∈ Er+1, and i ≥ n(r), then d ≤i e if and only if d ≤ e.
(c) ≤∈ TO(E).
(d) If r ∈ N0, and i ≥ n(r), then dist(≤i,≤) ≤ 1

2r
.

(e) limi→∞ ≤i=≤.
(f) TO(E) is a complete metric space.

12.13. Proposition. (Compactness of the Space of Total Orderings) The space
TO(E) is compact.

Proof. Let (≤i)i∈N0 be a sequence in TO(E). It suffices to show, that (≤i)i∈N0 has a con-
vergent subsequence. Bearing in mind Definition, Exercise and Convention 12.12 (B)(f)
(or (e)), it suffices to find a subsequence of (≤i)i∈N0 which is a Cauchy sequence. Observe
that all the sets Er are finite. We want to construct a sequence (Sr)r∈N0 of infinite subsets
Sr ⊆ N0 such that for all s ∈ N0 we have

(1) Ss+1 ⊆ Ss.
(2) ≤j�Es+1 = ≤k�Es+1 for all j, k ∈ Ss.

We construct the members Sr of the sequence (Sr)r∈N0 by induction r. As E1 is finite, we
can find an infinite set S0 ⊆ N0 such that requirement (2) is satisfied with s = 0. Now, let
r > 0 and assume that the sets S0,S1, . . . ,Sr are already defined such that requirement
(1) holds for all s < r and requirement (2) holds for all s ≤ r.
As Er+2 is finite, we find an infinite subset Sr+1 ⊆ Sr (which hence satisfies requirement
(1) for s = r) such that requirement (2) is also satisfied with s = r+1. This completes the
step of induction and hence proves that a sequence (Sr)r∈N0 with the requested properties
exists.
Now, we may choose a sequence (ik)k∈N0 in N0, such that ir < ir+1 and ir ∈ Sr for all r ∈
N0. In particular it follows that ≤ij�Er+1 = ≤ik�Er+1 for all j, k ≥ r and hence (see
Definition, Exercise and Convention 12.12 (A)(a))

dist(≤ij ,≤ik) <
1

2r
for all j, k ≥ r.
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So, the constructed subsequence (≤ik)k∈N0 of our original sequence (≤i)i∈N0 is indeed a
Cauchy sequence. �

12.14. Proposition. (Compactness of the Space of Admissible Orderings) The
set AO(E) is a closed subset of TO(E) and hence compact.

Proof. Let (≤i)i∈N0 be sequence in AO(E), which converges in TO(E) and let

limi→∞ ≤i = ≤ .

We aim to show, that ≤∈ AO(E). According to Definition, Reminder and Exercise 12.2
(C), we must show, that for all λ, λ′, κ, κ′, ν, µ ∈ Nn

0 the following statements hold.

(1) 1 ≤ Xν∂µ.

(2) If Xλ∂κ ≤ Xλ′∂κ
′

then Xλ+ν∂κ+µ ≤ Xλ′+ν∂κ
′+µ.

So, fix λ, λ′, κ, κ′, ν, µ ∈ Nn
0 . Then we find some r ∈ N0 such that all the elementary

differential operators which occur in (1) and (2) belong to Er+1. Now, we find some
i ∈ N0 such that dist(≤i,≤) < 1

2r
, hence such that ≤�Er+1 = ≤i�Er+1 . As ≤i∈ AO(E)

the required inequalities hold for ≤i. But then, by the coincidence of ≤ and ≤i on Er+1,
they hold also for ≤. �

Now, after having established the following auxiliary result, we are ready to prove the
announced main result.

12.15. Lemma. Let L ⊂W be a left ideal and let G ⊆ L be a finite subset. Then, the set

UL(G) := {≤∈ AO(E) | G is a ≤ − Gröbner basis of L} is open in AO(E).

Proof. We may assume that UL(G) is not empty and choose ≤∈ UL(G). We find some
r ∈ N0 with supp(G) ⊆ Er+1. Let ≤′∈ AO(E) such that dist(≤,≤′) < 1

2r
. So, we obtain

that ≤′�Er+1 = ≤′�Er+1 and hence in particular that ≤′�supp(G) = ≤′�supp(G). By
Proposition 12.10 it follows that G is a ≤′-Gröbner basis of L and hence that ≤′∈ UL(G).
But this means, that the open neighborhood {≤′∈ AO(E) | dist(≤′,≤) < 2−r} of ≤
belongs to UL(G). �

12.16. Theorem. (Existence of Universal Gröbner Bases) Each left ideal L of W
admits a universal Gröbner basis.

Proof. Let L ⊆W be a left ideal. For each ≤∈ AO(E) we choose a ≤-Gröbner basis G≤
of L. In the notations of Lemma 12.15 we have ≤∈ UL(G≤). So, by this same Lemma
the family (

UL(G≤)
)
≤∈AO(E)

is an open covering of AO(E). By Proposition 12.14 we thus find finitely many elements
≤1,≤2, . . . ,≤r∈ AO(E) such that

AO(E) =
r⋃
i=1

UL(G≤i).

Let ≤∈ AO(E). Then ≤∈ UL(G≤i) for some i ∈ {1, 2, . . . , r}. Therefore G≤i is a ≤-
Gröbner basis of L. So

⋃r
i=1 G≤i is a Gröbner basis of L for all ≤∈ AO(E). �
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12.17. Corollary. (Finiteness of the Set of Leading Monomial Ideals) Let L ⊆W
be a left ideal. Then the set {LMI≤(L) |≤∈ AO(E)} of all leading monomial ideals of L
with respect to admissible orderings of E is finite.

Proof. Let G ⊆ L be a universal Gröbner basis of L. Then {LMI≤(L) |≤∈ AO(E)} =
{LMI≤(G) |≤∈ AO(E)}. Therefore

#{LMI≤(L) |≤∈ AO(E)} ≤ #{
∑
h∈H

PΦ(h) | H ⊆ supp(G)} ≤

≤ #{H ⊆ supp(G)} = 2#supp(G).

�

13. Weighted Orderings

This section is devoted to the study of admissible orderings which are compatible with
a given weight. Our principal goal is to prove a certain stability result for characteristic
varieties found in Boldini’s thesis [4], published in [5].

