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Introduction

In this survey we approach the question ”What bounds the cohomology of a
projective scheme with coefficients in an arbitrary coherent sheaf?” Before we
present some details of our exposition, we set up the general framework of our
approach and give some ideas which form the motivating background of our
investigation.

One of the most fascinating aspects of Projective Algebraic Geometry is the
interplay between discrete and continuous data of a projective algebraic va-
riety, or more generally of a closed subscheme X of a given projective space
PrK over some (algebraically closed) field K. Indeed, one approach to study
projective schemes consists in looking at classes of closed subschemes X ⊆
PrK = Proj(K[x0,x1, . . . ,xr]) with a given “discrete skeleton”.

A most prominent occurrence of this concept comes up in the theory of Hilbert
schemes, where the class of all closed subschemes X ⊆ PrK is “sliced up“ into
classes of subschemes X having a given Hilbert-Serre polynomial p = PX =
POX

. In this particular case, the objects in each single slice are parametrized by
a projective scheme, the Hilbert scheme HilbpPr with respect to the polynomial
p. Here, the discrete skeleton is given by the Hilbert-Serre polynomial p and
the continuous data are encoded in the corresponding Hilbert scheme HilbpPr .

Another occurrence of the same principle is to use the Betti numbers

βi,j(IX) := dimK

(
Tor

K[x0,x1...,xr]
i (K, IX)j+i

)
ofX (more precisely of the homogeneous vanishing ideal IX ⊆ K[x0,x1, . . . ,xr]
of X) to define the discrete skeleton – and to study all closed subschemes
X ⊆ PrK with a given Betti table

β(X) :=
(
βi,j(IX)

)
(i,j)∈{0,1,...,r}×N .

As the Betti table of X ⊆ PrK determines the Hilbert-Serre polynomial p =
PX = POX

of X, the “slices” now are are “thinner” than in the previous case
– and form indeed locally closed strata of the corresponding Hilbert scheme
HilbpPr . Moreover, in this situation the “thick slice“ HilbpPr contains only finitely
many of the “thin slices” which belong to a fixed the Betti table β(X) of X.
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Clearly, one also could use sheaf cohomology to define the discrete skeleton.
In the previously described situation, this would mean to slice up the scheme
HilbpPr into strata consisting of all closed subschemes X ⊆ PrK (with Hilbert-
Serre polynomial p) and given cohomology table

hX,OX
= hOX

:=
(
hi(X,OX(n))

)
(i,n)∈{0,1,...,r}×Z .

This point of view is supported by the fact that (if K is algebraically closed
and of characteristic 0), imposing an arbitrary lower bound on the cohomology
table hOX

, always leaves us with a locally closed and (rationally) connected
stratum in HilbpPr (see [22]). Moreover, in this case too, the “thick slice” HilbpPr
contains only finitely many of the “thin slices” given by fixing the cohomology
table hOX

of X. In addition, the cohomology table hOX
determines the Hilbert-

Serre polynomial POX
of the scheme X, so that each of our thin slices is

contained in a unique thick slice.

One finally could consider a more general situation, which exceeds the frame-
work of Hilbert schemes and just slice up the class St of all pairs (X,F) in
which X is a projective scheme over some field K and F is a coherent sheaf of
OX-modules with dim(F) = t, by means of the cohomology table

hX,F = hF :=
(
hi(X,F(n))

)
(i,n)∈{0,1,...,t}×Z

of X with respect to the coherent sheaf of OX-modules F . Clearly, in this
situation one cannot expect that the class St splits up into finitely many of
the “slices” which are given by fixing the cohomology table hF . Nevertheless
one would like to know in this more general setting, whether the single slices
are not “too thin” or – equivalently – the family of all slices is “not too large”.

A way of understanding this “thickness problem for slices obtained by fixing
cohomology tables” would be to describe all possible cohomology tables hF , if
(X,F) runs through the full class St.

A more realistic approach would be to prove some “finiteness results” which
hint, that the class of occurring slices is not too large. This is actually the basic
aim of the present paper. In particular, we shall see that prescribing the entries
of the cohomology tables hF along certain finite patterns Σ ⊆ {0, 1, . . . , t}×Z
- which we call quasi-diagonal sets - leaves us with only finitely many possible
cohomology tables. The mentioned quasi-diagonal sets are meant to be the
sets of the shape {(i, ni) | i = 0, 1, . . . , t} with nt < nt−1 < . . . < n1 < n0.

The main ingredient for the proof of this finiteness result is a bounding result
on the so called cohomological postulation numbers. To be more precise, let
i ∈ N0. Then the i-th cohomological postulation number νiF of F is defined
to be the ultimate place n ∈ Z at which hi(X,F(n)) does not take the same
value as the “i-th cohomological Serre polynomial” piF of F , which latter is
characterized by the property that hi(X,F(m)) = piF(m) for all m � 0. Our
bounding result says that the numbers νiF find a lower bound in terms of the
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“cohomology diagonal”

∆F :=
(
hi(X,F(−i)

)
i=0,1,...,t

.

This bounding result on its turn will follow from another result, which says
that the Castelnuovo-Mumford regularity reg(Ki(M)) of the i-th deficiency
module Ki(M) of a finitely generated graded module M over a Noetherian
homogeneous K-algebra R is bounded in terms of the beginning or initial degree
beg(M) := inf{n ∈ Z |Mn 6= 0} of M and the geometric cohomology diagonal

∆M̃ of M , that is the cohomology diagonal of the coherent sheaf M̃ of OProj(R)-
modules induced by M .

Besides of these main results, we shall also discuss a number of related sub-
jects and their history. Already here, we recommend the lecture notes [5] for
a more complete and fairly self-contained presentation of the subject. The
prerequisites which are needed to follow the notes [5] are contained in [3], in
[8] or in [13].

The present paper is divided into six sections. In Section 1 we introduce the
basic notions and concepts which we shall need later. We freely use the neces-
sary background from Graded Local Cohomology Theory and from Sheaf Co-
homology Theory over Projective Schemes. In particular we define the notion
of “subclass D ⊆ St of finite cohomology (on a subset S ⊆ {0, 1, 2 . . . , t}×Z)”,
which will be of fundamental meaning in this paper. We also present exam-
ples of subclasses D ⊆ St which are of finite cohomology and subclasses of
St which are not of finite cohomology. It is important to observe, that the
class D consisting of of all pairs (X,OX) ∈ Sdeg(p) where X ⊆ Pr runs through
the closed subschemes parametrized by the Hilbert scheme HilbpPr is indeed of
finite cohomology.

In Section 2 we are interested in supporting degrees of cohomology and in
the related notion of “cohomological pattern” P(X,F) of a pair (X,F) ∈ St.
This pattern is the set of pairs (i, n) ∈ {0, 1, . . . , t} × Z for which the entry
hi(X,F(n)) of the cohomology table hF at the place (i, n) does not vanish.
Without proof we state a combinatorial characterization of these cohomological
patterns. In Section 2, we also recall the notion of “Castelnuovo-Mumford
regularity” and its basic properties. In particular we emphasize the sheaf
theoretic aspect of this invariant. In addition, we give a brief (and partially
historic) account on the “Vanishing Theorem of Severi-Enriques-Zariski-Serre”
and its algebraic generalizations which are due to Grothendieck and Faltings.

In Section 3 we introduce the “deficiency modules” Ki(M) of a finitely gener-
ated graded module M over a Noetherian homogeneous K-algebra R. As we
restrict ourselves to work over Noetherian homogeneous algebras over a field,
we can do this in a “narrow-gauge” manner. This has the advantage to encode
a fortiori the graded form of Grothendieck’s Local Duality Theorem or - equiv-
alently - the Serre Duality Theorem. We first calculate the deficiency modules
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of a polynomial ring over a field and then prove the basic properties of such
modules in general. In a next step we use deficiency modules to introduce the
notion of “cohomological Hilbert polynomial”, of “cohomological Serre poly-
nomial” and of “cohomological postulation number”. We also briefly consider
the special case of “canonical modules” and prove that these latter satisfy (a
weak form of) the “second Serre property S2”.

