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Abstract. Weyl algebras, sometimes called algebras of differential operators, are a
fascinating and important subject, which relates Non-Commutative and Commutative
Algebra, Algebraic Geometry and Analysis in very appealing way. The theory of modules
over Weyl algebras, sometimes called D-modules, finds application in the theory of partial
differential equations, and thus has a great impact to many fields of Mathematics. In our
course, we shall give a short introduction to the subject, using only prerequisites from
Linear Algebra, Basic Abstract Algebra, and Basic Commutative Algebra. In addition,
in the last two sections, we present a few recent results.

1. Introduction

The present notes base on two short courses:

(1) Introduction to Weyl Algebras : 5 Twin Lessons, Thai Nguyen University of Science
TNUS (Thai Nguyen, Vietnam), November 1 - 10, 2013.

(2) Weyl Algebras, Universal Gröbner Bases, Filtration Deformations and Character-
istic Varieties of D-Modules : 4 Twin Lessons, Vietnam Institute for Advanced
Study in Mathematics VIASM (Hanoi, Vietnam), November 12 - 26, 2013.

They were also the base for a third course:

(3) Introduction to Weyl Algebras and D-Modules : 4 Lessons and 2 Tutorial Sessions,
”Workshop on Local Cohomology”, St. Joseph’s College Irinjalakuda, Kerala (In-
dia), June 20 - July 2, 2016.

These notes aim to give an approach to Boldini’s stability and deformation results
for characteristic varieties [11], [12] and to the bounding result [16] for the degrees of
defining equations of characteristic varieties, including a self-contained introduction to
the needed background on Weyl Algebras and D-modules. In particular, these notes
should not be understood as an independent or complete introduction to the field of Weyl
algebras and D-modules, which could replace one of the existing textbooks or mono-
graphs like [9], [8], [13], [24], [29], [37] or [38]: Too many core subjects are not treated at
all or only marginally in these notes, as they are not needed on the way to our final results.

So, a few basic topics which are lacking in these notes – and which ought to be consid-
ered as indispensable in a complete introduction to the field – are:
- a systematic study of Bernstein’s Inequality and holonomic D-modules (we treat these
subjects only briefly in Exercise and Remark 14.3),

Date: Zürich, January 2, 2018.
2000 Mathematics Subject Classification. Primary: 13D45, 13D07.Secondary: 14B15.
Key words and phrases. Weyl algebras, D-modules, characteristic varieties.



2 MARKUS BRODMANN

- Bernstein’s result on singularities of generalized Γ-functions and Bernstein-Sato poly-
nomials,
- weighted filtrations with negative weights,
- the sheaf theoretic and cohomological aspect,
- the analytic aspect.

Another subject which is not treated in our notes are Lyubeznik’s finiteness results
for local cohomology modules of regular local rings in characteristic 0 (see [33] and also
[34]), which brought a break-through in Commutative Algebra, as they base on the use
of (holonomic) D-modules – and hence present a very important link between these two
fields.

These notes are divided up in 14 Sections:

– 1. Introduction
– 2. Filtered Algebras
– 3. Associated Graded Rings
– 4. Derivations
– 5. Weyl Algebras
– 6. Arithmetic in Weyl Algebras
– 7. The Standard Basis
– 8. Weighted Degrees and Filtrations
– 9. Weighted Associated Graded Rings
– 10. Filtered Modules
– 11. D-Modules
– 12. Gröbner Bases
– 13. Weighted Orderings
– 14. Standard Degree and Hilbert Polynomials

Sections 1 - 9 were the subject of the introductory course (1) at TNUS. In our course
(2) at the VIASM we gave an account on all 14 sections, and discussed a few applications
(to the Gelfand-Kirillow dimension of D-modules for example), which are not contained
in these notes. In the course (3) at St. Joseph’s College we treated Sections 1 - 9 and 14.

Our suggested basic reference is Coutinho’s introduction [24], although we do not follow
that introduction and we partly use our own terminology and notations. We start in a
slightly more general setting, than Coutinho, and so also we recommend the references
[4], [10], [11], [32] and [35]. Files of [10] and [11] are available on request at the author.
For readers who have already some background in the subject, we recommend as possible
references [8], [9], [13], [29], [37], or the first part of the PhD thesis [11].

Finally, we aim to fix a few notations and make a few conventions which we shall keep
throughout these notes. We do this on a fairly elementary level, according to the original
intention of the short course (1): To give a first introduction to the subject to an audience
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having only some background in Linear Algebra and basic Abstract Algebra. Only in
Section 14 we will need some background from Commutative Algebra, notably Hilbert
functions and -polynomials, Local Cohomology and Castelnuovo-Mumford regularity. We
shall give brief reminders on these more advanced preliminaries in Section 14.

1.1. Conventions, Reminders and Notations. (A) (General Notations) By Z,Q and
R we respectively denote the set of integers, of rationals and of real numbers. We also
write

R≥0 := {x ∈ R | x ≥ 0} and R>0 := {x ∈ R | x > 0}
for the set of non-negative respectively of positive real numbers. Moreover, we use the
following notations for the set of non-negative respectively the set of positive integers:

N0 := Z ∩ R≥0 and N := Z ∩ R>0 = N0 \ {0}.
If S ⊂ R we form the supremum and infimum sup(S) resp. inf(S) within the set R ∪
{−∞,∞}, using the convention that sup(∅) = −∞ and inf(∅) =∞.
Empty sums and empty products are respectively understood to be 0 or 1. We thus set

−1∑
i=0

xi := 0 and
−1∏
i=0

xi := 1 with x1, x2, · · · ∈ R.

(B) (Rings) All rings R are understood to be associative, non-trivial and unital, so that
they have a unit-element 1 = 1R ∈ R \ {0} and the following properties hold

(a) 0x = x0 = 0 and 1x = x1 = x for all x ∈ R;
(b) x(yz) = (xy)z, x(y + z) = xy + xz and (x+ y)z = xz + yz for all x, y, z ∈ R.

Rings need not be commutative.
If R is a ring, a subring of R is a subset R0 ⊆ R, such that 1R ∈ R0 and x + y, xy ∈ R0

whenever x, y ∈ R0. If R0 ⊆ R is a subring and S ⊆ R is an arbitrary subset, we write
R0[S] for the subring of R generated by R0 and S, hence for the smallest subring of R
which contains R0 and S. Thus, R0[S] is the intersection of all subrings of R which contain
R0 and S, and may be written in the form

R0[S] = {
r∑
i=1

kr∏
j=1

ai,j | r, k1, . . . , kr ∈ N, ai,j ∈ R0 ∪ S,∀i ≤ r,∀j ≤ ki}.

If a1, a2, . . . , ar is a finite collection of elements of R, we set

R0[a1, a2, . . . , ar] := R0[{a1, a2, . . . , ar}].
(C) (Homomorphisms of Rings) All homomorphisms of rings are understood to be

unital, and hence are maps h : R −→ S, with R and S rings, such that

(a) h(x+ y) = h(x) + h(y) and h(xy) = h(x)h(y) for all x, y ∈ R;
(b) h(1R) = 1S.

Clearly, the identity map IdR : R −→ R is a homomorphism of rings, and the composition
of homomorphisms of rings is again a homomorphism of rings. An isomorphism of rings
is a homomorphism of rings admitting an inverse homomorphism. A homomorphism of
rings is an isomorphism, if and only if it is bijective.
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(D) (K-Algebras) All fields are considered as commutative. If K is a field, a K-algebra
is understood to be a ring A together with a homomorphism of rings ε : K −→ A such
that

ε(c)a = aε(c) for all c ∈ K and all a ∈ A.
As the ring A is non-trivial, the homomorphism ε : K −→ A is injective. So, we can and
do always embed K into A by means of ε and thus identify c with ε(c) for all c ∈ K.
Hence we have

c := ε(c) = c1A = 1Ac and ca = ac for all c ∈ K and all a ∈ A.

Keep in mind, that a K-algebra A is a K-vector space in a natural way.

(E) (Homomorphisms of K-Algebras) Let K be a field. A homomorphism of K-algebras
h : A −→ B is a map with K-algebras A and B such that:

(a) h : A −→ B is a homomorphism of rings;
(b) h(c) = c for all c ∈ K.

Observe, that a homomorphism of K-algebras is also a homomorphism of K-vector spaces.

(F) (Modules) We usually shall consider unital left-modules, hence modules M over a
ring R, such that

x(m+ n) = xm+ xn, (x+ y)m = xm+ ym, (xy)m = x(ym) and 1m = m

for all x, y ∈ R and all m,n ∈M . We shall refer to left-modules just as modules.
By a homomorphism of R-modules we mean a map h : M −→ N, with M and N both
R-modules, such that

(a) h(m+ n) = h(m) + h(n) for all m,n ∈M.
(b) h(xm) = xh(m) for all x ∈ R and all m ∈M.

A submodule of a R-module M is a subset N ⊆ M, such that m + n ∈ N and xm ∈ N
whenever m,n ∈ N and x ∈ R. Clearly 0 := {0} and M are submodules of M .
If h : M −→ N is a homomorphism of R-modules, the the kernel Ker(h) := {m ∈ M |
h(m) = 0} of h is a submodule of M and the image Im(h) := h(M) of h is a submodule
of N.
A sequence of (homomorphisms of) R-modules

M0
h0−→M1

h1−→M2 · · ·Mi−1
hi−1−→Mi

hi−→Mi+1 · · ·Mr−1
hr−1−→Mr

is said to be exact if Ker(hi) = Im(hi−1) for all i = 1, 2, . . . , r− 1. A short exact sequence

of R-modules is an exact sequence of the form 0 −→ M
h−→ N

l−→ P −→ 0, meaning
that h is injective, l is surjective and Ker(l) = Im(h).
The annihilator of an R-module M is defined as the left ideal of R consisting of all
elements which annihilate M , thus:

AnnR(M) := {x ∈ R | xM = 0}.

(G) (Noetherian Modules and Rings) Let R be a ring. A left R-module is said to be
Noetherian, if it satisfies the following equivalent conditions
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(i) Each left submodule N ⊆ M if finitely generated, and hence of the form N =∑r
i=1Rni with r ∈ N0 and n1, n2, . . . , nr ∈ N .

(ii Each ascending sequence N0 ⊆ N1 ⊆ · · ·Ni ⊆ Ni+1 ⊆ · · · of left submodules Ni ⊆
M ultimately becomes stationary and thus statisfies Ni0 = Ni0+1 = Ni0+2 = . . .
for some i0 ∈ N0.

We say that the ring R is left Noetherian if it is Noetherian as a left module.
Keep in mind the following facts:

(a) If 0 −→ N −→ M −→ P −→ 0 is an exact sequence of left R-modules then M is
Noetherian if and only N and P are both Noetherian.

(b) If M and N are two Noetherian left R-modules, then their direct sum M ⊕N is
Noetherian, too.

(c) If R is left Noetherian, a left R-module M is Noetherian if and only if it is finitely
generated.

(H) (Modules of Finite Presentation) Let R be a ring. A left R-module M is said to
be of finite presentation if there is an exact sequence of left R-modules

Rs h−→ Rr −→M −→ 0 with r, s ∈ N0.

In this situation, the above exact sequence is called a (finite) presentation of M and

Rs h−→ Rr is called a presenting homomorphism for M .
Keep in mind, that the presenting homomorphism is given by a matrix with entries in R,
more precisely: There is a matrix

A =


a11 a12 . . . a1r

a21 a22 . . . a2r
...

...
...

as1 as2 . . . asr

 ∈ Rs×r such that

h(x1, x2, . . . , xs) = (x1, x2, . . . , xs)A =
( s∑
i=1

xiai1,
s∑
i=1

xiai2, . . . ,
s∑
i=1

xiair
)

for all (x1, x2, . . . , xs) ∈ Rs. This matrix A is called a presentation matrix for M .
Note the following facts:

(a) A left R-module M of finite presentation is finitely generated.
(b) If R is left Noetherian, then each finitely generated left R-module is of finite

presentation.

(I) (Graded Rings and Modules) A (positively) graded ring is a ring R together with a
family (Ri)i∈N0 of additive subgroups Ri ⊆ R such that

(1) R =
⊕

i∈N0
Ri;

(2) 1 ∈ R0;
(3) for all i, j ∈ N0 and all a ∈ Ri and all b ∈ Rj it holds ab ∈ Ri+j.

In this situation we also refer to R =
⊕

i∈N0
Ri as (positively) graded R0-algebra. If

a ∈ Ri \ {0}, we call a a homogeneous element of degree i.
Let R′ =

⊕
i∈N0

R′i be a second graded ring. A homomorphism of graded rings is a
homomorphism f : R −→ R′ of rings which respects gradings, hence such that f(Ri) ⊆ R′i
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for all i ∈ N0. Clearly, the identity map IdR : R −→ R of a graded ring as well as
the composition of two homomorphisms of graded rings is a homomorphism of graded
rings. An isomorphism of graded rings is a homomorphism of graded rings which admits
an inverse which is a homomorphism of graded rings – or, equivalently – a bijective
homomorphism of graded rings.
The (positively) graded ring R =

⊕
i∈N0

Ri is called a homogeneous ring if it is generated
over R0 by homogeneous elements of degree 1, hence if (in the notation introduced in part
(B)) we have R = R0[R1].
A graded (left) module over the graded ring R is a left R-module together with a family
(Mj)j∈Z of additive subgroups Mj ⊆M such that

(1) M =
⊕

j∈ZMj;

(2) For all i ∈ N0, all j ∈ Z, all a ∈ Ri and all m ∈Mj it holds am ∈Mi+j.

A homomorphism of graded (left) modules is a homomorphism h : M −→ N of R-
modules, in which M =

⊕
j∈ZMj and N =

⊕
j∈ZNj are both graded and h(Mj) ⊆ Nj

for all j ∈ Z. Clearly, the identity map of a graded R-module and the composition of two
homomorphisms of graded R-modules are again homomorphisms of graded R-modules.
An isomorphism of graded R-modules is a homomorphism of graded R-modules which
admits an inverse which is a homomorphism of graded R-modules – or, equivalently – a
bijective homomorphism of graded R-modules.

(K) (Prime Varieties) Let R be a commutative ring. We denote the prime spectrum of
R, hence the set of all prime ideals in R, by Spec(R). If a ⊆ R is an ideal, we denote by
Var(a) the prime variety of a, thus

Var(a) := {p ∈ Spec(R) | a ⊆ p}.
Let √

a := {a ∈ R | ∃n ∈ N : an ∈ a}.
denote the radical ideal of a. Keep in mind the following facts:

(a) Var(a) = Var(
√
a).

(b) If a, b ⊆ R are ideals, then Var(a) = Var(b) if and only if
√
a =
√
b.

(L) (Krull Dimension) Let R be as in part (K) and let M be a finitely generated R-
module. Then, the (Krull) dimension dimR(M) of M is defined as the supremum of the
lengths of chains of prime ideals which can be found in the prime variety of the annihilator
of M :

dimR(M) := sup{r ∈ N0 | ∃p0, . . . , pr ∈ Var
(
AnnR(M)

)
with pi−1 ( pi for i = 1, . . . , r}.

In particular, the (Krull) dimension dim(R) of R is the dimension of the R-module R:

dim(R) = sup{r ∈ N0 | ∃p0, . . . , pr ∈ Spec(R) with pi−1 ( pi for i = 1, . . . , r}.
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2. Filtered Algebras

We begin with a few general preliminaries, which will pave our way to introduce and
to treat Weyl algebras and D-modules. Our first preliminary theme are filtered algebras
over a field. It will turn out later, that this concept is of basic significance for the theory
of Weyl algebras.

2.1. Definition and Remark. (A) Let K be a field and let A be K-algebra (see Con-
ventions, Reminders and Notations 1.1 (D)). By a filtration of A we mean a family

A• = (Ai)i∈N0

such that the following conditions hold:

(a) Each Ai is a K-vector subspace of A;
(b) Ai ⊆ Ai+1 for all i ∈ N0;
(c) 1 ∈ A0;
(d) A =

⋃
i∈N0

Ai;
(e) AiAj ⊆ Ai+j for all i, j ∈ N0.

In requirement (e) we have used the standard notation

AiAj :=
∑

(f,g)∈Ai×Aj

Kfg for all i, j ∈ N0,

which we shall use from now on without further mention. To simplify notation, we also
often set

Ai = 0 for all i < 0

and then write our filtration in the form

A• = (Ai)i∈Z.
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If a filtration of A is given, we say that (A,A•) or – by abuse of language – that A is a
filtered K-algebra.

(B) Keep the notations and hypotheses of part (A) and let A• = (Ai)i∈Z be a filtered
K-algebra. Observe that we have the following statements:

(a) A0 is a K-subalgebra of A.
(b) For all i ∈ Z the K-vector space Ai is a left- and a right- A0-submodule of A.

2.2. Example. (The degree filtration of a commutative polynomial ring) Let n ∈ N and
let A = K[X1, X2, . . . , Xn] be the commutative polynomial algebra over the field K in
the indeterminates X1, X2, . . . , Xn. Then clearly A is a K-space over its monomial basis :

A = K[X1, X2, . . . , Xn] =
⊕

ν1,ν2,...,νn∈N0

KXν1
1 X

ν2
2 . . . Xνn

n =
⊕
ν∈Nn0

KXν ,

where we have used use the standard notation

Xν := Xν1
1 X

ν2
2 . . . Xνn

n , for ν := (ν1, ν2 . . . νn) ∈ Nn
0 .

So, each f ∈ A can be written as

f =
∑
ν∈Nn0

c(f)
ν Xν

with a unique family (
c(f)
ν

)
ν∈Nn0

∈
∏
ν∈Nn0

K = KNn0 ,

whose support

supp(f) = supp
(
(c(f)
ν

)
ν∈Nn0

)
:= {ν ∈ Nn

0 | c(f)
ν 6= 0}

is finite. We also introduce the notation

|ν| =
n∑
i=1

νi, for ν = (ν1, ν2, . . . , νn) ∈ Nn
0 .

Then, with the usual convention of Conventions, Reminders andNotations 1.1 (A) we may
describe the degree of the polynomial f ∈ A by

deg(f) := sup{|ν| | c(f)
ν 6= 0} = sup{|ν| | ν ∈ supp(f)}.

Now, for each i ∈ N0 we introduce the K-subspace Ai of A which is given by

Ai := {f ∈ A | deg(f) ≤ i} =
⊕

ν∈Nn0 with |ν|≤i

KXν .

With the usual convention that u + (−∞) = −∞ for all u ∈ Z ∪ {−∞}, we have the
obvious relation

deg(fg) = deg(f) + deg(g) for all f, g ∈ A = K[X1, X2, . . . , Xn].

From this it follows easily:

The family A• =
(
Ai := {f ∈ A | deg(f) ≤ i}

)
i∈N0
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is a filtration of A. This filtration is called the degree filtration of the polynomial algebra
A = K[X1, X2, . . . , Xn].

Clearly filtrations also may occur in non-commutative algebras. The next example
presents somehow the “generic occurrence” of this.

2.3. Example. (The degree filtration of a free associative algebra) Let n ∈ N, let K be a
field and let A = K〈X1, X2, . . . , Xn〉 be the free associative algebra over K in the inde-
terminates X1, X2, . . . , Xn. We suppose in particular that (see Conventions, Reminders
and Notations 1.1 (D))

cXi = Xic for all c ∈ K and all i = 1, 2, . . . , n,

and hence

cf = fc for all c ∈ K and all f ∈ A.
Let i ∈ N0. If

σ = (σ1, σ2, . . . , σi) ∈ {1, 2, . . . , n}i

is a sequence of length i with values in the set {1, 2, . . . , n} we write

Xσ :=
i∏

j=1

Xσj = Xσ1Xσ2 . . . Xσi .

Then, with the usual convention that the product
∏

j∈∅Xj of an empty family of factors
equals 1 and using the notation

Sn :=
{
{1, 2, . . . , n}i | i ∈ N0

}
we can write A as a K-space over its monomial basis as follows:

A = K〈X1, X2, . . . , Xn〉 =

=
⊕
i∈N0

⊕
(σ1,σ2...σi)∈{1,2,...,n}i

KXσ1Xσ2 . . . Xσi =

=
⊕
i∈N0

⊕
σ∈{1,2,...,n}i

KXσ =

=
⊕
σ∈Sn

KXσ.

Clearly, as in the case of a commutative polynomial ring, each f ∈ A may be written in
the form

f =
∑
σ∈Sn

c(f)
σ Xσ

with a unique family (
c(f)
σ

)
σ∈Sn

∈
∏
σ∈Sn

K = KSn ,

whose support

supp(f) = supp
(
(c(f)
σ )σ∈Sn

)
:= {σ ∈ Sn | c(f)

σ 6= 0}
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is finite. We also introduce the notion of length of a sequence σ ∈ Sn by setting

λ(σ) := i, if σ ∈ {1, 2, . . . , n}i.
Now, we may define the degree of an element f ∈ A by

deg(f) := sup{λ(σ) | c(f)
σ 6= 0} = sup{λ(σ) | σ ∈ supp(f)}.

For each i ∈ N0 we introduce a K-subspace Ai of A, by setting

Ai := {f ∈ A | deg(f) ≤ i} =
⊕

σ∈Sn with λ(σ)≤i

KXσ.

We obviously have the relation

deg(fg) ≤ deg(f) + deg(g) for all f, g ∈ A = K〈X1, X2, . . . , Xn〉.
Moreover, it is easy to see:

The family A• =
(
Ai = {f ∈ A | deg(f) ≤ i}

)
i∈N0

is a filtration of A. This filtration is called the degree filtration of the free associative
K-algebra A = K〈X1, X2, . . . , Xn〉.

Later, our basic filtered algebras will be Weyl algebras. These are non-commutative
too, but they also admit the notion of degree and of degree filtration. From the point of
view of filtrations, these algebras will turn out to be “close to commutative”, as we shall
see later. To make this more precise, we will introduce the notion of associated graded
ring with respect to a filtration in the next Section.

3. Associated Graded Rings

3.1. Remark and Definition. (A) Let K be a field and let A = (A,A•) be a filtered
K-algebra. We consider the K-vector space

Gr(A) = GrA•(A) =
⊕
i∈N0

Ai/Ai−1.

For all i ∈ N0 we also use the notation

Gr(A)i = GrA•(A)i := Ai/Ai−1,

so that we may write

Gr(A) = GrA•(A) =
⊕
i∈N0

GrA•(A)i.

(B) Let i, j ∈ N0, let f, f ′ ∈ Ai and let g, g′ ∈ Aj such that

h := f − f ′ ∈ Ai−1 and k := g − g′ ∈ Aj−1.

It follows that

fg − f ′g′ = fg − (f − h)(g − k) = fk + hg − hk
∈ AiAj−1 + Ai−1Aj + Ai−1Aj−1 ⊆
⊆ Ai+(j−1) + Aj+(i−1) + A(i−1)+(j−1) ⊆ Ai+j−1.
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So in Ai+j/Ai+j−1 = GrA•(A)i+j ⊂ GrA•(A) we get the relation

fg + Ai+j−1 = f ′g′ + Ai+j−1.

This allows to define a multiplication on the K-space GrA•(A) which is induced by

(f + Ai−1)(g + Aj−1) := fg + Ai+j−1 for all i, j ∈ N0, all f ∈ Ai and all g ∈ Aj.

With respect to this multiplication, the K-vector space GrA•(A) acquires a structure of
K-algebra.
Observe that, if r, s ∈ N0 and

f =
r∑
i=0

fi, with fi ∈ Ai and fi = (fi + Ai−1) ∈ GrA•(A)i for all i = 0, 1, . . . , r,

and, moreover

g =
s∑
j=0

gj, with gj ∈ Aj and gj = (gj + Aj−1) ∈ GrA•(A)j for all j = 0, 1, . . . , s,

then

fg =
r+s∑
k=0

∑
i+j=k

figj =
r+s∑
k=0

∑
i+j=k

(figj + Ai+j−1).

(C) Keep the above notations and hypotheses. Observe in particular, that GrA•(A)0 is a
K-subalgebra of GrA•(A), and that there is an isomorphism of K-algebras

GrA•(A)0
∼= A0.

Moreover, with respect to our multiplication on GrA•(A) we have the relations

GrA•(A)iGrA•(A)j ⊆ GrA•(A)i+j for all i, j ∈ N0.

So, the K-vector space GrA•(A) is turned into a (positively) graded ring

GrA•(A) =
(
GrA•(A), (GrA•(A)i)i∈N0

)
=
⊕
i∈N0

GrA•(A)i

by means of the above multiplication. We call this ring the associated graded ring of A
with respect to the filtration A•. From now on, we always furnish GrA•(A) with this
multiplication.

3.2. Example and Exercise. (A) Let n ∈ N, let K be a field and consider the commu-
tative polynomial ring A = K[X1, X2, . . . , Xn]. Show that A has the following universal
property within the category of all commutative K-algebras:

If B is a commutative K-algebra and φ : {X1, X2, . . . , Xn} −→ B is a map,

then there is a unique homomorphism of K-algebras φ̃ : A −→ B such that

φ̃(Xi) = φ(Xi) for all i = 1, 2, . . . , n.

Show also, that A has the following relational universal property within the category of
all associative K-algebras:
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If B is an associative K-algebra and φ : {X1, X2, . . . , Xn} −→ B is a map such
that φ(Xi)φ(Xj) = φ(Xj)φ(Xi) for all i, j ∈ {1, 2, . . . , n}, then there is a unique

homomorphism of K-algebras φ̃ : A −→ B such that φ̃(Xi) = φ(Xi) for all
i = 1, 2, . . . , n.

(B) Now, furnish A = K[X1, X2, . . . , Xn] with its degree filtration (see Example 2.2).
Then, on use of the above universal property of A it is not hard to show that there is an
isomorphism of K-algebras

K[X1, X2, . . . , Xn]
∼=−→ GrA•(A),

given by Xi 7→ (Xi + A0) ∈ A1/A0 = GrA•(A)1 ⊂ GrA•(A) for all i = 1, 2 . . . , n.

We now introduce a class of filtrations, which will be of particular interest for our
lectures.

3.3. Definition. Let K be a field and let A = (A,A•) be a filtered K-algebra. The
filtration A• is said to be commutative if

fg − gf ∈ Ai+j−1 for all i, j ∈ N0 and for all f ∈ Ai and all g ∈ Aj.
It is equivalent to say that the associated graded ring GrA•(A) is commutative. In this
situation, we also say that (A,A•) is a commutatively filtered K-algebra.

Later, in the case of Weyl algebras, we shall meet various interesting commutative
filtrations - and precisely this makes these algebras to a subject which is intimately tied to
Commutative Algebra. We now shall define three special types of commutative filtrations,
which will play a particularly important rôle in Weyl algebras.

3.4. Definition and Remark. (A) Let (A,A•) be a filtered K-algebra. The filtration
A• is said to be very good if it satisfies the following conditions:

(a) The filtration A• is commutative;
(b) A0 = K;
(c) dimK(A1) <∞;
(d) Ai = A1Ai−1 for all i ∈ N.

Under these circumstances and on use of the notation introduced in Conventions, Re-
minders and Notations 1.1 (B) we clearly have

dimK(A1/A0) = dimK

(
GrA•(A)1

)
= dimK(A1)− 1 <∞ and GrA•(A) = K[GrA•(A)1].

So, in this situation, the associated graded ring GrA•(A) is a commutative homogeneous
(thus standard graded) Noetherian K-algebra (see Conventions, Reminders and Nota-
tions 1.1 (I)). If A• is a very good filtration of A, we say that (A,A•) – or briefly A – is
a very well-filtered K-algebra.

(B) Let (A,A•) be a filtered K-algebra. The filtration A• is said to be good if it satisfies
the following conditions:

(a) The filtration A• is commutative;
(b) A0 is a K-algebra of finite type;
(c) A1 is finitely generated as a (left-)module over A0;
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(d) Ai = A1Ai−1 for all i ∈ N.

Under these circumstances we clearly have

A0
∼= GrA•(A)0 is commutative and Noetherian

A1/A0 = GrA•(A)1 is a finitely generated A0-module, and

GrA•(A) = GrA•(A)0[GrA•(A)1].

So, in this situation, the associated graded ring GrA•(A) is a commutative homogeneous
Noetherian A0-algebra (see Conventions, Reminders and Notations 1.1 (I)). If A• is a
good filtration of A, we say that (A,A•) – or briefly A – is a well-filtered K-algebra.
Clearly, a very well-filtered K-algebra is also well-filtered.

(C) Let (A,A•) be a filtered K-algebra. The filtration A• is said to be of finite type if
it satisfies the following conditions:

(a) The filtration A• is commutative;
(b) A0 is a K-algebra of finite type;
(c) There is an integer δ ∈ N such that Aj is finitely generated as a (left-)module over

A0 for all j ≤ δ and
(d) Ai =

∑δ
j=1 AjAi−j for all i > δ.

In this situation, we call the number δ a generating degree of the filtration A•. Under
these circumstances we clearly have

Ai =
∑

1≤j1,...,js≤δ:j1+···+js=i

Aj1 · · ·Ajs , (∀i ∈ N)

A0
∼= GrA•(A)0 is commutative and Noetherian

A1/A0 = GrA•(A)1 is a finitely generated A0-module, and

GrA•(A) = GrA•(A)0[
δ∑
i=1

GrA•(A)i].

So, in this situation, the associated graded ring GrA•(A) is a commutative Noetherian
graded A0-algebra, which is generated by finitely many homogeneous elements of degree
≤ δ. If A• is a filtration of A, which is of finite type, we say that (A,A•) is a filtered
algebra of finite type.
Clearly, a well-filtered K-algebra is also finitely filtered. Moreover, if A• is of finite type
and δ = 1, the filtration A• is good.

3.5. Example and Exercise. (A) Let n ∈ N, let K be a field and consider the commu-
tative polynomial ring A = K[X1, X2, . . . , Xn], furnished with its degree filtration. Then,
it is easy to see, that A = K[X1, X2, . . . , Xn] is a very well filtered K-algebra.