13.1. Notation. (A) As previously, we fix a positive integer n, a field K of characteristic
0 and consider the standard Weyl algebra W = K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n], the
polynomial ring P := K[Y1, Y2, . . . , Yn;Z1, Z2, . . . , Zn] over K and the isomorphism of K-

vector spaces Φ : W
∼=−→ P, given by Xν∂µ 7→ Y νZµ for all ν, µ ∈ Nn

0 .
(B) We also write

Ω := {(v, w) ∈ Nn
0 × Nn

0 | (vi, wi) 6= (0, 0) for all i = 1, 2, . . . , n} ⊂ Nn
0 × Nn

0

for the set of all weights. If ω = (v, w) ∈ Ω we also use the suffix ω instead of the suffix
vw in all the previously introduced notations. Observe, that

ω + α ∈ Ω, sω ∈ Ω, (ω, α ∈ Ω, s ∈ N).

13.2. Definition and Exercise. (A) (Weight Compatible Orderings) We fix ω = (v, w) ∈
Ω and ≤∈ AO(E) (see Definition, Reminder and Exercise 12.2 (C)). We say that ≤ is
compatible with the weight ω = (v, w) ∈ Ω (or ω-compatible), if for all d, e ∈ E we have:

If degω(d) < degω(e), then d < e.

We set

AOω(E) = AOvw(E) := {≤∈ AO(E) | ≤ is compatible with ω = (v, w)}.
(B) (Weighted Admissible Orderings) Keep the notations and hypotheses of part (A).

We define a new binary relation ≤ω=≤vw on E by setting, for all d, e ∈ E:

d ≤ω e if

{
either degω(d) < degω(e)

or else degω(d) = degω(e) and d < e.

Prove that for each ω = (v, w) ∈ Ω and each ≤∈ AO(E) the following statements hold.

(a) ≤ω∈ AOω(E).
(b) (≤ω)ω = ≤ω.
(c) ≤∈ AOω(E) if and only if ≤ = ≤ω.

The admissible ordering ≤ω∈ AO(E) is called the ω-weighted ordering associated to ≤.
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13.3. Definition and Exercise. (A) Let ω = (v, w) ∈ Ω, let i ∈ N0 and let

d =
∑

(ν,µ)∈supp(d)

c(d)
νµX

ν∂µ ∈W with c(d)
νµ ∈ K \ {0} for all (ν, µ) ∈ supp(d).

We set

suppωi (d) := {(ν, µ) ∈ supp(d) | µv + µw = i} and dωi = dvwi :=
∑

(ν,ν)∈supp
ω
i (d)

c(d)
νµX

ν∂µ.

Prove that for all d, e ∈W, all i, j ∈ N0 and for all ω = (v, w) ∈ Ω it holds:

(a) If i > degω(d), then dωi = 0.
(b) dωi = [dωi ]ωi .
(c) (d+ e)ωi = dωi + eωi .
(d) If d, e 6= 0, i := degω(d) and j := degω(e), then

suppωi+j(de) = {(ν + ν ′, µ+ µ′) | (ν, µ) ∈ suppωi (d) and (ν ′, µ′) ∈ suppωj (e)}.

(e) If d, e 6= 0, i := degω(d) and j := degω(e), then

(de)ωi+j =
∑

(ν,µ)∈supp
ω
i (d),(ν′,µ′)∈supp

ω
j (e)

c(d)
νµ c

(e)
νµX

ν+ν′∂µ+µ′ .

(B) Keep the notations and hypotheses of part (A). We set

σωi (d) := Φ
(
dωi
)

=
∑

(ν,ν)∈supp
ω
i (d)

c(d)
νµY

νZµ.

Prove on use of statements (a)–(e) of part (A) that for all d, e ∈W, all i, j ∈ N0 and for
all weights ω = (v, w) ∈ Ω the following statements hold:

(a) σωi (d) := σωi (dωi ).
(b) If i > degω(d), then σωi (d) = 0.
(c) σωi (d) = σωi (dωi ).
(d) σωi (d+ e) = σωi (d) + σωi (e).

(C) (The Symbol of a Differential operator with Respect to a Weight) Keep the notations
of part (A) and (B). We define the ω = (v, w)-symbol of the differential operator d ∈ W
by

σω(d) :=

{
0 if d = 0,

σωdegω(d) if d 6= 0.

Prove that for all d, e ∈W \ {0} the following statements hold.

(a) σω(d) = Φ(dωdegω(d)) = σω
(
dωdegω(d)

)
.

(b) σω(d+ e) =

{
σω(d) + σω(e) if degω(d) = degω(e),

σω(d) if degω(d) > degω(e).

13.4. Proposition. (Multiplicativity of Symbols) Let ω = (v, w) ∈ Ω and let d, e ∈
W. Then

σω(de) = σω(d)σω(e).
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Proof. If d = 0 or e = 0, our claim is obvious. So, let d, e 6= 0. We write i := degω(d) and
j := degω(e). Observe that degω(de) = i + j. So, by Definition and Exercise 13.3 (A)(e)
we have

σω(de) = σωi+j(de) = Φ
(
(de)ωi+j

)
=

= Φ
( ∑

(ν,µ)∈supp
ω
i (d),(ν′,µ′)∈supp

ω
j (e)

c(d)
νµ c

(e)
ν′µ′X

ν+ν′∂µ+µ′
)

=

=
∑

(ν,µ)∈supp
ω
i (d),(ν′,µ′)∈supp

ω
j (e)

c(d)
νµ c

(e)
ν′µ′Y

ν+ν′Zµ+µ′ =

=
( ∑

(ν,µ)∈supp
ω
i (d)

c(d)
νµY

νZµ
)( ∑

(ν′,µ′)∈supp
ω
j (e)

c
(e)
ν′µ′Y

ν′Zµ′
)

=

= Φ(dωi )Φ(eωj ) = σωi (d)σωj (e) = σω(d)σω(e).

�

13.5. Reminder, Definition and Exercise. (A) (Induced Graded Ideals) Let L ⊂ W
be a left ideal, let ω = (v, w) ∈ Ω be a weight and let us consider the ω-graded induced
ideal (see Definition and Remark 11.5)

Gω(L) :=
⊕
i∈Z

(
L ∩Wω

i + Wω
i−1

)
/Wω

i−1
∼=
⊕
i∈Z

Lωi /L
ω
i−1 = GrLω• (L) ⊆ Gω(L),

where
Lω• = L ∩Wω

• :=
(
L ∩Wω

i

)
i∈N0

is the filtration induced on L by the weighted filtration Wω
• . We also consider the ω-graded

ideal of Pω = P given by Gω
(L) := (ηω)−1

(
Gω(L)

)
, where ηvw = ηω : P = Pω

∼=−→ Gω is

the canonical isomorphism of graded rings of Theorem 9.4. We call Gω
(L) the (ω-graded)

ideal induced by L in P.