In Section 4 we use the tools developed in Section 3 to establish a number of
bounding results for the Castelnuovo-Mumford regularity of finitely generated
graded modules over Noetherian homogeneous algebras over a field. The most
prominent of these is the main result we already announced above: an upper
bound on the regularity of the deficiency modules Ki(M) of a finitely generated
graded R-module M over a Noetherian homogeneous K-algebra R in terms of
the beginning and the geometric cohomology diagonal of M . This result has
in fact a number of further applications, which are beyond the reach of this
expository paper and for which the interested reader is recommended to consult
[10].

In Section 5 we first prove the previously announced bounding result on the
cohomological postulation numbers νiF , where F is a coherent sheaf of OX-
modules and X is a projective scheme over some field K. As an application
we show that a class D ⊆ St which is of finite cohomology on an arbitrary
quasi-diagonal subset Σ ⊆ {0, 1, . . . , t} ×Z is of finite cohomology at all. Our
final conclusion is, that a subset S ⊆ {0, 1, . . . , t} × Z bounds cohomology
(which means that each subclass D ⊆ St which is of finite cohomology on S
is of finite cohomology at all) if and only if it contains a quasi-diagonal set Σ.
We conclude this section with a number of remarks and open questions. To
readers, who aim to see a complete account and further consequences of the
results of Section 5, we recommend to consult [11].

In Section 6 we focus on vector bundles over projective spaces, more precisely
on the class V tK of all locally free coherent sheaves over the projective space
PtK over the field K. This class can be considered in a canonical way as a
subclass of St. So a set S ⊆ {0, 1, . . . , t} × Z which contains a quasi-diagonal
subset Σ bounds cohomology on the class V tK . The question arises, whether
this condition is necessary. We will prove, that this is indeed the case, so that
the set S ⊆ {0, 1, . . . , t} × Z bounds cohomology on the class V tK of all vector
bundles on Pt if and only if it contains a quasi-diagonal set Σ. We also provide
an example which shows that this is not true anymore if one replaces the class
V tK by its subclass indV tK of indecomposable vector bundles.

This paper is a modified, extended and updated version of the lecture notes for
a course taught in the framework of the International CIMPA-Tubitak Summer
School Commutative Algebra and Applications to Combinatorics and Algebraic
Geometry at 12-25 September 2010 in Istanbul.



1. Preliminaries

The central problem hidden behind our investigation is a basic question of
projective algebraic geometry, namely:

1.1. Question. What bounds cohomology of a projective scheme?

We first shall make more precise this question. To do so, we have to introduce a
few notions. We shall define the basic concepts and formulate our main results
primarily in the geometric language of schemes and coherent sheaves. But we
also shall recall the necessary tools from local cohomology theory which allow
to translate our results to the purely algebraic language of graded rings and
modules - and vice versa.

Our main results are contained in our joint work with Hellus [9] and Jahangiri-
Linh [10],[11] and in the lecture notes [5]. To simplify matters we shall content
ourselves in this paper to consider projective schemes over fields instead of
projective schemes over local Artinian rings. A complete and fairly self con-
tained exposition of our results is given in [5]. As this set of lecture notes is
available on-line under www.math.uzh.ch/brodmann (click: Publications) we
allow ourselves to quote this source repeatedly. For those readers, who wish
to consult a self-contained introduction to the foundations of local cohomol-
ogy and sheaf cohomology over projective schemes, we recommend [8], which
is also available under the previous URL. To readers, who like to start from
a more extended background we recommend to consult [13] and Chapters II
and III of [24]. To illustrate the significance of the whole subject we also shall
present a few classical results and discuss their relationship with the topic of
the present paper.

As announced above, we now shall make precise the question asked at the
beginning of this section. Throughout, we use N to denote the set of strictly
positive integers and N0 to denote the set of non-negative integers. We first
introduce the basic notations we shall use in these lectures

1.2. Notation. (Two Basic Classes) A) Let d ∈ N. By Md we shall denote
the class of all pairs (R,M) such that

R = K ⊕R1 ⊕R2 ⊕ . . . = K[R1]

is a Noetherian homogeneous K-algebra over some field K (hence R is Z-
graded and generated as a K-algebra by finitely many elements of degree 1)
and

M =
⊕
n∈Z

Mn

is a finitely generated graded R-module with Krull dimension dimR(M) = d.

Sometimes we like to fix the base field K and writeMd
K for the class of all pairs

(R,M) ∈Md for which R = K ⊕R1 ⊕R2 ⊕ . . . is a Noetherian homogeneous
algebra over the given field K.
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B) Let t ∈ N0. By St we shall denote the class of all pairs (X,F) such that X is
a projective scheme over some field K and F is a coherent sheaf of OX-modules
whose Krull dimension satisfies

dim(F) := dim
(
Supp(F)

)
= sup{dimOX,x

(Fx) | x ∈ X} = t.

Sometimes, also here, we like to fix the base field K and write StK for the class
of all pairs (X,F) ∈ St in which X is a projective K-scheme.

We prefer to formulate our final results in the language of Algebraic Geom-
etry, thus terms of sheaf cohomology over projective schemes and hence in
the framework of the classes introduced in part B) of Notation 1.2. Neverthe-
less, as many readers may prefer to think on the whole subject in algebraic
terms, hence in terms of the classes defined in part A) of Notation 1.2, we
shall introduce our basic notions in both formalisms. We consider this as a
way of encouraging “Pure Algebraists” to throw a glance to the rich and ap-
pealing geometric phenomena related to the algebraic formalisms we shall use.
Moreover, the subjects we are speaking about, have there roots in Algebraic
Geometry.

1.3. Remark. A) (Relating the Two Basic Classes) Let t ∈ N0. Then, by
the well known relation between graded modules over homogeneous rings and
coherent sheaves over projective schemes we may write

St = {(Proj(R), M̃) | (R,M) ∈Mt+1),

where Proj(R) denotes the projective scheme induced by the Noetherian homo-

geneous ring R and M̃ denotes the coherent sheaf of OProj(R)-modules induced
by the finitely generated graded R-module M (see [24] Chapters II and III, [13]
Chapter 20, or [8] Sections 11 and 12). It should be noted, that the assignment

(R,M) 7→ (Proj(R), M̃)

does not define a bijection between the classes Mt+1 and St. Indeed, for two
finitely generated graded R-modules M =

⊕
n∈ZMn and N =

⊕
n∈ZNn with

M ⊆ N one has M̃ = Ñ if and only if Mn = Nn for all n� 0.

B) (Shifting and Twisting) Keep the above notations and hypotheses. Let

(R,M) ∈ Md, let X := Proj(R) and let F = M̃ be the coherent sheaf of
OX-modules induced by M , so that (X,F) ∈ Sd−1. For each n ∈ Z let M(n)
denote the n-th shift of M , hence the module M endowed with the grading(

M(n)i
)
i∈Z defined by M(n)i := Mi+n for all i ∈ Z.

In addition, let

F(n) := F ⊗OX
OX(n) (with OX(n) := R̃(n))

be the n-th twist of F . Then we have (see [24])

F(n) = M̃(n), for all n ∈ Z.
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In particular, we can say that the classesMd and St are closed under shifting
respectively twisting:

a) If (R,M) ∈Md, then (R,M(n)) ∈Md for all n ∈ Z.

b) If (X,F) ∈ St, then (X,F(n)) ∈ St for all n ∈ Z.

1.4. Notation and Reminder. A) (Local Cohomology and Algebraic Coho-
mological Hilbert Functions) Let d ∈ N, let K be a field and let (R,M) ∈Md

K ,
with R = K ⊕ R1 ⊕ R2 ⊕ . . . be a Noetherian homogeneous algebra over the
field K. In this situation we always shall write

R+ :=
⊕
n∈N

Rn

for the irrelevant ideal of R. Moreover, for each integer i ∈ N0 let

H i
R+

(M) =
(
RiΓR+

)
(M) = lim n−→ExtiR(R/(R+)n,M)

denote the i-th local cohomology module of M with respect to R+, that is the
i-th right derived functor of the (covariant left-exact) R+-torsion-functor

ΓR+(•) = lim n−→HomR(R/(R+)n, •)

with respect to R+ evaluated at the object M . Keep in mind the well known
fact that the R-modules H i

R+
(M) carry a natural grading and that for the

corresponding graded components we have (see [13], [8], [3] or [5])

a) hiM(n) := dimK(H i
R+

(M)n) <∞ for all i ∈ N0 and all n ∈ Z.

b) hiM(n) = 0 for all i ∈ N0 and all n� 0.

c) hiM(n) = 0 for all i > d and all n ∈ Z.

d) hdM(n) 6= 0 for all n� 0.