(B) Let n ∈ N, let K be a field and consider the commutative polynomial ring
A = K[X1, X2, . . . , Xn]. Let m ∈ {0, 1, . . . , n − 1} and consider the subring B :=
K[X1, X2, . . . , Xm] ⊂ A, so that A = B[Xm+1, Xm+2, . . . , Xn]. For each polynomial

f =
∑

ν c
(f)
ν Xν ∈ A we denote by degB(f) the degree of f with respect to the inde-

terminates Xm+1, Xm+2, . . . , Xn, hence the degree of f considered as a polynomial in
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these indeterminates with coefficients in B. Thus we may write

degB(f) = sup{
n∑
i=1

wiνi | (ν1, ν2, . . . , νn) ∈ supp(f)}

where

w1 = w2 = · · · = wm = 0 and wm+1 = wm+2 = · · · = wn = 1.

Show, that by

Ai := {f ∈ A | degB(f) ≤ i} for all i ∈ N0

a good filtration A• on A is defined and that there is a canonical isomorphism of graded
B-algebras

A = B[Xm+1, Xm+2, . . . , Xn] ∼= GrA•(A),

where A = B[Xm+1, Xm+2, . . . , Xn] is endowed with the standard grading with respect
to the indeterminates Xm+1, . . . , Xn, hence with the grading given by deg(Xi) = 0 if
1 ≤ i ≤ m and deg(Xi) = 1 for m < i ≤ n.

(C) Let n ∈ N, with n > 1, let K be a field and consider the free associative K-algebra
A = K〈X1, X2, . . . , Xn〉, furnished with its degree filtration A•. For each i ∈ {1, 2, . . . , n},
let

X i := (Xi + A0) ∈ A1/A0 = GrA•(A)1 ⊂ GrA•(A).

Show that

X iXj = XjX i if and only if i = j.

(D) Let the notations and hypotheses be as in part (C). Show thatA = K〈X1, X2, . . . , Xn〉
has the following universal property in the category of K-algebras:

If B is a K-algebra and φ : {X1, X2, . . . , Xn} −→ B is a map, there is a unique

homomorphism of K-algebras φ̃ : A −→ B such that φ̃(Xi) = φ(Xi) for all
i = 1, 2, . . . , n.

Use this to show, that there is a unique homomorphism of (graded) K-algebras (which
must be in addition surjective)

φ̃ : A� GrA•(A), such that Xi 7→ X i := (Xi + A0) ∈ A1/A0 = GrA•(A)1.

(E) Let (A,A•) be a filtered K-algebra, let r ∈ N and let i1, i2, . . . , ir ∈ N0. We define
inductively

Ai1Ai2 . . . Air =
r∏
j=1

Aij :=

{
Ai1 , if r = 1,(∏r−1

j=1 Aij
)
Air , if r > 1.

In particular, if i ∈ N0 we set

(Ai)
r :=

r∏
j=1

Ai.

Assume now, that the filtration A• is good and prove that

Ar = (A1)r and AiAj = Ai+j for all r ∈ N and all i, j ∈ N0.
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Assume that the filtration A• is of finite type and has generating degree δ. Prove that

Ai =
∑

ν0,ν1,...,νδ∈N0:i=
∑δ
j=0 jνj

δ∏
j=0

A
νj
j for all i ∈ N0.

4. Derivations

Filtered K-algebras and their associated graded rings are one basic ingredient of the
theory of Weyl algebras. Another basic ingredient are derivations (or derivatives). The
present section is devoted to this subject.

4.1. Definition and Remark. (A) Let K be a field, let A be a commutative K-algebra
and let M be an A-module. A K-derivation (or K-derivative) on A with values in M is
a map d : A −→M such that:

(a) d is K-linear: d(αa+ βb) = αd(a) + βd(b) for all α, β ∈ K and all a, b ∈ A.
(b) d satisfies the Leibniz Product Rule: d(ab) = ad(b) + bd(a) for all a, b ∈ A.

We denote the set of all K-derivations on A with values in M by DerK(A,M), thus:

DerK(A,M) := {d ∈ HomK(A,M) | d(ab) = ad(b) + bd(a) for all a, b ∈ A}.
To simplify notations, we also write

DerK(A,A) =: DerK(A).

(B) Keep in mind, that HomK(A,M) carries a natural structure of A-module, with scalar
multiplication given by

(ah)(x) := a(h(x)) for all a ∈ A, all h ∈ HomK(A,M) and all x ∈ A.
It is easy to verify:

DerK(A,M) is a submodule of the A-module HomK(A,M).

With our usual convention (suggested in Conventions, Reminders and Notations 1.1 (D))
that we identify c ∈ K with c1A ∈ A, the rules (a) and (b) of part (A) imply d(c) =
d(c1) = cd(1) and d(c1) = 1d(c) + cd(1), hence d(c) = d(c) + cd(1) = d(c) + d(c), thus

d(c) = 0 for all c ∈ K and all d ∈ DerK(A,M) : “Derivations vanish on constants.”

Next, we shall look at the arithmetic properties of derivations and gain an important
embedding procedure for modules of derivations of K-algebras of finite type.

4.2. Exercise and Definition. (A) Let K be a field, let A be a commutative K-algebra
and let M be an A-module. Let d ∈ DerK(A,M), let r ∈ N, let ν1, ν2, . . . , νr ∈ N and let
a1, a2, . . . , ar ∈ A. Use induction on r to prove the Generalized Product Rule

d
( r∏
j=1

a
νj
j

)
=

r∑
i=1

νia
νi−1
i

(∏
j 6=i

a
νj
j

)
d(ai)

and the resulting Power Rule

d(ar) = rar−1d(a) for all a ∈ A.
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(B) Let the notations and hypotheses be as in part (A). Assume in addition that A =
K[a1, a2, . . . , ar]. Let e ∈ DerK(A,M). Use what you have shown in part (A) together
with the fact that e and d are K-linear to prove that the following uniqueness statement
holds:

e = d if and only if e(ai) = d(ai) for all i = 1, 2, . . . , r.

(C) Yet assume that A = K[a1, a2, . . . , ar]. Prove that there is a monomorphism (thus an
injective homomorphism) of A-modules

ΘM
a = ΘM

(a1,a2,...,ar)
: DerK(A,M) −→M r, given by d 7→

(
d(a1), d(a2), . . . , d(ar)

)
.

This monomorphism ΘM
a is called the embedding of DerK(A,M) in M r with respect to

a := (a1, a2, . . . , ar).

(D) Let the notations and hypotheses be as in part (C). Assume that M is finitely
generated. Prove, that the A-module DerK(A,M) is finitely generated.

Now, we turn to derivatives in polynomial algebras, a basic ingredient of Weyl algebras.

4.3. Exercise and Definition. (Partial Derivatives in Polynomial Rings) (A) Let n ∈
N, let K be a field and consider the polynomial algebra K[X1, X2, . . . , Xn]. Fix i ∈
{1, 2, . . . , n}. Then, using the monomial basis of K[X1, X2, . . . , Xn] we see that there is a
unique K-linear map

∂i =
∂

∂Xi

: K[X1, X2, . . . , Xn] −→ K[X1, X2, . . . , Xn]

such that for all ν = (ν1, ν2, . . . , νn) ∈ Nn
0 we have

∂i(X
ν) =

∂

∂Xi

( n∏
j=1

X
νj
j

)
=

{
νiX

νi−1
i

∏
j 6=iX

νj
j , if νi > 0

0, if νi = 0.

(B) Keep the notations and hypotheses of part (A). Let

µ = (µ1, µ2, . . . , µn), ν = (ν1, ν2, . . . , νn) ∈ Nn
0

and prove that

∂i
(
XµXν

)
= Xµ∂i

(
Xν
)

+Xν∂i
(
Xµ
)
.

Use the K-linearity of ∂i to conclude that

∂i =
∂

∂Xi

∈ DerK
(
K[X1, X2, . . . , Xn]

)
for all i = 1, 2 . . . , n.

The derivation ∂i = ∂
∂Xi

is called the i-th partial derivative in K[X1, X2, . . . , Xn].

As we shall see in the proposition below, the embedding introduced in Exercise and
Definition 4.2 (C) takes a particularly favorable shape in the case of polynomial algebras.
The exercice to come is aimed to prepare the proof this.
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4.4. Exercise. (A) Let the notations and hypotheses be as in Exercise and Definition 4.3.
For all i, j ∈ Z let δi,j denote the Kronecker symbol, so that

δi,j =

{
1, if i = j,

0, if i 6= j.

Check that

∂i(Xj) = δi,j, for all i, j ∈ {1, 2 . . . , n}.
(B) Keep the above notations and hypotheses. Show that

(a) For each i ∈ {1, 2, . . . , n} it holds K[X1, X2, . . . , Xi−1, Xi+1, . . . , Xn] ⊆ Ker(∂i)
with equality if and only if Char(K) = 0.

(b) K ⊆
⋂n
i=1 Ker(∂i) with equality if and only if Char(K) = 0.

4.5. Proposition. (The Canonical Basis for the Derivations of a Polynomial
Ring) Let n ∈ N, let K be a field and consider the polynomial algebra K[X1, X2, . . . , Xn].
Then the canonical embedding of DerK

(
K[X1, X2, . . . , Xn]

)
into K[X1, X2, . . . , Xn]n with

respect to X1, X2, . . . , Xn (see Exercise and Definition 4.2 (C)) yields an isomorphism of
K[X1, X2, . . . , Xn]-modules

Θ := ΘX1,X2,...,Xn : DerK
(
K[X1, X2, . . . , Xn]

) ∼=−→ K[X1, X2, . . . , Xn]n,

given by

d 7→ Θ(d) := ΘX1,X2,...,Xn(d) =
(
d(X1), d(X2), . . . , d(Xn)

)
,

for all d ∈ DerK
(
K[X1, X2, . . . , Xn]

)
.

In particular, the n partial derivatives ∂1, ∂2, . . . , ∂n form a free basis of the K[X1, X2, . . . , Xn]-
module DerK

(
K[X1, X2, . . . , Xn]

)
, hence

DerK
(
K[X1, X2, . . . , Xn]

)
=

n⊕
i=1

K[X1, X2, . . . , Xn]∂i.

Proof. According to Exercise and Definition 4.2 (C), the map Θ is a monomorphism of
K[X1, X2, . . . , Xn]-modules. By what we have seen in Exercise 4.4 (A) we have

Θ(∂i) =
(
δi,1, δi,2, . . . , δi−1,i, δi,i, δi,i+1, . . . , δi,n

)
=
(
δi,j
)n
j=1

=: ei

for all i = 1, 2, . . . , n. As the n elements

ei =
(
δi,j
)n
j=1
∈ K[X1, X2, . . . , Xn]n with i = 1, 2, . . . , n

form the canonical free basis of the K[X1, X2, . . . , Xn]-module K[X1, X2, . . . , Xn]n our
claims follow immediately. �

5. Weyl Algebras

Now, we are ready to introduce Weyl algebras. We first remind a few facts on endo-
morphism rings of commutative K-algebras and relate these to modules of derivations.
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5.1. Reminder and Remark. (A) Let K be a field and let A be a commutative K-
algebra and let M be an A-module. Keep in mind, that the A-module

EndK(M) := HomK(M,M)

carries a natural structure of K-algebra, whose multiplication is given by composition of
maps, thus:

fg := f ◦ g, hence (fg)(m) := f(g(m)) for all f, g ∈ EndK(M) and all m ∈M.

The module EndK(M) endowed with this multiplication is called the K-endomorphism
ring of M . Observe, that this endomorphism ring is not commutative in general.

(B) Keep the above notations and hypothesis. Then, we have a canonical homomor-
phism of rings

εM : A −→ EndK(M) given by a 7→ εM(a) := aidM for all a ∈ A,
where idM : M −→M is the identity map on M , so that

εM(a)(m) = am for all a ∈ A and all m ∈M.

It is immediate to verify that this canonical homomorphism is injective if M = A:

The canonical homomorphism εA : A −→ EndK(A) is injective.

We therefore call the map εA : A −→ EndK(A) the canonical embedding of A into its
K-endomorphism ring and we consider A as a subalgebra of EndK(A) by means of this
canonical embedding. So, for all a ∈ A we identify a with εA(a).

5.2. Remark and Definition. (A) Let K be a field and let A be a commutative K-
algebra. By the convention made in Reminder and Remark 5.1 we may consider A as
a subalgebra of the endomorphism ring EndK(A). We obviously also have DerK(A) ⊆
EndK(A). So using the notation introduced in Conventions, Reminders and Notations 1.1
(B), we have may consider the K-subalgebra

WK(A) := K[A ∪DerK(A)] = A[DerK(A)] ⊆ EndK(A).

of the K-endomorphism ring of A which is generated by A and all derivations on A with
values in A. We call WK(A) the Weyl algebra of the K-algebra A.

(B) Keep the hypotheses and notations of part (A). Assume in addition, that the
commutative K-algebra A is of finite type, so that we find some r ∈ N0 and elements
a1, a2, . . . , ar ∈ A such that

A = K[a1, a2, . . . , ar].

Then according to Exercise and Definition 4.2 (D), the A-module DerK(A) is finitely
generated. We thus find some s ∈ N0 and derivations d1, d2, . . . , ds ∈ DerK(A) such that

DerK(A) =
s∑
i=1

Adi.

A straight forward computation now allows to see, that

WK(A) = K[a1, a2 . . . , ar, d1, d2, . . . , ds] ⊆ EndK(A).
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In particular we may conclude, that the K-algebra WK(A) is finitely generated.

(C) Keep the above notations and let n ∈ N. The n-th standard Weyl algebra W(K,n)
over the field K is defined as the Weyl algebra of the polynomial ring K[X1, X2, . . . , Xn],
thus

W(K,n) := WK

(
K[X1, X2, . . . , Xn]

)
⊆ EndK

(
K[X1, X2, . . . , Xn]

)
.

Observe, that by Propsition 4.5 and according to the observations made in part (B) we
may write

W(K,n) = K[X1, X2, . . . , Xn, ∂1, ∂1, ∂2, . . . , ∂n] ⊆ EndK
(
K[X1, X2, . . . , Xn]

)
.

The elements of W(K,n) are called polynomial differential operators in the indetermi-
nates X1, X2, . . . , Xn over the field K. They are all K-linear combinations of products of
indeterminates Xi and partial derivatives ∂j.
The differential operators of the form

Xν∂µ := Xν1
1 . . . Xνn

n ∂
µ1
1 . . . ∂µnn =

n∏
i=1

Xνi

n∏
j=1

∂µj ∈W(K,n)

with
ν := (ν1, . . . , νn), µ := (µ1, . . . , µn) ∈ Nn

0

are called elementary differential operators in the indeterminates X1, X2, . . . , Xn over the
field K.

We now aim to study the structure of standard Weyl algebras. One of the main goals
we are heading for is to find an appropriate ”monomial basis“ in each of these algebras.
We namely shall see later that the previously introduced elementary differential operators
form a K-basis of the standard Weyl algebra W(K,n), provided K is of characteristic 0.
To pave our way to this fundamental result, we first of all have to prove that in standard
Weyl algebras certain commutation relations hold: the so-called Heisenberg relations. To
establish these relations, we begin with the following preparations.

5.3. Remark and Exercise. (A) If K is a field and B is a K-algebra, we introduce the
Poisson operation, that is the map

[•, •] : B ×B −→ B, defined by [a, b] := ab− ba for all a, b ∈ B.
Show, that the Poisson operation has the following properties:

(a) [a, b] = −[b, a] for all a, b ∈ B.
(b) [[a, b], c] + [[b, c], a] + [[c, a], b] = 0 for all a, b, c ∈ B.
(c) [αa+ α′a′, βb+ β′b′] = αβ[a, b] + αβ′[a, b′] + α′β[a′, b] + α′β′[a′, b′]

for all α, α′, β, β′ ∈ K and all a, a′, b, b′ ∈ B.

Observe in particular, that statement (a) says that the Poisson operation is anti-
commutative, whereas statement (c) says that this operation is K-bilinear. We call
[a, b] the commutator of a and b.

(B) Now, let K be a field, let A be a commutative K-algebra and consider the Weyl
algebra WK(A) := A[DerK(A)]. Show that the following relations hold:
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(a) [a, b] = 0 for all a, b ∈ A.
(b) [a, d] = −d(a) for all a ∈ A and all d ∈ DerK(A).
(c) [d, e] ∈ DerK(A) for all d, e ∈ DerK(A).

(C) Let the notations and hypotheses be as in part (B). Let d, e ∈ DerK(A), let r ∈ N,
let ν1, ν2, . . . , νr ∈ N and let a1, a2, . . . , ar ∈ A. Use statement (c) of part (B) and the
Generalized Product Rule of Exercise and Definition 4.2 (A) to prove that

[d, e]
( r∏
j=1

a
νj
j

)
=

r∑
i=1

νia
νi−1
i

(∏
j 6=i

a
νj
j

)
[d, e](ai).

5.4. Proposition. (The Heisenberg Relations) Let n ∈ N, and let Kbe a field. Then,
in the standard Weyl algebra

W(K,n) = K[X1, X2, . . . , Xn, ∂1, ∂2, . . . , ∂n]

the following relations hold:

(a) [Xi, Xj] = 0, for all i, j ∈ {1, 2, . . . , n};

(b) [Xi, ∂j] = −δi,j, for all i, j ∈ {1, 2, . . . , n};

(c) [∂i, ∂j] = 0, for all i, j ∈ {1, 2, . . . , n}.

Proof. (a): This is clear on application of Remark and Exercise 5.3 (B)(a) with a = Xi

and b = Xj.

(b): If we apply Remark and Exercise 5.3 (B)(b) with a = Xi and d = ∂j, and observe
that ∂j(Xi) = δj,i = δi,j we get our claim.

(c): Observe that for all i, k ∈ {1, 2, . . . , n} we have ∂i(Xk) ∈ {0, 1} ⊆ K. So for all
i, j, k ∈ {1, 2, . . . , n} we obtain (see Definition and Remark 4.1 (B)):

[∂i, ∂j](Xk) = ∂i
(
∂j(Xk)

)
− ∂j

(
∂i(Xk)

)
∈ ∂i(K) + ∂j(K) = {0}+ {0} = {0}.

Now, we get our claim by Exercise and Definition 4.2 (B) and Remark and Exercise 5.3
(B) (c) and (C). �

The Heisenberg relations are of basic significance for the arithmetic in standard Weyl
algebras. Before we show that the elementary differential operators provide a basis for a
standard Weyl algebra we shall study the arithmetic of these algebras. In particular, in
the next section we shall prove a product formula for elementary differential operators,
which will be of basic significance. We shall do this in a slightly more general setting,
namely just for K-algebras ”mimicking“ the Heisenberg relations. The next exercise is
aimed to prepare this.

5.5. Exercise. (A) Let n ∈ N, let K be a field, let B be a K-algebra and let

a1, a1, . . . , an, d1, d2, . . . , dn ∈ B
be elements mimicking the Heisenberg relations, which means:

(1) [ai, aj] = 0, for all i, j ∈ {1, 2, . . . , n};
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(2) [ai, dj] = −δi,j, for all i, j ∈ {1, 2, . . . , n};
(3) [di, dj] = 0, for all i, j ∈ {1, 2, . . . , n}.

Let µ, ν ∈ N0. To simplify notations, we set

0bk := 0 for all b ∈ B and all k ∈ Z.

prove the following statements (using induction on µ and ν):

(a) aµi a
ν
j = aνja

µ
i ;

(b) dµi d
ν
j = dνjd

µ
i ;

(c) dµi a
ν
j = aνjd

µ
i for all i, j ∈ {1, 2, . . . , n} with i 6= j.

(d) dia
ν
i = aνi di + νaν−1

i for all i ∈ {1, 2, . . . , n}.

(B) Keep the notations and hypotheses of part (A). For all (λ1, λ2, . . . , λn) ∈ Nn
0 and

each sequence (b1, b2, . . . , bn) ∈ Bn we use again our earlier standard notation

λ := (λ1, λ2, . . . , λn) and bλ := bλ11 b
λ2
2 . . . bλnn =

n∏
i=1

bλii .

Now, let

µ := (µ1, µ1, . . . , µn), ν := (ν1, ν2, . . . , νn), and

µ′ := (µ′1, µ
′
1, . . . , µ

′
n), ν ′ := (ν ′1, ν

′
2, . . . , ν

′
n) ∈ Nn

0 .

Prove that the following relations hold

(a) aνdµ =
∏n

i=1 a
νi
i

∏n
j=1 d

µj
j =

∏n
i=1 a

νi
i d

µi
i .

(b) (aνdµ)(aν
′
dµ
′
) =

(∏n
i=1 a

νi
i

∏n
j=1 d

µj
j

)(∏n
i=1 a

ν′i
i

∏n
j=1 d

µ′j
j

)
=
∏n

i=1 a
νi
i d

µi
i a

ν′i
i d

µ′i
i .

6. Arithmetic in Weyl Algebras

As announced above, we now aim to do some Arithmetic in standard Weyl algebras.
This means in particular, that we make explicit a number of computations in the hope
that readers who up to now were mainly faced with commutative rings, get fascinated by
the complexity of the arithmetic in Weyl algebras.
The following arithmetical Lemma is formulated in a more general framework, namely
in a situation, which ”mimicks” the Heisenberg relation. If we specialize this Lemma to
standard Weyl algebras, we get a most important formula, which expresses the product of
two elementary differential operators as a Z-linear combination of elementary differential
operators. This will also give us an explicit presentation of the commutator [d, e] (see
Remark and Exercise 5.3 (A)) of two elementary differential operators d and e. Asa fur-
ther application we will get the Reduction Principle for arbitrary products of elementary
differential operators and thus pave our way to the standard basis presentation of Weyl
algebras, which we shall introduce in the next section.
We prove the announced Lemma in a setting which is more general than just the frame-
work of Weyl algebras, because in this form it will help us to prove the universal prop-
erty of Weyl algebras formulated in Corollary 7.5. This property is an analogue of the
(relational) universal property of commutative polynomial algebras (see Example and
Exercise 3.2 (A)) or of free associative algebras (see Example and Exercise 3.5 (D)).
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6.1. Lemma. Let n ∈ N, let K be a field, let B be a K-algebra and let

a1, a2, . . . , an, d1, d2, . . . , dn ∈ B
such that:

(1) [ai, aj] = 0, for all i, j ∈ {1, 2, . . . , n};
(2) [ai, dj] = −δi,j, for all i, j ∈ {1, 2, . . . , n};
(3) [di, dj] = 0, for all i, j ∈ {1, 2, . . . , n}.

Then, the following statements hold:

(a) For all µ, ν ∈ N0 and all i ∈ {1, 2, . . . , n} we have

dµi a
ν
i =

min{µ,ν}∑
k=0

(
µ

k

) k−1∏
p=0

(ν − p)aν−ki dµ−ki .

(b) Let
µ := (µ1, µ1, . . . , µn), ν := (ν1, ν2, . . . , νn), and

µ′ := (µ′1, µ
′
1, . . . , µ

′
n), ν ′ := (ν ′1, ν

′
2, . . . , ν

′
n) ∈ Nn

0 .

Set

I := {k := (k1, k2, . . . , kn) ∈ Nn
0 | ki ≤ min{µi, ν ′i} for i = 1, 2, . . . , n},

and let

λk := [
n∏
i=1

(
µi
ki

)
]× [

n∏
i=1

ki−1∏
p=0

(ν ′i − p)].

Then, we have the relation

(aνdµ)(aν
′
dµ
′
) := (

n∏
i=1

aνii

n∏
j=1

d
µj
j )

n∏
i=1

a
ν′j
i

n∏
j=1

d
µ′j
i ) =

=
n∏
i=1

a
νi+ν

′
i

i

n∏
i=1

d
µi+µ

′
i

i +
∑

k∈I\{0}

λk

n∏
i=1

a
νi+ν

′
i−ki

i

n∏
i=1

d
µi+µ

′
i−ki

i =

= aν+ν′dµ+µ′ +
∑

k∈I\{0}

λka
ν+ν′−kdµ+µ′−k.

Proof. (a): To simplify matters we use the notation

0bk := 0 for all b ∈ B and all k ∈ Z
already introduced in the previous Exercise 5.5 (A). Then, it suffices to show that

dµi a
ν
i =

µ∑
k=0

(
µ

k

) k−1∏
p=0

(ν − p)aν−ki dµ−ki .

We proceed by induction on µ. The case µ = 0 is obvious. The case µ = 1 is clear by
Exercise 5.5 (A)(d). So, let µ > 1. By induction we have

dµ−1
i aνi =

µ−1∑
k=0

(
µ− 1

k

) k−1∏
p=0

(ν − p)aν−ki dµ−1−k
i .
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It follows on use of Exercise 5.5 (A)(d) and the Pascal formulas for the sum of binomial
coefficients, that

dµi a
ν
i = di(d

µ−1
i aνi ) = di(

µ−1∑
k=0

(
µ− 1

k

) k−1∏
p=0

(ν − p)aν−ki dµ−1−k
i ) =

=

µ−1∑
k=0

(
µ− 1

k

) k−1∏
p=0

(ν − p)(diaν−ki )dµ−1−k
i =

=

µ−1∑
k=0

(
µ− 1

k

) k−1∏
p=0

(ν − p)
(
aν−ki di + (ν − k)aν−k−1

i

)
dµ−1−k
i =

=

µ−1∑
k=0

[

(
µ− 1

k

) k−1∏
p=0

(ν − p)aν−ki dµ−ki +

(
µ− 1

k

) k−1∏
p=0

(ν − p)(ν − k)aν−k−1
i dµ−1−k

i ] =

=

µ−1∑
k=0

(
µ− 1

k

) k−1∏
p=0

(ν − p)aν−ki dµ−ki +

µ−1∑
k=0

(
µ− 1

k

) k∏
p=0

(ν − p)aν−k−1
i dµ−1−k

i =

=

µ−1∑
k=0

(
µ− 1

k

) k−1∏
p=0

(ν − p)aν−ki dµ−ki +

µ∑
k=1

(
µ− 1

k − 1

) k−1∏
p=0

(ν − p)aν−ki dµ−ki =

= aνi d
µ
i +

µ−1∑
k=1

(
µ− 1

k

) k−1∏
p=0

(ν − p)aν−ki dµ−ki +

+

µ−1∑
k=1

(
µ− 1

k − 1

) k−1∏
p=0

(ν − p)aν−ki dµ−ki +

µ−1∏
p=0

(ν − p)aν−µi =

= aνi d
µ
i +

µ−1∑
k=1

[

(
µ− 1

k

)
+

(
µ− 1

k − 1

)
]
k−1∏
p=0

(ν − p)aν−ki dµ−ki +

µ−1∏
p=0

(ν − p)aν−µi =

= aνi d
µ
i +

µ−1∑
k=1

(
µ

k

) k−1∏
p=0

(ν − p)aν−ki dµ−ki +

µ−1∏
p=0

(ν − p)aν−µi =

=

µ∑
k=0

(
µ

k

) k−1∏
p=0

(ν − p)aν−ki dµ−ki .
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(b): According to Exercise 5.5 (B)(a),(b), the previous statement (a) and Exercise 5.5
(A)(a),(b) and (c) we may write

(aνdµ)(aν
′
dµ
′
) :=

( n∏
i=1

aνii

n∏
j=1

d
µj
j

)( n∏
i=1

a
ν′i
i

n∏
j=1

d
µ′j
j

)
=

n∏
i=1

aνii d
µi
i a

ν′i
i d

µ′i
i =

=
n∏
i=1

aνii
(
dµii a

ν′i
i

)
d
µ′i
i =

n∏
i=1

aνii [

min{µi,ν′i}∑
k=0

(
µi
k

) k−1∏
p=0

(ν ′i − p)a
ν′i−k
i dµi−ki ]d

µ′i
i =

=
n∏
i=1

(

min{µi,ν′i}∑
k=0

(
µi
k

) k−1∏
p=0

(ν ′i − p)a
νi+ν

′
i−k

i d
µi+µ

′
i−k

i ] =

=
∑

k:=(k1,k2,...,kn)∈I

n∏
i=1

((µi
ki

) ki−1∏
p=0

(ν ′i − p)a
νi+ν

′
i−ki

i d
µi+µ

′
i−ki

i

)
=

=
∑
k∈I

( n∏
i=1

(
µi
ki

))( n∏
i=1

ki−1∏
p=0

(ν ′i − p)
) n∏
i=1

a
νi+ν

′
i−ki

i d
µi+µ

′
i−ki

i =

=
∑
k∈I

( n∏
i=1

(
µi
ki

))( n∏
i=1

ki−1∏
p=0

(ν ′i − p)
) n∏
i=1

a
νi+ν

′
i−ki

i

n∏
i=1

d
µi+µ

′
i−ki

i =

=
n∏
i=1

a
νi+ν

′
i

i

n∏
i=1

d
µi+µ

′
i

i +
∑

k∈I\{0}

λk

n∏
i=1

a
νi+ν

′
i−ki

i

n∏
i=1

d
µi+µ

′
i−ki

i =

= aν+ν′dµ+µ′ +
∑

k∈I\{0}

λka
ν+ν′−kdµ+µ′−k.

�

As an application we now get the announced product formula for elementary differential
operators.

6.2. Proposition. (The Product Formula for Elementary Differential Opera-
tors) Let n ∈ N, let K be a field and consider the standard Weyl algebra

W(K,n) = K[X1, X2, . . . Xn, ∂1, ∂2 . . . , ∂n].

Moreover, let

µ := (µ1, µ1, . . . , µn), ν := (ν1, ν2, . . . , νn) and

µ′ := (µ′1, µ
′
1, . . . , µ

′
n), ν ′ := (ν ′1, ν

′
2, . . . , ν

′
n) ∈ Nn

0 .