(B) Let the notations and hypotheses be as part (A). Fix i ∈ N0 and consider the i-th
ω-graded part Gω

(L)i = Gω
(L) ∩ Pωi = (ηω)−1

(
Gω
i

)
of the ideal Gω

(L) ⊆ P. Prove the
following statements:

(a) Let d ∈ L with degω(d) = i and let d := d+ Wω
i−1 ∈ Gω(L)i. Then it holds

(ηω)−1(d) = Φ(dωi ) = σω(d) ∈ Gω
(L)i.

(b) Each element h ∈ Gω(L)i \ {0} can be written as

h = σω(d), with d ∈ L and degω(d) = i.

(C) (The Induced Exact Sequence Associated to a Left Ideal with Respect to a Weight)
Keep the above notations and hypotheses. Prove the following statements:

(a) There is a short exact sequence of graded of graded Pω-modules

0 −→ Gω
(L) −→ Gω −→ GrWω

•K1(W/L) −→ 0,

where 1 := 1 + L ∈ W/L and Wω
•K1 is the ω -filtration induced on the cyclic

D-module W/L by its subspace K1.
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(b) AnnP
(
GrWω

•K1(W/L)
)

= Gω
(L).

(c) Vω(W/L) = Var
(
Gω

(L)
)
.

We call this sequence the short exact sequence associated to the left ideal L with respect
to the weight ω.

13.6. Proposition. (Generation of the Induced Ideal by the Symbols of a
Gröbner Basis) Let ω ∈ Ω, let L ⊆ W be a left ideal, let ≤∈ AO(E) and let G be a
≤ω-Gröbner basis if L. Then it holds

(a) Gω
(L) =

∑
g∈G Pσω(g).

(b) For each h ∈ Gω
(L) \ {0} there is some g ∈ G \ {0} and some monomial m =

Y νZµ ∈ P such that

LM≤
(
Φ−1(h)

)
= mLM≤

(
Φ−1(σω(g))

)
.

Proof. (a): As the ideal Gω
(L) ⊆ Pω is graded, it suffices to show, that for each i ∈ N0

and each h ∈ Gω
(L)i \ {0} we have h ∈

∑
g∈G Pσω(g). So, fix i ∈ N0 and assume

that h /∈
∑

g∈G Pσω(g) for some h ∈ Gω
(L)i \ {0}. Then, by Reminder, Definition and

Exercise 13.5 (B)(b), the set

S := {e ∈ L | degω(e) = i and σω(e) /∈
∑
g∈G

Pσω(g)}

is not empty. Choose d ∈ S such that LE≤ω(d) = min≤ω{LE≤ω(e) | e ∈ S}. As G is
a ≤ω-Gröbner basis of L we find some g ∈ G and some u ∈ E such that LM≤ω(d) =
LM≤ω(ug) (see Definition, Reminder and Exercise 12.6 (C)(b)), or – equivalently – such
that EM≤ω(d) = EM≤ω(ug). With

v :=
LC≤ω(d)

LC≤ω(ug)
u

it follows that

LD≤ω(d) = LC≤ω(d)LE≤ω(d) = LC≤ω(d)LE≤ω(ug) =
LC≤ω(d)

LC≤ω(ug)
LD≤ω(ug) =

= LD≤ω(
LC≤ω(d)

LC≤ω(ug)
ug) = LD≤ω(vg) and degω(vg) = i.

So, by Definition, Reminder and Exercise 12.2 (D)(d) we may conclude that either

(1) degω(d− vg) < i, or else
(2) degω(d− vg) = i and LE≤ω(d− vg) < LE≤ω(d).

In the case (1) we have (see Definition and Exercise 13.3 (C)(b) and Proposition 13.4)

σω(d) = σω(d− (d− vg)) = σω(vg)) = σω(v)σω(g) ∈
∑
g∈G

Pσω(g) – a contradiction.

So, assume that we are in the case (2). As d − vg ∈ L it follows by our choice of d,
that σω(d− vg) ∈

∑
g∈G Pσω(g). But now, by Definition and Exercise 13.3 (C)(b) and by
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Proposition 13.4 we get the contradiction

σω(d) = σω(d− vg) + σω(vg) = σω(d− vg) + σω(v)σω(g) ∈
∑
g∈G

Pσω(g).

(b): We find some i ∈ N0 such that LM≤
(
Φ−1(h)

)
= LM≤

(
Φ−1(hωi (h))

)
. As the ideal

Gω
(L) ⊆ Pω is graded, we have hωi (h) ∈ Gω

(L). So we may assume, that h ∈ Gω
(L)i\{0}.

Now, by Reminder, Definition and Exercise 13.5 (B), we find some d ∈ L with degω(d) = i
and Φ−1(h) = dωi , whence LM≤

(
Φ−1(h)

)
= LM≤(dωi ) = LM≤ω(d). As G is a ≤ω-Gröbner

basis of L, we find some g ∈ G\{0} with degω(g) = j and some monomial m = Y νZµ ∈ P
such that (see Definition, Reminder and Exercise 12.6 (C)(c) and also Definition and
Exercise 13.3 (C)(a)) LM≤ω(d) = mLM≤ω(g) = mLM≤(gωj ) = mLM≤

(
Φ−1(σωj )

)
. �

13.7. Corollary. (Finiteness of the Set of Induced Ideals, cf. Boldini [4]) Let
L ⊆W be a left ideal. Then, the following statements hold:

(a) #{Gω
(L) | ω ∈ Ω} <∞.

(b) #{Vω(W/L) | ω ∈ Ω} <∞.

Proof. (a): Let G be an universal Gröbner basis of L. Then, by Proposition 13.6, for each
ω ∈ Ω we have Gω

(L) =
∑

g∈G Pσω(g). For each g ∈ G we write

g =
∑

(ν,µ)∈supp(g)

c(g)
νµX

ν∂µ.

Then, for each ω ∈ Ω we have σω(g) = Φ(gωdegω(g)) =
∑

(ν,µ)∈supp
ω

degω
(g) c

(g)
νµY

νZµ. Therefore

#{σω(g) | ω ∈ Ω} ≤ #{H ⊆ supp(g)} = 2#supp(g). It follows that

#{Gω
(L) =

∑
g∈G

Pσω(g) | ω ∈ Ω} ≤ #{
(
σω(g)

)
g∈G ∈ PG | ω ∈ Ω} ≤ 2#supp(G).