In particular, for each i ∈ N0, we may define the i-th algebraic cohomological
Hilbert function of M , that is the right-vanishing function

hiM : Z→ N0, n 7→ hiM(n), ∀n ∈ Z.

B) (Ideal Transforms and Geometric Cohomological Hilbert Functions) Keep
the notations and hypotheses of part A). We consider the i-th R+-transform
of M , that is the R-module

Di
R+

(M) :=
(
RiDR+

)
(M) = lim n−→ExtiR((R+)n,M),

obtained by evaluating the i-th right derived of the R+-transform functor
DR+(•) = lim n−→HomR((R+)n, •) at the object M . Keep in mind, that the

R-modules Di
R+

(M) carry a natural grading and moreover (see [13])

a) There is a natural short exact sequence of graded R-modules

0→ H0
R+

(M)→M → D0
R+

(M)→ H1
R+

(M)→ 0.
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b) For all i ∈ N there is a natural isomorphism of graded R-modules

Di
R+

(M) ∼= H i+1
R+

(M).

In particular it follows from statements a)-d) of part A) that

c) diM(n) := dimK(Di
R+

(M)n) <∞, for all i ∈ N0 and all n ∈ Z.

d) d0
M(n) = dimK(Mn) + h1

M(n)− h0
M(n) for all n ∈ Z.

e) d0
M(n) = dimK(Mn) for all n� 0.

f) diM(n) = hi+1
M (n) for all i ∈ N and all n ∈ Z.

g) diM(n) = 0 for all i ∈ N and all n� 0.

h) diM(n) = 0 for all i ≥ d and all n ∈ Z.

i) dd−1
M (n) 6= 0 for all n� 0.

Now, for each i ∈ N0 we may define the i-th geometric cohomological Hilbert
function of M as the function

diM : Z→ N0, n 7→ diM(n), ∀n ∈ Z.

C) (Behaviour in Short Exact Sequences) Let K be a field, let R be a Noe-
therian homogeneous K-algebra and let

S : 0→ L→M → N → 0

be an exact sequence of finitely generated graded R-modules. Then, on use
of the right derived exact sequences of the functors ΓR+(•) and DR+(•) one
obtains the following inequalities for all i ∈ N0 and all n ∈ Z (and observing
the notational convention that hjM = djM = 0 for all integers j < 0):

a) hiM(n) ≤ hiL(n) + hiN(n).

b) hiL(n) ≤ hiM(n) + hi−1
N (n).

c) hiN(n) ≤ hiM(n) + hi+1
L (n).

d) diM(n) ≤ diL(n) + diN(n).

e) diL(n) ≤ diM(n) + di−1
N (n).

f) diN(n) ≤ diM(n) + di+1
L (n).

Now, we aim to link the above algebraic concepts to sheaf theory.

1.5. Notation and Reminder. A) (Serre Cohomology of Projective Schemes
with Coefficients in Coherent Sheaves) Let t ∈ N0, let K be a field and let
(X,F) ∈ StK , so that X is a projective scheme over the field K. For each
i ∈ N0 and each n ∈ Z let

H i(X,F(n)) :=
(
RiΓ(X, •)

)
(F(n))

denote the i-th Serre (or sheaf) cohomology group of (X with coefficients in)
the n-th twist F(n) of F – that is the i-th right derived of the functor Γ(X, •)
of taking global sections, evaluated at the object F(n). Keep in mind, that
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the cohomology groups H i(X,F(n)) all carry a natural structure of K-vector
space.

B) (The Serre-Grothendieck Correspondence and Cohomological Hilbert Func-
tions of Coherent Sheaves) Let the notations and hypotheses be as in part A).
Then, according to Remark 1.3 A), there is a (not necessarily unique) pair
(R,M) ∈Mt+1

K such that

(X,F) = (Proj(R), M̃)

and in this situation the Serre-Grothendieck Correspondence (see [13](20.4.4))
yields that for all i ∈ N0 and all n ∈ Z there is an isomorphism of K-vector
spaces

H i(X,F(n)) ∼= Di
R+

(M)n.

In particular we have

hiF(n) = hi(X,F(n)) := dimK

(
H i(X,F(n))

)
= diM(n), ∀i ∈ N0, ∀n ∈ Z.

This allows to define for each i ∈ N0 the i-th cohomological Hilbert function of
(X with coefficients in) F , that is the function

hiF : Z→ N0, n 7→ hiF(n) = hi(X,F(n)), ∀n ∈ Z.

C) (First Properties of Cohomological Hilbert Functions of Coherent Sheaves)
Let the notations and hypotheses be as in parts A) and B). In particular, let

(R,M) ∈Mt+1 with (X,F) = (Proj(R), M̃). Then, by the observations made
in part B) we have

hiF = diM , ∀i ∈ N0.

This explains why we called the functions diM the geometric cohomological
Hilbert functions of M : these functions actually describe the geometric object
associated to the algebraic object M . By statements g), h) and i) of Notation
and Reminder 1.4 B) we now respectively obtain

a) hiF(n) = 0 for all i ∈ N and all n� 0.

b) hiF(n) = 0 for all i > t = dim(F) and all n ∈ Z.

c) htF(n) 6= 0 for all n� 0.

D) (Relating Cohomological Hilbert Functions of Sheaves and Modules) Let the
notations and hypotheses be as in part C). Then, the equalities observed at
the beginning of part C), together with the relations d),f) of Notation and
Reminder 1.4 B) imply that

a) hiF(n) = hi+1
M (n) for all i ∈ N and all n ∈ Z.

b) h0
F(n) = h1

M(n) for all n� 0.

In order to collect all cohomological Hilbert functions of a pair in Md respec-
tively in St, we give the following definition.



10

1.6. Definition and Remark. A) (Cohomology Tables of Graded Modules)
Let d ∈ N and let (R,M) ∈ Md. We define the algebraic cohomology table of
M as the family of non-negative integers

hM :=
(
hiM(n)

)
(i,n)∈N0×Z

.

The geometric cohomology table of M is defined as the family of non-negative
integers

dM :=
(
diM(n)

)
(i,n)∈N0×Z

.

For a subset S ⊆ N0 × Z we also aim to consider the restricted cohomology
tables of M , that is the restricted families of non-negative integers

hM �S:=
(
hiM(n)

)
(i,n)∈S ,

dM �S:=
(
diM(n)

)
(i,n)∈S .

B) (Cohomology Tables of Coherent Sheaves) Let t ∈ N0 and let (X,F) ∈ St.
We define the cohomology table of the (scheme X with coefficients in the)
coherent sheaf F as the family of non-negative integers

hiF :=
(
hiF(n)

)
(i,n)∈N0×Z

.

Correspondingly, for any subset S ⊆ N0×Z, we define the restricted cohomol-
ogy table of F as the restricted family of non-negative integers

hF �S:=
(
hiF(n)

)
(i,n)∈S .

C) (Identifying Cohomology Tables of Sheaves and of Modules) Let the nota-

tions be as in part B), and let (R,M) ∈Mt+1 with X = Proj(R) and F = M̃ .
Then, it follows from Notation and Reminder 1.5 C) that

hF �S= dM �S .

This tells us, that instead of (restricted) cohomology tables of coherent sheaves
we may content ourselves to consider (restricted) geometric cohomology tables
of graded modules-and vice versa.

1.7. Definition and Remark. A) (Classes of Finite Cohomology: the Case
of Modules) Let d ∈ N and let S ⊆ N0 × Z. We say that a subclass C ⊆ Md

is of finite cohomology on S if the set of cohomology tables

{dM �S | (R,M) ∈ C} = {
(
diM(n)

)
(i,n)∈S | (R,M) ∈ C}

is finite. Clearly in view of Notation and Reminder 1.4 B)g) it suffices to
consider this conditions only for sets

S ⊆ {0, 1, . . . , d− 1} × Z.