Set

I := {k := (k1, k2, . . . , kn) ∈ Nn
0 | ki ≤ min{µi, ν ′i} for i = 1, 2, . . . , n},

and let

λk :=
( n∏
i=1

(
µi
ki

))( n∏
i=1

ki−1∏
p=0

(ν ′i − p)
)
.
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Then, we have the equality

(Xν∂µ)(Xν′∂µ
′
) :=

( n∏
i=1

Xνi
i

n∏
j=1

∂
µj
j

)( n∏
i=1

X
ν′i
i

n∏
j=1

∂
µ′j
j

)
=

=
n∏
i=1

X
νi+ν

′
i

i

n∏
i=1

∂
µi+µ

′
i

i +
∑

k∈I\{0}

λk

n∏
i=1

X
νi+ν

′
i−ki

i

n∏
i=1

∂
µi+µ

′
i−ki

i =

= Xν+ν′∂µ+µ′ +
∑

k∈I\{0}

λkX
ν+ν′−k∂µ+µ′−k.

Proof. It suffices to apply Lemma 6.1 (b) with ai := Xi and di := ∂i for i = 1, 2 . . . , n. �

Now, we can prove the main result of the present section. To formulate it, we introduce
another notation and suggest a further exercise.

6.3. Notation and Remark. (A) Let n ∈ N and let

κ := (κ1, κ2, . . . , κn) and λ := (λ1, λ2, . . . , λn) ∈ Nn
0 .

We write

κ ≤ λ if and only if κi ≤ λi for i = 1, 2, . . . , n

and

κ < λ if and only if κ ≤ λ and κ 6= λ.

(B) Keep the notations of part (A). Observe that

κ ≤ λ if and only if λ− κ ∈ Nn
0

and

κ < λ if and only if λ− κ ∈ Nn
0 \ {0}.

(C) We now introduce a few notations, which we will have to use later very frequently.
Namely, for

α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn) ∈ Nn
0

we set

M(α, β) := {(α− k, β − k) | k ∈ Nn
0 \ {0} with k ≤ α, β}

and

M(α, β) := {(α− k, β − k) | k ∈ Nn
0 with k ≤ α, β} = M(α, β) ∪ {(α, β)}.

Moreover, we write

M≤(α, β) := {(λ, κ) ∈ Nn
0 × Nn

0 | λ ≤ ν and κ ≤ µ for some (ν, µ) ∈M(α, β)}.

Observe that

M(α, β) ⊆M≤(α, β).
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6.4. Exercise. (A) Let n ∈ N, let K be a field and consider the standard Weyl algebra

W(K,n) = K[X1, X2, . . . , Xn, ∂1, ∂2, . . . , ∂n].

In addition, let

µ := (µ1, µ1, . . . , µn), ν := (ν1, ν2, . . . , νn) and

µ′ := (µ′1, µ
′
1, . . . , µ

′
n), ν ′ := (ν ′1, ν

′
2, . . . , ν

′
n) ∈ Nn

0 .

Moreover, let the sets

M(ν + ν ′, µ+ µ′) ⊂M(ν + ν ′, µ+ µ′) ⊂ Nn
0 × Nn

0

be defined according to Notation and Remark 6.3 (C). Prove that

(Xν∂µ)(Xν′∂µ
′
)−Xν+ν′∂µ+µ′ ∈

∑
(λ,κ)∈M(ν+ν′,µ+µ′)

ZXλ∂κ.

and

(Xν∂µ)(Xν′∂µ
′
) ∈

∑
(λ,κ)∈M(ν+ν′,µ+µ′)

ZXλ∂κ.

(B) Let the notations be as in part (A) and let the set

M(ν + ν ′, µ+ µ′) ⊂ Nn
0 × Nn

0

be defined according to Notation and Remark 6.3 (C). Prove that[
Xν∂µ, Xν′∂µ

′] ∈ ∑
(λ,κ)∈M(ν+ν′,µ+µ′)

ZXλ∂κ.

(C) To give a more precise statement than what was just said in part (B), keep the
notations of Proposition 6.2 and set in addition

I′ := {k′ := (k′1, k
′
2, . . . , k

′
n) ∈ Nn

0 | k′i ≤ min{µ′i, νi} for i = 1, 2, . . . , n}.

Use the product formula of Proposition 6.2 to show that[
Xν∂µ, Xν′∂µ

′]
=

∑
k∈I\{0}

λkX
ν+ν′−k∂µ+µ′−k −

∑
k′∈I′\{0}

λk′X
ν+ν′−k′∂µ+µ′−k′ .

(D) Let i ∈ {1, , 2, . . . , n} and consider the n-tuple ei := (δi,j)
n
j=1 = (0, . . . , 0, 1, 0, . . . , 0) ∈

Nn
0 . Use what you have shown in part (C) to prove the following statements

(a)
[
Xi, X

ν∂µ
]

=

{
−µiXv∂µ−ei , if µi > 0;

0 , if µi = 0.

(b)
[
∂i, X

ν∂µ
]

=

{
νiX

v−ei∂µ , if νi > 0;

0 , if νi = 0.
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6.5. Theorem. (The Reduction Principle) Let n ∈ N, let K be a field and consider
the standard Weyl algebra

W(K,n) = K[X1, X2, . . . , Xn, ∂1, ∂2, . . . , ∂n].

Let r ∈ N, let

ν(i) := (ν
(i)
1 , ν

(i)
2 , . . . , ν(i)

n ) and µ(i) := (µ
(i)
1 , µ

(i)
2 , . . . , µ

(i)
n ) ∈ Nn

0 , for i = 1, 2, . . . , r

and abbreviate

ν :=
r∑
i=1

ν(i), µ :=
r∑
i=1

µ(i).

Moreover, let the set

M := M≤
(
ν, µ
)
⊂ Nn

0 × Nn
0

be defined according to Notation and Remark 6.3 (C). Then, we have
r∏
i=1

Xν(i)∂µ
(i) −Xν∂µ ∈

∑
(κ,λ)∈M

ZXλ∂κ.

Proof. We proceed by induction on r. The case r = 1 is obvious. The case r = 2 follows
from Proposition 6.2, more precisely from its consequence proved in Exercise 6.4 (A) (see
also Notation and Remark 6.3 (C)) . So, let r > 2. We set

ν ′ :=
r−1∑
i=1

ν(i), µ′ :=
r−1∑
i=1

µ(i) and M′ := M≤
(
ν ′, µ′

)
.

By induction we have

% :=
r−1∏
i=1

Xν(i)∂µ
(i) −Xν′∂µ

′ ∈
∑

(λ′,κ′)∈M′
ZXλ′∂κ

′
=: N.

By the case r = 2 we have (see once more Notation and Remark 6.3 (C) and Exercise 6.4
(A))

σ :=
(
Xν′∂µ

′)
Xν(r)∂µ

(r) −Xν∂µ ∈
∑

(λ,κ)∈M

ZXλ∂κ =: M.

As
r∏
i=1

Xν(i)∂µ
(i) −Xν∂µ = σ + %Xν(r)∂µ

(r)

,

it remains to show that

%Xν(r)∂µ
(r) ∈M.

Observe that

%Xν(r)∂µ
(r) ∈ NXν(r)∂µ

(r)

=
∑

(λ′,κ′)∈M′
ZXλ′∂κ

′
Xν(r)∂µ

(r)

.

Observe also that

(λ′ + ν(r), κ′ + µ(r)) ∈M for all (λ′, κ′) ∈M′,
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so that in the notation introduced in Notation and Remark 6.3 (C) we have

M(λ′ + ν(r), κ′ + µ(r)) ⊆M for all (λ′, κ′) ∈M′.
Hence, on application of Exercise 6.4 (A) it follows that

Xλ′∂κ
′
Xν(r)∂µ

(r) ∈
∑

(λ,κ)∈M(λ′+ν(r),κ′+µ(r))

ZXλ∂κ ⊆
∑

(λ,κ)∈M

ZXλ∂κ = M,

and this shows that indeed %Xν(r)∂µ
(r) ∈M . �

Now, in the next section, we can show that the elementary differential operators form
a K-basis of the standard Weyl algebra W(K,n), provided the field K has characteristic
0. To prepare this, we add an additional exercise.

6.6. Exercise. (A) Let n ∈ N and consider the polynomial ring K[X1, X2, . . . , Xn]. More-
over, let

µ := (µ1, µ1, . . . , µn), and ν := (ν1, ν2, . . . , νn) ∈ Nn
0 .

Fix i ∈ {1, 2, . . . , n} and prove by induction on µi, that

∂µii
(
Xν
)

= ∂µii
( n∏
j=1

X
νj
j

)
=

{∏µi−1
k=0 (νi − k)Xνi−µi

i

∏
j 6=iX

νj
j , if νi ≥ µi;

0, if νi < µi.

(B) Let the notations and hypotheses be as in part (A) and use what you have shown
there to prove that

∂µ
(
Xν
)

=
n∏
i=1

∂µii
( n∏
j=1

Xνj
)

=

=

{∏n
i=1

∏µi−1
k=0 (νi − k)Xνi−µi

i , if νi ≥ µi for all i ∈ {1, 2, . . . , n};
0, if νi < µi for some i ∈ {1, 2, . . . , n}.

=

{∏n
i=1

∏µi−1
k=0 (νi − k)Xν−µ, if ν ≥ µ;

0, otherwise.

7. The Standard Basis

Now, we are ready to prove the fact that over a base field of characteristic 0 the
elementary differential operators form a vector space basis of the standard Weyl algebra.

7.1. Theorem. (The Standard Basis) Let n ∈ N and let K be a field of characteristic
0. Then, the elementary differential operators

Xν∂µ =
n∏
i=1

Xνi
i

n∏
i=1

∂µii with µ := (µ1, µ2, . . . , µn) and ν := (ν1, ν2, . . . , νn) ∈ Nn
0

form a K-vector space basis of the standard Weyl algebra

W(K,n) = K[X1, X2, . . . , Xn, ∂1, ∂2, . . . , ∂n].

So, in particular we can say
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(a) W(K,n) =
⊕

ν,µ∈Nn0
KXν∂µ =

⊕
µ1,µ2,...,µn,ν1,ν2,...,νn∈N0

K
∏n

i=1X
νi
i

∏n
i=1 ∂

µi
i .

(b) Each differential operator d ∈W(K,n) can be written in the form

d =
∑

ν,µ∈Nn0

c(d)
ν,µX

ν∂µ

with a unique family(
c(d)
ν,µ

)
ν,µ∈Nn0

∈
∏

ν,µ∈Nn0

K = KNn0×Nn0 ,

whose support

supp(d) = supp
(
(c(d)
ν,µ)ν,µ∈Nn0

)
:= {(ν, µ) ∈ Nn

0 × Nn
0 | c(d)

ν,µ 6= 0}

is a finite set. We thus can write

d =
∑

(ν,µ)∈supp(d)

c(d)
ν,µX

ν∂µ .

Proof. We first show, that the elementary differential operators generate W(K,n) as a
K-vector space, hence that

W(K,n) =
∑

ν,µ∈Nn0

KXν∂µ =: M.

Observe, that by definition each element d of W(K,n) is a K-linear combination of prod-
ucts of elementary differential operators. But by the Reduction Principle of Theorem 6.5
each product of elementary differential operators is contained in the K-vector space M .
It remains to show, that the elementary differential operators are linearly independent
among each other. Assume to the contrary, that there are linearly dependent elementary
differential operators in W(K,n). Then, we find a positive integer r ∈ N, families

µ(i) := (µ
(i)
1 , µ

(i)
2 , . . . , µ

(i)
n ), ν(i) := (ν

(i)
1 , ν

(i)
2 , . . . , ν(i)

n ) ∈ Nn
0 , (i = 1, 2, . . . , r)

with

(µ(i), ν(i)) 6= (µ(j), ν(j)) for all i, j ∈ {1, 2, . . . , r} with i 6= j,

and elements

c(i) ∈ K \ {0} (i = 1, 2, . . . , r),

such that

d :=
r∑
i=1

c(i)Xν(i)∂µ
(i)

= 0.

We may assume, that

|µ(r)| = max{|µ(i)| | i = 1, 2, . . . , r}
and that for some s ∈ {1, 2, . . . , r} we have

µ(i) 6= µ(r) for all i < s and µ(i) = µ(r) for all i ≥ s.
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Then, it follows easily by what we have seen in Exercise 6.6 (B), that

Xν(i)∂µ
(i)(
Xµ(r)

)
=

{∏n
j=1 µ

(r)
j !Xν(r) , if s ≤ i ≤ r

0, if i < s.

So, we get

0 = d
(
Xµ(r)

)
=

r∑
i=1

c(i)Xν(i)∂µ
(i)(
Xµ(r)

)
=

r∑
i=s

c(i)

n∏
j=1

µ
(r)
j !Xν(i) .

As Char(K) = 0, and as the monomials Xν(i) are pairwise different for i = s, s+ 1, . . . , r,
the last sum does not vanish, and we have a contradiction. �

7.2. Definition and Remark. (A) Let the notations and hypotheses be as in Theo-
rem 6.5. We call the basis of W(K,n) which consists of all elementary differential opera-
tors the standard basis. If we present a differential operator d ∈W(K,n) with respect to
the standard basis and write

d =
∑

ν,µ∈Nn0

c(d)
ν,µX

ν∂µ

as in statement (b) of Theorem 6.5, we say that d is written in standard form. The support
of a differential operator d in W(K,n) is always defined with respect to the standard form
as in statement (b) of Theorem 7.1. We therefore call the support of d also the standard
support of d.

(B) Keep the above notations and hypotheses. It is a fundamental task, to write an
arbitrarily given differential operator d ∈ W(K,n) in standard form. This task actually
is reduced by the Reduction Principle of Theorem 6.5 to make explicit the coefficients of
the differences

∆ν(•)µ(•) :=
r∏
i=1

Xν(i)∂µ
(i) −X

∑r
i=1 ν

(i)

∂
∑r
i=1 µ

(i) ∈
∑

(λ,κ)∈M

ZXλ∂κ.

This task can be solved by a repeated application of the Product Formula of Proposi-
tion 6.2 or – directly – by a repeated application of the Heisenberg relations. Clearly, this
is a task which usually is performed by means of Computer Algebra systems.

We now prove the following application, a result on supports, which will turn out to be
useful in the next section.

7.3. Proposition. (Behavior of Supports) Let n ∈ N, let K be a field of characteristic
0 and consider the differential operators

d, e ∈W(K,n) = K[X1, X2, . . . , Xn, ∂1, ∂2, . . . , ∂n].

For all (α, β) ∈ Nn
0 × Nn

0 , let the sets

M(α, β) ⊂M(α, β) ⊂ Nn
0 × Nn

0

be defined according to Notation and Remark 6.3 (C). Then, we have

(a)
(
supp(d) ∪ supp(e)

)
\
(
supp(d) ∩ supp(e)

)
⊆ supp(d+ e) ⊆ supp(d) ∪ supp(e).

(b) supp(cd) = supp(d) for all c ∈ K \ {0}.
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(c) supp(de) ⊆
⋃

(ν,µ)∈supp(d),(ν′,µ′)∈supp(e) M(ν + ν ′, µ+ µ′).

(d) supp
(
[d, e]

)
⊆
⋃

(ν,µ)∈supp(d),(ν′,µ′)∈supp(e) M(ν + ν ′, µ+ µ′).

Proof. (a), (b): These statements follow in a straight forward way from our definition of
support, and we leave it as an exercise to perform their proof.

(c): In the notations of Theorem 7.1 we write

d =
∑

(ν,µ)∈supp(d)

c(d)
ν,µX

ν∂µ and e =
∑

(ν′,µ′)∈supp(e)

c
(e)
ν′,µ′X

ν′∂µ
′
.

it follows that
de =

∑
(ν,µ)∈supp(d),(ν′,µ′)∈supp(e)

c(d)
ν,µc

(e)
ν′,µ′X

ν∂µXν′∂µ
′
.

But according to Exercise 6.4 (A) we have

supp
(
Xν∂µXν′∂µ

′) ⊆M(ν + ν ′, µ+ µ′) for all (ν, µ) ∈ supp(d) and all (ν ′, µ′) ∈ supp(e).

Now, our claim follows easily on repeated application of statements (a) and (b).

(d): As in the proof of statement (c) we can write

de =
∑

(ν,µ)∈supp(d),(ν′,µ′)∈supp(e)

c(d)
ν,µc

(e)
ν′,µ′X

ν∂µXν′∂µ
′

and, similarly

ed =
∑

(ν,µ)∈supp(d),(ν′,µ′)∈supp(e)

c(d)
ν,µc

(e)
ν′,µ′X

ν′∂µ
′
Xν∂µ.

It follows that[
de, ed

]
= de− ed =

=
∑

(ν,µ)∈supp(d),(ν′,µ′)∈supp(e)

c(d)
ν,µc

(e)
ν′,µ′X

ν∂µXν′∂µ
′ −

−
∑

(ν,µ)∈supp(d),(ν′,µ′)∈supp(e)

c(d)
ν,µc

(e)
ν′,µ′X

ν′∂µ
′
Xν∂µ =

=
∑

(ν,µ)∈supp(d),(ν′,µ′)∈supp(e)

c(d)
ν,µc

(e)
ν′,µ′

(
Xν∂µXν′∂µ

′ −Xν′∂µ
′
Xν∂µ

)
=

=
∑

(ν,µ)∈supp(d),(ν′,µ′)∈supp(e)

c(d)
ν,µc

(e)
ν′,µ′

[
Xν∂µ, Xν′∂µ

′]
.

By Exercise 6.4 (B) we have

supp
([
Xν∂µ, Xν′∂µ

′]) ⊆M(ν + ν ′, µ+ µ′)

for all (ν, µ) ∈ supp(d) and all (ν ′, µ′) ∈ supp(e).

Now, statement (d) follows easily on repeated application of statements (a) and (b). �
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7.4. Exercise. (A) Let n ∈ N, let K be a field of characteristic 0 and consider the standard
Weyl algebra

W = W(K,n) = K[X1, X2, . . . , Xn, ∂1, ∂2, . . . , ∂n].

Prove in detail statements (a) and (b) of Proposition 7.3.

(B) Let the notations and hypotheses be as in part (A). Present in standard form the
following differential operators:

∂2
1X

2
1 −X1∂1X1 − 1, ∂2

1X
2
1∂

2
1 − ∂1X

2
1 , ∂2X1X2∂1 + ∂1X1X2 ∈W(K,n).

(C) Keep the notations of part (A), but assume that n = 1 and Char(K) = 2. Compute
∂1(Xν

1 ) for all ν ∈ N0 and comment your findings in view of the Standard Basis Theorem.

(D) Keep the notations of part (A), let

d =
∑

(ν,µ)∈supp(d)

c(d)
ν,µX

ν∂µ ∈W,
(
c(d)
ν,µ ∈ K \ {0},∀(ν, µ) ∈ supp(d)

)
(see Theorem 7.1) and let i ∈ {1, 2, . . . , n}. Use Exercise 6.4 (D) to prove the following
equalities:

(a)
[
Xi, d

]
= −

∑
(ν,µ)∈supp(d):µi>0 µic

(d)
ν,µX

ν∂µ−ei .

(b)
[
∂i, d

]
=
∑

(ν,µ)∈supp(d):νi>0 νic
(d)
ν,µX

ν−ei∂µ.

Conclude that

(c) d = 0⇔ ∀i ∈ {1, 2, . . . , n} :
[
Xi, d

]
=
[
∂i, d

]
= 0.

As another application of the Standard Basis Theorem we now can prove

7.5. Corollary. (The Universal Property of Weyl Algebras) Let n ≥ 2 and let the
notations and hypotheses be as in Theorem 7.1. Let B be a K-algebra and let

φ : {X1, X2, . . . , Xn, ∂1, ∂2, . . . , ∂n} −→ B

be a map ”which respects the Heisenberg relations“ and hence satisfies the requirements

(1) [φ(Xi), φ(Xj)] = 0, for all i, j ∈ {1, 2, . . . , n};
(2) [φ(Xi), φ(∂j)] = −δi,j, for all i, j ∈ {1, 2, . . . , n};
(3) [φ(∂i), φ(∂j)] = 0, for all i, j ∈ {1, 2, . . . , n}.

Then, there is a unique homomorphism of K-algebras

φ̃ : W(K,n) −→ B

such that
φ̃(Xi) = φ(Xi) and φ̃(∂i) = φ(∂i) for all i = 1, 2, . . . , n.

Proof. According to Theorem 7.1 there is a K-linear map

φ̃ : W(K,n) −→ B given by

φ̃
(
Xν∂µ

)
=

n∏
i=1

φ(Xi)
νi

n∏
i=1

φ(∂i)
µi for all
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µ = (µ1, µ2, . . . , µn) and ν = (ν1, ν2, . . . , νn) ∈ Nn
0 .

Next, we show, that the previously defined K-linear map φ̃ is multiplicative, and hence
satisfies the condition that

φ̃(de) = φ̃(d)φ̃(e) for all d, e ∈W(K,n).

As the multiplication maps

W(K,n)×W(K,n) −→W(K,n), (d, e) 7→ de and B ×B −→ B, (a, b) 7→ ab

are both K-bilinear, it suffices to verify the above multiplicativity condition in the special
case where

d := Xν∂µ and e := Xν′∂µ
′

with
µ := (µ1, µ2, . . . , µn), ν := (ν1, ν2, . . . , νn) and

µ′ := (µ′1, µ
′
2, . . . , µ

′
n), ν ′ := (ν ′1, ν

′
2, . . . , ν

′
n) ∈ Nn

0 .

But this can be done by a straight forward computation, on use of the Product Formula
of Proposition 6.2 and on application of Lemma 6.1 with

ai : φ(Xi) and di := φ(∂i) for all i = 1, 2, . . . , n.

It remains to show, that φ̃ : W(K,n) −→ B is the only homomorphism of K-algebras
which satisfies the requirement that

φ̃(Xi) = φ(Xi) and φ̃(∂i) = φ(∂i) for all i = 1, 2, . . . , n.

But indeed, if a map φ̃ satisfies this requirement and is multiplicative, it must be defined
on the elementary differential operators as suggested above. This proves the requested
uniqueness. �

7.6. Exercise. (A) Let n ∈ N, let K be a field of characteristic 0. Show, that there is a
unique automorphism of K-algebras

α : W(K,n)
∼=−→W(K,n) with α(Xi) = ∂i and α(∂i) = −Xi for all i = 1, 2, . . . , n.

(B) Keep the notations and hypotheses of part (A). Present in standard form all ele-
ments α(Xν

i ∂
µ
i ) ∈W(K,n) with µ, ν ∈ N0.

8. Weighted Degrees and Filtrations

In this Section we introduce and investigate a particularly nice class of filtrations of
the standard Weyl algebras, the so-called weighted filtrations. To do so, we first will
introduce the related notion of weighted degree of a differential operator.

8.1. Convention. Throughout this section we fix a positive integer n, a field K of char-
acteristic 0 and we consider the standard Weyl algebra

W := W(K,n) = K[X1, X2, . . . , Xn, ∂1, ∂2, . . . , ∂n]
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8.2. Definition and Remark. (A) By a weight we mean a pair

(v, w) =
(
(v1, v2, . . . , vn), (w1, w2, . . . , wn)

)
∈ Nn

0 × Nn
0

such that

(vi, wi) 6= (0, 0) for all i = 1, 2, . . . , n.

For

a := (a1, a2, . . . , an), b := (b1, b2, . . . , bn) ∈ Rn

we frequently shall use the scalar product

a · b :=
n∑
i=1

aibi.

(B) Fix a weight (v, w) ∈ Nn
0 × Nn

0 . We define the degree associated to the weight (v, w)
(or just the weighted degree) of a differential form d ∈W by

degvw(d) := sup{v · ν + w · µ | (ν, µ) ∈ supp(d)}.

with the usual convention that sup(∅) = −∞.
Observe that by our definition of weight, for all d ∈W and all µ, ν ∈ N0 – and using the
notations of Notation and Remark 6.3 (C)– we can say:

(a) degvw(d) ∈ N0 ∪ {−∞} with degvw(d) = −∞ if and only if d = 0.
(b) If λ ≤ ν and κ ≤ µ for all (λ, κ) ∈ supp(d), then

degvw(d) ≤ v · ν + w · µ.

(c) If supp(d) ⊆M≤(ν, µ), then

degvw(d) < v · ν + w · µ.

(C) Keep the notations and hypotheses of part (B). We fix some non-negative integer
i ∈ N0 and set

Wvw
i := {d ∈W | degvw(d) ≤ i}.

Observe, that we also may write

Wvw
i =

⊕
ν,µ∈Nn0 :v·ν+w·µ≤i

KXν∂µ.

8.3. Lemma. Let (v, w) ∈ Nn
0 × Nn

0 be a weight and let d, e ∈W. Then we have

(a) degvw(d+ e) ≤ max{degvw(d), degvw(e)}, with equality if degvw(d) 6= degvw(e);
(b) degvw(cd) = degvw(d) for all c ∈ K \ {0}.
(c) degvw(de) ≤ degvw(d) + degvw(e);
(d) degvw

(
[d, e]

)
< degvw(d) + degvw(e).

Notice: In statement (c) actually equality holds. We shall prove this later (see Corol-
lary 9.5).
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Proof. (a): The stated inequality is clear by the second inclusion of the following relation
(see Proposition 7.3 (a)):(

supp(d) ∪ supp(e)
)
\
(
supp(d) ∩ supp(e)

)
⊆ supp(d+ e) ⊆ supp(d) ∪ supp(e).

It remains to establish the stated equality if degvw(d) 6= degvw(e). It suffices to treat the
case in which degvw(d) < degvw(e). In this case, there is some

(ν, µ) ∈ supp(e) \ supp(d) with v · ν + w · µ = degvw(e).

By the first of the previous inclusions we have (ν, µ) ∈ supp(d+ e) and hence

degvw(d+ e) ≥ v · ν + w · µ = degvw(e).

By the already proved inequality degvw(d+ e) ≤ max{degvw(d), degvw(e)} it follows that
degvw(d+ e) = degvw(e).

(b): This is obvious.

(c): This follows easily by Proposition 7.3 (c) and Definition and Remark 8.2 (B) (b).

(d): This follows in a straight forward manner by Proposition 7.3 (d) and Definition
and Remark 8.2 (B) (c). �

8.4. Theorem. (Weighted Filtrations) Let(
(v1, v2, . . . , vn), (w1, w2, . . . , wn)

)
= (v, w) ∈ Nn

0 × Nn
0

be a weight. Then, the family

Wvw
• :=

(
Wvw

i = {d ∈W | degvw(d) ≤ i}
)
i∈N0

is a commutative filtration of the the K-algebra W = W(K,n).
Moreover, the following statements hold.

(a) Wvw
0 = K[Xi, ∂j | vi = 0, wj = 0], so that Wvw

0 is a commutative polynomial
algebra in the variables Xi and ∂j for which either vi = 0 or else wj = 0.

(b) Let δ = δ(vw) = max{v1, v2, . . . , vn, w1, w2, . . . , wn}. Then, for all i > δ it holds

Wvw
i =

δ∑
j=1

Wvw
j Wvw

i−j.

(c) The filtration Wvw
• =

(
Wvw

i

)
i∈N0

is of finite type.

Proof. It is clear from our definitions, that

Wvw
i ⊆Wvw

i+1 for all i ∈ N0, 1 ∈Wvw
0 and W =

⋃
i∈N0

Wvw
i .

On use of Lemma 8.3 (c) it follows immediately that

Wvw
i Wvw

j ⊆Wvw
i+j for all i, j ∈ N0.
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So the family
(
Wvw

i := {d ∈W | degvw(d) ≤ i}
)
i∈N0

constitutes indeed a filtration on the

K-algebra W.

Now, let i, j ∈ N0, let d ∈Wvw
i and let e ∈Wvw

j . Then by Lemma 8.3 (d) we have

degvw
(
de− ed

)
= degvw

(
[d, e]

)
≤ degvw(d) + degvw(e)− 1 ≤ i+ j − 1,

so that

de− ed ∈Wvw
i+j−1.

This proves, that our filtration is commutative (see Definition 3.3).

(a): Set

S := {i = 1, 2, . . . , n | vi 6= 0} and T := {j = 1, 2, . . . , n | wj 6= 0} and

S := {1, 2, . . . , n} \ S and T := {1, 2, . . . , n} \ T.
Let ν, µ ∈ Nn

0 . Then

v · ν + w · µ = 0 if and only if νi = 0 for all i ∈ S and µj = 0 for all j ∈ T.

But this means that

Wvw
0 =

∑
(νi)i∈S,(µj)j∈T

K
∏

i∈S,j∈T

Xνi
i ∂

µj
j =

= K[Xi, ∂j | vi = 0, wj = 0].

It remains to show, that this latter ring is a commutative polynomial algebra in all the
variables Xi and ∂j for which either vi = 0 or else wj = 0. In view of Theorem 7.1 it
suffices to show that Xi∂j = ∂jXi for all i, j with vi = vj = 0. But as (vk, wk) 6= (0, 0)
for all k = 1, 2, . . . , n (see Definition and Remark 8.2 (A)), this is clear by the Heisenberg
relations (see Proposition 5.4 (b)).

(b): Let i > δ. Let

ν := (ν1, ν2, . . . , νn), µ := (µ1, µ2, . . . , µn) ∈ Nn
0 with

σ := degvw
(
Xν∂µ

)
= v · ν + w · µ ≤ i.

We aim to show that

Xν∂µ ∈
δ∑
j=1

Wvw
j Wvw

i−j =: M.

If σ ≤ 0 this is clear as i > 0 implies i ≥ 1, so that

Wvw
0 = Wvw

0 Wvw
0 ⊆Wvw

1 Wvw
i−1 ⊆M.

So, let σ > 0. Then either

(1) there is some p ∈ {1, 2, . . . , n} with vp > 0 and νp > 0, or else,
(2) there is some q ∈ {1, 2, . . . , n} with wq > 0 and µq > 0.
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In the above case (1) we can write

Xν∂µ = Xpd, with d :=
( n∏
k=1

X
νk−δk,p
k

)
∂µ.