(b): This follows immediately from statement (a) on use of Reminder, Definition and
Exercise 13.5 (C)(c). �

To apply this result, we need a few more preparations.

13.8. Exercise and Definition. (A) Let ω ∈ Ω and let

0 −→ Q
ι−→ U

π−→ P −→ 0

be an exact sequence of D-modules. Let V ⊆ U be a finitely generated K-vector subspaces
such that U = WV . We endow Q with the filtration

Q• :=
(
ι−1(Wω

i V )
)
i∈N0

.

Prove the following statements:

(a) For each i ∈ N0 there is a K-linear map

ιi : Qi/Qi−1 −→Wω
i V/W

ω
i−1V, q +Qi−1 7→ ι(q) + Wω

i−1V.

(b) For each i ∈ N0 there is a K-linear map

πi : Wω
i V/W

ω
i−1V −→Wω

i π(V )/Wω
i−1π(V ), d+ Wω

i−1V 7→ π(q) + Wω
i−1π(V ).
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(c) For each i ∈ N0 it holds

π−1
(
Wω

i−1π(V )
)

= ι(Qi) + Wω
i−1V.

(d) For each i ∈ N0 there is a short exact sequence of K-vector spaces

0 −→ Qi/Qi−1
ιi−→Wω

i V/W
ω
i−1V

πi−→Wω
i π(V )/Wω

i−1π(V ) −→ 0.

(B) (The Graded Exact Sequence associated to a Short Exact Sequence of D-Modules)
Keep the hypotheses and notations of part (A). Prove the following statements:

(a) For each i ∈ N0 there is a short exact sequence of K-vector spaces

0 −→ GrQ•(Q)i
ιi−→ GrWω

• V
(U)i

πi−→ GrWω
• π(V )(P )i −→ 0.

(b) There is an exact sequence of graded Pω-modules

0 −→ GrQ•(Q)
ι−→ GrWω

• V
(U)

π−→ GrWω
• π(V )(P ) −→ 0,

with ι :=
⊕

i∈N0
ιi and π :=

⊕
i∈N0

πi.

The exact sequence of statement (b) is called the exact sequence induced by the exact

sequence 0→ Q
ι→ U

π→ P → 0 and the generating vector space V of U .

(C) Keep the previous notations and hypotheses. Prove the following statements:

(a) For each finitely generated K-vector subspace T ⊆ Q with Q = WT and V ⊆ ι(T ),
the two filtrations Q• and Wω

•T of Q are equivalent.
(b) Var

(
AnnP(GrQ•(Q))

)
= Vω(Q).

13.9. Proposition. (Additivity of Characteristic Varieties) Let ω ∈ Ω and let

0 −→ Q
ι−→ U

π−→ P −→ 0

be an exact sequence of D-modules. Then it holds

Vω(U) = Vω(Q) ∪ Vω(P ).

Proof. We fix a finitely generated K-vector subspace V ⊆ U with WV = U and consider
the corresponding induced short exact sequence (see Exercise and Definition 13.8 (B))

0 −→ GrQ•(Q)
ι−→ GrWω

• V
(U)

π−→ GrWω
• π(V )(P ) −→ 0.

On use of Exercise and Definition 13.8 (C)(b) we obtain

Vω(U) = Var
(
AnnP(GrWω

• V
(U))

)
=

= Var
(
AnnP(GrQ•(Q))

)
∪ Var

(
AnnP(GrWω

• π(V )(P ))
)

= Vω(Q) ∪ Vω(P ).

�

Now, we are ready to prove the first main result of this section.

13.10. Theorem. (Finiteness of the Set of Characteristic Varieties) Let U be a
D-module. Then

#{Vω(U) | ω ∈ Ω} <∞.



52 MARKUS BRODMANN

Proof. We proceed by induction on the number r of generators of U . If r = 1 we have
U ∼= W/L for some left ideal L ⊆ W. In this case, we may conclude by Corollary 13.7
(b). So, let r > 1. Then, we find a short exact of D-modules

0 −→ Q
ι−→ U

π−→ P −→ 0

such that Q and P are generated by less than r elements. By induction, we have

#{Vω(Q) | ω ∈ Ω} <∞ and #{Vω(P ) | ω ∈ Ω} <∞.
By Proposition 13.9 we also have

{Vω(U) | ω ∈ Ω} = {Vω(Q) ∪ Vω(P ) | ω ∈ Ω},
hence

#{Vω(U) | ω ∈ Ω} ≤ #{Vω(Q) | ω ∈ Ω}+ #{Vω(P ) | ω ∈ Ω} <∞.
�

To prove the second main result of this section, we need some more preparations.

13.11. Definition and Exercise. (A) (Leading Forms) We consider the polynomial ring
P. Let

f =
∑

(ν,µ)∈supp(f)

c(f)
νµ Y

νZµ ∈ P with c(f)
νµ ∈ K \ {0} for all (ν, µ) ∈ supp(f).

We set
suppωi (f) := {(ν, µ) ∈ supp(f) | νv + µw = i}

and consider the i−th homogeneous component of f with respect to ω, thus the polynomial

fωi = f vwi :=
∑

(ν,ν)∈supp
ω
i (f)

c(f)
νµ Y

νZµ.

The leading form of f with respect to the weight ω is defined by

LFω(f) :=

{
0 if f = 0,

fωdegω(f) if f 6= 0.

Prove that for all f, g ∈ P, all i, j ∈ N0 and for all weights ω = (v, w) ∈ Ω the following
statements hold:

(a) If i > degω(f), then fωi = 0.
(b) fωi =

[
fωi
]ω
i
.

(c) (f + g)ωi = fωi + gωi .
(d) (fg)ωi =

∑
j+k=i f

ω
j g

ω
k .

(e) LFω(fg) = LFω(f)LFω(g).
(f) LF(f) = f if and only if f is homogeneous with respect to the ω-grading of P.
(g) If d ∈W, then σω(d) = LFω

(
Φ(d)

)
.