We say that the class C ⊆ Md is of finite cohomology (at all) if it is of finite
cohomology on the set {0, 1, . . . , d − 1} × Z or, equivalently, on an arbitrary
set S ⊆ N0 × Z containing the former.
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B) (Classes of Finite Cohomology: the Case of Sheaves) Let t ∈ N0 and let
S ⊆ N0×Z. We say that a subclass D ⊆ St is of finite cohomology on S if the
set of cohomology tables

{hF �S | (X,F) ∈ D} = {
(
hiF(n)

)
(i,n)∈S | (R,M) ∈ C}

is finite. Similarly as in part A), it suffices to consider sets S ⊆ {0, 1, . . . , t} ×
Z. Also, similarly as in part A), we say that the class D ⊆ St is of finite
cohomology (at all) if it is of finite cohomology on the set {0, 1, . . . , t} × Z or,
again equivalently, on an arbitrary set S ⊆ N0 × Z containing the former.

C) (Relating the Two Notions of Part A) and B)) Let t, S, and D ⊆ St be as
in part B). Then, according to Remark 1.3 A) there is a subclass C ⊆ Mt+1

such that
D = {(Proj(R), M̃) | (R,M) ∈ C}.

In this situation, it follows from Definition and Remark 1.6 C) that D is of
finite cohomology on S if and only if D is. So, the study of classes of finite
cohomology for modules and sheaves are equivalent features.

We new recall a few basic facts on Hilbert polynomials and characteristic func-
tions, which we shall frequently use later.

1.8. Reminder and Remark. A) (Hilbert Functions and Postulation Num-
bers of Graded Modules) Let K be a field, let R = K ⊕ R1 ⊕ R2 ⊕ . . . be a
Noetherian homogeneous K-algebra and let M =

⊕
n∈ZMn be a finitely gen-

erated R-module of dimension d ∈ N0 ∪ {−∞}. In this situation we denote
the Hilbert polynomial of M by PM , so that

a) PM ∈ Q[x] with deg(PM) = d− 1 if d > 0 and PM = 0 if d ≤ 0.

b) dimK(Mn) = PM(n) for all n� 0.

In view of statement b) we may define the postulation number of the graded
R-module M by

P (M) := sup{n ∈ Z | dimK(Mn) 6= PM(n)} ∈ Z ∪ {−∞}.

B) (Characteristic Functions of Graded Modules) Let R and M be as above.
The characteristic function of M is defined by

χM : Z→ Z, n 7→ χM(n) :=
d−1∑
i=0

(−1)idiM(n) =
∑
i∈N0

(−1)idiM(n), ∀n ∈ Z.

Clearly, by the observations made in Notation and Reminder 1.4 B) d),f) for
all n ∈ Z, we may write

a) χM(n) = dimK(Mn)−
∑d

i=0(−1)ihiM(n) = dimK(Mn)−
∑

i∈N0
(−1)ihiM(n).

A most important fact is the so called (Algebraic) Serre Formula which relates
the characteristic function and the Hilbert polynomial of a finitely generated
graded R-module (see [8](9.17),(9.18) or [13] (17.1.7) for example):
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b) PM(n) = χM(n) for all n ∈ Z.

As an easy consequence of this, one gets the following estimate for the postu-
lation number of the graded R-module M :

c) P (M) ≤ sup{n ∈ Z | ∃i ∈ N0 : hiM(n) 6= 0}.

C) (Hilbert-Serre Polynomials and Characteristic Functions of Sheaves) Let
X be a projective scheme over some field K and let F be a coherent sheaf of
OX-modules with dim(F) = t. Then we may define the characteristic function
of F by

χF : Z→ Z, n 7→ χF(n) :=
t∑
i=0

(−1)ihiF(n) =
∑
i∈N0

(−1)ihiF(n), ∀n ∈ Z.

We now find R and M as in part A) such that X = Proj(R) and F = M̃ . In
this situation it follows from Notation and Reminder 1.5 C) that

χF = χM .

Hence by the Algebraic Serre Formula and by statement B)b), there is a unique
polynomial PF ∈ Q[x] (namely PF := PM) such that

a) deg(PF) = dim(F),

b) χF(n) = PF(n) for all n ∈ Z,

c) PF(n) = h0(X,F(n)) = h0
F(n) for all n ∈ Z such that hiF(n) = 0 for all

i ∈ N.

This polynomial is called the Hilbert-Serre polynomial of F . Now, again, we
may define the postulation number of F as

P (F) := sup{n ∈ Z | h0(X,F(n)) 6= PF(n)} ∈ Z ∪ {−∞}
and similarly as in statement B)c) we get

d) P (F) ≤ sup{n ∈ Z | ∃i ∈ N : hiF(n) 6= 0}.

One of our principal aims is to prove finiteness results for classes D ⊆ St or,
equivalently, for classes C ⊆ Md. The following example can be considered
as being classical. In geometric terms it says that the pairs (X,OX) in which
X ⊆ PrK runs through all closed subschemes with a given Hilbert polynomial p
(hence the pairs (X,OX) ∈ Sdeg(p) parametrized by the Hilbert scheme HilbpPr)
form a class of finite cohomology.

1.9. Example. Let r ∈ N, let p ∈ Q[x] be a polynomial with deg(p) < r, let
K be an algebraically closed field and consider the class

C := {(R,R) ∈Mdeg(p)+1
K | dimK(R1) = r + 1; PR = p}

of all pairs (R,R) in which R = K⊕R1⊕R2⊕. . . is a Noetherian homogeneous
K-algebra, having Hilbert polynomial p and being generated by r + 1 linear
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forms. Then the class C is indeed of finite cohomology. We shall derive this
fact from a much more general result which we will treat later. As the class

D := {(Proj(R), R̃) | (R,R) ∈ C} ⊆ Sdeg(p)

is parametrized by the Hilbert scheme HilbpPr , Definition and Remark 1.7 C)
implies, that there are only finitely many cohomology tables hOX

if X runs
through HilbpPr . This fact was mentioned already in the Introduction.

1.10. Example and Remark. A) Let r > 1 be an integer, and consider the
polynomial ring

R := K[x1,x2, . . . ,xr].

over the field K, furnished with its standard Z-grading. Let

C := {(R,R(m)) | m ∈ Z} ⊆ Mr.

It is well known, that the local cohomology modules of R with respect to R+

satisfy the following requirements (see [13](3.3.3),(6.2.7),(13.5.3) or [5](9.6),(9.4)C)b),
for example)

a) H i
R+

(R) = 0 for all i 6= r,

b) Hr
R+

(R)n ∼= R−r−n for all n ∈ Z.

Keeping in mind that local cohomology with respect to R+ commutes with
shifting and in view of statements d) and e) of Notation and Reminder 1.4 B)
it follows, with the notational convention that

(
k
r−1

)
= 0 for all k < r − 1

a) d0
R(m)(n) =

(
r+m+n−1

r−1

)
for all m,n ∈ Z,

b) dr−1
R(m)(n) =

(−m−n−1
r−1

)
for all m,n ∈ Z,

c) diR(m)(n) = 0 for all i 6= 0, r − 1 and all m,n ∈ Z.

This clearly shows that the class C is not of finite cohomology.

B) Keep the notations and hypotheses of part A). For each m ∈ N chose a form
fm = Rm \ {0} and consider the Noetherian homogeneous graded K-algebra
R[m] := R/fmR with Hilbert-polynomial

PR[m] =

(
r + x− 1

r − 1

)
−
(
r −m+ x− 1

r − 1

)
.

Observe that for each m ∈ N there is an exact sequence of graded R-modules

0→ R
fm−→ R(m)→ R[m] → 0.