As degvw(Xp) = vp ≤ δ and degvw(d) = σ − vp it follows that

Xν∂µ = Xpd ∈Wvw
vp W

vw
σ−vp ⊆Wvw

vp W
vw
i−vp ⊆M.

In the above case (2) we may first assume, that we are not in the case (1). This means in
particular that either vq = 0 or νq = 0, hence vqνq = 0, so that

degvw(Xνq
q ∂q) = wq ≤ δ.

Now, in view of the Heisenberg relations, we may write

Xν∂µ = Xνq
q ∂qe with e :=

∏
s 6=q

Xνs
s

n∏
k=1

∂
µk−δk,q
k .

As vqνq = 0, we have degvw(e) = σ − wq, and it follows that

Xν∂µ = Xνq
q ∂qe ∈Wvw

wqW
vw
σ−wq ⊆Wvw

wqW
vw
i−wq ⊆M.

But this shows, what we were aiming for, hence that

Xν∂µ ∈M whenever v · ν + w · µ ≤ i.

But this means that

Wvw
i ⊆M =

δ∑
j=1

Wvw
j Wvw

i−j

and hence proves statement (b).

(c): This is an immediate consequence of statements (a) and (b) (see Definition and
Remark 3.4 (C)). �

8.5. Definition. Let the notations and hypotheses be as in Theorem 8.4. In particular,
let (

(v1, v2, . . . , vn), (w1, w2, . . . , wn)
)

= (v, w) ∈ Nn
0 × Nn

0

be a weight. Then, the filtration

Wvw
• =

(
Wvw

i

)
i∈N0

=
(
{d ∈W | degvw(d) ≤ i}

)
i∈N0

is called the filtration induced by the weight (v, w). Generally, we call weighted filtrations
all fltrations which are induced in this way by a weight.

8.6. Definition and Remark. (A) We consider the strings

0 := (0, 0, . . . , 0), 1 := (1, 1, . . . , 1) ∈ Nn
0

and a differential form d ∈W. We define the standard degree or just the degree deg(d) of
d as the weighted degree with respect to the weight (1, 1) ∈ Nn

0 × Nn
0 , hence

deg(d) := deg11(d).
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Observe that

deg(d) := sup{|ν|+ |µ| | (ν, µ) ∈ supp(d)}.

The corresponding induced weighted filtration

Wdeg
• := W11

• =
(
W11

i

)
i∈N0

=
(
{d ∈W | deg(d) ≤ i}

)
i∈N0

is called the standard degree filtration or just the degree filtration of W.

(B) Keep the notations and hypotheses of part (A). The order of the differential oper-
ator d is defined by

ord(d) := deg01(d).

Observe that

ord(d) = sup{|µ| | (ν, µ) ∈ supp(d)}.

The corresponding induced weighted filtration

Word
• := W01

• =
(
W01

i

)
i∈N0

=
(
{d ∈W | ord(d) ≤ i}

)
i∈N0

is called the order filtration of W.

Now, as an immediate application of Theorem 8.4 we obtain:

8.7. Corollary. Let the notations be as in Convention 8.1. Then it holds

(a) The degree filtration Wdeg
• is very good.

(b) The order filtration Word
• is good and Word

0 = K[X1, X2, . . . , Xn].

Proof. In the notations of Theorem 8.4 (b) we have

δ(1, 1) = 1 and δ(0, 1) = 1.

Moreover, by Theorem 8.4 (a) we have

W11
0 = K and W01

0 = K[X1, X2, . . . , Xn]

This proves our claim (see Definition and Remark 3.4 (C)). �

8.8. Exercise. (A) Show that the degree filtration is the only very good filtration on W.

(B) Write down all weights (v, w) ∈ Nn
0 × Nn

0 for which the induced filtration Wvw
• is

good.
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9. Weighted Associated Graded Rings

This Section is devoted to the study of the associated graded rings of weighted filtra-
tions of standard Weyl algebras. We shall see, that these are all naturally isomorphic to
polynomial rings.

9.1. Convention. Again, throughout this section we fix a positive integer n, a field K of
characteristic 0 and consider the standard Weyl algebra

W := W(K,n) = K[X1, X2, . . . , Xn, ∂1, ∂2, . . . , ∂n].

In addition, we introduce the polynomial ring

P := K[Y1, Y2, . . . , Yn, Z1, Z2, . . . , Zn]

in the indeterminates Y1, Y2, . . . , Yn, Z1, Z2, . . . , Zn with coefficients in the field K.

9.2. Definition and Remark. (A) Fix a weight (v, w) ∈ Nn
0 × Nn

0 and consider the
induced weighted filtration Wvw

• . To write down the corresponding associated graded
ring, we introduce the following notation:

Gvw =
⊕
i∈N0

Gvw
i := GrWvw

•

(
W
)

=
⊕
i∈N0

GrWvw
•

(
W
)
i
.

(B) Keep the above notations and hypotheses. For each j ∈ Z we introduce the
notations:

Ivw≤j := {(ν, µ) ∈ Nn
0 × Nn

0 | v · ν + w · µ ≤ j};
Ivw=j := {(ν, µ) ∈ Nn

0 × Nn
0 | v · ν + w · µ = j}.

Fix some i ∈ N0. Observe that

Gvw
i = Wvw

i /Wvw
i−1 =

=
( ⊕

(ν,µ)∈Ivw≤i

KXν∂µ
)/( ⊕

(ν,µ)∈Ivw≤i−1

KXν∂µ
)

=

=
[
(
⊕

(ν,µ)∈Ivw≤i−1

KXν∂µ)⊕ (
⊕

(ν,µ)∈Ivw=i

KXν∂µ)
]
/
( ⊕

(ν,µ)∈Ivw≤i−1

KXν∂µ
)
.

As a consequence, we get an isomorphism of K-vector spaces

εvwi :
⊕

(ν,µ)∈Ivw=i

KXν∂µ
∼=−→ Gvw

i

such that

εvwi
(
Xν∂µ

)
=
(
Xν∂µ + Wvw

i−1

)
∈Wvw

i /Wvw
i−1 = Gvw

i for all (ν, µ) ∈ Ivw=i .

In particular we can say:

The family
(
(Xν∂µ)∗ := εvwi (Xν∂µ)

)
(ν,µ)∈Ivw=i

is a K-basis of Gvw
i .

We call this basis the standard basis of Gvw
i . Its elements are called standard basis ele-

ments of the associated graded ring Gvw.
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(C) Keep the previously introduced notation. We add a few more useful observations
on standard basis elements. First, observe that we may write

(a) (Xν∂µ)∗ ∈ Gvw
v·ν+w·µ for all (ν, µ) ∈ Nn

0 × Nn
0 .

(b) X∗i ∈ Gvw
vi

and ∂∗j ∈ Gvw
wj

for all i, j ∈ {1, 2, . . . , n}.
Moreover, by the observations made in part (B) we also can say that all standard basis
elements form a K-basis of the whole associated graded ring, thus:

(c) The family
(
(Xν∂µ)∗

)
(ν,µ)∈Nn0×Nn0

is a K-basis of Gvw.

Finally, as the associated graded ring is commutative, and keeping in mind how the
multiplication in this ring is defined (see Remark and Definition 3.1 (B)) we get the
following product formula

(d) (Xν∂µ)∗ =
(∏n

i=1X
νi
i

∏n
j=1 ∂

µj
)∗

=
∏n

i=1

(
X∗i
)νi∏n

j=1

(
∂∗j
)µj =:

(
X∗
)ν(

∂∗
)µ

.

9.3. Exercise and Definition. (A) We fix a weight (v, w) ∈ Nn
0 × Nn

0 . As in Definition
and Remark 9.2 (A) we use again the notation

Ivw=i := {(ν, µ) ∈ Nn
0 × Nn

0 | v · ν + w · µ = i}
and consider the K-subspace

Pvwi :=
⊕

(ν,µ)∈Ivw=i

KY νZµ ⊆ P for all i ∈ N0.

of our polynomial ring P = K[Y1, Y2, . . . , Yn, Z1, Z2, . . . , Zn]. Prove the following state-
ments:

(a) K ⊆ Pvw0 ;
(b) Pvwi Pvwj ⊆ Pvwi+j for all i, j ∈ N0.
(c) P =

⊕
i∈N0

Pvwi .

(B) Let the hypotheses and notations be as in part (A). Conclude that

the family
(
Pvwi
)
i∈N0

defines a grading of the ring P.

We call this grading the grading induced by the weight (v, w) ∈ Nn
0 ×Nn

0 . If we endow our
polynomial ring with this grading we write it as Pvw, thus

P = Pvw =
⊕
i∈N0

Pvwi .

9.4. Theorem. (Structure of Weighted Associated Graded Rings) Let (v, w) ∈
Nn

0 × Nn
0 be a weight. Then there exists an isomorphism of K-algebras, which preserves

gradings (see Convention, Reminders and Notations 1.1 (I)).

ηvw : P = Pvw
∼=−→ Gvw

given by

Yi 7→ ηvw(Yi) := X∗i , for all i = 1, 2, . . . , n;

Zj 7→ ηvw(Zj) := ∂∗j , for all j = 1, 2, . . . , n.
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Proof. According to the universal property of the polynomial ring P there is a unique
homomorphism of K-algebras

ηvw : P −→ Gvw

such that

Yi 7→ ηvw(Yi) := X∗i , for all i = 1, 2, . . . , n;

Zj 7→ ηvw(Zj) := ∂∗j , for all j = 1, 2, . . . , n.

In view of the product formula of Definition and Remark 9.2 (C) we obtain

ηvw
(
Y νZµ

)
=
(
Xν∂µ

)∗
for all ν, µ ∈ Nn

0 .

In particular ηvw yields a bijection between the monomial basis of the polynomial ring P
and the standard basis of the associated graded ring Gvw. So, ηvw is indeed an isomor-
phism. But moreover, for each i ∈ N0 it also follows that ηvw yields an bijection between
the monomial basis of the subspace Pvwi ⊆ P and the standard basis of Gvw

i . But this
means, that ηvw preserves the gradings. �

In Lemma 8.3 (c) we have seen that weighted degrees are sub-additive, which means
that degvw(de) ≤ degvw(d) + degvw(e) for all d, e ∈W. As an application of Theorem 9.4
we now shall improve on this and show, that weighted degrees are indeed additive, which
means that the above inequality is in fact always an equality.

9.5. Corollary. (Additivity of Weighted Degrees) Let (v, w) ∈ Nn
0 ×Nn

0 be a weight
and let d, e ∈W. Then

degvw(de) = degvw(d) + degvw(e).

Proof. If d = 0 or e = 0 our claim is clear. So let d, e 6= 0. We have

i := degvw(d) ∈ N0 and j := degvw(e).

We use again the notation

Ivw=k := {(ν, µ) ∈ Nn
0 × Nn

0 | v · ν + w · µ = k} for all k ∈ N0

and set

M :=
⊕

(ν,µ)∈Ivw=i

KXν∂µ and N :=
⊕

(ν,µ)∈Ivw=j

KXν∂µ.

We then may write

d = a+ r with a ∈M \ {0} and degvw(r) < i;

e = b+ s with a ∈ N \ {0} and degvw(s) < j.

We thus have

de = ab+ (as+ rb+ rs)

By what we know already about degrees we have degvw(as+rb+rs) < i+j (see Lemma 8.3
(a), (c)). So, in view of Lemma 8.3 (a) it suffices to show that

degvw(ab) = i+ j.
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To do so, we write

a =
∑

(ν,µ)∈supp(a)

c(a)
ν,µX

ν∂µ, with c(a)
ν,µ ∈ K \ {0} for all (ν, µ) ∈ supp(a) and

b =
∑

(ν′,µ′)∈supp(b)

c
(b)
ν′,µX

ν′∂µ
′
, with c

(b)
ν′,µ′ ∈ K \ {0} for all (ν ′, µ′) ∈ supp(b).

It follows that

ab =
∑

(ν,µ)∈supp(a) and (ν′,µ′)∈supp(b)

c(a)
ν,µc

(b)
ν′,µX

ν∂µXν′∂µ
′
.

By Exercise 6.4 (A) and in the notation of Notation and Remark 6.3 (C), it follows that

Xν∂µXν′∂µ
′ −Xν+ν′∂µ+µ′ ∈

∑
(λ,κ)∈M(ν+ν′,µ+µ′)

KXλ∂κ

for all (ν, µ) ∈ supp(a) and all (ν ′, µ′) ∈ supp(b). Observe that

(ν + ν ′, µ+ µ′) ∈ Ivw=i+j for all (ν, µ) ∈ supp(a) and all (ν ′, µ′) ∈ supp(b).

So, by Definition and Remark 8.2 (B)(c) it follows that

degvw
(
Xν∂µXν′∂µ

′ −Xν+ν′∂µ+µ′
)
< i+ j

for all (ν, µ) ∈ supp(a) and all (ν ′, µ′) ∈ supp(b). If we set

h :=
∑

(ν,µ)∈supp(a),(ν′,µ′)∈supp(b)

c(a)
ν,µc

(b)
ν′,µ′X

ν+ν′∂µ+µ′ .

and on repeated use of Lemma 8.3 (a) and (b) we thus get

degvw(ab− h) =

degvw[
∑

(ν,µ)∈supp(a),(ν′,µ′)∈supp(b)

c(a)
ν,µc

(b)
ν′,µ′(X

ν∂µXν′∂µ
′ −Xν+ν′∂µ+µ′)] < i+ j.

So, we may write

ab = h+ u with degvw(u) < i+ j.

By Lemma 8.3 (a) it thus suffices to show that degvw(h) = i+ j. As

h =
∑

(ν,µ)∈supp(a),(ν′,µ′)∈supp(b)

c(a)
ν,µc

(b)
ν′,µ′X

ν+ν′∂µ+µ′ ∈
⊕

(ν,µ)∈Ivw=i+j

KXν∂µ

It suffices to show that h 6= 0. To do so, we consider the two polynomials

f :=
∑

(ν,µ)∈supp(a)

c(a)
ν,µY

νZµ ∈ Pvwi and

g :=
∑

(ν′,µ′)∈supp(b)

c
(b)
ν′,µ′Y

ν′Zµ′ ∈ Pvwj .
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As supp(a) and supp(b) are non-empty, and all coefficients of f and g are non-zero, we
have f 6= 0 and g 6= 0. As P is an integral domain. it follows that fg 6= 0. We set

h∗ := (h+ Wvw
i+j−1) ∈Wvw

i+j/W
vw
i+j−1 = Gvw

i+j,

so that
h∗ =

∑
(ν,µ)∈supp(a),(ν′,µ′)∈supp(b)

c(a)
ν,µc

(b)
ν′,µ′

(
Xν+ν′∂µ+µ′

)∗
.

Applying the isomorphism

ηvw : P = Pvw
∼=−→ Gvw

of Theorem 9.4, we now get

0 6= ηvw(fg) = ηvw
([ ∑

(ν,µ)∈supp(a)

c(a)
ν,µY

νZµ
][ ∑

(ν′,µ′)∈supp(b)

c
(b)
ν′,µ′Y

ν′Zµ′
])

=

= ηvw
( ∑

(ν,µ)∈supp(a),(ν′,µ′)∈supp(b)

c(a)
ν,µc

(b)
ν′,µ′Y

ν+ν′Zµ+µ′
)

=

=
∑

(ν,µ)∈supp(a),(ν′,µ′)∈supp(b)

c(a)
ν,µc

(b)
ν′,µ′η

vw
(
Y ν+ν′Zµ+µ′

)
=

=
∑

(ν,µ)∈supp(a),(ν′,µ′)∈supp(b)

c(a)
ν,µc

(b)
ν′,µ′

(
Xν+ν′∂µ+µ′

)∗
= h∗.

But this clearly implies that h 6= 0. �

9.6. Corollary. (Integrity of Standard Weyl Algebras) The standard Weyl algebra
W is an integral domain:

If d, e ∈W \ {0}, then de 6= 0.

Proof. Apply Theorem 9.4 and keep in mind that an element of W vanishes if and only if
its degree (with respect to any weight) equals −∞. �

9.7. Exercise. (A) We fix a weight (v, w) ∈ Nn
0 × Nn

0 and set

Γv,w := {v · ν + w · µ | ν, µ ∈ Nn
0}.

Prove the following statements

(a) 0 ∈ Γvw ⊆ N0.
(b) If i, j ∈ Γvw, then i+ j ∈ Γvw.
(c) Gvw

i 6= 0⇔ Pvwi 6= 0⇔ i ∈ Γvw.

Γv,w is called the degree semigroup associated to the weight (v, w).

(B) Let n = 1, v = (p) and w = (q), where p, q ∈ N are two distinct prime numbers.
Determine Γv,w and the standard bases of all K-vector spaces

Pvwi and Gvw
i for i ∈ Γvw,

at least for some specified pairs like (p, q) = (2, 3), (2, 5), (5, 7), . . .
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(C) Show, that the ring EndK
(
K[X1, X2, . . . , Xn]

)
is not an integral domain.

10. Filtered Modules

Now, we aim to consider finitely generated left-modules over standard Weyl algebras:
the so-called D-modules. Our basic aim is to endow such modules with appropriate
filtrations, which are compatible with a given weighted filtration of the underlying Weyl
algebra. This will allow us to define associated graded modules over the corresponding
associated graded ring of the Weyl algebra - hence over a weight graded polynomial ring.
We approach the subject in a more general setting.

10.1. Definition and Remark. (A) Let K be a field and let A = (A,A•) be a filtered
K-algebra. Let U be a left-module over A. By a filtration of U compatible with A• or just
an A•-filtration of U we mean a family

U• = (Ui)i∈Z

such that the following conditions hold:

(a) Each Ui is a K-vector subspace of U ;
(b) Ui ⊆ Ui+1 for all i ∈ Z;
(c) U =

⋃
i∈Z Ui;

(d) AiUj ⊆ Ui+j for all i ∈ N0 and all j ∈ Z.

In requirement (d) we have used the standard notation

AiUj :=
∑

(f,u)∈Ai×Uj

Kfu for all i ∈ N0 and all j ∈ Z,

which we shall use from now on without further mention. If an A•-filtration U• of U is
given, we say that (U,U•) or – by abuse of language – that U is a A• filtered A-module
or just that U is a filtered A-module.

(B) Keep the notations and hypotheses of part (A) and let U• = (Ui)i∈Z be a filtered
A-module. Observe that

For all i ∈ Z the K-vector space Ui is a left A0-submodule of U.

(C) We say that two A•-filtrations U
(1)
• , U

(2)
• are equivalent if there is some r ∈ N0 such

that

(a) U
(1)
i−r ⊆ U

(2)
i ⊆ U

(1)
i+r for all i ∈ Z.

Later, we shall use the following observation.

Assume that the obove condition (a) holds, let i ∈ N and let a ∈ Ai. Then we have

(b) aU
(1)
j ⊆ U

(1)
j+i−1 for all j ∈ Z ⇒ akU

(1)
j ⊆ U

(1)
j+k(i−1) for all j ∈ Z and all k ∈ N0.

(c) aU
(1)
j ⊆ U

(1)
j+i−1 for all j ∈ Z ⇒ a2r+1U

(2)
j ⊆ U

(2)
j+(2r+1)i−1 for all j ∈ Z.
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To prove statement (b), we assume that aU
(1)
j ⊆ U

(1)
j+i−1 for all j ∈ Z and proceed by

induction on k. If k = 0 our claim is obvious. If k > 0, we may assume by induction that

ak−1U
(1)
j ⊆ U

(1)
j+(k−1)(i−1) for all j ∈ Z, so that indeed

akU
(1)
j = aak−1U

(1)
j ⊆ aU

(1)
j+(k−1)(i−1) ⊆ U

(1)
j+(k−1)(i−1)+(i−1) = U

(1)
j+k(i−1) for all j ∈ Z,

and this proves statement (b). If we apply statement (b) with k = 2r + 1 and observe
condition (a), we get

a2r+1U
(2)
j ⊆ a2r+1U

(1)
j+r ⊆ U

(1)
j+r+(2r+1)(i−1) ⊆ U

(2)
j+2r+(2r+1)(i−1)

= U
(1)
j+2r+2ri−2r+i−1 = U

(2)
j+2ri+i−1 = U

(2)
j+(2r+1)i−1 for all j ∈ Z,

and this proves statement (c).

10.2. Remark and Definition. (A) Let K be a field and let A = (A,A•) be a filtered K-
algebra and let U = (U,U•) be an A•-filtered A-module. We consider the corresponding
associated graded ring

Gr(A) = GrA•(A) =
⊕
i∈N0

Ai/Ai−1.

and the K-vector space

Gr(U) = GrU•(U) =
⊕
i∈Z

Ui/Ui−1.

For all i ∈ Z we also use the notation

Gr(U)i = GrU•(U)i := Ui/Ui−1,

so that we may write

Gr(U) = GrU•(U) =
⊕
i∈Z

GrU•(U)i.

(B) Let i ∈ N0, let j ∈ Z let f, f ′ ∈ Ai and let g, g′ ∈ Uj such that

h := f − f ′ ∈ Ai−1 and k := g − g′ ∈ Uj−1.

It follows that

fg − f ′g′ = fg − (f − h)(g − k) = fk + hg − hk
∈ AiUj−1 + Ai−1Uj + Ai−1Uj−1 ⊆
⊆ Ui+(j−1) + Uj+(i−1) + U(i−1)+(j−1) ⊆ Ui+j−1.

So in Ui+j/Ui+j−1 = GrU•(U)i+j ⊂ GrU•(U) we get the relation

fg + Ui+j−1 = f ′g′ + Ui+j−1.

This allows to define a GrA•(A)-scalar multiplication on the K-space GrU•(U) which is
induced by

(f + Ai−1)(g + Uj−1) := fg + Ui+j−1
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for all i ∈ N0, all j ∈ Z, all f ∈ Ai g ∈ Uj. More generally, if r, s ∈ N0, t ∈ Z,

f =
r∑
i=0

fi, with fi ∈ Ai and fi = (fi + Ai−1) ∈ GrA•(A)i for all i = 0, 1, . . . , r,

and

g =
t+s∑
j=t

gj, with gj ∈ Uj and gj = (gj + Uj−1) ∈ GrU•(U)j for all j = t, t+ 1, . . . , t+ s,

then

fg =
r+t+s∑
k=t

∑
i+j=k

figj =
r+t+s∑
k=t

∑
i+j=k

(figj + Ui+j−1).

(C) Keep the above notations and hypotheses. With respect to our scalar multiplication
on GrU•(U) we have the relations

GrA•(A)iGrU•(U)j ⊆ GrU•(U)i+j for all i, j ∈ Z.
So, the K-vector space GrU•(U) is turned into a graded GrA•(A)-module

GrU•(U) =
(
GrU•(U), (GrU•(U)i)i∈Z

)
=
⊕
i∈Z

GrU•(U)i

by means of the above multiplication. We call this GrA•(A)-module GrU•(U) the associated
graded module of U with respect to the filtration U•. From now on, we always furnish
GrU•(U) with this structure of graded GrA•(A)-module.

10.3. Definition. Let K be a field and let A = (A,A•) be a filtered K-algebra. Assume
that the filtration A• is commutative, so that the corresponding associated graded ring

Gr(A) = GrA•(A) =
⊕
i∈N0

Ai/Ai−1

is commutative.
Moreover, let U = (U,U•) be an A•-filtered A-module and consider the corresponding
associated graded module

Gr(U) = GrU•(U) =
⊕
i∈Z

Ui/Ui−1.

in addition, consider the annihilator ideal

AnnGrA• (A)

(
GrU•(U)

)
:= {f ∈ GrA•(A) | fGrU•(U) = 0}

of the GrA•(A)-module GrU•(U). We define the characteristic variety VU•(U) of the A•-
filtered A-module U = (U,U•) as the prime variety of the annihilator ideal of GrU•(U),
hence

VU•(U) := Var
(
AnnGrA• (A)(GrU•(U))

)
⊆ Spec(GrA•(A)).

We also call this variety the characteristic variety of the left A-module U with respect to
the A•-filtration U• or just the characteristic variety of U with respect to U•.
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10.4. Proposition. (Equality of Characteristic Varieties for Equivalent Fil-
trations) Let K be a field and let A = (A,A•) be a filtered K-algebra. Assume that the
filtration A• is commutative (see Definition 3.3). Let U be an A-module which is endowed

with two equivalent A•-filtrations U
(1)
• and U

(2)
• . Then

V
U

(1)
•

(U) = V
U

(2)
•

(U).

Proof. We have to show that√
AnnGrA• (A)

(
Gr

U
(1)
•

(U)
)

=
√

AnnGrA• (A)

(
Gr

U
(2)
•

(U)
)
.

By symmetry, it suffices to show that√
AnnGrA• (A)

(
Gr

U
(1)
•

(U)
)
⊆
√

AnnGrA• (A)

(
Gr

U
(2)
•

(U)
)
.

In view of the fact that the formation of radicals of ideals is idempotent, it suffices even
to show that

AnnGrA• (A)

(
Gr

U
(1)
•

(U)
)
⊆
√

AnnGrA• (A)

(
Gr

U
(2)
•

(U)
)
.

As Gr
U

(1)
•

(U) is a graded GrA•(A)-module, its annihilator is a graded ideal of GrA•(A).

So, it finally is enough to show, that

a ∈
√

AnnGrA• (A)

(
Gr

U
(2)
•

(U)
)

for all i ∈ N0 and all a ∈ AnnGrA• (A)

(
Gr

U
(1)
•

(U)
)
i
.

So, fix some i ∈ N0 and some

a ∈ AnnGrA• (A)

(
Gr

U
(1)
•

(U)
)
i
⊆ GrA•(A)i = Ai/Ai−1.

We chose some a ∈ Ai with a = a+ Ai−1 ∈ Ai/Ai−1.. For all j ∈ Z we have in Gr
U

(1)
•

(U)

the relation

aU
(1)
j + U

(1)
j+i−1 = (a+ Ai−1)(U

(1)
j /U

(1)
j−1) = a(U

(1)
j /U

(1)
j−1) = aGr

U
(1)
•

(U)j = 0,

and hence

aU
(1)
j ⊆ U

(1)
j+i−1 for all j ∈ Z.

According to our hypotheses we find some r ∈ N0 such that U
(1)
k−r ⊆ U

(2)
k ⊆ U

(1)
k+r for all

k ∈ Z. By Definition and Remark 10.1 (C)(c) we therefore have

a2r+1U
(2)
j ⊆ U

(2)
j+(2r+1)i−1 for all j ∈ Z.

So, for all j ∈ Z we get in U
(2)
j+(2r+1)i/U

(2)
j+(2r+1)i−1 = Gr

U
(2)
•

(U)j+(2r+1)i the relation:

a2r+1GrU•(U)j = (a2r+1 + A(2r+1)i−1)(U
(2)
j /U

(2)
j−1) ⊆ a2r+1U

(2)
j /U

(2)
j+(2r+1)i−1 = 0.

This shows that a2r+1 ∈ AnnGrA• (A)

(
Gr

U
(2)
•

(U)
)

and hence that indeed

a ∈
√

AnnGrA• (A)

(
Gr

U
(2)
•

(U)
)
.

�
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So, provided (A,A•) is a commutatively filtered K-algebra (see Definition 3.3), the
characteristic variety of an A•-graded A-module (U,U•) depends only on the equivalence
class of the filtration U•. This allows us to define in an intrinsic way the notion of
characteristic variety of a finitely generated (left-) module over the filtered ring A. We
work this out in the following combined exercise and definition.

10.5. Exercise and Definition. (A) Let (A,A•) be a filtered K-algebra and let U be a
(left) module over A.

Let V ⊆ U be a K-subspace such that U = AV.

Prove the following claims:

(a) AiV = 0 for all i < 0.
(b) The family A•V :=

(
AiV

)
i∈Z is an A•-filtration of U .

The above filtration A•V is called the A•-filtration of U induced by the subspace V .

(B) Let the notations and hypotheses be as in part (A). Assume in addition that

s := dimK(V ) <∞.
Prove that

(a) U is finitely generated as an A-module;
(b) AiV is a finitely generated (left-) module over A0.
(c) The graded GrA•(A)-module GrA•V (U) is generated by finitely many elements

g1, g2, . . . , gs ∈ GrA•V (U)0.

Keep in mind that we can always find a vector space V ⊆ U of finite dimension with
AV = U if the A-module U is finitely generated.

(C) Let the notations and hypotheses be as above. Let V (1), V (2) ⊆ U be two K-
subspaces such that

AV (1) = AV (2) = U and dimK(V (1)), dimK(V (2)) <∞.
Prove that

(a) The two induced A•-filtrations A•V
(1) and A•V

(2) are equivalent.
(b) If the filtration A• is commutative, it holds

VA•V (1)(U) = VA•V (2)(U).

(D) Keep the above notations and hypotheses. Assume that the filtration A• is com-
mutative and that the (left) A-module U is finitely generated. By what we have learned
by the previous considerations, we find a K-subspace V ⊆ U of finite dimension such
that AV = U , and the characteristic variety VA•V (U) of U with respect to the induced
filtration A•V is independent of the choice of V . So, we may just write

VA•(U) := VA•V (U),

and we call VA•(U) the characteristic variety of U with respect to the (commutative !)
filtration A• of A. This is the announced notion of intrinsic characteristic variety.



NOTES ON WEYL ALGEBRAS AND D-MODULES 49

(E) Keep the above notations. Assume that the filtration A• is of finite type (see
Definition and Remark 3.4 (C)) and that the (left) A-module U is finitely generated. The
A• filtration U• of U is said to be of finite type if

(a) There is some j0 ∈ Z such that Uj = 0 for all j ≤ j0;
(b) There is an integer σ such that:

(1) Uj is finitely generated as a (left) A0-module for all j ≤ σ and
(2) Ui =

∑
j≤σ AjUi−j for all i > σ.