(B) (Leading Form Ideals) Keep the notations and hypotheses of part (A). If S ⊂ P is
any subset, we define the leading form ideal of S with respect to ω by

LFIω(S) :=
∑
f∈S

PLFω(f).
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Let S ⊆ T ⊆ P and ≤∈ AO(E). Prove the following statements:

(a) LFIω(S) ⊆ LFIω(T ).
(b) If for each t ∈ T \ {0} there is some monomial m = Y νZµ ∈ M ⊂ P and some

s ∈ S such that LM≤ω
(
Φ−1(t)

)
= mLM≤ω

(
Φ−1(s)

)
, then LFIω(S) = LFIω(T ).

(c) For each ideal I ⊆ P it holds√
LFIω(I) =

√
LFIω(

√
I).

(d) If I, J ⊆ P are ideals, then
(1) LFIω(I ∩ J) ⊆ LFIω(I) ∩ LFIω(I) and LFIω(I)LFIω(J) ⊆ LFIω(IJ);

(2)
√

LFIω(I ∩ J) =
√

LFIω(I) ∩ LFIω(J) =
√

LFIω(I) ∩
√

LFIω(J).

13.12. Exercise. (A) Prove that for all d ∈W, all i, j ∈ N0, all s ∈ N and for all weights
α = (a, b), ω = (v, w) ∈ Ω the following statements hold (For the unexplained notations
see Definition and Exercise 13.3):

(a) supp
(
[dωi ]αj

)
= suppωi (d)

⋂
suppαj (d).

(b) supp
(
[dωi ]αj

)
⊆ suppα+sω

j+si (d).
(c) If i ≥ degω(d), j ≥ degα(dωi ) and s > degα(d)− j, then the inclusion of statement

(a) becomes an equality.
(d) If i ≥ degω(d), j ≥ degα

(
dωi ) and s > degα(d)− j, then

[dωi ]αj = dα+sω
j+si .

(B) Prove on use of statements (a)–(d) of part (A) that for all d ∈W, all i, j ∈ N0, all
s ∈ N and for all weights ω = (v, w), α = (a, b) ∈ Ω the following statements hold:

(a) σαj (dωi ) =
∑

(ν,µ)∈supp
ω
i (d)∩supp

α
j (d) c

(d)
νµY

νZµ = σωi (dαj ).

(b) If i ≥ degω(d), j ≥ degα(dωi ) and s > degα(d)− j, then

[σωi (d)]αj = σα+sω
j+si (d).

13.13. Lemma. Let α, ω ∈ Ω, let d ∈ W \ {0} and let s ∈ N with s > degα(d) −
degα

(
σω(d)

)
. Then, the following statements hold:

(a) degα+sω(d) = degα
(
σω(d)

)
+ s degω(d).

(b) LFα
(
σω(d)

)
= σα+sω(d).

Proof. We write i := degω(d) and j := degα
(
σω(d)

)
. Observe, that σω(d) = σωi (d) =

Φ(dωi ), so that j = degα
(
σω(d)

)
= degα(dωi ) and also s > degα(d) − j. Now, by Exer-

cise 13.12 (B)(b) we obtain LFα
(
σω(d)

)
= [σωi (d)]αj = σα+sω

j+si (d). It remains to show that

j + si = degα+sω(d). As LFα
(
σω(d)

)
6= 0 we have σα+sω

j+si (d) 6= 0 and hence j + si ≤
degα+sω(d) (see Definition and Exercise 13.3 (B)(b)).
Assume that j + si > degα+sω(d). Then, we may write degα+sω(d) = k + si, with k > j.
It follows, that s > degα(d) − k. On application of Exercise 13.12 (B)(b) we get that
[σωi (d)]αk = σα+sω

k+si (d) = σα+sω(d) 6= 0. As k > j = degα
(
σω(d)

)
we have [σωi (d)]αk = 0 (see

Definition and Exercise 13.11 (A)(a)). This contradiction completes our proof. �

13.14. Lemma. Let L ⊆ W be a left ideal, let α, ω ∈ Ω, let ≤∈ AO(E) and let G be a
(≤α)ω-Gröbner basis of L. Then LFIα

(
Gω

(L)
)

= LFIα
(
{σω(g) | g ∈ G}

)
.
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Proof. By Reminder, Definition and Exercise 13.5 (B)(a) we have

S := {σω(g) | g ∈ G \ {0}} ⊆ Gω
(L) =: T

If we apply Proposition 13.6 (b) with ≤α instead of ≤, we see that for all t ∈ T there
is some monomial m = Y νZµ ∈ M ⊂ P and some s ∈ S such that LM≤α

(
Φ−1(t)

)
=

mLM≤α
(
Φ−1(s)

)
. By Definition and Exercise 13.11 (B)(b) it follows that LFIα

(
Gω

(L)
)

=

LFIα(S) = LFIα(T ) = LFIα
(
{σω(g) | g ∈ G}

)
. �

13.15. Theorem. (Stability of Induced Graded Ideals, Boldini [5], [4]) Let L ⊆W
be a left ideal and let α ∈ Ω. Then, there exists an integer s = s(α,L) ∈ N0 such that for
all s ∈ N with s > s and all ω ∈ Ω we have

LFIα
(
Gω

(L)
)

= Gα+sω
(L).

Proof. Let G be a universal Gröbner basis of L. Then, by Lemma 13.14, for each ω ∈ Ω
we have

LFIα
(
Gω

(L)
)

= LFIα
(
{σω(g) | g ∈ G}

)
=
∑
g∈G

PLFα
(
σω(g)

)
.

Now, we set s := max{degα(g) | g ∈ G \ {0}}. By Lemma 13.13 it follows that
LFα

(
σω(d)

)
= σα+sω(d) for all s ∈ N with s > s and all ω ∈ Ω. So, for all s ∈ N

with s > s and all ω ∈ Ω we have

LFIα
(
Gω

(L)
)

=
∑
g∈G

σα+sω(d).

If we apply Proposition 13.6 (a) with α + sω instead of ω we also get

Gα+ω
(L) =

∑
g∈G

σα+sω(d)

for all s ∈ N with s > s and all ω ∈ Ω. This completes our proof. �

13.16. Notation. If Z ⊆ Spec(P) is a closed set we denote the vanishing ideal of Z by IZ,
thus:

IZ :=
⋂
p∈Z

p =
√
J, for all ideals J ⊆ P with Z = Var(J).

13.17. Theorem. (Stability of Characteristic Varieties, Boldini [5], [4]) Let U
be a D-module, and let α ∈ Ω. Then, there exists an integer s = s(α, U) ∈ N0 such that
for all s ∈ N with s > s and all ω ∈ Ω we have

Var
(
LFIα

(
IVω(U))

)
= Vα+sω(U).