On use of the observations made in part A) it follows easily that the class
{(R,R[m]) | m ∈ N} is not of finite cohomology. But then, on use of the
Base-Ring Independence Property of Local Cohomology (see [13](4.2.1), or [5]
Section 1) it follows immediately that the family

D := {(R[m], R[m]) | m ∈ N} ⊆ Mr−1
K
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is not of finite cohomology either. It is noteworthy to figure out the difference
of the above class D and the classes presented in Example 1.9.

C) Let R = K[x,y] be a polynomial ring in two indeterminates over a field
K, furnished with its standard grading. For each positive integer m ∈ N let
M [m] := R(−m)⊕R(m). It is easy to compute the Hilbert polynomials PM [m]

for all m ∈ N and to conclude that the class

E := {(R,M [m]) | m ∈ N} ⊆ M2
K

is not of finite cohomology. One should compare this situation with the one
described in Example 1.9.



2. Supporting Degrees of Cohomology

Let d ∈ N and let (R,M) ∈ Md. For each i ∈ N0 we now aim to look at
the supporting degrees of the local cohomology modules H i

R+
(M) and the R+-

transform modules Di
R+

(M) of M with respect to R+, hence at the integers

n ∈ Z for which hiM(n) respectively diM(n) does not vanish. Similarly, if t ∈ N0

and (X,F) ∈ St we aim to focus at the integers n for which hiF(n) does not
vanish. We start with a few basic notions concerning graded rings and modules.

2.1. Notation and Reminder. A) (Generating Degrees of Graded Modules)
Let R = K⊕R1⊕R2⊕. . . be a Noetherian homogeneous K-algebra, where K is
a field. Keep in mind that R = K[x1, x2, ..., xr] for finitely many homogeneous
elements x1, x2, ..., xr ∈ R1. Let M =

⊕
n∈ZMn be an arbitrary graded R-

module. Keep in mind that dimK(Mn) < ∞ for all n ∈ Z and Mn = 0 for
all n� 0, provided that M is in addition finitely generated. Let us recall the
notion of generating degree of M (see [8] (9.6)D)), which is defined by:

gendeg(M) := inf{t ∈ Z |M =
∑
n≤t

RMn}.

Keep in mind the following facts:

a) If M is finitely generated, then gendeg(M) <∞.

b) If gendeg(M) ≤ n ∈ Z, then Mn+k = RkMn for all k ∈ N.

B) (Beginnings and Ends of Graded Modules) Keep the notations and hypothe-
ses of part A) and let us introduce the beginning or initial degree and the end
of M , which are defined respectively by

beg(M) := inf{n ∈ Z |Mn 6= 0},
end(M) := sup{n ∈ Z |Mn 6= 0}.

Observe the following facts:

a) If M 6= 0 is a graded R-module, then beg(M) ≤ gendeg(M) ≤ end(M).

b) If M 6= 0 is a finitely generated graded R-module, then

−∞ < beg(M) ≤ gendeg(M) <∞.

Now, we remind the notion of Castelnuovo-Mumford regularity which plays a
fundamental rôle in our investigation.

2.2. Reminder and Definition. A) (Castelnuovo-Mumford Regularity of
Graded Modules) Let d ∈ N, let (R,M) ∈ Md and let l ∈ N0. We define
the (Castelnuovo-Mumford) regularity of M at and above level l by

regl(M) := sup{end(H i
R+

(M)) + i | i ≥ l}.
The (Castelnuovo-Mumford) regularity of M (at all) is defined as

reg(M) := reg0(M).
15
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Now, on use of statements a)-d) of Notation and Reminder 1.4 A) one verifies
immediately that

a) regl(M) <∞.

b) regl(M) = −∞ if and only if l > d.

c) regl(M(n)) = regl(M)− n for all n ∈ Z.

d) If k ∈ {0, 1, . . . , l}, then regl(M) ≤ regk(M).

Let us recall the following most important fact, whose proof may be found in
[5] (Proposition 3.4) or in [13] (16.3.1) for example.

e) gendeg(M) ≤ reg(M).

Finally, let us mention the following statements on the behaviour of regularity
in short exact sequences, which follow easily from the corresponding observa-
tions made in Notation and Reminder 1.4 C). So, let

S : 0→ L→M → N → 0

be an exact sequence of finitely generated graded R-modules. Then

f) reg(L) ≤ max{reg(M), reg(N) + 1}.
g) regl+1(L) ≤ max{regl+1(M), regl(N) + 1}.
h) regl(M) ≤ max{regl(L), regl(N)}.
i) regl(N) ≤ max{regl+1(L)− 1, regl(M)}.

B) (Castelnuovo-Mumford Regularity of Sheaves) Let t ∈ N0, let (X,F) ∈ St
and let k ∈ N0. We define the (Castelnuovo-Mumford) regularity of F above
level k by

regk(F) := inf{r ∈ Z | H i(X,F(r − i)) = 0, ∀i > k}.

The (Castelnuovo-Mumford) regularity of F (at all) is defined as

reg(F) := reg0(F).

Now, on use of statements a), b) and c) of Notation and Reminder 1.5 C) it
follows at once that

a) regk(F) <∞.

b) regk(F) = −∞ if and only if k ≥ t.

c) regk(F(n)) = regk(F)− n for all n ∈ Z.

d) If m ∈ {0, 1, . . . , k} then regk(F) ≤ regm(F).

Moreover, the concepts of regularity for graded modules and sheaves may be
easily related on use of the observation made in Notation and Reminder 1.4
B)f) and the consequence of the Serre-Grothendieck Correspondence observed
in Notation and Reminder 1.5 C).
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e) If (R,M) ∈Mt+1 with X = Proj(R) and F = M̃ , then

regk(F) = regk+2(M).

C) (Regularity and Global Generation of Sheaves) On may wonder, whether
statement e) of part A) has some analogue in the sheaf theoretic context.
This is indeed true, and we briefly recall the corresponding facts. For readers
who want to get a detailed and self-contained approach to the subject, we
recommend to consult [5] (3.8)-(3.13) or [13] Chapter 20. Let the notations
and hypotheses be as in Part B). We say, that the sheaf F is generated by global
sections if for each point x ∈ X the stalk Fx of the sheaf F at x is generated
over the local ring OX,x by germs of global sections γ ∈ Γ(X,F). So if

•x : Γ(X,F)→ Fx, γ 7→ γx, ∀γ ∈ Γ(X,F)

denotes the map of taking germs at the point x ∈ X, the sheaf F is generated
by its global sections if and only if for each x ∈ X we have

Fx =
∑

γ∈Γ(X,F)

OX,xγx.

Then, the announced analogue of statement A)e) says:

a) For each n ≥ reg(F) the n-fold twist F(n) of F is generated by its global
sections.

We now define the notion of cohomological pattern of a coherent sheaf, which
is naturally related to the supporting degrees of cohomology.

2.3. Definition. (Cohomological Patterns) Let t ∈ N0 and let (X,F) ∈ St.
We define the cohomological pattern of the pair (X,F) (or simply) of the sheaf
F as the set

PF = P(X,F) := {(i, n) ∈ N0 × Z | H i(X,F(n)) 6= 0}
of all pairs (i, n) ∈ N0 × Z such that the cohomology table hF of F has a
non-zero entry at (i, n).

We now formulate the following Structure Theorem for Cohomological Pat-
terns, whose proof is given in [9].

2.4. Theorem. Let t ∈ N0. Then, a set P ⊆ N0 × Z is the cohomological
pattern of a pair (X,F) ∈ St if and only if the following six requirements are
satisfied:

a) sup{i ∈ N0 | ∃n ∈ Z : (i, n) ∈ P} = t;
b) ∃n ∈ Z : (0, n) ∈ P;
c) ∀(i, n) ∈ P : ∃k ≥ i : (k, n− k + i− 1) ∈ P;
d) ∀(i, n) ∈ P : ∃l ≤ i : (l, n− l + i+ 1) ∈ P;
e) ∀i ∈ N, ∀n� 0 : (i, n) /∈ P;
f) ∀i ∈ N0 : #{n ∈ Z | (i, n) ∈ P , (i, n− 1) /∈ P} <∞.
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2.5. Remark. A) (Around Cohomological Patterns) Let the notations be as in
Definition2.3 and Theorem 2.4. One might present the cohomological pattern
PF = P(X,F) of the pair (X,F) ∈ St (resp. of the sheaf of OX-modules
F 6= 0) in a diagram with horizontal n-axis and vertical i-axis, marking the
place (i, n) ∈ N0 × Z by • if (i, n) ∈ P and by ◦ otherwise. Then, the five
statements a)-f) of Theorem 2.4 respectively say:

a) One finds a • on the row at level t and no • on a row with level strictly
higher than t.

b) One finds a • on the bottom row.

c) If there is a diagonal consisting entirely of ◦’s above a certain level i, there
are no •’s right of this diagonal above level i.

d) If there is a diagonal consisting entirely of ◦’s below a certain level i, there
are no •’s left of this diagonal below level i.

e) Except on the bottom row one finds only ◦’s far out to the right.

f) At no level i there are infinitely many •’s and infinitely many ◦’s left of the
i-axis.