In this situation σ is again called a generating degree of the A•-filtration U• (compare
Definition and Remark 3.4 (C)). Prove that in this situation, we have

Ai−σUσ ⊆ Ui =
σ∑

j=j0

Ai−jUj ⊆ Ai−j0Uσ for all i > σ.

As Uσ is a finitely generated A0-module, we may chose a K-subspace V ⊆ U such that

dimK(V ) <∞ and A0V = Uσ.

Prove that for this choice of V we have:

U = AV and the filtrations U• and A•V are equivalent.

As a consequence it follows by Proposition 10.4 and the observations made in part (D),
that

VU•(U) = VA•(U) for each A•-filtration U• which is of finite type.

11. D-Modules

11.1. Convention. (A) As in section 9, we fix a positive integer n, a field K of charac-
teristic 0 and consider the standard Weyl algebra

W := W(K,n) = K[X1, X2, . . . , Xn, ∂1, ∂2, . . . , ∂n].

In addition, we consider the polynomial ring

P := K[Y1, Y2, . . . , Yn, Z1, Z2, . . . , Zn]

in the indeterminates Y1, Y2, . . . , Yn, Z1, Z2, . . . , Zn with coefficients in the field K.

(B) Let (v, w) ∈ Nn
0 ×Nn

0 be a weight. We consider the induced weighted filtration Wvw
•

and also the corresponding associated graded ring.

Gvw =
⊕
i∈N0

Gvw
i := GrWvw

•

(
Wvw

)
=
⊕
i∈N0

GrWvw
•

(
Wvw

)
i
.

(see Definition and Remark 9.2 (A)).

(C) Moreover, we shall consider the polynomial ring

P = Pvw =
⊕
i∈N0

Pvwi .
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furnished with the grading induced by our given weight (v, w) (see Exercise and Defini-
tion 9.3 (B)), as well as the canonical isomorphism of graded rings (see Theorem 9.4):

ηvw : P = Pvw
∼=−→ Gvw.

11.2. Definition and Remark. (A) By a D-module we mean a finitely generated left
module over the standard Weyl algebra W.

(B) Let U be a D-module. If U• is a Wvw
• -filtration of U , we may again introduce

the corresponding associated graded module of U with respect to the filtration U• (see
Definition 10.3):

GrU•(U) =
⊕
i∈Z

Ui/Ui−1,

which is indeed a graded module over the associated graded ring Gvw. But, in fact, we
prefer to consider GrU•(U) as a graded Pvw-module by means of the canonical isomor-

phism ηvw : P = Pvw
∼=−→ Gvw.

(C) Keep the notations and hypotheses of part (B). Then, we may again consider the
characteristic variety of U with respect to the filtration U•, but under the previous view,
that GrU•(U) is a graded module over the graded polynomial ring P = Pvw. So, we define
this characteristic variety by

VU•(U) := Var
(
AnnPvw(GrU•(U))

)
= Var

(
(ηvw)−1

[
AnnGvw(GrU•(U))

])
⊆ Spec(P).

Observe in particular, that the ideal

AnnPvw
(
GrU•(U)

)
= (ηvw)−1

[
AnnGvw

(
GrU•(U)

)]
⊆ Pvw

is graded.

(D) Finally, as U is finitely generated, we may again chose a finite dimensional K-
subspace V ⊆ U such that WV = U , and then consider the induced filtration Wvw

• V of
U and the corresponding intrinsic characteristic variety (see Exercise and Definition 10.5
(D)) of U with respect to the weight (v, w), hence:

Vvw(U) := VWvw
•

(U) = VWvw
• V (U).

11.3. Example. (A) Keep the above notations and let

d :=
∑

(ν,µ)∈supp(d)

c(d)
νµX

ν∂µ ∈W \ {0} and δ := degvw(d),

with c
(d)
νµ ∈ K \ {0} for all (ν, µ) ∈ supp(d). We also consider the so-called leading

differential form of d with respect to the weight (v, w), which is given by

hvw :=
∑

(ν,µ)∈supp(d):v·ν+w·µ=δ

c(d)
νµX

ν∂µ ∈W \ {0}.
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Moreover, we introduce the polynomial

f vw :=
∑

(ν,µ)∈supp(d):v·ν+w·µ=δ

c(d)
νµY

νZµ ∈ P \ {0}.

Now, consider the cyclic left W-module

U := W/Wd, the element 1 := (1 + Wd)/Wd ∈ U and the K-subspace K1 ⊆ U.

Endow U with the Wvw
• -filtration (see Exercise and Definition 10.5 (A)):

U• := Wvw
• K1 =

(
Ui := (Wvw

i + Wd)/Wd)i∈Z.

(B) Keep the above notations and hypotheses. Observe first, that for all i ∈ Z we may
write

Ui/Ui−1 = Wvw
i /(Wvw

i−1 + (Wd ∩Wvw
i )).

By the additivity of weighted degrees (see Corollary 9.5) we have

Wd ∩Wvw
i = Wvw

i−δd for all i ∈ Z.

So, we obtain

GrU•(U)i = Ui/Ui−1 = Wvw
i /
(
Wvw

i−1 + Wvw
i−δd

)
for all i ∈ N0.

Consequently, there is a surjective homomorphism of graded Gvw-modules

π : Gvw =
⊕
i∈Z

Wvw
i /Wvw

i−1 � GrU•(U) =
⊕
i∈Z

Wvw
i /
(
Wvw

i−1 + Wvw
i−δd

)
.

If we set

h
vw

:= hvw + Wvw
δ−1 ∈Wvw

δ /Wvw
δ−1 = Gvw

δ

it follows that

AnnGvw
(
GrU•(U)

)
= Ker(π) =

⊕
i∈Z

(
Wvw

i−1 + Wvw
i−δd

)
/Wvw

i−1 =

=
⊕
i∈Z

(
Wvw

i−1 + Wvw
i−δh

vw
)
/Wvw

i−1 = Gvwh
vw
.

Consequently we get

GrU•(U) ∼= Gvw/Gvwh
vw
.

As ηvw(f vw) = h
vw

and if we consider GrU•(U) as a graded Pvw-module by means of ηvw,
we thus may write

GrU•(U) ∼= Pvw/Pvwf vw and AnnP
(
GrU•(U)

)
= Pf vw.

In particular we obtain:

VU•(U) = Vvw(U) = Vvw
(
W/Wd

)
= Var(Pf vw) ⊆ Spec(P).
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11.4. Exercise. (A) Let n = 1, K = R and let d := X4
1 + ∂2

1 −X2
1∂

2
1 . Determine the two

characteristic varieties

Vvw(W/Wd) for (v, w) = (1, 1) and (v, w) = (0, 1).

(B) To make more apparent what you have done in part (A), determine and sketch the
real traces

Vvw
R (W/Wd) := {(y, z) ∈ R2 | (Y1 − y, Z1 − z)K[Y1, Z1] ∈ Vvw(W/Wd)}

for (v, w) = (1, 1) and (v, w) = (0, 1). Comment your findings.

Now, we shall establish the fact that D-modules are finitely presentable. To do so
we first will show that standard Weyl algebras are left Noetherian (see Conventions,
Reminders and Notations 1.1 (G) and (H)). We begin with the following preparation.

11.5. Definition and Remark. (A) Let I ⊆W be a left ideal. We consider the following
K-subspace of Gvw:

Gvw(I) :=
⊕
i∈N0

(
I ∩Wvw

i + Wvw
i−1

)
/Wvw

i−1 ⊆
⊕
i∈N0

Wvw
i /Wvw

i−1 = Gvw.

It is immediate to see, that Gvw(I) ⊆ Gvw is graded ideal. We call this ideal the graded
ideal induced by I in Gvw.

(B) Let the notations and hypotheses as in part (A). It is straight forward to see, that
the family

Ivw• :=
(
I ∩Wvw

i

)
i∈Z

is a filtration of the (left) W-module I, which we call the filtration induced by Wvw
• .

Observe, that for all i ∈ Z we have a canonical isomorphism of K-vector spaces

Gvw(I)i :=
(
I ∩Wvw

i + Wvw
i−1

)
/Wvw

i−1
∼= I ∩Wvw

i /I ∩Wvw
i−1 = Ivwi /Ivwi−1 = GrIvw• (I)i.

It is easy to see, that these isomorphisms of K-vector spaces actually give rise to a
canonical isomorphism of graded Gvw-modules

Gvw(I) :=
⊕
i∈Z

(
(I ∩Wvw

i ) + Wvw
i−1

)
/Wvw

i−1
∼=
⊕
i∈Z

Ivwi /Ivwi−1 = GrIvw• (I).

So, by means of this canonical isomorphism we may identify

Gvw(I) = GrIvw• (I).

11.6. Lemma. Let I, J ⊆W be two left ideals with I ⊆ J . Then we can say:

(a) There is an inclusion of graded ideals Gvw(I) ⊆ Gvw(J) in the graded ring Gvw.
(b) If Gvw(I) = Gvw(J), then I = J .

Proof. (a): This is immediate by Definition and Remark 11.5 (A).

(b): Assume that I ( J . Then, there is a least integer i ∈ N0 such that

Ivwi = I ∩Wvw
i ( Jvwi = J ∩Wvw

i .
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As Ivwi−1 = Jvwi−1 it follows that

Gvw(I)i ∼= Ivwi /Ivwi−1 is not isomorphic to Ivwi /Ivwi−1
∼= Gvw(J)i,

so that indeed
Gvw(I) 6= Gvw(J).

�

11.7. Theorem. (Noetherianness of Weyl Algebras) The Weyl algebra W is left
Noetherian.

Proof. Otherwise W would contain an infinite strictly ascending chain of left ideals I(1) (
I(2) ( I(3) ( · · · . But then, by Lemma 11.6 we would have an infinite strictly ascending
chain Gvw(I(1)) ( Gvw(I(2)) ( Gvw(I(3)) ( · · · of ideals in the Noetherian ring Gvw ∼=
Pvw = P, a contradiction. �

11.8. Corollary. (Finite Presentability of D-Modules) Each D-module U admits a
finite presentation

Ws −→Wr −→ U −→ 0.

Proof. This follows immediately by Theorem 11.7 and the observations made in Conven-
tions, Reminders and Notations 1.1 (H). �

11.9. Example. (A) Consider the polynomial ring U := K[X1, X2, . . . , Xn]. As

W ⊆ EndK
(
K[X1, X2, . . . , Xn]

)
= EndK(U),

this polynomial ring can be viewed in a canonical way as a left module over W, the scalar
being multiplication given by

d · f := d(f) for all d ∈W and all f ∈ U.
As f · 1 = f for all f ∈ U it follows that

U = W1U .

So, the W-module U := K[X1, X2, . . . , Xn] is generated by a single element, and hence in
particular a D-module.

(B) Keep the previous notations and hypotheses. Observe that
n∑
i=1

W∂i =
⊕

ν,µ∈Nn0 :µ6=0

KXν∂µ

and hence

W = K[X1, X2, . . . , Xn]⊕
n∑
i=1

W∂i = U ⊕
n∑
i=1

W∂i.

We thus have an exact sequence of K-vector spaces

0 −→
n∑
i=1

W∂i −→W π−→ U −→ 0,
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in which W π−→ U is the canonical projection map given by

π
(
Xν∂µ

)
=

{
Xν , if µ = 0,

0, if µ 6= 0
.

Our aim is to show:

W π−→ U is a homomorphism of left W-modules.

To do so, it suffices to show that for all ν, µ, ν ′, µ′ ∈ Nn
0 it holds

π(dd′) = dπ(d′), where d := Xν∂µ and d′ := Xν′∂µ
′
.

If µ = µ′ = 0, we have

π(dd′) = π
(
XνXν′

)
= π

(
Xν+ν′

)
= Xν+ν′ = XνXν′ = Xνπ

(
Xν′
)

= dπ(d′).

If µ = 0 and µ′ 6= 0 we have

π(dd′) = π
(
XνXν′∂µ

′)
= π

(
Xν+ν′∂µ

′)
= 0 = Xνπ

(
Xν′∂µ

′)
= dπ(d′).

So, let µ 6= 0. By the Product Formula of Proposition 6.2 we have

dd′ = Xν∂µXν′∂µ
′
= Xν+ν′∂µ+µ′ + s,

with
s :=

∑
k∈Nn0 :0<k≤µ,ν′

λkX
ν+ν′−k∂µ+µ′−k

and

λk =
( n∏
i=1

(
µi
ki

))( n∏
i=1

ki−1∏
p=0

(ν ′i − p)
)
.

Assume first, that µ′ 6= 0. Then we have

π
(
Xν+ν′∂µ+µ′

)
= 0 and π

(
Xν+ν′−k∂ν+ν′−k) = 0 for all k ∈ Nn

0 with 0 < k ≤ µ, ν ′.

It thus follows, that

π(dd′) = 0 = d0 = dπ
(
Xν′∂µ

′)
= dπ(d′).

So, finally let µ′ = 0. Then dd′ = Xν+ν′∂µ + s, and

s =

{∏n
i=1

∏µi−1
p=0 (ν ′i − p)Xν+ν′−µ, if µ ≤ ν ′;

0, otherwise.

So, by what we have learned in Exercise 6.6 (B), we have

s = Xν∂µ
(
Xν′
)
.

As s is a K-multiple of a monomial in the Xi’s we have π(s) = s. It thus follows

π(dd′) = π
(
Xν+ν′∂µ

′)
+ π(s) = s = Xν∂µ

(
Xν′
)

= Xν∂µXν′ = dπ(d′).

This proves, that π is indeed a homomorphism of left W-modules.
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(C) Keep the previous notations and hypotheses. Then, according the above observa-
tions, we have an exact sequence of left W-modules

0 −→Wn h−→W π−→ U −→ 0,

in which h is given by

(d1, d2, . . . , dn) 7→ h(d1, d2, . . . , dn) =
n∑
i=1

di∂i.

This sequence clearly constitutes a presentation of the left W-module U (see Conventions,
Reminders and Notations 1.1 (H)) and the corresponding presentation matrix for U is the
row

∂ :=


∂1

∂2
...
∂n

 ∈Wn×1.

11.10. Exercise. (A) We consider the polynomial ring U = K[X1, X2, . . . , Xn] canonically
as a D-module, as done in Example 11.9. Fix a weight (v, w) ∈ Nn

0 × Nn
0 . Consider the

K-subspace K ⊂ U , observe that WK = U and endow U with the induced filtration

U• := Wvw
• K.

Show, that there is an isomorphism of graded P-modules

GrU•(U) = GrWvwK(U) ∼= U v,

where

U v :=
⊕
i∈N0

U v
i with U v

i :=
∑
v·ν=i

KXν for all i ∈ N0

is the polynomial ring U endowed with the grading associated to the weight v ∈ Nn
0 .

Determine the characteristic variety

Vvw(U) ⊆ Spec(P).

(B) Keep the notations and hypotheses of part (A). Show, the left W-module U is
simple: If V ( U is a proper left W-submodule, then V = 0. (Hint: Let f ∈ U \{0} be of
degree r and assume that ν = (ν1, ν2, . . . , νn) ∈ supp(f) with

∑n
i=1 νi = r and show that

∂ν ∈ K \ {0}. Conclude that Wf = U.)

11.11. Remark and Definition. (A) We furnish the polynomial ring K[X1, X2, . . . , Xn]
with its canonical structure of D-module (see Example 11.9). We now consider a ring A
with the following properties

(1) A is commutative;
(2) A is a left W-module;
(3) K[X1, X2, . . . , Xn] ⊆ A is a left submodule.

In this situation, we call A a ring of good functions in X1, X2, . . . , Xn over K.
The idea covered by this concept is that for all d ∈W and all f ∈ a the product df ∈ A
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should be viewed as the result of the application of the differential operator d to the
function f . Therefore, one often writes

d(f) := df for all d ∈W and all f ∈ A.

(B) Let the notations and hypotheses be as in part (A). By a system of polynomial
differential equations in A we mean a system of equations

d11(f1) + d12(f2) + . . .+ d1r(fr) = 0

d21(f1) + d22(f2) + . . .+ d2r(fr) = 0

...

ds1(f1) + ds2(f2) + . . .+ dsr(fr) = 0

with r, s ∈ N such that

dij ∈W and fj ∈ A for all i, j ∈ N with i ≤ s and j ≤ r.

The above system of differential equations can be understood as a linear system of equa-
tions over the ring A. We namely may consider the matrix

D :=


d11 d12 . . . d1r

d21 d22 . . . d2r
...

...
...

ds1 ds2 . . . dsr

 ∈Ws×r.

Then, the above system may be written in matrix form as

D


f1

f2
...
fr

 =


0
0
...
0

 .

We call D the matrix of differential operators associated to our system of linear differen-
tial equations. So, systems of differential equations correspond to matrices with entries
in a standard Weyl algebra.

(C) Keep the previous notations and hypotheses, then the matrix of differential opera-
tors D ∈Ws×r gives rise to an exact sequence of left W-modules

0 −→Ws hD−→Wr πD−→ UD −→ 0.

In particular UD is a D-module and the previous sequence is a finite presentation of
UD. We call this presentation the presentation induced by the matrix D and we call UD
the D-module defined by the matrix D – or the D-module associated with our system
of differential equations. So, each system of differential equations defines a D-module.
Obviously, one is particularly interested in the solution space of our system of differential
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equations, hence in the K-vector space

SD(A) := {(f1, f2, . . . , fr) ∈ Ar | D


f1

f2
...
fr

 =


0
0
...
0

}.
Observe, that SD(A) is a K-subspace of Ar.

11.12. Proposition. Let r, s ∈ N, let

D =


d11 d12 . . . d1r

d21 d22 . . . d2r
...

...
...

ds1 ds2 . . . dsr

 ∈Ws×r

be a matrix of differential operators, consider the induced presentation

0 −→Ws h=hD−→ Wr π=πD−→ UD −→ 0

and the corresponding solution space SD(A).
For all i = 1, 2, . . . , r let ei := (δi,j)

r
j=1 ∈ Wr be the i-th canonical basis element. Then,

there is an isomorphism of K-vector spaces

εD : HomW
(
UD,A

) ∼=−→ SD(A),

given by

m 7→ εD(m) :=
(
m(π(e1)),m(π(e2)), . . . ,m(π(er))

)
for all m ∈ HomW

(
UD,A

)
.

Proof. Observe, that there is indeed a K-linear map

ε := εD : HomW
(
UD,A

)
−→ Ar

given by

m 7→ εD(m) :=
(
m(π(e1)),m(π(e2)), . . . ,m(π(er))

)
for all m ∈ HomW

(
UD,A

)
.

If ε(m) = 0, then m(π(ei)) = 0 for all i = 1, 2, . . . , r. As π is surjective, the elements
π(ei) (i = 1, 2, . . . , r) generate the left W-module U = UD. So, it follows that m = 0
and this proves, that the map ε is injective.
It remains to show that

ε
(
HomW

(
UD,A

))
= SD(A).

To do so, let
bj := (δj,k)

s
k=1 ∈Ws (j = 1, 2, . . . , s)

be the canonical basis elements of Ws.
First, let m ∈ HomW

(
UD,A

)
. We aim to show, that ε(m) ∈ SD(A). We have to show,

that the column 
g1

g2
...
gs

 := D


m(e1)
m(e2)

...
m(er)
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vanishes. For each i = 1, 2, . . . , s we can write
∑r

j=1 dijej = biD = h(bi), and hence get
indeed

gi =
r∑
j=1

dijm(π(ej)) = m
( r∑
j=1

dijπ(ej)
)

= m
(
π(

r∑
j=1

dijej)
)

= m
(
π(h(bi))

)
= m(0) = 0.

Conversely, let (f1, f2, . . . , fr) ∈ SD(A), so that
∑r

j=1 dijfj = 0. We aim to show that

(f1, f2, . . . , fr) ∈ ε
(
HomW(U,A)

)
.

To this end, we consider the homomorphism of left W-modules

k : Wr −→ A, given by (u1, u2, . . . , ur) 7→
r∑
j+1

ujfj.

Observe that

k(h(bi)) = k(biD) = k(di1, di2, . . . , dir) =
r∑
j=1

dijfj = 0 for all i = 1, 2, . . . , s.

It follows that k ◦ h = 0. Therefore k induces a homomorphism of left W-modules

m : U −→ A, such that m ◦ π = k.

It follows that m(π(ej)) = k(ej) = fj for all j = 1, 2, . . . , r. But this means that
(f1, f2, . . . , fr) = ε(m) ∈ ε

(
HomW(U,A)

)
. �

11.13. Exercise. (A) Let n = 1, K = R and let A := C∞(R) be set of smooth functions on
R. Fix d ∈W = W(R, 1) = R[X, ∂] and consider the matrix D = (d) ∈W1×1. Determine

UD, SD(A) and Vv,w(UD)

for all weights (v, w) = (v, w) ∈ N0 × N0 \ {(0, 0)} and for

d = ∂, d = ∂2 − 1, d = ∂ − x2 and d = ∂2 + c∂ − b with c, b ∈ R \ {0}.
(B) Let n,m ∈ N, A := K[X1, X2, . . . , Xn] and consider the matrix

D :=


∂m1
∂m2
...
∂mn

 ∈Wn×1.

Determine
UD, SD(A) and V11(UD).

12. Gröbner Bases

In this section, we introduce and treat Gröbner bases of left ideals in standard Weyl
algebras with respect to so-called admissible orderings of the set of elementary differential
operators. What we get is a theory very similar to the theory of Gröbner bases of ideals
in polynomial rings. A theory many readers may be familiar with already. Indeed a great
deal of what we shall present in the sequel could also be deduced from the theory of
Gröbner in polynomial rings. Nevertheless, we prefer to introduce the subject in a self
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contained way so that readers who are not familiar with Gröbner in polynomial rings can
follow our approach without further prerequisites. As for Gröbner bases in (commutative)
polynomial rings and their applications, there are indeed many introductory and advanced
textbooks and monograph. So, we mention only a sample of possible references for this
subject, namely [1], [6], [19], [25], [26], [30], [36] and [42].
In general, Gröbner bases are intimately related to Division Theorems, which generalize
Euclid’s Division Theorem for univariate polynomial rings over a field. Gröbner bases and
Division Theorems for rngs of linear differential operators were introduced by Briançon
and Maisonobe [14] in the univariate case and by Castro-Jiménez [21] in the multivariate
case. Two more recent basic references in the field of are the textbook of Bueso,Gómez-
Torricellas and Verschoren [20] and the PhD thesis [31] of Levandovskyy.
The main goal of the present section is to prove that left ideals in Weyl algebras admit
so-called universal Gröbner bases. This existence result can actually be proved in the
more general setting of admissible algebras. Readers, who are interested in this, should
consult for example Boldini’s thesis [10] or else [38], [41] or [43].

12.1. Convention. (A) As previously, we fix a positive integer n, a fieldK of characteristic
0 and consider the standard Weyl algebra

W := W(K,n) = K[X1, X2, . . . , Xn, ∂1, ∂2, . . . , ∂n].

Moreover, we consider the polynomial ring

P := K[Y1, Y2, . . . , Yn, Z1, Z2, . . . , Zn]

in the indeterminates Y1, Y2, . . . , Yn, Z1, Z2, . . . , Zn with coefficients in the field K.

(B) In addition, we fix the isomorphism of K-vector spaces

Φ : W
∼=−→ P given by Xν∂µ 7→ Y νZµ for all all ν, µ ∈ Nn

0 .

Moreover we respectively consider the set E of all elementary differential operators in W
and the set M of all monomials in P, thus:

E := {Xν∂µ | ν, µ ∈ Nn
0} and M := {Y νZµ | ν, µ ∈ Nn

0} = Φ(E).

In a first step we now introduce some basic notions of our subject, namely: admissible
orderings (of the set E of elementary differential operators, leading (elementary) differ-
ential operators and (in the polynomial ring P) leading monomials and leading terms.
Mainly for those readers who have not met these concepts in the framework of polyno-
mial rings, we shall add below a number of examples and exercises on these new notions.

12.2. Definition, Reminder and Exercise. (A) (Total Orderings) Let S be any set. A
total ordering of S is a binary relation ≤⊆ S×S such that for all a, b, c ∈ S the following
requirements are satisfied:

(a) (Reflexivity) a ≤ a.
(b) (Antisymmetry) If a ≤ b and b ≤ a, then a = b.
(c) (Transitivity) If a ≤ b and b ≤ c, then a ≤ c.
(b) (Totality) Either a ≤ b or b ≤ a.
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We write TO(S) for the set of total orderings on S.
If ≤∈ TO(S) and a, b ∈ S, we write

a < b if a ≤ b and a 6= b, b ≥ a if a ≤ b, b > a if a < b.

(B) (Well Orderings) Keep the above notations and hypotheses. A total ordering
≤∈ TO(S) is said to be a well ordering of S, if it satisfies the following additional
requirement:

(e) (Existence of Least Elements) For each non-empty subset T ⊆ S there is an
element t ∈ T such that t ≤ t′ for all t′ ∈ T .

In the situation mentioned in statement (e), the element t ∈ T – if it exists at all – is
uniquely determined by T and called the least element or the minimum of T with respect
to ≤ and denoted by min≤(T ), thus

t = min≤(T ) if t ∈ T and t ≤ t′ for all t′ ∈ T.
We write WO(S) for the set of all well orderings of S.

(C) (Admissible Orderings) A total ordering ≤∈ TO(E) of the set of all elementary
differential operators is called an admissible ordering of E if it satisfies the following
requirements:

(a) (Foundedness) 1 ≤ Xν∂µ for all ν, µ ∈ Nn
0

(b) (Compatibility) For all λ, λ′, κ, κ′, ν, µ ∈ Nn
0 we have the implication:

If Xλ∂κ ≤ Xλ′∂κ
′
, then Xλ+ν∂κ+µ ≤ Xλ′+ν∂κ

′+µ.

We write AO(E) for the set of all admissible orderings of E.
Prove the following facts:

(c) If ν, ν ′, µ, µ′, λ, λ′, κ, κ′,∈ Nn
0 with Xν∂µ ≤ Xν′∂µ

′
and Xλ∂κ < Xλ′∂κ

′
, then

Xλ+ν∂κ+µ < Xλ′+ν′∂κ
′+µ′ .

(d) AO(E) ⊆WO(E).

(D) (Leading Elementary Differential Operators and Related Concepts) From now on,
for all d ∈W, we use the notation

Supp(d) := {Xν∂µ | (ν, µ) ∈ supp(d)}.
Keep the above notations and hypotheses. If ≤∈ AO(E) and d ∈W \ {0}, we define the
leading elementary differential operator of d with respect to ≤ by:

LE≤(d) := max
≤

Supp(d),

so that
LE≤(d) ∈ Supp(d) and e ≤ LE≤(d) for all e ∈ Supp(d).

Moreover, we define the leading coefficient LC≤(d) of d with respect to ≤ as the co-
efficient of d with respect to LE≤(d), and the leading differential operator LD≤(d) of d
with respect to ≤ as the product of the leading elementary differential operator with the
leading coefficient, so that:

(a) LC≤(d) ∈ K \ {0} with LE≤(d− LC≤(d)LE≤(d)
)
< LE≤(d).

(b) LD≤(d) = LC≤(d)LE≤(d).



NOTES ON WEYL ALGEBRAS AND D-MODULES 61

(c) LE≤
(
d− LD≤(d)

)
< LE≤(d).

Finally, we define the leading monomial and the leading term of d with respect to ≤
respectively by

LM≤(d) := Φ
(
LE≤(d)

)
and LT≤(d) := Φ

(
LD≤(d)

)
= LC≤(d)LM≤(d).

Prove the following statements:

(d) If d, e ∈ W \ {0}, with d 6= −e, then LE≤(d + e) ≤ max≤{LE≤(d),LE≤(e)}, with
equality if and only if LD≤(d) 6= −LD≤(e).

The previously introduced notions are of basic significance for this and the next section.
So, we hope to illuminate their meaning in the following series of examples and exercises,
which were already announced prior to the definition of these concepts.

12.3. Examples and Exercises. (A) (Well Orderings) Keep the above notations and
hypotheses. Prove the following statements:

(a) Let ϕ : N0 −→ Nn
0 × Nn

0 be a bijective map. Show that the binary relation
≤ϕ⊆ E× E defined by

Xν∂µ ≤ϕ Xν′∂µ
′ ⇔ ϕ−1(ν, µ) ≤ ϕ−1(ν, µ)

for all ν, µ, ν ′, µ′ ∈ Nn
0 is a well ordering of E.

(b) Show that in the notations of exercise (a) the well ordering ≤ϕ is discrete, which
means that the set {e ∈ E | e ≤ϕ d} is finite for all d ∈ E.

(c) Show, that there uncountably many discrete well orderings of E.
(d) Let n = 1, set X1 =: X, ∂1 =: ∂ and define the binary relation ≤ on the set of

elementary differential operators E = {Xν∂µ | ν, µ ∈ N0} by

Xν∂µ ≤ Xν′∂µ
′

if either

{
ν < ν ′ or else

ν = ν ′ and µ < µ′

for all ν, µ ∈ N0. Show, that ≤ is a non-discrete well ordering of E.

(B) (Admissible Orderings) Keep the above notations and hypotheses.

(a) We define the binary relation ≤lex⊆ E×E by setting (again for all ν, µ, ν ′, µ′ ∈ Nn
0 ):

Xν∂µ ≤lex X
ν′∂µ

′
if either

(1) ν = ν ′ and µ = µ′, or

(2) ν = ν ′ and ∃j ∈ {1, 2, . . . , n} :
[
µj < µ′j and µk = µ′k, ∀k < j

]
, or else

(3) ∃i ∈ {1, 2, . . . , n} :
[
νi < ν ′i and νk = ν ′k,∀k < i

]
.

Prove that ≤lex∈ AO(E). The admissible ordering ≤lex is called the lexicographic
ordering of the set of elementary differential operators.