Proof. We proceed by induction on the number r of generators of U . First, let r = 1.
Then we have U ∼= W/L for some left ideal L ⊆ W. By Theorem 13.15 we find some

s ∈ N0 such that for all s ∈ N with s > s and all ω ∈ Ω we have LFIα
(
Gω

(L)
)

= Gα+sω
(L).

By Reminder, Definition and Exercise 13.5 (C)(c) we have

Vα+sω(U) = Var
(
Gα+sω

(L)
)

and IVω(U) =

√
Gω

(L).
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By Definition and Exercise 13.11 (B)(c) we thus get√
LFIα

(
IVω(U)

)
=

√
LFIα

(√
Gω

(L)
)

=
√

LFIα
(
Gω

(L)
)
,

so that indeed – for all s ∈ N with s > s and all ω ∈ Ω – we have

Var
(
LFIα

(
IVω(U))

)
= Var

(
LFIα

(
Gω

(L)
)

= Var
(
Gα+sω

(L)
)

= Vα+sω(U).

Now, let r > 1. Then, we find a short exact of D-modules

0 −→ Q
ι−→ U

π−→ P −→ 0

such that Q and P are generated by less than r elements. By induction, we thus find a
number s ∈ N0, such that for all ω ∈ Ω and all s ∈ N with s > s it holds

Var
(
LFIα(IVω(Q))

)
= Vα+sω(Q) and Var

(
LFIα(IVω(P ))

)
= Vα+sω(P ).

By Proposition 13.9 we have Vα+sω(U) = Vα+sω(Q) ∪ Vα+sω(P ) and hence IVω(U) =
IVω(Q)∪Vω(Q) = IVω(Q) ∩ IVω(P ). By Definition and Exercise 13.11 (B)(d)(2) it follows from
the last equality that√

LFIα
(
IVω(U)

)
=
√

LFIα
(
IVω(Q)

)
∩
√

LFIα
(
IVω(P )

)
.

Therefore Var
(
LFIα(IVω(U))

)
= Var

(
LFIα(IVω(Q)

)
∪Var

(
LFIα(IVω(P )

)
and it follows, that

Var
(
LFIα(IVω(U))

)
= Vα+sω(Q) ∪ Vα+sω(P ) = Vα+sω(U)

for all ω ∈ Ω and all s ∈ N with s > s. This completes the step of induction and hence
proves our claim. �

13.18. Definition. (The Critical Cone) Let Z ⊆ Spec(P) be a closed set. Then, the
critical cone of Z is defined as

CCone(Z) := Var
(
LFI1(IZ)

)
,

where 1 = (1, 1) ∈ Ω denotes the standard weight.

13.19. Corollary. (Affine Deformation of Characteristic Varieties to Critical
Cones, Boldini [5], [4]) Let U be a D-module. Then, there is an integer s = s(U) ∈ N0

such that for all ω ∈ Ω and all s ∈ N with s > s it holds

V1+sω(U) = CCone
(
Vω(U)

)
.

Proof. This is immediate by Theorem 13.17. �

14. Standard Degree and Hilbert Polynomials

In this section, we relate D-modules with Castelnuovo-Mumford regularity.

14.1. Preliminary Remark. (A) Let n ∈ N, let K be a field of characteristic 0 and
consider the standard Weyl algebra W = W(K,n) = K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n].
Moreover let O be a ring of smooth functions in X1, X2, . . . , Xn over K (see Remark and
Definition 11.11 (A)). One concern of Analysis is to study whole families of differential
equations. So for fixed r, s ∈ N one chooses a family F ⊆Ws×r of matrices of differential
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operators. Then one studies all systems of equations (see Remark and Definition 11.11
(B))

D


f1

f2

·
fr

 =


0
0
·
0

 , with D ∈ F.

(B) Let the notations and hypotheses by as in part (A). One aspect of the above
approach is to study the behavior of the characteristic varieties Vdeg(D) := VWdeg

•

(
UD
)

with respect to the degree filtration (see Definition and Remark 8.6 and Definition and
Remark 11.2 (D)) of the D-module UD defined by the matrix D (see Remark and Defini-
tion 11.11 (C)) if this latter runs through the family F.
The goal of this section is to prove that the degree of hypersurfaces which cut out set-
theoretically the characteristic variety Vdeg(D) is bounded, if D runs through appropriate
families F.

Below, we recall a few notions from Commutative Algebra.

14.2. Reminder, Definition and Exercise. (Hilbert Functions, Hilbert Polynomials
and Hilbert Coefficients for Modules over Very Well Filtered Algebras) (A) Let K be a
field and let R =

⊕
i∈N0

Ri be a homogeneous Noetherian K-algebra, so that R0 = K
and R = K[x1, x2, . . . , xr] with finitely many elements x1, x2, . . . , xr ∈ R1. Moreover,
let M =

⊕
i∈ZMi be a finitely generated graded R-module. Then we denote the Hilbert

function of M by hM , so that hM(i) := dimK(Mi) for all i ∈ Z. We denote by PM(X)
the Hilbert polynomial of M , so that hM(i) = PM(i) for all i � 0. Keep in mind that
dim(M) = dim

(
R/AnnR(M)

)
and

deg
(
PM(X)

)
=

{
dim(M)− 1, if dim(M) > 0

−∞, if dim(M) ≤ 0.
.

The Hilbert polynomial PM(X) has a binomial presentation:

PM(X) =

dim(M)−1∑
k=0

(−1)kek(M)

(
X + dim(M)− k − 1

dim(M)− k − 1

) (
ek(M) ∈ Z, e0(M) ≥ 0

)
.

The integer ek(M) is called the k-th Hilbert coefficient of M . If dim(M) > 0, e0(M) > 0
is called the multiplicity of M . Finally let us also introduce the postulation number of
M , thus the number pstln(M) := sup{i ∈ Z | hM(i) 6= PM(i)}.