Observe in particular, that as a consequence of these properties of P we get:

g) If there is a • on the bottom level 0, then right of this • there are only •’s
at level 0.

h) If there is a • on the top level t, then left of this • there are only •’s at
level t.

• • • • • • ◦ ◦ ◦ ◦ ◦

◦ • ◦ • • ◦ • ◦ ◦ ◦ ◦

◦ ◦ ◦ • ◦ • • • • • ◦

◦ ◦ ◦ ◦ ◦ • • • • • •

B)(Cohomological Tameness) For the moment, let R =
⊕

n∈N0
Rn be an arbi-

trary Noetherian homogeneous ring (so that R0 is Noetherian and R is gen-
erated over R0 by finitely many elements of degree 1). Let M be a finitely

generated graded R-module and let F = M̃ be the coherent sheaf of OX-

modules induced by M . Again, for each n ∈ Z, let F(n) = M̃(n) denote the
n-th twist of F . We say that the sheaf F is cohomologically tame at level i, if
one of the following requirements is satisfied:
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a) H i(X,F(n)) 6= 0 for all n� 0;

b) H i(X,F(n) = 0 for all n� 0.

By the Serre-Grothendieck Correspondence and by Notation and Reminder 1.4
B)a),b) this is equivalent to the fact, that one of the following two requirements
is satisfied:

c) H i+1
R+

(M))n 6= 0 for all n� 0,

d) H i+1
R+

(M))n = 0 for all n� 0,

where H i+1
R+

(M)n denotes the n-th graded component of the (i + 1)-st local

cohomology module of M with respect to the irrelevant ideal R+ :=
⊕

n∈NRn

of R. We also say in this situation, that the graded R-module M is cohomolog-
ically tame at level i+ 1. We say that the coherent sheaf F is cohomologically
tame at all, if it is tame at all levels i ∈ N0. Correspondingly we say that
the finitely generated graded R-module M is cohomologically tame, if is tame
levels j ∈ N. Now, statement f) of Theorem 2.4 says

e) If (X,F) ∈ St (so that R0 = K is a field), then F is cohomologically
tame. In particular, at each level i there are either only finitely many •’s
or finitely many ◦’ with negative n-coordinate.

C)(The Tameness Problem) For a while it was an open problem, whether all

coherent sheaves F = M̃ over a projective scheme X = Proj(R) defined by
an arbitrary Noetherian homogeneous ring R =

⊕
n∈N0

Rn are are cohomo-
logically tame at all levels or - equivalently - whether all finitely generated
graded modules M over a Noetherian homogeneous ring R are cohomologi-
cally tame at all levels (see [1], [2]). There are indeed many results, proving
tameness of a finitely generated graded module M over a Noetherian homoge-
neous ring R at particular levels or under certain assumptions on R - or else
on M (see [2], [4], [7], or also [9], [27], [32] for example). Nevertheless in [16],
a striking counter-example is constructed. Namely, it is shown there:

a) There exists a Noetherian homogeneous domain R =
⊕

n∈N0
Rn, of finite

type over the complex field C with dim(R) = 4 and dim(R0) = 3 such that
M = R is not cohomologically tame at level 2 (or - equivalently - OProj(R)

is not cohomologically tame at level 1).

D)(The Realization Problem for Smooth Complex Projective Varieties) Let
X = Proj(R) be a smooth connected complex projective variety of dimen-
sion at least 2, so that R is a Noetherian homogeneous integral C-algebra such
that the local ring OX,x = R(p) is regular for all x = p ∈ X = Proj(R). Then,
by the Vanishing Theorem of Kodaira [26] one has H i(X,OX(n)) = 0 for all
i < dim(X) = dim(R) − 1 and all n < 0. By another result of Mumford
and Ramanujam [31] one has the same vanishing statement for i = 1 under
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the weaker assumption that X is normal. So, one is naturally lead to ask the
following realization question:

a) Let t ≥ 2 be an integer and let P ⊆ {0, 1, · · · t}×Z be a set which satisfies
the pattern requirements (i)-(v) of Theorem 2.4 and the additional positivity
condition that (i, n) /∈ P if i < t and n < 0. Does there exist a smooth
(or only normal) complex projective variety X (of dimension t) such that
PX(X,OX) = P?

We do not know the answer to this question, even in the surface case, that
is in the case t = 2. In [28] a method is given, which allows to realize by
smooth surfaces a great variety of positive patters as discussed above. We also
should mention that by the Non-Rigidity Theorem of Evans-Griffiths [19] (see
also [29]) there are realization results of the above type in which indeed more
than the cohomological pattern is described. Nevertheless, these results allow
a realization only up to an eventual twist – but they do not allow to control
the last supporting degree of the top cohomology group. Therefore they do
not answer our question. Another, local realization result, similar to those just
quoted, is given in [14].

We now return to cohomological patterns of pairs (X,F) ∈ St, hence we
concentrate again to the case where X = Proj(R) is a projective scheme over
some field K and thus induced by some Noetherian homogeneous K-algebra.
A natural (and fundamental) question is to ask for the lowest level i at which
the cohomological pattern PF = P(X,F) of F has infinitely many entries (i, n)
with n < 0. By the tameness-property (vi) of Theorem 2.4 it is equivalent to
ask for the lowest level i ≤ t such that there are only finitely many negative
integers n < 0 with (i, n) /∈ PF .

2.6. Definition and Remark. A) (Cohomological Finiteness Dimension of a
Coherent Sheaf) Let t ∈ N0 and let (X,F) ∈ St. Then, the (cohomological)
finiteness dimension of (X with respect to) F is defined as

fdim(F) := inf{i ∈ N0 | #{n < 0 | hiF(n) 6= 0} =∞}

= inf{i ∈ N0 | #{n < 0 | hiF(n) = 0} <∞}.

So fdim(F) is the lowest level on which there are infinitely many •’s at places
with negative n-coordinate or - equivalently - only finitely many ◦’s with neg-
ative n-coordinate.

B)(Algebraic Characterization of the Cohomological Finiteness Dimension)
Keep the notations and hypotheses of part A) and let (R,M) ∈ Mt+1 such

that (X,F) = (Proj(R), M̃). In [13] (9.1.3) the R+-finiteness dimension of M
is introduced as the invariant

a) fR+(M) := inf{j ∈ N | Hj
R+

(M) not finitely generated}.
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As the K-vector spaces Hj
R+

(M)n are finitely generated and vanish for all
n� 0, it follows, that

b) fR+(M) = inf{j ∈ N | #{n < 0 | hjM(n) 6= 0} =∞}.

Now on use of the relations a),b) of Notation and Reminder 1.5 D) it follows
that

c) fdim(F(M)) = fR+(M)− 1.

The finiteness dimension of a coherent sheaf F of modules over a projective
scheme X over some field K is by its very definition a “global invariant” as
it is defined by means of the vanishing and non-vanishing of the cohomology
groups H i(X,F(n)) – which at their turn are global invariants of the twisted
sheaf F(n). But nevertheless these global invariants are intimately related to
a local invariant of the sheaf F , which we shall define now.