(b) Set n = 1, X1 =: X, ∂1 =: ∂ and write down the first 20 elementary differential
operators d ∈ E = {Xν∂µ | ν, µ ∈ N0} with respect to the ordering ≤lex.

(c) Solve the similar task as in exercise (b), but with n = 2 instead of n = 1 and with
30 instead of 20.
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(d) We define another binary relation ≤deglex⊆ E× E by setting

d ≤deglex e if either

{
deg(d) < deg(e) or else

deg(d) = deg(e) and d ≤lex e.

Show, that ≤deglex∈ AO(E). This admissible ordering is called the degree-
lexicographic ordering of the set of elementary differential operators.

(e) Solve the previous exercises (b) and (c) but this time with the ordering ≤deglex.
(f) We introduce a further binary relation ≤degrevlex⊆ E× E by setting (again for all

ν, µ, ν ′, µ′ ∈ Nn
0 ):

Xν∂µ ≤degrevlex X
ν′∂µ

′
if either

(1) deg
(
Xν∂µ

)
< deg

(
Xν′∂µ

′)
, or else

(2) deg
(
Xν∂µ

)
= deg

(
Xν′∂µ

′)
and either

(i) ν = ν ′ and µ = µ′, or

(ii) µ = µ′ and ∃i ∈ {1, 2, . . . , n} :
[
νi > ν ′i and νk = ν ′k,∀k > i

]
, or else

(iii) ∃j ∈ {1, 2, . . . , n} :
[
µj > µ′j and µk = µ′k,∀k > j

]
.

Prove, that ≤degrevlex∈ AO(E). This admissible ordering is called the degree-
reverse-lexicographic ordering of the set of elementary differential operators.

(g) Solve the previous exercise (e) but with ≤degrevlex instead of ≤deglex.
(h) An admissible ordering of the set M = {Y νZµ | ν, µ ∈ Nn

0} of all monomials in P
is a total ordering of M which satisfies the requirements
(1) (Foundedness) 1 ≤ m for all m ∈M.
(2) (Compatibility) For all m,m′ and t ∈M we have the implication:

If m ≤ m′, then mt ≤ m′t.

For any ≤∈ AO(E) we define the binary relation ≤Φ⊆M×M by setting

m ≤Φ m
′ ⇔ Φ−1(m) ≤ Φ−1(m′) for all m,m′ ∈M.

Prove, that ≤Φ∈ AO(M) and that there is indeed a bijection

•Φ : AO(E)
∼=−→ AO(M), given by ≤7→≤Φ .

The names given in the previous exercises (a), (d) and (f) to the three admissible
orderings of E introduced in these exercises are ”inherited“ from the ”classical“
designations used in polynomial rings, via the above bijection.

(i) Prove, that ≤deglex and ≤degrevlex are both discrete in the sense of exercise (A) (b),
where as ≤lex is not.

(C) (Leading Elementary Differential Operators and Related Concepts) Keep the previous
notations and hypotheses.

(a) Let n = 1, set X1 =: X, ∂1 =: ∂, Y1 =: Y and Z1 =: Z. Write down the lead-
ing elementary differential operator, the leading differential operator, the leading
coefficient, the leading monomial and the leading term of each of the following
differential operators, with respect to each of the admissible orderings ≤lex,≤deglex

and ≤degrevlex:
(1) 5X6 + 4X4∂ − 2X2∂3 +X∂4 − 3∂6.
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(2) ∂4 − 4X∂3 + 6X2∂2 − 4X∂ +X4.
(3) ∂12 −X5∂7 +X7∂5 −X9∂3 +X12.

(b) Let n = 2 solve the task corresponding to exercise (a) above for the differential
operators
(1) X3

1X
2
2 + 2∂3

1∂
2
2 .

(2) X2
1X

3
2∂

2
1∂

3
2 − ∂4

1∂
6
2 .

(3) Xk
1 +Xk

2 + ∂k1 + ∂k2 with k ∈ N.

The next proposition will play a crucial role for our further considerations. it tells us
essentially, that ”leading differential operators behave as leading terms of polynomials“.
It is precisely this property, which will allow us to introduce a fertile notion of Gröbner
bases for left ideals in Weyl algebras.

12.4. Proposition. (Multiplicativity of Leading Terms) Let ≤∈ AO(E) and let
d, e ∈W \ {0}. Then it holds

(a) LT≤(de) = LT≤(d)LT≤(e).
(b) LM≤(de) = LM≤(d)LM≤(e).

Proof. The product formula for elementary differential operators of Proposition 6.2 yields
that

LE≤
(
Xν∂µXν′∂µ

′)
= Xν+ν′∂µ

′+µ′ for all ν, ν ′, µ, µ′ ∈ Nn
0 .

We may write

d =
∑

(ν,µ)∈supp(d)

c(d)
νµX

ν∂µ and e =
∑

(ν′,µ′)∈supp(e)

c
(e)
ν′µ′X

ν′∂µ
′

with c
(d)
νµ , c

(e)
ν′µ′ ∈ K \ {0} for all (ν, µ) ∈ supp(d) and all (ν ′, µ′) ∈ supp(e). With appro-

priate pairs (ν(0), µ(0)) ∈ supp(d) and (ν ′(0), µ′(0)) ∈ supp(e) we also may write

LE≤(d) = Xν(0)∂µ
(0)

and LE≤(e) = Xν′(0)∂µ
′(0)
, hence also

LC≤(d) = c
(d)

ν(0)µ(0)
and LC≤(e) = c

(e)

ν′(0)µ′(0)
.

Now, bearing in mind the previous observation on leading elementary differential operators
we may write

de =
∑

(ν,µ)∈supp(d),(ν′,µ′)∈supp(e)

c(d)
νµX

ν∂µc
(e)
ν′µ′X

ν′∂µ
′
=

=
∑

(ν,µ)∈supp(d),(ν′,µ′)∈supp(e)

c(d)
νµ c

(e)
ν′µ′X

ν∂µXν′∂µ
′
=

=
∑

(ν,µ)∈supp(d),(ν′,µ′)∈supp(e)

[
c(d)
νµ c

(e)
ν′µ′X

ν+ν′∂µ+µ′ + rνν′µµ′
]
,

with rνν′µµ′ ∈W, such that for all (ν, µ) ∈ supp(d) and all (ν ′, µ′) ∈ supp(e) it holds

LE≤(rνν′µµ′) < Xν+ν′∂µ+µ′ , whenever rνν′µµ′ 6= 0.
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By Definition, Reminder and Exercise 12.2 (C)(c) we have

Xν+ν′∂µ+µ′ < Xν(0)+ν′(0)∂µ
(0)+µ′(0) , for all(

(ν, µ), (ν ′, µ′)
)
∈ supp(d)× supp(e) \ {

(
(ν(0), µ(0)), (ν ′(0), µ′(0))

)
}.

By Definition, Reminder and Exercise 12.2 (D)(d) it now follows easily that

LE≤(de) = Xν(0)+ν′(0)∂µ
(0)+µ′(0) and

LC≤(de) = c
(d)

ν(0)µ(0)
c

(e)

ν′(0)µ′(0)
= LC≤(d)LC≤(e).

We thus obtain

LM≤(de) = Φ
(
Xν(0)+ν′(0)∂µ

(0)+µ′(0)
)

= Y ν(0)+ν′(0)Zµ(0)+µ′(0) = Y ν(0)Zµ(0)Y ν′(0)Zµ′(0) =

= Φ
(
Xν(0)∂µ

(0))
Φ
(
Xν′(0)∂µ

′(0))
= Φ

(
LE≤(d)

)
Φ
(
LE≤(e)

)
= LM≤(d)LM≤(e).

But now it follows

LT≤(de) = LC≤(de)LM≤(de) = LC≤(d)LC≤(e)LM≤(d)LM≤(e) =

= LC≤(d)LM≤(d)LC≤(e)LM≤(e) = LT≤(d)LT≤(e).

�

The next result may be understood as an extension of the classical division algorithms
of Euclid for univariate polynomials to the case of differential operators. It was first
proved in 1984 by Briançon-Maisonobe in the univariate case and by Castro-Jiménez in
the multivariate case.
Those readers, who are familiar with the Buchberger algorithm in multivariate polynomial
rings will realize that our result corresponds to the division algorithm in multi-variate
polynomial rings. Observe in particular that – as in the case of multi-variate polynomials
– we will divide ”by a family of denominators“ and that the presented division procedure
depends on an admissible ordering.

12.5. Proposition. (The Division Property, Briançon-Maisonobe [14] and
Castro-Jiménez [21]) Let ≤∈ AO(E), let d ∈W and let F ⊂W be a finite set. Then,
there is an element r ∈ W and a family (qf )f∈F ∈ WF such that (in the notations of
Convention 12.1 (B) and Definition, Reminder and Exercise 12.2 (D))

(a) d =
∑

f∈F qff + r;

(b) Φ(s) /∈ PLM≤(f) for all f ∈ F \ {0} and all s ∈ Supp(r).
(c) LE≤(qff) ≤ LE≤(d) for all f ∈ F with qff 6= 0.

Proof. We clearly may assume that F ⊂ W \ {0}. If d = 0, we choose r = 0 and qf = 0
for all f ∈ F . Assume, that our claim is wrong, and let U ( W be the non-empty set of
all differential operators d ∈W which do not admit a presentation of the requested form.
As ≤∈WO(E) and U ⊂W \ {0}, we find some d ∈ U such that

LE≤(d) = min≤{LE≤(u) | u ∈ U}.
We distinguish the following two cases:

(1) There is some f ∈ F such that LM≤(d) ∈ PLM≤(f).
(2) LM≤(d) /∈

⋃
f∈F PLM≤(f).
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In the case (1) we find some e ∈ E such that LM≤(d) = Φ(e)LM≤(f) and so we can
introduce the element

d′ := d− LC≤(d)

LC≤(f)
ef ∈W.

If d′ = 0, we set

r = 0, qf :=
LC≤(d)

LC≤(f)
e, and qf ′ = 0 for all f ′ ∈ F \ {f}.

But then

d =
LC≤(d)

LC≤(f)
ef = qff + r

is a presentation of d with the requested properties.
So, let d′ 6= 0. Observe, that by Proposition 12.4 (a) we can write

LT≤
(LC≤(d)

LC≤(f)
ef
)

=
LC≤(d)

LC≤(f)
LT≤(ef) =

LC≤(d)

LC≤(f)
LT≤(e)LT≤(f) =

LC≤(d)LM≤(e)LM≤(f) = LC≤(d)Φ(e)LM≤(f) = LC≤(d)LM≤(d) = LT≤(d).

If follows that LD≤
(LC≤(d)

LC≤(f)
ef
)

= LD≤(d), and hence by Definition, Reminder and Exer-

cise 12.2 (D)(d) we obtain that

LE≤(d′) < LE≤(d) = min≤{LE≤(u) | u ∈ U}.
Therefore, d′ /∈ U and so we find an element r′ ∈ W and a family (q′f ′)f ′∈F ∈ WF such
that

(a)′ d′ =
∑

f ′∈F q
′
f ′f
′ + r′;

(b)′ Φ(s′) /∈ PLM≤(f ′) for all f ′ ∈ F and all s′ ∈ Supp(r′).
(c)′ LE≤(q′f ′f

′) ≤ LE≤(d′) for all f ′ ∈ F with q′f ′ 6= 0.

Now, we set

r := r′ and qf :=

{
q′f ′ if f ′ 6= f,

q′f +
LC≤(d)

LC≤(f)
e if f = f ′.

As

LE≤(q′f ′f
′) ≤ LE≤(d′) < LE≤(d) and LE≤

(LC≤(d)

LC≤(f)
e
)

= LE≤(e) ≤ LE≤(d),

we get

LE≤(qfF ) = LE≤
(
(q′f +

LC≤(d)

LC≤(f)
e)f
)
≤ LE≤(d).

Now, it follows easily, that the requirements (a),(b) and (c) of our proposition are satisfied
in the case (1).

So, let us assume that we are in the case (2). We set

d′ := d− LD≤(d).

If d′ = 0 we have d′ = LD≤(d) and it suffices to choose qf := 0 for all f ∈ F and r = d.
So, let d′ 6= 0. Then, we have LE≤(d′) < LE≤(d) (see Definition, Reminder and
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Exercise‘12.2 (D)(c)), so that again d′ /∈ U . But this means once more, that we get
elements r′ and q′f ′ ∈W (for all f ′ ∈ F ) such that the above conditions (a)′, (b)′ and (c)′

are satisfied. Now, we set

r := r′ + LD≤(d) and qf := q′f for all f ∈ F.

As supp(r) ⊆ supp(r′) ∪ {LE≤(d)} and LE≤(qff) ≤ LE(d′) ≤ LE≤(d) for all f ∈ F with
qf 6= 0 the requirements (a),(b) and (c) are again satisfied for the suggested choice. �

Now, we are ready to introduce the basic notion of this section: the concept of Gröbner
basis.

12.6. Definition, Reminder and Exercise. (A) (Monomial Ideals) An ideal I ⊆ P is
called a monomial ideal if there is a set S ⊂M = {Y νZµ | ν, µ ∈ Nn

0} such that

I =
∑
s∈S

Ps.

Show that in this situation for all m ∈M \ {0} we have

(a) If m =
∑t

i=1 fisi with s1, s2, . . . , st ∈ S and f1, f2, . . . , ft ∈ P, then there is some
i ∈ {1, 2, . . . , t} and some ni ∈ supp(fi) such that m = nisi.

(b) m ∈ I if and only if there are n ∈M and some s ∈ S such that m = ns.

(B) (Leading Monomial Ideals) Let ≤∈ AO(E) and T ⊂W. Then, the ideal

LMI≤(T ) :=
∑

d∈T\{0}

PLM≤(d)

is called the leading monomial ideal of T with respect to ≤.
Prove that for all m ∈M, we have the following statements.

(a) If m =
∑s

i=1 fiLM≤(ti) with t1, t2, . . . , ts ∈ T and f1, f2, . . . , fs ∈ P, then there is
some i ∈ {1, 2, . . . , s} and some ni ∈ supp(fi) such that ti 6= 0 and m = niLM≤(ti).

(b) m ∈ LMI≤(T ) if and only if there are elements u ∈ E and t ∈ T such that
m = LM≤(u)LM≤(t).

(C) (Gröbner Bases) Let ≤∈ AO(E) and let L ⊆ W be a left ideal. A Gröbner basis
of L with respect to ≤ (or a ≤-Gröbner basis of L) is a subset G ⊆ L such that

#G <∞ and LMI≤(L) = LMI≤(G).

Prove the following facts:

(a) If G is a ≤-Gröbner basis of L and G ⊆ H ⊆ L with #H < ∞, then H is a
≤-Gröbner basis of L.

(b) If G is a ≤-Gröbner basis of L, then for each d ∈ L \ {0} there is some u ∈ E and
some g ∈ G \ {0} such that

LM≤(d) = LM≤(u)LM≤(g) = LM≤(ug).

(c) If G is a ≤-Gröbner basis of L, then for each d ∈ L \ {0} there is some monomial
m = Y νZµ ∈ P and some g ∈ G \ {0} such that

LM≤(d) = mLM≤(g).
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Now, we prove that Gröbner bases always exist, and that they deserve the name of
”basis“, as they generate the involved left ideal. Clearly, these statements correspond
precisely to well known facts in multi-variate polynomial rings. After having established
the announced existence and generating property of Gröbner bases, we shall add a few
examples and exercises on the subject.

12.7. Proposition. (Existence and Generating Property of Gröbner Bases) Let
≤∈ AO(E) and let L ⊆W be a left ideal. Then the following statements hold.

(a) L admits a ≤-Gröbner basis.
(b) If G is any ≤-Gröbner basis of L, then L =

∑
g∈GWg.

Proof. (a): This is clear as the ideal LMI≤(L) is generated by finitely many elements of
the form LM≤(g) with g ∈ L.

(b): Let G ⊆ L be a ≤-Gröbner basis of L and assume that
∑

g∈GWg ( L. As

≤∈WO(E), we find some e ∈ L \
∑

g∈GWg such that

LE(e) = min
≤
{LE≤(d) | d ∈ L \

∑
g∈G

Wg}.

By Definition, Reminder and Exercise 12.6 (C)(b) we find some u ∈ E and some g ∈ G
such that

LM≤(e) = LM≤(u)LM≤(g).

Setting

v := −LC≤(e)

LC≤(g)
u

we now get on use of Proposition 12.4 (a) that

LT≤(e) = LC≤(e)LM≤(e) = LC≤(e)LM≤(u)LM≤(g) =

= LC≤(e)LT≤(u)
1

LC≤(g)
LT≤(g) =

LC≤(e)

LC≤(g)
LT≤(u)LT≤(g) =

= −LT≤(v)LT≤(g) = −LT≤(vg).

As e /∈
∑

g∈GWg and g ∈ G, we have

e+ vg ∈ L \
∑
g∈G

Wg.

In particular e + vg 6= 0. So by Definition, Reminder and Exercise 12.2 (D)(d) it follows
that

LE≤(e+ vg) < LE≤(e) = min
≤
{LE≤(d) | d ∈ L \

∑
g∈G

Wg}.

But this is a contradiction. �

Now, we add the previously announced examples and exercises.

12.8. Examples and Exercises. (A) (Leading Monomial Ideals) Keep the above nota-
tions and hypotheses. Prove the following statements:

(a) Let d ∈W \ {0} and ≤∈ AO(E). Prove that LMI≤(Wd) is a principal ideal.
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(b) Let n = 1, X1 =: X and ∂1 =: ∂. Set L := W(X2 − ∂) + W(X∂) and determine
LMI≤(L) for ≤:=≤lex,≤deglex and ≤:=≤degrevlex.

(B) (Gröbner Bases) Keep the above notations and hypotheses. Prove the following
statements:

(a) Let the notations be as in exercise (a) of part (A) and prove that {cd} is a ≤-
Gröbner basis of Wd for all c ∈ K \ {0}, and that any singleton ≤-Gröbner bases
of Wd is of the above form.

(b) Let the notations and hypotheses be as in exercise (b) of part (A) and compute a
≤-Gröbner basis for ≤:=≤lex,≤deglex and ≤:=≤degrevlex

We now head for another basic result on Gröbner bases, which says that these bases
enjoy a certain restriction property. This will be an important ingredient in our treatment
of Universal Gröbner bases. We begin with the following preparations.

12.9. Notation. (A) For any set S ⊆ W we write (see also Definition, Reminder and
Exercise 12.2 (D)):

supp(S) :=
⋃
s∈S

supp(s) and Supp(S) :=
⋃
s∈S

Supp(s).

(B) Let ≤∈ TO(E) (see Definition, Reminder and Exercise 12.2 (A)) and let T ⊂ E.
We write ≤�T for the restriction of ≤ to T , thus – if we interpret binary relations on a
set S as subsets of S × S:

≤�T := ≤ ∩(T × T ), so that : d ≤�T e⇔ d ≤ e for all d, e ∈ T.

12.10. Proposition. (The Restriction Property of Gröbner Bases) Let L ⊆ W
be a left ideal. Let ≤,≤′∈ AO(E) and let G be a ≤-Gröbner basis of L. Assume that

≤�Supp(G) = ≤′�Supp(G) .

Then G is also a ≤′-Gröbner basis of L.

Proof. Let d ∈ L \ {0}. We have to show that LM≤′(d) ∈ LMI≤′(G). We may assume
that 0 /∈ G. If we apply Proposition 12.5 to the ordering ≤′, we find an element r and a
family (qg)g∈G ∈WG such that

(1) d =
∑

g∈G qgg + r;

(2) Φ(s) /∈ PLM≤′(g) for all g ∈ G and all s ∈ Supp(r).
(3) LE≤′(qgg) ≤′ LE≤′(d) for all g ∈ G with qg 6= 0.

Our immediate aim is to show that r = 0. Assume to the contrary that r 6= 0. As
r ∈ L and G is a ≤-Gröbner basis of L, we get LM≤(r) ∈ LMI≤(G). So, there is some
g ∈ G such that LM≤(r) = mLM≤(g) for some m ∈ M (see Definition, Reminder and
Exercise 12.6 (C)(c)). As ≤�Supp(G) = ≤′�Supp(G) it follows that

Φ
(
LT≤(r)

)
= LM≤(r) ∈ PLM≤′(g).

As LT≤(r) ∈ Supp(r), this contradicts the above condition (2). Therefore r = 0.
But now, we may write

d =
∑
g∈G∗

qgg, whith G∗ := {g ∈ G | qg 6= 0}.
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By the above condition (3) we have LE≤′(qgg) ≤′ LE≤′(d) for all g ∈ G∗. So, there is
some g ∈ G∗ such that LE≤′(d) = LE≤′(qgg) (see Definition, Reminder and Exercise 12.2
(D)(d)), and hence LM≤′(d) = LM≤′(qgg). Thus, on use of Proposition 12.4 (b) we get
indeed

LM≤′(d) = LM≤′(qg)LM≤′(g) ∈ LMI≤′(G).

�

Now, we shall introduce the central concept of this section.

12.11. Definition. (Universal Gröbner Bases) Let L ⊆ W be a left ideal. A universal
Gröbner basis of L is a (finite) subsetG ⊂W which is a≤-Gröbner basis for all≤∈ AO(E).

Universal Gröbner bases have been studied by Sturmfels [41] in the polynomial ring
K[X1, X2, . . . , Xn] – and indeed this notion can be immediately extended to the Weyl
algebra W. Gröbner bases for left ideals in the Weyl algebra were introduced by Assi,
Castro-Jiménez and Granger [3] and also by Saito, Sturmfels and Takayama [38].

Clearly, our next aim should be to show, that universal Gröbner bases always exist.
There are indeed various possible ways to prove this. Here, we shall do this by a topo-
logical approach which relies on an idea of Sikora [40], and which can be found in greater
generality in Boldini’s thesis [11]. We approach the subject by first introducing a natural
metric on the set of total orderings of all elementary differential operators. Then, we
make the reader prove in a series of exercises, that we get a complete metric space in this
way.

12.12. Definition, Exercise and Convention. (A) (The Natural Metric on the Set
TO(E)) For all i ∈ Z we introduce the notation

Ei := {e ∈ E | deg(e) ≤ i} = {Xν∂µ | |ν|+ |µ| ≤ i}.
We define a map

dist : TO(E)× TO(E) −→ R, given by for all ≤,≤′∈ TO(E) by

dist(≤,≤′) :=

{
2− sup{r∈N0|≤�Er = ≤′�Er}, if ≤6=≤′,
0, if ≤=≤′ .

Prove that

(a) For all ≤,≤′∈ TO(E) and all r ∈ N0 we have

dist(≤,≤′) < 1

2r
if and only if ≤�Er+1 = ≤′�Er+1 .

(b) The map dist : TO(E)× TO(E) −→ R is a metric on TO(E).

From now on, we always endow TO(E) with this metric and the induced Hausdorff topol-
ogy.

(B) (Completeness of the Metric Space TO(E)) Let (≤i)i∈N0 be a Cauchy sequence in
TO(E). This means:

For all r ∈ N0 there is some n(r) ∈ N0 such that dist(≤i,≤j) <
1

2r
for all i, j ≥ n(r).
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We introduce the binary relation ≤⊆ E× E given for all d, e ∈ E by

d ≤ e if and only if d ≤i e for all i� 0.

Prove the following statements:

(a) If r ∈ N0, d, e ∈ Er+1, and i, j ≥ n(r), then d ≤i e if and only if d ≤j e.
(b) If r ∈ N0, d, e ∈ Er+1, and i ≥ n(r), then d ≤i e if and only if d ≤ e.
(c) ≤∈ TO(E).
(d) If r ∈ N0, and i ≥ n(r), then dist(≤i,≤) ≤ 1

2r
.

(e) limi→∞ ≤i=≤.
(f) TO(E) is a complete metric space.

Now, we are ready to prove the basic ingredient of our existence proof for universal
Gröbner bases.

12.13. Proposition. (Compactness of the Space of Total Orderings) The space
TO(E) is compact.

Proof. Let (≤i)i∈N0 be a sequence in TO(E). It suffices to show, that (≤i)i∈N0 has a con-
vergent subsequence. Bearing in mind Definition, Exercise and Convention 12.12 (B)(f)
(or (e)), it suffices to find a subsequence of (≤i)i∈N0 which is a Cauchy sequence. Observe
that all the sets Er are finite. We want to construct a sequence (Sr)r∈N0 of infinite subsets
Sr ⊆ N0 such that for all s ∈ N0 we have

(1) Ss+1 ⊆ Ss.
(2) ≤j�Es+1 = ≤k�Es+1 for all j, k ∈ Ss.

We construct the members Sr of the sequence (Sr)r∈N0 by induction r. As E1 is finite, we
can find an infinite set S0 ⊆ N0 such that requirement (2) is satisfied with s = 0. Now, let
r > 0 and assume that the sets S0,S1, . . . ,Sr are already defined such that requirement
(1) holds for all s < r and requirement (2) holds for all s ≤ r.
As Er+2 is finite, we find an infinite subset Sr+1 ⊆ Sr (which hence satisfies requirement
(1) for s = r) such that requirement (2) is also satisfied with s = r+1. This completes the
step of induction and hence proves that a sequence (Sr)r∈N0 with the requested properties
exists.
Now, we may choose a sequence (ik)k∈N0 in N0, such that

ir < ir+1 and ir ∈ Sr for all r ∈ N0.

In particular it follows that

≤ij�Er+1 = ≤ik�Er+1 for all j, k ≥ r

and hence (see Definition, Exercise and Convention 12.12 (A)(a))

dist(≤ij ,≤ik) <
1

2r
for all j, k ≥ r.

So, the constructed subsequence (≤ik)k∈N0 of our original sequence (≤i)i∈N0 is indeed a
Cauchy sequence. �

What we need indeed to prove our main result, is the compactness of subspace of
admissible orderings in the topological space of total orderings.



NOTES ON WEYL ALGEBRAS AND D-MODULES 71

12.14. Proposition. (Compactness of the Space of Admissible Orderings) The
set AO(E) is a closed subset of TO(E) and hence compact.

Proof. Let (≤i)i∈N0 be sequence in AO(E), which converges in TO(E) and let

limi→∞ ≤i = ≤ .

We aim to show, that ≤∈ AO(E). According to Definition, Reminder and Exercise 12.2
(C), we must show, that for all λ, λ′, κ, κ′, ν, µ ∈ Nn

0 the following statements hold.

(1) 1 ≤ Xν∂µ.

(2) If Xλ∂κ ≤ Xλ′∂κ
′

then Xλ+ν∂κ+µ ≤ Xλ′+ν∂κ
′+µ.

So, fix λ, λ′, κ, κ′, ν, µ ∈ Nn
0 . Then we find some r ∈ N0 such that all the elementary

differential operators which occur in (1) and (2) belong to Er+1. Now, we find some
i ∈ N0 such that dist(≤i,≤) < 1

2r
, hence such that ≤�Er+1 = ≤i�Er+1 . As ≤i∈ AO(E)

the required inequalities hold for ≤i. But then, by the coincidence of ≤ and ≤i on Er+1,
they hold also for ≤. �

Now, after having established the following auxiliary result, we are ready to prove the
announced main result.

12.15. Lemma. Let L ⊂W be a left ideal and let G ⊆ L be a finite subset. Then, the set

UL(G) := {≤∈ AO(E) | G is a ≤ − Gröbner basis of L}
is open in AO(E).

Proof. We may assume that UL(G) is not empty and choose ≤∈ UL(G). We find some
r ∈ N0 with supp(G) ⊆ Er+1. Let ≤′∈ AO(E) such that dist(≤,≤′) < 1

2r
. So, we

obtain that ≤�Er+1 = ≤′�Er+1 and hence in particular that ≤�Supp(G) = ≤′�Supp(G).
By Proposition 12.10 it follows that G is a ≤′-Gröbner basis of L and hence that ≤′∈
UL(G). But this means, that the open neighborhood

{≤′∈ AO(E) | dist(≤′,≤) <
1

2r
}

of ≤ belongs to UL(G). �

12.16. Theorem. (Existence of Universal Gröbner Bases) Each left ideal L of W
admits a universal Gröbner basis.

Proof. Let L ⊆W be a left ideal. For each ≤∈ AO(E) we choose a ≤-Gröbner basis G≤
of L. In the notations of Lemma 12.15 we have ≤∈ UL(G≤). So, by this same Lemma
the family (

UL(G≤)
)
≤∈AO(E)

is an open covering of AO(E). By Proposition 12.14 we thus find finitely many elements

≤1,≤2, . . . ,≤r∈ AO(E)

such that

AO(E) =
r⋃
i=1

UL(G≤i).
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Let ≤∈ AO(E). Then ≤∈ UL(G≤i) for some i ∈ {1, 2, . . . , r}. Therefore G≤i is a ≤-
Gröbner basis of L. So

⋃r
i=1 G≤i is a Gröbner basis of L for all ≤∈ AO(E). �

As a first application of the previous existence result we get the following finiteness
result.

12.17. Corollary. (Finiteness of the Set of Leading Monomial Ideals) Let L ⊆W
be a left ideal. Then the set

{LMI≤(L) |≤∈ AO(E)}
of all leading monomial ideals of L with respect to admissible orderings of E is finite.

Proof. Let G ⊆ L be a universal Gröbner basis of L. Then we have

{LMI≤(L) |≤∈ AO(E)} = {LMI≤(G) |≤∈ AO(E)}.
Therefore

#{LMI≤(L) |≤∈ AO(E)} ≤ #{
∑
h∈H

PΦ(h) | H ⊆ supp(G)} ≤

≤ #{H ⊆ supp(G)} = 2#supp(G).