(B) Now, let (A,A•) be a very well filtered K-algebra (see Definition and Remark 3.3
(A)). Let U be a finitely generated (left) A-module. Chose a vector space V ⊆ U of finite
dimension such that AV = U . Then, the graded GrA•(A)-module GrA•V (U) is generated
by finitely many homogeneous elements of degree 0 (see Exercise and Definition 10.5
(B)(c)). So, by part (A) this graded module admits a Hilbert function hU,A•V := hGrA•V (U)

with hU,A•V (i) := dimK

(
GrA•V (U)i

)
for all i ∈ Z, the Hilbert function of U with respect to

the filtration induced by V . Moreover, by part (A), the module GrA•V (U) admits a Hilbert
polynomial, thus a polynomial PU,A•V (X) := PGrA•V (U)(X) ∈ Q[X] with hU,A•V (i) =
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PU,A•V (i) for all i� 0. We call this polynomial the Hilbert polynomial of U with respect to
the filtration induced by V . Keep in mind that according to part (A) we have dA•(U) :=
dim

(
GrA•V (U)

)
= dim

(
VA•(U)

)
. Moreover the polynomial PU,A•V (X) has a binomial

presentation:

PU,A•V (X) =

dA• (U)−1∑
k=0

(−1)kek
(
U,A•V

)(X + dA•(U)− k − 1

dA•(U)− k − 1

) (
ek(U,A•V ) ∈ Z

)
.

The integer ek(U,A•V ) is called the k-th Hilbert coefficient of U with respect to the
filtration induced by V . Finally, keep in mind, that by part (A) we have e0(U,A•V ) > 0
if dA•(U) > 0. In this situation the number e0(U,A•V ) is called the multiplicity of U with
respect to the filtration induced by V . For the sake of completeness, we set e0(U,A•V ) := 0
if dA•(U) ≤ 0. Finally, according to part (A) we define the postulation number of U with
respect to the filtration induced by V :

pstlnU,A•V (U) := pstln(GrA•V (U)) := sup{i ∈ Z | hU,A•V (i) 6= PU,A•V (i)}.
(C) Keep the notations and hypotheses of part (B). Prove the following claims.

(a) The multiplicity eA•(U) := e0(U,A•V ) is the same for each finite dimensional
K-subspace V ⊆ U with U = AV .

(b) There is a polynomial QU,A•V (X) ∈ Q[X] such that
(1) deg

(
QU,A•V (X)

)
= dA•(U),

(2) ∆
(
QU,A•V (X)

)
:= QU,A•V (X)−QU,A•V (X − 1) = PU,A•V (X) and

(3) dimK(AiV ) = QU,A•V (i) for all i� 0.

14.3. Reminder, Remark and Exercise. (Castelnuovo-Mumford Regularity) (A) Keep
the notations and hypotheses of Reminder, Definition and Exercise 14.2(A). For each
finitely generated graded R =

⊕
i∈N0

Ri = K[x1, x2, . . . , xr]-module M =
⊕

i∈ZMi and

each k ∈ N0 let regk(M) denote the Castelnuovo-Mumford regularity at and above level k
of M , so that

regk(M) := max{ai(M) + i | i = k, k + 1, . . . , dim(M)}
with

ai(M) := sup{j ∈ Z | H i
R+

(M)j 6= 0} for all i ∈ N0,

and where H i
R+

(M)j denotes the j-th graded component of the (naturally graded) i-th

local cohomology module H i
R+

(M) =
⊕

k∈ZH
i
R+

(M)k of M with respect to the irrelevant
ideal R+ :=

⊕
m∈NRm.

Keep in mimd that the Castelnuovo-Mumford regularity of M is defined by

reg(M) := reg0(M) = max{ai(M) + i | i = 0, 1, . . . , dim(M)}
and refresh the fact that

reg1(M) = reg(M/ΓR+(M)) and PM/ΓR+
(M)(X) = PM(X).

(B) Keep the notations and hypotheses of part (A). Let

gendeg(M) := inf{m ∈ Z |M =
∑
k≤m

RMk}
(
≤ reg(M)

)
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denote the generating degree of M . Keep in mind, that the ideal AnnR(M) ⊆ R is
homogeneous. Use the previous inequality to prove the following claims:

(a) If b ∈ Z such that reg
(
AnnR(M)

)
≤ b, there are elements

f1, f2, . . . , fs ∈ AnnR(M) ∩
(⋃
i≤b

Ri

)
with Var

(
AnnR(M)

)
=

s⋂
i=1

Var(fi).

(C) We recall a few basic facts on Castelnuovo-Mumford regularity.

(a) If r ∈ N and R = K[T1, T2, . . . , Tr] is a polynomial ring over the field R, then
reg(R) = reg

(
K[T1, T2, . . . , Tr]

)
= 0.

(b) If 0 −→ N −→ M −→ P −→ 0 is a short exact of finitely generated graded R
-modules, then we have the equality reg(N) ≤ max{reg(M), reg(P ) + 1}.

(c) If r ∈ N and if M (1),M (2), . . . ,M (r) are finitely generated graded R-modules, then
we have the equality reg

(⊕r
i=1 M

(i)
)

= max{reg(M (i)) | i = 1, 2, . . . , r}.
(D) We mention the following bounding result (see Corollary 17.4.2 of [10]):

(a) Let R =
⊕

n∈N0
Rn be a Noetherian Homogeneous ring such that R0 is Aritinian

and local. Let W =
⊕

n∈ZWn be a finitely generated graded R-module and let
P ∈ Q[X] \ {0}. Then, there is an integer G such that for each homogeneous
R-homomorphism f : W −→ M of finitely generated graded R-modules that is
surjective in all large degrees and such that PM = P, we have reg1(M) ≤ G.

Use the bounding result of statement (a) to prove the following result.

(b) There is a function B : N2
0 × Q[X] −→ Z such that for each choice of r, t ∈ N,

for each field K, for each homogeneous Noetherian K-algebra R =
⊕

i∈N0
Ri with

hR(1) ≤ t and each finitely generated graded R-module M =
⊕

i∈ZMi with M =
RM0 and hM(0) ≤ r we have

reg1(M) ≤ B
(
t, r, PM

)
.

Another bounding result, which we shall use later is (see Corollary 6.2 of [9]):

(c) Let R = K[T1, T2, . . . , Tr] be a polynomial ring over the field K, furnished with
its standard grading. Let f : W −→ V be a homomorphism of finitely generated
graded R-modules such that V 6= 0 is generated by µ homogeneous elements of
degree 0. Then

reg
(
Im(f)

)
≤
[
max{gendeg(W ), reg(V ) + 1}+ µ+ 1

]2r−1

.

We now prove a special case of Theorem 3.10 of [8].

14.4. Proposition. Let r ∈ N, let R := K[T1, T2, . . . , Tr] be polynomial ring over the field
K and let M =

⊕
n∈N0

Mn be finitely generated graded R-module with M = RM0. Then

reg
(
AnnR(M)

)
≤
[

reg(M) + hM(0)2 + 2]2
r−1

+ 1.