2.7. Definition and Remark. A) (Subdepth of a Coherent Sheaf). Let t ∈ N0

and let (X,F) ∈ St. Let (R,M) ∈ Mt+1 with (X,F) = (Proj(R), M̃). We
consider the set of closed points of X = Proj(R), that is the set

mX = mProj(R) := {x = p ∈ X = Proj(R) | dim(R/p) = 1}
and define the subdepth of (X with respect to) F by

δ(F) := inf{depthOX,x
(Fx) | x ∈ mX}.

B) (Algebraic Description of the Subdepth) Keep the above notations and hy-
potheses. If x = p ∈ X = Proj(R) we have

OX,x = R(p), Fx = M(p)

where •(p) denotes homogeneous localization at p. Therefore, we also may
write

δ(F) = inf{depthR(p)
(M(p)) | p ∈ mProj(R)}.

Now, the two previously introduced invariants are related be the Vanishing
Theorem of Severi-Enriques-Zariski-Serre:

2.8. Theorem. Let t ∈ N0 and let (X,F) ∈ St. Then

fdim(F) = δ(F).

2.9. Remark. A) (On the Proof of the Vanishing Theorem of Severi-Enriques-
Zariski-Serre). One approach to prove Theorem 2.8 is to use Serre-Duality
(see [24] for example). This approach corresponds essentially to Serre’s origi-
nal proof in [33]. Another approach (which leads indeed even to a quantitative
version of the requested result) for projective schemes over algebraically closed
fields is found in [8] (see Chapters 10 for an algebraic version and Chapter
12 for the translation to sheaf theory). It is easy, to drop the hypothesis of
algebraically closed ground field (see [5] (7.11) D)). Another approach is to use
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a much more general algebraic result: the Graded Version of Grothendieck’s
Finiteness Theorem or - in fact even more general - the Graded Version of Falt-
ing’s Annihilator Theorem (for both see [13] (14.3.10)). Under the hypotheses
and in the notations of (2.6) and (2.7), one has only to show that

a) δ(F) + 1 = inf{depthRp
(Mp) + ht

(
(R+ + p)/p

)
| p ∈ Proj(R)},

Indeed, from this the mentioned graded version of Grothendieck’s Finiteness
Theorem allows to deduce the relation fR+(M) = δ(F), and by Definition and
Remark 2.6 B)c) one obtains Theorem 2.8. But statement a) follows easily
from the well known fact that

b) depthRp
(Mp) = depthR(p)

(M(p)), ∀p ∈ Proj(R)

B) (Around the History of the Vanishing Theorem of Severi-Enriques-Zariski-
Serre). We briefly aim to explain the string of names associate to this theorem.
There are three preceding results to the mentioned vanishing theorem, shown
by Severi [34] 1942, Enriques [18] 1949 and Zariski [35] 1952 - thus all three of
them in the “pre-cohomological aera” of Algebraic Geometry - and formulated
in the language of linear systems of divisors. If one translates these results
to our cohomological language, they respectively correspond to the following
special cases of Theorem 2.8.

a) (Severi 1942) X ⊆ P3
C is a smooth surface in complex projective 3-space

and F := ωX is the canonical bundle of X

b) (Enriques 1949) X ⊆ PrC is a smooth hypersurface in complex projective
r-space and F := ωX is the canonical bundle of X.

c) (Zariski 1952) X is a normal projective variety over an algebraically closed
field and F = L is a line bundle on X.

C) (Sixty Years of Modern Algebraic Geometry). In his seminal work [33] in
1955, Serre proved Theorem 2.8 for arbitrary projective varieties over alge-
braically closed fields and arbitrary coherent sheaves over such varieties. In
that same paper he actually introduced sheaf theory and sheaf cohomology
for arbitrary algebraic varieties over algebraically closed fields. As observed in
part B), the Vanishing Theorems of Severi, of Enriques and of Zariski are very
special cases of Theorem 2.8 and they all were formulated in the language of
divisors, which is only available for particular classes of projective varieties.
So, Serre’s cohomological approach to the mentioned Vanishing Theorems was
a fundamental break through in Algebraic Geometry.
Indeed, the basic motivation for Serre’s work [33] was the aim to introduce
a sheaf theory and a sheaf cohomology theory for algebraic varieties which
were as powerful as the corresponding theories for smooth complex analytic
varieties, which already were available at that time. The main results of [33]
prove, that Serre’s approach was very successful, and Theorem 2.8 is one of the
most convincing instances of this. Another celebrated result of [33] was the
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relation between the global generation of a coherent sheaf and the vanishing
of its cohomology, as expressed by Reminder and Definition 2.2 C).
So, with his paper [33], Serre ”opened the door” to a sheaf theoretic and
cohomological approach to Algebraic Geometry. Moreover, a number of ba-
sic arguments occurring in [33] base on systematic application of homological
and cohomological methods to commutative rings – and hence very success-
fully ”imported” these methods to Commutative Algebra. Altogether, this fi-
nally paved the way to ”Modern Algebraic Geometry” – namely Grothendiek’s
scheme theoretic and functorial approach to this theory [23] – and to a sys-
tematic use of Commutative Algebra to study local properties of the occurring
geometric objects.
In particular, a number of geometric results now turned out as special cases
of more general algebraic results. For example, as mentioned already above,
Theorem 2.8 found an algebraic generalization: Grothendieck’s Finiteness The-
orem for Local Cohomology. A next step of generalization is Falting’s Anni-
hilator Theorem for Local Cohomology (see [20] or [13] (9.5.1)), whose graded
version we already mentioned in part A).

D) (Cohomological Characterization of Algebraic Vector Bundles). One of the
early successful applications of homological methods to Commutative Alge-
bra was the homological characterization of regular local rings. We recall this
result, which is essentially due to Serre and Auslander-Buchsbaum in the fol-
lowing form:

(a) A Noetherian local ring (R,m) is regular if and only if each finitely
generated R-module M 6= 0 has a minimal finite free resolution

0 −→ Rbp ∂p−→ Rbp−1 · · ·Rb1 ∂1−→ Rb0 ∂0−→M −→ 0 (b0, . . . , bp ∈ N).

In this situation, the numbers bi = bi(M) are determined by M and called the
local Betti numbers ofM . The number p ∈ N0 is called the projective dimension
of M and denoted by pdimR(M). The Formula of Auslander-Buchsbaum-Serre
says:

(b) If M is a finitely generated module over the regular local ring (R,m),
then

pdimR(M) + depthR(M) = dim(R).

One of the basic and most typical applications of the Vanishing Theorem of
Severi-Enriques-Zariski-Serre is a cohomological characterization of algebraic
vector bundles. To formulate this application, we assume that X is a regular
irreducible projective scheme of dimension t > 0 over a field K, so that X =
Proj(R), where R = K⊕R1⊕R2⊕ . . . is an Noetherian homogeneous integral
domain with the property that R(p) = OX,x is a regular local ring of dimension
t for all x = p ∈ mX = mProj(R). Now, let F be a coherent sheaf of
OX-modules. Then, by the Formula of Auslander-Buchsbaum-Serre it follows
easily, that for every x ∈ mX the finitely generated OX,x-module Fx is free
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if and only if depthOX,x
(Fx) = t. By definition, the coherent sheaf F is an

(algebraic) vector bundle over X if and only if the stalk Fx of F is a free
module over the local ring OX,x for all x ∈ mX. So, by Theorem 2.8 we can
say:

(c) If X is a regular irreducible projective scheme over a field K, a non-zero
coherent sheaf F of OX- modules is a vector bundle if and only if the
cohomological finiteness dimension fdim(F) of F takes the (maximally
possible) value dim(X).

Therefore, we can say:

(d) If X is a regular irreducible projective scheme over a field K, a non-
zero coherent sheaf F of OX- modules is a vector bundle if and only if
the cohomological pattern P(X,F) = PF of F is asymptotically left-
vanishing below the level dim(X), thus if and only if

(i, n) /∈ PF for all i < dim(X) and all n� 0.

A more detailed presentation of the relation between sheaf cohomology and
algebraic vector bundles may be found in [5] (7.11)-(7.13) or [13] Chapter 20.