�

13. Weighted Orderings

This section is devoted to the study of admissible orderings which are compatible with
a given weight and the related notion of weighted (admissible) ordering. Such weighted
orderings were first studied by Assi, Castro-Jiménez and Granger [3] and by Saito, Sturm-
fels and Takayama [38].
In relation to these weighted orderings, we shall introduce the fundamental notion of
symbol of a differential operator with respect to a given weight. We will see, that these
symbols, which are indeed polynomials, behave again multiplicatively. Moreover, we shall
see that the symbols of all members of a Gröbner basis of a given left ideal generate the
so-called induced ideal of the given left ideal. Our ultimate goal is to prove, that the
number of characteristic varieties of given D-module with respect to all weights is finite.
Moreover, we shall prove a certain stability result for characteristic varieties found in
Boldini’s thesis [11], which is published in [12].

13.1. Notation. (A) As previously, we fix a positive integer n, a field K of characteristic
0 and consider the standard Weyl algebra

W := W(K,n) = K[X1, X2, . . . , Xn, ∂1, ∂2, . . . , ∂n],

the polynomial ring
P := K[Y1, Y2, . . . , Yn, Z1, Z2, . . . , Zn]

in the indeterminates Y1, Y2, . . . , Yn, Z1, Z2, . . . , Zn with coefficients in the field K and the
isomorphism of K-vector spaces

Φ : W
∼=−→ P, Xν∂µ 7→ Y νZµ for all ν, µ ∈ Nn

0 .

(B) We also write

Ω := {(v, w) ∈ Nn
0 × Nn

0 | (vi, wi) 6= (0, 0) for all i = 1, 2, . . . , n} ⊂ Nn
0 × Nn

0
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for the set of all weights. If
ω = (v, w) ∈ Ω

we also use the suffix ω instead of the suffix vw in all the previously introduced notations.
So we write for example

Wω
• := Wvw

• , degω(d) := degvw(d), Pω := Pvw, . . .

Observe, that

ω + α ∈ Ω and sω ∈ Ω for all ω, α ∈ Ω and all s ∈ N,
where the arithmetic operations are performed in N2n

0 .

Now, we introduce the concept of admissible orderings which are compatible with a
given weight.

13.2. Definition and Exercise. (A) (Weight Compatible Orderings) We fix a weight
and an admissible ordering of the set E of elementary differential operators in W (see
Definition, Reminder and Exercise 12.2 (C)):

ω = (v, w) ∈ Ω and ≤∈ AO(E).

We say that ≤ is compatible with the weight ω = (v, w) ∈ Ω (or ω-compatible), if for all
d, e ∈ E we have:

If degω(d) < degω(e), then d < e.

So, ≤ is compatible with ω = (v, w) if and only if for all ν, µ, ν ′, µ′ ∈ Nn
0 we have the

following implication:

If νv + µw < ν ′v + µ′w, then Xν∂µ < Xν′∂µ
′
.

We set

AOω(E) = AOvw(E) := {≤∈ AO(E) | ≤ is compatible with ω = (v, w)}.
(B) (Weighted Admissible Orderings) Keep the notations and hypotheses of part (A).

We define a new binary relation

≤ω=≤vw⊆ E× E
on E, by setting, for all d, e ∈ E:

d ≤ω e if

{
either degω(d) < degω(e)

or else degω(d) = degω(e) and d < e.

Prove that for each weight ω = (v, w) ∈ Ω and each ≤∈ AO(E) the following statements
hold.

(a) ≤ω∈ AOω(E).
(b) (≤ω)ω = ≤ω.
(c) ≤∈ AOω(E) if and only if ≤ = ≤ω.

The admissible ordering ≤ω∈ AO(E) is called the ω-weighted ordering associated to ≤.

Another important concept, which was already mentioned in the introduction to this
section, is the notion of symbol of a differential operator. We now will introduce this
notion after a few preparatory steps.
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13.3. Definition and Exercise. (A) Let ω = (v, w) ∈ Ω, let i ∈ N0 and let

d =
∑

(ν,µ)∈supp(d)

c(d)
νµX

ν∂µ ∈W with c(d)
νµ ∈ K \ {0} for all (ν, µ) ∈ supp(d).

We set
suppωi (d) := {(ν, µ) ∈ supp(d) | νv + µw = i}.

and
dωi = dvwi :=

∑
(ν,ν)∈supp

ω
i (d)

c(d)
νµX

ν∂µ.

Prove that for all d, e ∈W, all i, j ∈ N0 and for all weights ω = (v, w) ∈ Ω the following
statements hold:

(a) If i > degω(d), then dωi = 0.
(b) dωi = (dωi )ωi .
(c) (d+ e)ωi = dωi + eωi .
(d) If d, e 6= 0, i := degω(d) and j := degω(e), then

suppωi+j(de) = {(ν + ν ′, µ+ µ′) | (ν, µ) ∈ suppωi (d) and (ν ′, µ′) ∈ suppωj (e)}.
(e) If d, e 6= 0, i := degω(d) and j := degω(e), then

(de)ωi+j =
∑

(ν,µ)∈supp
ω
i (d),(ν′,µ′)∈supp

ω
j (e)

c(d)
νµ c

(e)
ν′µ′X

ν+ν′∂µ+µ′ .

(B) Keep the notations and hypotheses of part (A). We set

σωi (d) := Φ
(
dωi
)

=
∑

(ν,ν)∈supp
ω
i (d)

c(d)
νµY

νZµ.

Prove on use of statements (a)–(e) of part (A) that for all d, e ∈W, all i, j ∈ N0 and for
all weights ω = (v, w) ∈ Ω the following statements hold:

(a) σωi (d) := σωi (dωi ).
(b) If i > degω(d), then σωi (d) = 0.
(c) σωi (d) = σωi (dωi ).
(d) σωi (d+ e) = σωi (d) + σωi (e).

(C) (The Symbol of a Differential operator with Respect to a Weight) Keep the notations
of part (A), (B). We define the ω = (v, w)-symbol of the differential operator d ∈W by

σω(d) :=

{
0 if d = 0,

σωdegω(d)(d) if d 6= 0.

Prove that for all d, e ∈W \ {0} the following statements hold.

(a) σω(d) = Φ(dωdegω(d)) = σω
(
dωdegω(d)(d)

)
.

(b) σω(d+ e) =

{
σω(d) + σω(e) if degω(d) = degω(e) = degω(d+ e)

σω(d) if degω(d) > degω(e).

First, we now prove that symbols behave well with respect to products of differential
operators.
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13.4. Proposition. (Multiplicativity of Symbols) Let ω = (v, w) ∈ Ω and let d, e ∈
W. Then

σω(de) = σω(d)σω(e).

Proof. If d = 0 or e = 0, our claim is obvious. So, let d, e 6= 0. We write i := degω(d) and
j := degω(e). Observe that degω(de) = i + j. So, by Definition and Exercise 13.3 (A)(e)
we have

σω(de) = σωi+j(de) = Φ
(
(de)ωi+j

)
=

= Φ
( ∑

(ν,µ)∈supp
ω
i (d),(ν′,µ′)∈supp

ω
j (e)

c(d)
νµ c

(e)
ν′µ′X

ν+ν′∂µ+µ′
)

=

=
∑

(ν,µ)∈supp
ω
i (d),(ν′,µ′)∈supp

ω
j (e)

c(d)
νµ c

(e)
ν′µ′Y

ν+ν′Zµ+µ′ =

=
( ∑

(ν,µ)∈supp
ω
i (d)

c(d)
νµY

νZµ
)( ∑

(ν′,µ′)∈supp
ω
j (e)

c
(e)
ν′µ′Y

ν′Zµ′
)

=

= Φ(dωi )Φ(eωj ) = σωi (d)σωj (e) = σω(d)σω(e).

�

In Definition and Remark 11.5 we have seen, that each left ideal L of the standard Weyl
algebra W induces a graded ideal in the associated graded ring with respect to a given
weight. These induced ideals will play a crucial role in our future considerations. We just
revisit now these ideals.

13.5. Reminder, Definition and Exercise. (A) (Induced Graded Ideals) Let L ⊂ W
be a left ideal, let ω = (v, w) ∈ Ω be a weight and let us consider the ω-graded ideal (see
Definition and Remark 11.5)

Gω(L) :=
⊕
i∈Z

(
(L ∩Wω

i ) + Wω
i−1

)
/Wω

i−1
∼=
⊕
i∈Z

Lωi /L
ω
i−1 = GrLω• (L) ⊆ Gω(W),

where
Lω• = L ∩Wω

• :=
(
L ∩Wω

i

)
i∈N0

is the filtration induced on L by the weighted filtration Wω
• . We now consider the ω-graded

ideal of Pω = P given by
Gω

(L) := (ηω)−1
(
Gω(L)

)
,

where
ηvw = ηω : P = Pω

∼=−→ Gω.

is the canonical isomorphism of graded rings of Theorem 9.4. We call Gω
(L) the (ω-

graded) ideal induced by L in P.

(B) Let the notations and hypotheses be as part (A). Fix i ∈ N0 and consider the i-th
ω-graded part

Gω
(L)i = Gω

(L) ∩ Pωi = (ηω)−1
(
Gω
i

)
of the ideal Gω

(L) ⊆ P. Prove the following statements:
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(a) Let d ∈ L with degω(d) = i and let d := d+ Wω
i−1 ∈ Gω(L)i. Then it holds

(ηω)−1(d) = Φ(dωi ) = σω(d) ∈ Gω
(L)i.

(b) Each element h ∈ Gω(L)i \ {0} can be written as

h = σω(d), with d ∈ L and degω(d) = i.

(C) (The Induced Exact Sequence Associated to a Left Ideal with Respect to a Weight)
Keep the above notations and hypotheses. Prove the following statements:

(a) There is a short exact sequence of graded Pω-modules

0 −→ Gω
(L) −→ Gω −→ GrWω

•K1(W/L) −→ 0,

where 1 := 1 + L ∈ W/L and Wω
•K1 is the ω -filtration induced on the cyclic

D-module W/L by its subspace K1.
(b) AnnP

(
GrWω

•K1(W/L)
)

= Gω
(L).

(c) Vω(W/L) = Var
(
Gω

(L)
)
.

We call this sequence the short exact sequence associated to the left ideal L with respect
to the weight ω.

Now, we are ready to formulate and to prove a result which we already announced in
the introduction to this section. It relates the symbols of the members of a Gröbner bases
of a left ideal with the induced ideal with respect to a given weight.

13.6. Proposition. (Generation of the Induced Ideal by the Symbols of a
Gröbner Basis) Let ω ∈ Ω, let L ⊆ W be a left ideal, let ≤∈ AO(E) and let G be a
≤ω-Gröbner basis of L. Then it holds

(a) Gω
(L) =

∑
g∈G Pσω(g).

(b) For each h ∈ Gω
(L) \ {0} there is some g ∈ G \ {0} and some monomial m =

Y νZµ ∈ P such that

LM≤
(
Φ−1(h)

)
= mLM≤

(
Φ−1(σω(g))

)
.

Proof. (a): As the ideal Gω
(L) ⊆ Pω is graded, it suffices to show, that for each i ∈ N0

and each h ∈ Gω
(L)i \ {0} we have h ∈

∑
g∈G Pσω(g). So, fix i ∈ N0 and assume

that h /∈
∑

g∈G Pσω(g) for some h ∈ Gω
(L)i \ {0}. Then, by Reminder, Definition and

Exercise 13.5 (B)(b), the set

S := {e ∈ L | degω(e) = i and σω(e) /∈
∑
g∈G

Pσω(g)}

is not empty. Choose d ∈ S such that

LE≤ω(d) = min≤ω{LE≤ω(e) | e ∈ S}.
As G is a ≤ω-Gröbner basis of L we find some g ∈ G and some u ∈ E such that LM≤ω(d) =
LM≤ω(ug) (see Definition, Reminder and Exercise 12.6 (C)(b)). With

v :=
LC≤ω(d)

LC≤ω(g)
u
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it follows that LE≤ω(d) = LE≤ω(vg), hence

LD≤ω(d) = LC≤ω(d)LE≤ω(d) = LC≤ω(d)LE≤ω(ug) = LD≤ω(vg) and degω(vg) = i.

So, by Definition, Reminder and Exercise 12.2 (D)(d) we may conclude that either

(1) degω(d− vg) < i, or else
(2) degω(d− vg) = i and LE≤ω(d− vg) < LE≤ω(d).

In the case (1) we have (see Definition and Exercise 13.3 (C)(b) and Proposition 13.4)

σω(d) = σω(d− (d− vg)) = σω(vg)) = σω(v)σω(g) ∈
∑
g∈G

Pσω(g)

and hence get a contradiction.
So, assume that we are in the case (2). As d− vg ∈ L it follows by our choice of d, that
σω(d− vg) ∈

∑
g∈G Pσω(g). Observe that we have

i = degω(d− vg) = degω(vg) = degω(d) = degω
(
(d− vg) + vg

)
.

So, by Definition and Exercise 13.3 (C)(b) and by Proposition 13.4 we have

σω(d) = σω
(
(d−vg)+vg

)
= σω(d−vg)+σω(vg) = σω(d−vg)+σω(v)σω(g) ∈

∑
g∈G

Pσω(g),

and this is again a contradiction.

(b): We find some i ∈ N0 such that LM≤
(
Φ−1(h)

)
= LM≤

(
Φ−1(hωi (h))

)
. As the ideal

Gω
(L) ⊆ Pω is graded, we have hωi (h) ∈ Gω

(L). So we may assume, that h ∈ Gω
(L)i\{0}.

Now, by Reminder, Definition and Exercise 13.5 (B), we find some d ∈ L with degω(d) = i
and Φ−1(h) = dωi , whence

LM≤
(
Φ−1(h)

)
= LM≤(dωi ) = LM≤ω(d).

As G is a ≤ω-Gröbner basis of L, we find some g ∈ G \ {0} with degω(g) = j and some
monomial m = Y νZµ ∈ P such that (see Definition, Reminder and Exercise 12.6 (C)(c)
and also Definition and Exercise 13.3 (C)(a))

LM≤ω(d) = mLM≤ω(g) = mLM≤(gωj ) = mLM≤
(
Φ−1(σωj (g))

)
,

and so we get our claim. �

Now, we are ready to prove our first basic finiteness result. It says that the set of all
induced ideals of a given left ideal in the Weyl algebra is finite.

13.7. Corollary. (Finiteness of the Set of Induced Ideals) Let L ⊆ W be a left
ideal. Then, the following statements hold:

(a) #{Gω
(L) | ω ∈ Ω} <∞.

(b) #{Vω(W/L) | ω ∈ Ω} <∞.

Proof. (a): Let G be an universal Gröbner basis of L. Then, by Proposition 13.6, for each
ω ∈ Ω we have Gω

(L) =
∑

g∈G Pσω(g). For each g ∈ G we write

g =
∑

(ν,µ)∈supp(g)

c(g)
νµX

ν∂µ.



78 MARKUS BRODMANN

Then, for each ω ∈ Ω we have

σω(g) = Φ(gωdegω(g)) =
∑

(ν,µ)∈supp
ω

degω(g)
(g)

c(g)
νµY

νZµ.

Therefore
#{σω(g) | ω ∈ Ω} ≤ #{H ⊆ supp(g)} = 2#supp(g).

It follows that

#{Gω
(L) =

∑
g∈G

Pσω(g) | ω ∈ Ω} ≤ #{
(
σω(g)

)
g∈G ∈ PG | ω ∈ Ω} ≤

≤
∏
g∈G

2#supp(g) = 2#supp(G).

(b): This follows immediately from statement (a) on use of Reminder, Definition and
Exercise 13.5 (C)(c). �

The second statement of the previous result says that a given cyclic D-module has
only finitely many characteristic varieties, if ω runs through all weights. Our first main
theorem says, that this finiteness statement holds indeed for arbitrary D-modules. To
prove this, we first have to investigate the behavior of characteristic varieties in short
exact sequences of D-modules. This needs some preparations.

13.8. Exercise and Definition. (A) Let ω ∈ Ω and let

0 −→ Q
ι−→ U

π−→ P −→ 0

be an exact sequence of D-modules. Let V ⊆ U be a finitely generated K-vector subspace
such that U = WV . We endow Q with the filtration

Q• :=
(
ι−1(Wω

i V )
)
i∈N0

.

Prove the following statements:

(a) For each i ∈ N0 there is a K-linear map

ιi : Qi/Qi−1 −→Wω
i V/W

ω
i−1V, q +Qi−1 7→ ι(q) + Wω

i−1V.

(b) For each i ∈ N0 there is a K-linear map

πi : Wω
i V/W

ω
i−1V −→Wω

i π(V )/Wω
i−1π(V ), q + Wω

i−1V 7→ π(q) + Wω
i−1π(V ).

(c) For each i ∈ N0 it holds

π−1
(
Wω

i−1π(V )
)

= ι(Q) + Wω
i−1V.

(d) For each i ∈ N0 there is a short exact sequence of K-vector spaces

0 −→ Qi/Qi−1
ιi−→Wω

i V/W
ω
i−1V

πi−→Wω
i π(V )/Wω

i−1π(V ) −→ 0.

(B) (The Graded Exact Sequence associated to a Short Exact Sequence of D-Modules)
Keep the hypotheses and notations of part (A). Prove the following statements:

(a) For each i ∈ N0 there is a short exact sequence of K-vector spaces

0 −→ GrQ•(Q)i
ιi−→ GrWω

• V
(U)i

πi−→ GrWω
• π(V )(P )i −→ 0.
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(b) There is an exact sequence of graded Pω-modules

0 −→ GrQ•(Q)
ι−→ GrWω

• V
(U)

π−→ GrWω
• π(V )(P ) −→ 0,

with ι :=
⊕

i∈N0
ιi and π :=

⊕
i∈N0

πi.

The exact sequence of statement (b) is called the exact sequence induced by the exact

sequence 0→ Q
ι→ U

π→ P → 0 and the generating vector space V of U .

(C) Keep the previous notations and hypotheses. Prove the following statements:

(a) For each finitely generated K-vector subspace T ⊆ Q with Q = WT and V ⊆ ι(T ),
the two filtrations Q• and Wω

•T of Q are equivalent.
(b) Var

(
AnnP(GrQ•(Q))

)
= Vω(Q).

Now, we can prove the crucial result, needed to extend the previous finiteness statement
for characteristic varieties from cyclic to arbitrary D-modules.

13.9. Proposition. (Additivity of Characteristic Varieties) Let ω ∈ Ω and let

0 −→ Q
ι−→ U

π−→ P −→ 0

be an exact sequence of D-modules. Then it holds

Vω(U) = Vω(Q) ∪ Vω(P ).

Proof. We fix a finitely generated K-vector subspace V ⊆ U with WV = U and consider
the corresponding induced short exact sequence (see Exercise and Definition 13.8 (B))

0 −→ GrQ•(Q)
ι−→ GrWω

• V
(U)

π−→ GrWω
• π(V )(P ) −→ 0.

On use of Exercise and Definition 13.8 (C)(b) we obtain

Vω(U) = Var
(
AnnP(GrWω

• V
(U))

)
=

= Var
(
AnnP(GrQ•(Q))

)
∪ Var

(
AnnP(GrWω

• π(V )(P ))
)

= Vω(Q) ∪ Vω(P ).

�

Now, we are ready to prove the announced first main theorem of this section.

13.10. Theorem. (Finiteness of the Set of Characteristic Varieties) Let U be a
D-module. Then

#{Vω(U) | ω ∈ Ω} <∞.

Proof. We proceed by induction on the number r of generators of U . If r = 1 we have
U ∼= W/L for some left ideal L ⊆ W. In this case, we may conclude by Corollary 13.7
(b). So, let r > 1. Then, we find a short exact of D-modules

0 −→ Q
ι−→ U

π−→ P −→ 0

such that Q and P are generated by less than r elements. By induction, we have

#{Vω(Q) | ω ∈ Ω} <∞ and #{Vω(P ) | ω ∈ Ω} <∞.
By Proposition 13.9 we also have

{Vω(U) | ω ∈ Ω} = {Vω(Q) ∪ Vω(P ) | ω ∈ Ω},
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hence
#{Vω(U) | ω ∈ Ω} ≤ #{Vω(Q) | ω ∈ Ω}+ #{Vω(P ) | ω ∈ Ω} <∞.

�

As already announced in the introduction to this section, our ultimate goal is to estab-
lish a certain stability result for characteristic varieties of a given D-module. To pave the
way for this, we perform a number of preparatory considerations, which are the subject
of the exercises to come.

13.11. Definition and Exercise. (A) (Leading Forms) We consider the polynomial ring
P. Let

f =
∑

(ν,µ)∈supp(f)

c(f)
νµ Y

νZµ ∈ P with c(f)
νµ ∈ K \ {0} for all (ν, µ) ∈ supp(f).

We set
suppωi (f) := {(ν, µ) ∈ supp(f) | νv + µw = i}

and consider the i−th homogeneous component of f with respect to ω, thus the polynomial

fωi = f vwi :=
∑

(ν,ν)∈supp
ω
i (f)

c(f)
νµ Y

νZµ.

The leading form of f with respect to the weight ω is defined by

LFω(f) :=

{
0 if f = 0,

fωdegω(f) if f 6= 0.

Prove that for all f, g ∈ P, all i, j ∈ N0 and for all weights ω = (v, w) ∈ Ω the following
statements hold:

(a) If i > degω(f), then fωi = 0.
(b) fωi = fωi (fωi ).
(c) (f + g)ωi = fωi + gωi .
(d) (fg)ωi =

∑
j+k=i f

ω
j g

ω
k .

(e) LFω(fg) = LFω(f)LFω(g).
(f) LF(f) = f if and only if f is homogeneous with respect to the ω-grading of P.
(g) If d ∈W, then σω(d) = LFω

(
Φ(d)

)
.

(B) (Leading Form Ideals) Keep the notations and hypotheses of part (A). If S ⊂ P is
any subset, we define the leading form ideal of S with respect to ω by

LFIω(S) :=
∑
f∈S

PLFω(f).

Let S ⊆ T ⊆ P and ≤∈ AO(E). Prove the following statements:

(a) LFIω(S) ⊆ LFIω(T ).
(b) If for each t ∈ T \ {0} there is some monomial m = Y νZµ ∈ M ⊂ P and some

s ∈ S such that LM≤ω
(
Φ−1(t)

)
= mLM≤ω

(
Φ−1(s)

)
, then LFIω(S) = LFIω(T ).

(c) For each ideal I ⊆ P it holds√
LFIω(I) =

√
LFIω(

√
I).
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(d) If I, J ⊆ P are ideals, then
(1) LFIω(I ∩ J) ⊆ LFIω(I) ∩ LFIω(I) and LFIω(I)LFIω(J) ⊆ LFIω(IJ);

(2)
√

LFIω(I ∩ J) =
√

LFIω(I) ∩ LFIω(J) =
√

LFIω(I) ∩
√

LFIω(J).

The announced Stability Theorem for Characteristic Varieties we are heading for, con-
cerns the behavior of characteristic varieties under certain changes of the involved weights.
To prepare this new type of considerations, we suggest the following exercise.

13.12. Exercise. (A) Prove that for all d ∈W, all i, j ∈ N0, all s ∈ N and for all weights
α = (a, b), ω = (v, w) ∈ Ω the following statements hold (For the unexplained notations
see Definition and Exercise 13.3):

(a) supp
(
[dωi ]αj

)
= suppωi (d)

⋂
suppαj (d).

(b) supp
(
[dωi ]αj

)
⊆ suppα+sω

j+si (d).
(c) If i ≥ degω(d), j ≥ degα(dωi ) and s > degα(d)− j, then the inclusion of statement

(b) becomes an equality.
(d) If i ≥ degω(d), j ≥ degα

(
dωi ) and s > degα(d)− j, then

[dωi ]αj = dα+sω
j+si .

(B) Prove on use of statements (a)–(d) of part (A) that for all d ∈W, all i, j ∈ N0, all
s ∈ N and for all weights ω = (v, w), α = (a, b) ∈ Ω the following statements hold:

(a) σαj (dωi ) =
∑

(ν,µ)∈supp
ω
i (d)∩supp

α
j (d) c

(d)
νµY

νZµ = σωi (dαj ).

(b) If i ≥ degω(d), j ≥ degα(dωi ) and s > degα(d)− j, then

[σωi (d)]αj = σα+sω
j+si (d).

The next two auxiliary results are of fairly technical nature. But they will play a crucial
role in the proof of our Stability Theorem.

13.13. Lemma. Let α, ω ∈ Ω, let d ∈W \ {0} and let s ∈ N such that

s > degα(d)− degα
(
σω(d)

)
.

Then, the following statements hold:

(a) degα+sω(d) = degα
(
σω(d)

)
+ s degω(d).

(b) LFα
(
σω(d)

)
= σα+sω(d).

Proof. We write
i := degω(d) and j := degα

(
σω(d)

)
.

Observe, that σω(d) = σωi (d) = Φ(dωi ), so that

j = degα
(
σω(d)

)
= degα(dωi ) and also s > degα(d)− j.

Now, by Exercise 13.12 (B)(b) we obtain

LFα
(
σω(d)

)
= [σωi (d)]αj = σα+sω

j+si (d).

It remains to show that
j + si = degα+sω(d).

As LFα
(
σω(d)

)
6= 0 we have σα+sω

j+si (d) 6= 0 and hence j + si ≤ degα+sω(d) (see Definition
and Exercise 13.3 (B)(b)).
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Assume that j + si > degα+sω(d). Then, we may write degα+sω(d) = k + si, with k > j.
It follows, that s > degα(d)− k. On application of Exercise 13.12 (B)(b) we get that

[σωi (d)]αk = σα+sω
k+si (d) = σα+sω(d) 6= 0.

As k > j = degα
(
σω(d)

)
we have [σωi (d)]αk = 0 (see Definition and Exercise 13.11 (A)(a)).

This contradiction completes our proof. �

13.14. Lemma. Let L ⊆ W be a left ideal, let α, ω ∈ Ω, let ≤∈ AO(E) and let G be a
(≤α)ω-Gröbner basis of L. Then

LFIα
(
Gω

(L)
)

= LFIα
(
{σω(g) | g ∈ G}

)
.

Proof. By Reminder, Definition and Exercise 13.5 (B)(a) we have

S := {σω(g) | g ∈ G \ {0}} ⊆ Gω
(L) =: T

If we apply Proposition 13.6 (b) with ≤α instead of ≤, we see that for all t ∈ T there
is some monomial m = Y νZµ ∈ M ⊂ P and some s ∈ S such that LM≤α

(
Φ−1(t)

)
=

mLM≤α
(
Φ−1(s)

)
. By Definition and Exercise 13.11 (B)(b) it follows that

LFIα
(
Gω

(L)
)

= LFIα(S) = LFIα(T ) = LFIα
(
{σω(g) | g ∈ G}

)
.

�

Now, we are ready to formulate and to prove the announced stability result.

13.15. Theorem. (Stability of Induced Graded Ideals, Boldini [11], [12]) Let
L ⊆W be a left ideal and let α ∈ Ω. Then, there exists an integer s = s(α,L) ∈ N0 such
that for all s ∈ N with s > s and all ω ∈ Ω we have

LFIα
(
Gω

(L)
)

= Gα+sω
(L).

Proof. Let G be a universal Gröbner basis of L. Then, by Lemma 13.14, for each ω ∈ Ω
we have

LFIα
(
Gω

(L)
)

= LFIα
(
{σω(g) | g ∈ G}

)
=
∑
g∈G

PLFα
(
σω(g)

)
.

Now, we set

s := max{degα(g) | g ∈ G \ {0}}.
By Lemma 13.13 it follows that LFα

(
σω(g)

)
= σα+sω(g) for all s ∈ N with s > s, all

ω ∈ Ω and all g ∈ G \ {0}. So, for all s ∈ N with s > s and all ω ∈ Ω we have

LFIα
(
Gω

(L)
)

=
∑
g∈G

Pσα+sω(g).

If we apply Proposition 13.6 (a) with α + sω instead of ω we also get

Gα+sω
(L) =

∑
g∈G

Pσα+sω(g)

for all s ∈ N with s > s and all ω ∈ Ω. This completes our proof. �
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13.16. Notation. If Z ⊆ Spec(P) is a closed set we denote the vanishing ideal of Z by IZ,
thus:

IZ :=
⋂
p∈Z

p =
√
J, for all ideals J ⊆ P with Z = Var(J).

13.17. Theorem. (Stability of Characteristic Varieties, Boldini [11], [12]) Let U
be a D-module, and let α ∈ Ω. Then, there exists an integer s = s(α, U) ∈ N0 such that
for all s ∈ N with s > s and all ω ∈ Ω we have

Var
(
LFIα

(
IVω(U))

)
= Vα+sω(U).

Proof. We proceed by induction on the number r of generators of U . First, let r = 1.
Then we have U ∼= W/L for some left ideal L ⊆ W. By Theorem 13.15 we find some
s ∈ N0 such that for all s ∈ N with s > s and all ω ∈ Ω we have

LFIα
(
Gω

(L)
)

= Gα+sω
(L).

By Reminder, Definition and Exercise 13.5 (C)(c) we have

Vα+sω(U) = Var
(
Gα+sω

(L)
)

and IVω(U) =

√
Gω

(L).

By Definition and Exercise 13.11 (B)(c) we thus get√
LFIα

(
IVω(U)

)
=

√
LFIα

(√
Gω

(L)
)

=
√

LFIα
(
Gω

(L)
)
,

so that indeed – for all s ∈ N with s > s and all ω ∈ Ω – we have

Var
(
LFIα

(
IVω(U))

)
= Var

(
LFIα

(
Gω

(L)
)

= Var
(
Gα+sω

(L)
)

= Vα+sω(U).

Now, let r > 1. Then, we find a short exact of D-modules

0 −→ Q
ι−→ U

π−→ P −→ 0

such that Q and P are generated by less than r elements. By induction, we thus find a
number s ∈ N0, such that for all ω ∈ Ω and all s ∈ N with s > s it holds

Var
(
LFIα(IVω(Q))

)
= Vα+sω(Q) and Var

(
LFIα(IVω(P ))

)
= Vα+sω(P ).