Proof. Observe first, that we have an exact sequence of graded R-modules

0 −→ AnnR(M) −→ R
ε−→ HomR(M,M), with x 7→ ε(x) := xIdM , for all x ∈ R.
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Moreover, there is an epimorphism of graded R-modules

π : RhM (0) −→M −→ 0.

So, with g := HomR(π, IdM) we get an induced monomorphism of graded R-modules

0 −→ HomR(M,M)
g−→ HomR

(
RhM (0),M

) ∼= MhM (0).

So, we get a composition map

f := g ◦ ε : R −→MhM (0) =: V, with Im(f) = Im(ε) ∼= R/AnnR(M).

Now, observe that gendeg(R) = 0 (see Reminder, Remark and Exercise 14.3 (C)(a)),
reg(V ) = reg(M) (see Reminder, Remark and Exercise 14.3 (C)(c)) and that V is gen-
erated by hM(0)2 homogeneous elements of degree 0. So, by Reminder, Remark and
Exercise 14.3 (D)(c) we obtain

reg
(
R/AnnR(M)

)
= reg

(
Im(f)

)
≤
[

reg(M) + hM(0)2 + 2
]2r−1

.

On application of Reminder, Remark and Exercise 14.3 (C) (b) to the short exact sequence
of graded R-modules

0 −→ AnnR(M) −→ R −→ R/AnnR(M) −→ 0

and keeping in mind that reg(R) = 0, we thus get indeed our claim. �

14.5. Exercise. Let the notations and hypotheses be as in Proposition 14.4. Show that

(a) reg
(
AnnR(M/ΓR+(M))

)
≤
[

reg1(M) + hM(0)2 + 2]2
r−1

+ 1.

(b) Var
(
AnnR(M/ΓR+(M))

)
=

{
Var
(
AnnR(M)

)
, if dimR(M) > 0

∅, if dimR(M) = 0.

14.6. Notation, Remark and Exercise. (A) Let B : N2
0×Q[X] −→ Z be the bounding

function introduced in Reminder, Remark and Exercise 14.3 (D)(b).
We define a new function

F : N2 ×Q[X] −→ Z by F (t, r, h) :=
[
B(t, P ) + r2 + 2]2

r−1

+ 1
(
t, r ∈ N, P ∈ Q[X]

)
.

(B) Let the notations as in part (A). Use Proposition 14.4, Reminder, Remark and
Exercise 14.3 (B) and Exercise 14.5 to show that for each field K, for each choice of
r, t ∈ N, for each polynomial ring R = K[T1, T2, . . . , Tt] and for each finitely generated
graded R-module M =

⊕
n∈N0

Mn with M = RM0, hM(0) ≤ r and PM = P, we have the
following statements:

(a) reg
(
AnnR(M/ΓR+(M))

)
≤ F (t, r, P ).

(b) There are homogeneous polynomials f1, f2, . . . , fs ∈ AnnR
(
M/ΓR+(M)

)
with

(1) deg(fi) ≤ F (t, r, P ) for all i = 1, 2, . . . , s.
(2) Var

(
AnnR(M)

)
= Var(f1, f2, . . . , fs) =

⋂s
i=1 Var(fi).

No, we are ready to prove the main result of this section.

14.7. Theorem. (Boundedness of the Degrees of Defining Equations of Char-
acteristic Varieties, compare [8]) Let n ∈ N, let K be a field of characteristic 0, let
U be a D-module over the standard Weyl algebra

W = W(K,n) = K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n]
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and let V ⊆ U be a K-subspace with dimK(V ) ≤ r <∞ and U = WV . Morover, let

F : N× NZ
0 −→ Z

be the bounding function defined in Notation, Remark and Exercise 14.6 (A). Keep in
mind that the degree filtration Wdeg

• of W (see Definition and Remark 8.6) is very good
(see Corollary 8.7 (a)) and let

PU,Wdeg
• V ∈ Q[X]

be the Hilbert polynomial of U induced by V with respect to the degree filtration Wdeg
• (see

Reminder, Definition and Exercise 14.2 (B)).

Then, there are homogeneous polynomials

f1, f2, . . . , fs ∈ P = K[Y1, Y2, . . . , Yn;Z1, Z2, . . . , Zn]

such that

(a) deg(fi) ≤ F
(
2n, r, PU,Wdeg

•

)
.

(b) VWdeg
•

(U) = Var(f1, f2, . . . , fs) =
⋂s
i=1 Var(fi).

Proof. Observe that (see Definition and Remark 11.2)

VWdeg
•

(U) = Var
(
AnnP(GrWdeg

• V (U)
)
.

Now, we may conclude by Notation, Remark and Exercise 14.6 (B)(b), applied to the
graded P-module GrWdeg

• V (U) and bearing in mind that – by Exercise and Definition 10.5

(B)(c) – this latter graded module is generated in degree 0. �

14.8. Conclusive Remark. (A) Keep the above notations. To explain the meaning of
this result, we fix r, s ∈ N and we fix a polynomial P ∈ Q[X]. For any matrix

D =


d11 d12 . . . d1r

d21 d22 . . . d2r

. . . . . . . . . . . .
ds1 ds2 . . . dsr

 ∈Ws×r (
s ∈ N

)
of polynomial partial differential operators we consider the induced epimorphism of D-
modules

Wr πD−→ UD −→ 0,

consider the K-subspace

Kr =
(
Wdeg

0

)r ⊂Wr

and set
VD := πD(Kr).

Then, referring to our Preliminary Remark 14.1 we consider the family of systems of
differential equations

F = FP := {D ∈Ws×r | PUD,Wdeg
• VD

= P}
whose canonical Hilbert polynomial PUD,Wdeg

• VD
equals P . As an immediate application of

Theorem 14.7 we can say
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The degree of hypersurfaces which cut out set-theoretically the characteristic variety
Vdeg(D) is bounded, if D runs through the family FP .

Clearly, our results give much more, as they bound the invariant

reg
(
AnnP

[
GrWdeg

• VD
(UD)/ΓP+(GrWdeg

• VD
(UD)

])
along the class FP .

(B) The study of the class FP corresponds to the study of the classical Hilbert scheme
HilbP of closed subschemes X ⊂ PrK with Hilbert polynomial P . So, it seems a challenging
task to approach the classes FP from this point of view and to pursue further what one
could understand as a Theory of Hilbert schemes for D-modules.
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