By Proposition 13.9 we have

Vα+sω(U) = Vα+sω(Q) ∪ Vα+sω(P )

and hence, moreover

IVω(U) = IVω(Q)∪Vω(Q) = IVω(Q) ∩ IVω(P ).

By Definition and Exercise 13.11 (B)(d)(2) it follows from the last equality that√
LFIα

(
IVω(U)

)
=
√

LFIα
(
IVω(Q)

)
∩
√

LFIα
(
IVω(P )

)
.

Therefore

Var
(
LFIα(IVω(U))

)
= Var

(
LFIα(IVω(Q))

)
∪ Var

(
LFIα(IVω(P ))

)
.

It follows, that

Var
(
LFIα(IVω(U))

)
= Vα+sω(Q) ∪ Vα+sω(P ) = Vα+sω(U)
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for all ω ∈ Ω and all s ∈ N with s > s. This completes the step of induction and hence
proves our claim. �

To formulate our Stability Theorem in a more geometric manner, we introduce the
following notion.

13.18. Definition. (The Critical Cone) Let Z ⊆ Spec(P) be a closed set. Then, the
critical cone of Z is defined as

CCone(Z) := Var
(
LFI1(IZ)

)
,

where 1 = (1, 1) ∈ Ω denotes the standard weight.

On use of the introduced terminology, we now can define our Stability Theorem as
follows.

13.19. Corollary. (Affine Deformation of Characteristic Varieties to Critical
Cones, Boldini [11], [12]) Let U be a D-module. Then, there is an integer s = s(U) ∈
N0 such that for all ω ∈ Ω and all s ∈ N with s > s it holds

V1+sω(U) = CCone
(
Vω(U)

)
.

Proof. This is immediate by Theorem 13.17. �

14. Standard Degree and Hilbert Polynomials

In this section, we give an outlook to the relation between D-modules and Castelnuovo-
Mumford regularity, which we mentioned in the introduction. We shall consider a situa-
tion, which is exclusively related to the standard degree filtration W• = Wdeg

• = W11
• of

the underlying Weyl algebra W. Having in mind to approach the bounding result for the
degree of defining equations of characteristic varieties mentioned in the introduction, we
shall restrict ourselves to consider D-modules U endowed with filtrations VW• induced
by a finite-dimensional generating vector space V of U .

14.1. Preliminary Remark. (A) Let n ∈ N, let K be a field of characteristic 0 and
consider the standard Weyl algebra W = W(K,n) = K[X1, X2, . . . , Xn, ∂1, ∂2, . . . , ∂n].
Moreover let A be a ring of smooth functions in X1, X2, . . . , Xn over K (see Remark and
Definition 11.11 (A)). One concern of Analysis is to study whole families of differential
equations. So for fixed r, s ∈ N one chooses a family F ⊆Ws×r of matrices of differential
operators. Then one studies all systems of equations (see Remark and Definition 11.11
(B))

D


f1

f2
...
fr

 =


0
0
...
0

 , with D ∈ F.

(B) Let the notations and hypotheses by as in part (A). One aspect of the above
approach is to study the behavior of the characteristic varieties Vdeg(D) := VWdeg

•

(
UD
)

with respect to the degree filtration (see Definition and Remark 8.6 and Definition and
Remark 11.2 (D)) of the D-module UD defined by the matrix D (see Remark and Defini-
tion 11.11 (C)) if this latter runs through the family F.



NOTES ON WEYL ALGEBRAS AND D-MODULES 85

The goal of this section is to prove that the degree of hypersurfaces which cut out set-
theoretically the characteristic variety Vdeg(D) is bounded, if D runs through appropriate
families F.

Below, we recall a few notions from Commutative Algebra.

14.2. Reminder, Definition and Exercise. (Hilbert Functions, Hilbert Polynomials and
Hilbert Coefficients for Modules over Very Well Filtered Algebras) (A) Let K be a field and
let R =

⊕
i∈N0

Ri be a homogeneous Noetherian K-algebra (see Conventions, Reminders
and Notations 1.1 (I) for this notion) , so that R0 = K and R = K[x1, x2, . . . , xr] with
finitely many elements x1, x2, . . . , xr ∈ R1. Moreover, let M =

⊕
i∈ZMi be a finitely

generated graded R-module. Then we denote the Hilbert function of M by hM , so that
hM(i) := dimK(Mi) for all i ∈ Z. We denote by PM(X) the Hilbert polynomial of M , so
that hM(i) = PM(i) for all i� 0. Keep in mind that dim(M) = dim

(
R/AnnR(M)

)
and

deg
(
PM(X)

)
=

{
dim(M)− 1, if dim(M) > 0

−∞, if dim(M) ≤ 0.
.

The Hilbert polynomial PM(X) has a binomial presentation:

PM(X) =

dim(M)−1∑
k=0

(−1)kek(M)

(
X + dim(M)− k − 1

dim(M)− k − 1

) (
ek(M) ∈ Z, e0(M) ≥ 0

)
.

The integer ek(M) is called the k-th Hilbert coefficient of M . If dim(M) > 0, e0(M) > 0
is called the multiplicity of M . Finally let us also introduce the postulation number of
M , thus the number pstln(M) := sup{i ∈ Z | hM(i) 6= PM(i)}.

(B) Now, let (A,A•) be a very well filtered K-algebra (see Definition and Remark ??
(A)). Let U be a finitely generated (left) A-module. Chose a vector space V ⊆ U of finite
dimension such that AV = U . Then, the graded GrA•(A)-module GrA•V (U) is generated
by finitely many homogeneous elements of degree 0 (see Exercise and Definition 10.5
(B)(c)). So, by part (A) this graded module admits a Hilbert function hU,A•V := hGrA•V (U)

with hU,A•V (i) := dimK

(
GrA•V (U)i

)
for all i ∈ Z, the Hilbert function of U with respect to

the filtration induced by V . Moreover, by part (A), the module GrA•V (U) admits a Hilbert
polynomial, thus a polynomial PU,A•V (X) := PGrA•V (U)(X) ∈ Q[X] with hU,A•V (i) =
PU,A•V (i) for all i� 0. We call this polynomial the Hilbert polynomial of U with respect to
the filtration induced by V . Keep in mind that according to part (A) we have dA•(U) :=
dim

(
GrA•V (U)

)
= dim

(
VA•(U)

)
. Moreover the polynomial PU,A•V (X) has a binomial

presentation:

PU,A•V (X) =

dA• (U)−1∑
k=0

(−1)kek
(
U,A•V

)(X + dA•(U)− k − 1

dA•(U)− k − 1

) (
ek(U,A•V ) ∈ Z

)
.

The integer ek(U,A•V ) is called the k-th Hilbert coefficient of U with respect to the
filtration induced by V . Finally, keep in mind, that by part (A) we have e0(U,A•V ) > 0
if dA•(U) > 0. In this situation the number e0(U,A•V ) is called the multiplicity of U with
respect to the filtration induced by V . For the sake of completeness, we set e0(U,A•V ) := 0
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if dA•(U) ≤ 0. Finally, according to part (A) we define the postulation number of U with
respect to the filtration induced by V :

pstlnU,A•V (U) := pstln(GrA•V (U)) := sup{i ∈ Z | hU,A•V (i) 6= PU,A•V (i)}.
(C) Keep the notations and hypotheses of part (B) and assume that dA•(U) > 0. Prove

the following claims.

(a) There is a polynomial QU,A•V (X) ∈ Q[X] such that:
(1) deg

(
QU,A•V (X)

)
= dA•(U),

(2) ∆
(
QU,A•V (X)

)
:= QU,A•V (X)−QU,A•V (X − 1) = PU,A•V (X) and

(3) dimK(AiV ) = QU,A•V (i) for all i� 0.
(4) For each t ∈ Z the polynomial QU,A•V (X + t) ∈ Q[X] has leading term

e0(U,A•V )
dA• (U)!

XdA• (U).

(Hint: Observe that for all i ∈ N we have dimK(AiV ) =
∑i

j=0 dimK

(
GrA•V (U)j

)
=∑i

j=0 hU,A•(j)
)
.)

(b) The multiplicity eA•(U) := e0(U,A•V ) is the same for each finite dimensional K-
subspace V ⊆ U with AV = U.
(Hint: Let V (1), V (2) ⊂ U be two finite dimensional K-subspaces such that AV (1) =
AV (2) = U. Use Exercise and Definition 10.5 (C)(a) and Definition and Re-
mark 10.1 (C)(a) to find some r ∈ N0 such that for all i ∈ Z it holds Ai−rV

(1) ⊆
AiV

(2) ⊆ Ai+rV
(1). Then apply (a).)

(D) Let A = W = K[X1, X2, . . . , Xn, ∂1, ∂2, . . . , ∂n] and let A• = W• = W11
• be the stan-

dard degree filtration of W (see Definition and Remark 8.6). Let U = K[X1, X2, . . . , Xn]
be the D-module of Example 11.9. Compute the two polynomials PU,A•K(X) and
QU,A•K(X).

The next Exercise and Remark intends to present the Bernstein Inequality and the
related notion of holonomic D-module. For those readers, who aim to learn more abour
these important subjects, we recommend to consult one of [9], [8], [24], [37] or [38].

14.3. Exercise and Remark. (A) Endow the Weyl algebra

W = W(K,n) = K[X1, X2, . . . , Xn, ∂1, ∂2, . . . , ∂n]

with its standard degree filtration W• := Wdeg
• (see Definition and Remark 8.6). If d ∈W

write deg(d) for the standard degree deg11(d) of d. Use Exercise 6.4 (D) to prove the
following statement:

If d ∈W \K, then there is some i ∈ {1, 2, . . . , n} such that
deg
(
[Xi, d]

)
= deg(d)− 1 or else deg

(
[∂i, d]

)
= deg(d)− 1.

(B) (The Bernstein Monomorphisms) Keep the notations of part (A) and let U be
a non-zero D-module over the Weyl algebra W. Let V ⊆ U be a K-vector space of
finite dimension and endow U with the induced filtration U• := W•V (see Exercise and
Definition 10.5 (A),(B) and Definition and Remark 11.2 (D)). Let k ∈ N0, let d ∈W with
deg(d) = k and let i ∈ {1, 2, . . . , n}. Prove the following statement

(a) If k > 0 and dUk = 0, then [Xi, d]Uk−1 = [∂i, d]Uk−1 = 0.

Use part (A) and statement (B)(a) to prove the following claim by induction on k:
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(b) For each k ∈ N0 there is a K-linear injective map φk : Wk −→ HomK(Uk, U2k),
given by φk(d)(u) := du, for all d ∈Wk and all u ∈ Uk.

(Hint: The existence of the linear map φk is easy to verify. The injectivity of φ0 is obvious.
If k > 0 and φk is not injective, part (A) and statement (B)(b) imply that φk−1 is not
injective.)

(C) (The Bernstein Inequality) Keep the previous notations. Use statement (B)(b) to
prove

(a) For all k ∈ N0 it holds
(
k+2n

2n

)
≤ dimK(Uk)dimK(U2k).

(Hint: Determine dimK(Wk) for all k ∈ N0 and keep in mind that for any two K-vector
spaces S, T of finite dimension one has dim

(
HomK(S, T )

)
= dimK(S)dimK(T ).)

Use statement (a) and Reminder, Definition and Exercise 14.2 (C)(a) to prove Bernstein’s
Inequality:

(b) If U 6= 0, then dW•(U) = dW1,1
•

(U) ≥ n.

(D) (Holonomic D-Modules) Keep the above notations. It is immediate from the def-
inition, that one always has the inequality dW•(U) ≤ 2n. The D-module U is called
holonomic if dW•(U) ≤ n, hence if U = 0 or else (by Bernsteins’ Inequality) U 6= 0 and
dW•(U) = n. Holonomic D-modules are of particular interest and play a crucial role in
many applications of D-modules. The result of Reminder, Definition and Exercise 14.2
(D) shows that the (simple!) D-module U = K[X1, X2, . . . , Xn] be the D-module of Ex-
ample 11.9 is holonomic.
Use Proposition 13.9 to prove the following result:

(a) If 0 −→ Q −→ U −→ P −→ 0 is an exact sequence of D-modules, then U is
holonomic if and only Q and P are holonomic.

Accepting without proof the fact that all simple D-modules are holonomic, one can prove
by statement (a) that a D-module U is holonomic if and only if it is of finite length, hence
if and only if it admits a finite ascending chain 0 = U0 ( U1 ( · · · ( Ul−1 ( Ul = U of
submodules, such that Ui/Ui−1 is simple for all all i = 1, . . . , l.

We now recall some basics facts on Local Cohomology Theory. As a reference we suggest
[18].

14.4. Reminder. (Local Cohomology Modules) (A) Let R be a commutative Noetherian
ring and let a ⊂ R be an ideal. The a-torsion submodule of an R-module M is given by

Γa(M) :=
⋃
n∈N0

(0 :M an) ∼= lim→
n

HomR(R/an,M).

Observe, that the assignment M 7→ Γa(M) gives rise to a covariant left-exact functor of
R-modules (indeed a sub-functor of the identity functor) – called the a-torsion functor
– so that for each short exact sequence of R-modules 0 −→ N −→ M −→ P −→ 0 we
naturally have an exact sequence 0 −→ Γa(N) −→ Γa(M) −→ Γa(P ).
If i ∈ N0, the i-th local cohomology functor H i

a(•) with respect to the ideal a can be
defined as the i-th right derived functor RiΓa(•) of the a-torsion functor, so that for each
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R-module M one has:

H i
a(M) = RiΓa(M) ∼= lim→

n
ExtiR(R/an,M).

For each short exact sequence of R-modules 0 −→ N −→ M −→ P −→ 0 there is a
natural exact sequence of R-modules

0 −→ H0
a (N) −→ H0

a (M) −→ H0
a (P ) −→ H1

a (N) −→ H1
a (M) −→ H1

a (P ) −→
−→ H2

a (N) −→ H2
a (M) −→ H2

a (P ) −→ H3
a (N) −→ H3

a (M) −→ H3
a (P ) · · · ,

the cohomology sequence associated to the given short exact sequence. In particular, local
cohomology commutes with finite direct sums.
Moreover, we have

(a) If
√
a =

√∑r
i=1 Rxi for some elements x1, x2, . . . , xr ∈ R, then H i

a(M) = 0 for all
i > r and all R-modules M.

(b) H i
a(M) = 0 for all i > dim(M) and all (finitely generated) R-modules M.

(B) (Graded Local Cohomology) Assume from now on, that the ring R of part (A) is
(positively) graded and that the ideal a ⊆ R is graded, so that

R =
⊕
j∈N0

Rj and a =
⊕
j∈N0

aj, with aj = a ∩Rj (∀j ∈ N0).

If M =
⊕

k∈ZMk is a graded R-module then, for each i ∈ N0, the local cohomology
module of M with respect to a carries a natural grading :

H i
a(M) =

⊕
j∈Z

H i
a(M)j.

Moreover, if h : M −→ N is a homomorphism of graded R-modules, then the induced
homomorphism in cohomology H i

a(M) −→ H i
a(N) is a homomorphism of graded R mod-

ules. If 0 −→ N −→ M −→ P −→ 0 is an exact sequence of graded R-modules, then so
is its associated cohomology sequence (see part (A)).

(C) (Graded Local Cohomology with Respect to the irrelevant Ideal) Let R =
⊕

j∈N0
Rj

be as in part (B). The irrelevant ideal of R is defined by

R+ :=
⊕
j∈N

Rj.

The graded components of local cohomology modules of finitely generated graded R mod-
ules with respect to the irrelevant ideal R+ behave particularly well, namely:

(a) Let i ∈ N0 and let M =
⊕

j∈ZMj be a finitely generated graded R-module. Then:

(1) H i
R+

(M)j is a finitely generated R0-module for all j ∈ Z.
(2) H i

R+
(M)j = 0 for all j � 0.

Bearing in mind what we just said in Part (C), we no can introduce the cohomological
invariant which plays the crucial rôle in this Section: Castelnuovo-Mumford regularity.
As a reference we suggest Chapter 17 of [18].
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14.5. Reminder, Remark and Exercise. (Castelnuovo-Mumford Regularity) (A) Keep
the notations and hypotheses of Reminder, Definition and Exercise 14.2(A) and of Re-
minder 14.4. For each finitely generated graded module M =

⊕
j∈ZMj over the homo-

geneous Noetherian K-algebra R =
⊕

j∈N0
Rj = K[x1, x2, . . . , xr] and for each k ∈ N0

by Reminder 14.4 (A)(a),(b) and (C)(a)(2) we now can define the Castelnuovo-Mumford
regularity at and above level k of M by

regk(M) := sup{ai(M) + i | i ≥ k} = max{ai(M) + i | i = k, k + 1, . . . , dim(M)}
with

ai(M) := sup{j ∈ Z | H i
R+

(M)j 6= 0} for all i ∈ N0,

where H i
R+

(M)j denotes the j-th graded component of the i-th local cohomology module

H i
R+

(M) =
⊕

k∈ZH
i
R+

(M)k of M with respect to the irrelevant ideal R+ :=
⊕

j∈NRj =∑r
m=1Rxm (see Reminder 14.4 (B),(C)).

Keep in mind that the Castelnuovo-Mumford regularity of M is defined by

reg(M) := reg0(M) = sup{ai(M) + i | i ∈ N0} = max{ai(M) + i | i = 0, 1, . . . , dim(M)}
and keep in mind the fact that

reg1(M) = reg(M/ΓR+(M)) and PM/ΓR+
(M)(X) = PM(X).

(B) Keep the notations and hypotheses of part (A). Let

gendeg(M) := inf{m ∈ Z |M =
∑
k≤m

RMk}
(
≤ reg(M)

)
denote the generating degree of M . Keep in mind, that the ideal AnnR(M) ⊆ R is
homogeneous. Use the previous inequality to prove the following claims:

(a) If b ∈ Z such that reg
(
AnnR(M)

)
≤ b, there are elements

f1, f2, . . . , fs ∈ AnnR(M) ∩
(⋃
i≤b

Ri

)
with Var

(
AnnR(M)

)
=

s⋂
i=1

Var(fi).

(C) We recall a few basic facts on Castelnuovo-Mumford regularity.

(a) If r ∈ N and R = K[T1, T2, . . . , Tr] is a polynomial ring over the field K, then
reg(R) = reg

(
K[T1, T2, . . . , Tr]

)
= 0.

(b) If 0 −→ N −→ M −→ P −→ 0 is a short exact of finitely generated graded R
-modules, then we have the equality reg(N) ≤ max{reg(M), reg(P ) + 1}.

(c) If r ∈ N and if M (1),M (2), . . . ,M (r) are finitely generated graded R-modules, then
we have the equality reg

(⊕r
i=1 M

(i)
)

= max{reg(M (i)) | i = 1, 2, . . . , r}.
(D) We mention the following bounding result (see Corollary 17.4.2 of [18]):

(a) Let R =
⊕

j∈N0
Rj be a Noetherian homogeneous ring (see Conventions, Re-

minders and Notations 1.1 (I) for this notion) such that R0 is Artinian and local.
LetW =

⊕
j∈ZWj be a finitely generated graded R-module and let P ∈ Q[X]\{0}.

Then, there is an integer G such that for each R-homomorphism f : W −→M of
finitely generated graded R-modules, which is surjective in all large degrees and
such that PM = P, we have reg1(M) ≤ G.
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Use the bounding result of statement (a) to prove the following result.

(b) There is a function B : N2
0 × Q[X] −→ Z such that for each choice of r, t ∈ N,

for each field K, for each homogeneous Noetherian K-algebra R =
⊕

i∈N0
Ri with

hR(1) ≤ t and each finitely generated graded R-module M =
⊕

i∈ZMi with M =
RM0 and hM(0) ≤ r we have

reg1(M) ≤ B
(
t, r, PM

)
.

Another bounding result, which we shall use later is (see Corollary 6.2 of [17]):

(c) Let R = K[T1, T2, . . . , Tr] be a polynomial ring over the field K, furnished with
its standard grading. Let f : W −→ V be a homomorphism of finitely generated
graded R-modules such that V 6= 0 is generated by µ homogeneous elements of
degree 0. Then

reg
(
Im(f)

)
≤
[
max{gendeg(W ), reg(V ) + 1}+ µ+ 1

]2r−1

.

We now prove a special case of Theorem 3.10 of [16].

14.6. Proposition. Let r ∈ N, let R := K[T1, T2, . . . , Tr] be the polynomial ring over the
field K and let M =

⊕
n∈N0

Mn be finitely generated graded R-module with M = RM0.
Then

reg
(
AnnR(M)

)
≤
[

reg(M) + hM(0)2 + 2]2
r−1

+ 1.

Proof. Observe first, that we have an exact sequence of graded R-modules

0 −→ AnnR(M) −→ R
ε−→ HomR(M,M), with x 7→ ε(x) := xIdM , for all x ∈ R.

Moreover, there is an epimorphism of graded R-modules

π : RhM (0) −→M −→ 0.

So, with g := HomR(π, IdM) we get an induced monomorphism of graded R-modules

0 −→ HomR(M,M)
g−→ HomR

(
RhM (0),M

) ∼= MhM (0).

So, we get a composition map

f := g ◦ ε : R −→MhM (0) =: V, with Im(f) = Im(ε) ∼= R/AnnR(M).

Now, observe that gendeg(R) = 0 (see Reminder, Remark and Exercise 14.5 (C)(a)),
reg(V ) = reg(M) (see Reminder, Remark and Exercise 14.5 (C)(c)) and that V is gen-
erated by hM(0)2 homogeneous elements of degree 0. So, by Reminder, Remark and
Exercise 14.5 (D)(c) we obtain

reg
(
R/AnnR(M)

)
= reg

(
Im(f)

)
≤
[

reg(M) + hM(0)2 + 2
]2r−1

.

On application of Reminder, Remark and Exercise 14.5 (C) (b) to the short exact sequence
of graded R-modules

0 −→ AnnR(M) −→ R −→ R/AnnR(M) −→ 0

and keeping in mind that reg(R) = 0, we thus get indeed our claim. �

14.7. Exercise. Let the notations and hypotheses be as in Proposition 14.6. Show that

(a) reg
(
AnnR(M/ΓR+(M))

)
≤
[

reg1(M) + hM(0)2 + 2]2
r−1

+ 1.
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(b) Var
(
AnnR(M/ΓR+(M))

)
=

{
Var
(
AnnR(M)

)
, if dimR(M) > 0

∅, if dimR(M) = 0.

14.8. Notation, Remark and Exercise. (A) Let B : N2
0×Q[X] −→ Z be the bounding

function introduced in Reminder, Remark and Exercise 14.5 (D)(b).
We define a new function

F : N2 ×Q[X] −→ Z by F (t, r, P ) :=
[
B(t, r, P ) + r2 + 2]2

r−1

+ 1
(
t, r ∈ N, P ∈ Q[X]

)
.

(B) Let the notations as in part (A). Use Proposition 14.6, Reminder, Remark and
Exercise 14.5 (B) and Exercise 14.7 to show that for each field K, for each choice of
r, t ∈ N, for each polynomial ring R = K[T1, T2, . . . , Tt] and for each finitely generated
graded R-module M =

⊕
n∈N0

Mn with M = RM0, hM(0) ≤ r and PM = P, we have the
following statements:

(a) reg
(
AnnR(M/ΓR+(M))

)
≤ F (t, r, P ).

(b) There are homogeneous polynomials f1, f2, . . . , fs ∈ AnnR
(
M/ΓR+(M)

)
with

(1) deg(fi) ≤ F (t, r, P ) for all i = 1, 2, . . . , s.
(2) Var

(
AnnR(M)

)
= Var(f1, f2, . . . , fs) =

⋂s
i=1 Var(fi).

No, we are ready to prove the main result of this section.

14.9. Theorem. (Boundedness of the Degrees of Defining Equations of Char-
acteristic Varieties, compare [16]) Let n ∈ N, let K be a field of characteristic 0, let
U be a D-module over the standard Weyl algebra

W = W(K,n) = K[X1, X2, . . . , Xn∂1, ∂2, . . . , ∂n]

and let V ⊆ U be a K-subspace with dimK(V ) ≤ r <∞ and U = WV . Moreover, let

F : N2 ×Q[X] −→ Z

be the bounding function defined in Notation, Remark and Exercise 14.8 (A). Keep in
mind that the degree filtration Wdeg

• of W (see Definition and Remark 8.6) is very good
(see Corollary 8.7 (a)) and let

PU,Wdeg
• V ∈ Q[X]

be the Hilbert polynomial of U induced by V with respect to the degree filtration Wdeg
• (see

Reminder, Definition and Exercise 14.2 (B)).

Then, there are homogeneous polynomials

f1, f2, . . . , fs ∈ P = K[Y1, Y2, . . . , Yn, Z1, Z2, . . . , Zn]

such that

(a) deg(fi) ≤ F
(
2n, r, PU,Wdeg

•

)
.

(b) VWdeg
•

(U) = Var(f1, f2, . . . , fs) =
⋂s
i=1 Var(fi).

Proof. Observe that (see Definition and Remark 11.2)

VWdeg
•

(U) = Var
(
AnnP(GrWdeg

• V (U)
)
.
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Now, we may conclude by Notation, Remark and Exercise 14.8 (B)(b), applied to the
graded P-module GrWdeg

• V (U) and bearing in mind that – by Exercise and Definition 10.5

(B)(c) – this latter graded module is generated in degree 0. �

14.10. Conclusive Remark. (A) Keep the above notations. To explain the meaning of
this result, we fix r, s ∈ N and we fix a polynomial P ∈ Q[X]. For any matrix

D =


d11 d12 . . . d1r

d21 d22 . . . d2r
...

...
...

ds1 ds2 . . . dsr

 ∈Ws×r

of polynomial partial differential operators we consider the induced epimorphism of D-
modules

Wr πD−→ UD −→ 0,

consider the K-subspace
Kr =

(
Wdeg

0

)r ⊂Wr

and set
VD := πD(Kr).

Then, referring to our Preliminary Remark 14.1 we consider the family of systems of
differential equations

F = FP := {D ∈Ws×r | PUD,Wdeg
• VD

= P}
whose canonical Hilbert polynomial PUD,Wdeg

• VD
equals P . As an immediate application of

Theorem 14.9 we can say

The degree of hypersurfaces which cut out set-theoretically the characteristic variety
Vdeg(D) is bounded, if D runs through the family FP .

Clearly, our results give much more, as they bound the invariant

reg
(
AnnP

[
GrWdeg

• VD
(UD)/ΓP+(GrWdeg

• VD
(UD)

])
along the class FP .

(B) Our motivation to prove Theorem 14.9 was a question arising in relation with
the PhD thesis [5], namely: Does the Hilbert function (with respect to an appropriate
filtration) of a D-module U over a standard Weyl algebra W bound the degrees of poly-
nomials which cut out set-theoretically the characteristic variety of U? This leads to the
question, whether the Hilbert function hM of a graded module M which is generated
over the polynomial ring K[X1, X2, . . . , Xr] by finitely many elements of degree 0 bounds
the (Castelnuovo-Mumford) regularity reg(AnnR(M)) of the annihilator AnnR(M) of M .
This latter question was answered affirmatively in the Master thesis [39] and lead to the
article [16].
Theorem 14.9 above actually improves what has been shown in [16] and in Theorem 14.6 of
[15]. There it is shown, that the degrees of the polynomials f1, f2, , . . . , fs ∈ P which occur
in Theorem 14.9 are bounded in terms of n and the Hilbert function hU,A•V = hGrA•V (U)

(see Reminder, Definition and Exercise 14.2 (B)). More precisely, in these previous results,
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the degrees in question are bounded in terms of n, hU,A•V (0) and the postulation number
(see Reminder, Definition and Exercise 14.2 (A))

pstlnA•V (U) := sup{i ∈ Z | hU,A•V (i) 6= PU,A•V (0)} = pstln
(
GlA•V (U)

of U with respect to the filtration A•V. Theorem 14.9 shows, that the postulation number
pstlnA•V (U) is not needed to bound the degrees we are interested in.

(C) We thank the referee for having pointed out to us, that Aschenbrenner and Leykin
[2] have proved a result, which is closely related to Theorem 14.9 and which furnishes a
bound on the degree of the elements of Gröbner bases of a left ideal I ⊆ W of our Weyl
algebra. More precisely, if ω ∈ Ω (see Notation 13.1), if d ∈ N and if I is generated
by elements whose ω-weighted degree degω(•) does not exceed d, then I admits a ≤ω-
Gröbner basis consisting of elements whose ω-weighted degree does not exceed the bound

2
(
d2

2
+ d
)22n−1

.
As the Castelnuovo-Mumford regularity reg(a) of a graded ideal in the polynomial ring
a ⊆ K[X1, x2, . . . , Xn] over a field K is an upper bound for the degree of the polynomials
occuring in some Gröbner basis of a, the mentioned result in [2] corresponds to the ”clas-

sical“ regularity bound reg(a) ≤
(
2gendeg(a)

)2n−2

for graded ideals in the polynomial ring
(see [27], [28], [23], but also [17] and [22]). Via Gröbner bases and Macaulay’s Theorem
for Hilbert Functions (see [26], for example), this latter regularity bound on its turn, is
also related to the module theoretic form of Mumford’s regularity bound ([18], Corollary
17.4.2), we were using as an important tool in the proof of Theorem 14.9 (see Reminder,
Remark and Exercise 14.5 (D)(a)).
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[17] Brodmann, M. and Götsch, T.: Bounds for the Castelnuovo-Mumford Regularity, Journal
of Commutative Algebra 1 (2)(Summer (2009)), 197 - 225.

[18] Brodmann, M. and Sharp, R.Y.: Local Cohomology – an Algebraic Introduction with Geo-
metric Applications. Second Edition, Cambridge Studies in Advanced Mathematics Vol. 136,
Cambridge University Press, Cambridge, UK, (2013).
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