3. Modules of Deficiency

In this section we introduce an important tool for the treatment of local co-
homology modules, the so called Modules of Deficiency (or just Deficiency
Modules for short). More precisely, for each each finitely generated graded
module M over a Noetherian homogeneous algebra R over a field K we intro-
duce a family of finitely generated graded R-modules

(
Ki(M)

)
i∈N0

, such that

for each i ∈ N0 and each n ∈ Z, the n-th graded component Ki(M)n of Ki(M)
is K-dual to the −n-th component H i

R+
(M)−n of the corresponding local coho-

mology module H i
R+

(M). In our Main Theorem on Modules of Deficiency we
collect all the relevant properties of deficiency modules. As an application, we
shall be able to introduce the concept of the i-th Cohomological Hilbert Poly-
nomial piM of M and the notion of the i-th Cohomological Postulation Number
νiM of M of a finitely generated graded module over a Noetherian homoge-
neous K-algebra R. A basic issue is the fact, that the Castelnuovo-Mumford
regularity of the i-th deficiency module gives a lower bound for the i-th co-
homological postulation number. We also shall consider the most important
class of deficiency modules: the Canonical Modules K(M) := KdimR(M). We
shall establish one property of these modules, which has to be used to prove
the main result of Section 4. A more detailed and complete treatment of all
these and further related results may be found in [5].

3.1. Construction and Remark. A) (Graded Dual Modules) Let K be a
field, let R = K ⊕R1⊕R2⊕ . . . be a Noetherian homogeneous K-algebra and
let M =

⊕
n∈ZMn be a graded R-module. We consider the K-dual of M , that

is the K-vector space
M∨ := HomK(M,K)

of all K-linear maps h : M → K. By means of the scalar multiplication defined
by

xh := h ◦ xIdM , ∀x ∈ R, ∀h ∈M∨,

the K-vector space M∨ is turned into an R-module. We consider the subset

D(M) := {h ∈M∨ | #{n ∈ Z | h(Mn) 6= 0} <∞} ⊆M∨

consisting of all K-linear maps h : M → K which vanish on almost all graded
components of M . Moreover, for each t ∈ Z we define the subset

D(M)t := {h ∈M∨ | h(Mn) = 0, ∀n 6= −t}.
Now, one may easily verify the following statements:

a) D(M) ⊆M∨ is an R-submodule.

b) For all t ∈ Z the set D(M)t ⊆ D(M) is a K-subspace.

c) The family (D(M)t)t∈Z of K-subspaces D(M)t ⊆ D(M) defines a grading
on the R-module D(M).

d) For all t ∈ Z there is an isomorphism of K-vector spaces

τMt : (M−t)
∨ := HomK(M−t, K)

∼=−→ D(M)t
25



26

given by

τMt (h)(m) := h(m−t), ∀h ∈ (M−t)
∨, ∀m := (mn)n∈Z ∈M =

⊕
n∈Z

Mn.

e) For all r, t ∈ Z we have D(M(r))t = D(M)t−r.

From now on, we always furnish the R-module D(M) with the grading men-
tioned in statement c). Hence we write

D(M) =
⊕
t∈Z

D(M)t,

and call D(M) the graded (K-) dual of M . Observe that by statement e) we
have

f) D(M(r)) = D(M)(−r), ∀r ∈ Z.

B) (The Graded Duality Functor) Keep the notations and hypotheses of part
A) and let h : M → N be a homomorphism of graded R-modules. It is easy
to see, that there is a homomorphism of graded R-modules

D(h) : D(N)→ D(M), f 7→ f ◦ h, ∀f ∈ D(N).

This homomorphisms of graded R-modules is called the graded (K-) dual of h.
Now, we obtain a contravariant, R-linear, exact functor of graded R-modules

D(•) : (M
h−→ N) p 

(
D(N)

D(h)−−→ D(M)
)
,

the functor of taking graded (K-)duals or the graded duality functor (with
respect to K).

C) (First Properties of Graded Duality Functors) Keep the notations and hy-
potheses of parts A) and B). It is easy to verify the following claims:

a) For all t ∈ Z there is a natural equivalence of contravariant functors from
graded R-modules to K-vector spaces

τMt : (•−t)∨
∼=−→ D(•)t : M p 

(
(M−t)

∨ τMt−−→ D(M)t
)
,

where τMt is defined as in statement A)d).

b) There is a natural transformation of covariant functors of graded R-modules

γ : • → D(D(•)) : M p 
(
M

γM−−→ D(D(M))
)
,

where the homomorphism γM : M → D(D(M)) is given by

γM(m)(f) = f(m), ∀m ∈M, ∀f ∈ D(M).

D) (Base Ring Independence of Graded Duals) Keep the notations of part A)
and assume that a  R is a proper graded ideal such that aM = 0. Then,
it is easy to see that the graded R-module D(M) satisfies aD(M) = 0 and is
independent on whether we consider M as an R-module or an R/a-module.
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We now establish a few basic facts about graded duals.

3.2. Remark and Definition. A) (Modules with Finite Components) Let the
notations and hypotheses be as in Construction and Remark 3.1. We say that
a graded R-module M =

⊕
n∈ZMn has finite components if

dimK(Mn) <∞, ∀n ∈ Z.
We denote the class of graded R-modules with finite components by FR. On
use of the well known properties of taking duals of finite-dimensional vector
spaces and the natural equivalences of Construction and Remark 3.1 C)a) one
easily gets the following statements:

a) If M ∈ FR, then dimK(D(M)t) = dimK(M−t) for all t ∈ Z.

b) If M ∈ FR, then D(M) ∈ FR.

c) If M ∈ FR, the canonical map γM : M → D(D(M)) (see Construction and
Remark 3.1 C)b)) is an isomorphism of graded R-modules.

B) (Equihomogeneous Ideals) Keep the above notations and hypotheses. An
ideal a ⊆ R is said to be equihomogeneous if it is generated by homogeneous
elements of the same degree. We now are interested in finitely generated
equihomogeneous ideals. So, let s ∈ Z, let r ∈ N, let x1, x2, . . . , xr ∈ Rs, let
M be a graded R-module and consider the multiplication maps given by these
elements xi, that is the homomorphisms of graded R-modules

xi = xiIdM : M →M(s), m 7→ xim, (i = 1, 2, . . . , r).

On use of the properties of kernels and cokernels of K-linear maps with respect
to taking K-duals, it is straightforward to prove the following facts:

a) (0 :M 〈x1, x2, . . . , xr〉)−t =
⋂r
i=1 Ker(xi �M−t) for all t ∈ Z.

b) There is an isomorphism of graded R-modules

D(M)
/
〈x1, x2, . . . , xr〉D(M)

∼=−→ D(0 :M 〈x1, x2, . . . , xr〉)
defined by

u+ 〈x1, x2, . . . , xr〉D(M) 7→ u�(0:M 〈x1,x2,...,xr〉), ∀u ∈ D(M).

Now, we shall introduce the notions of Deficiency Functors and Deficiency
Modules.

3.3. Remark and Definition. A) (Deficiency Functors and -Modules) Let
K be a field and let R = K ⊕ R1 ⊕ R2 ⊕ . . . be a Noetherian homogeneous
K-algebra. For each i ∈ N0 we define the i-th deficiency functor Ki = Ki(•)
(over R) as the contravariant linear functor of graded R-modules obtained
by composing the (graded) local cohomology functor H i

R+
(•) with the graded

duality functor D = D(•), thus the functor of graded R-modules given by the
assignment

(M
h−→ N)p 

(
Ki(M) := D(H i

R+
(N))

Ki(h):=D(Hi
R+

(h))

−−−−−−−−−−−→ D(H i
R+

(M)) =: Ki(M)
)
.
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For each graded R-module M , the graded R-module Ki(M) is called the i-th
deficiency module of M .

B) (First Properties of Deficiency Functors) Keep the notations and hypothe-
ses of part A). Let i ∈ N0. Then, it is easy to verify the following facts:

a) (Duals of Deficiency Modules) There is a natural transformation of covari-
ant functors of graded R-modules

κi : H i
R+(•)→ D(Ki(•)) : M p 

(
H i
R+

(M)
κi,M :=γ

Hi
R+

(M)

−−−−−−−−−→ D(Ki(M))
)
,

where the homomorphism

γ
Hi

R+
(M)

: H i
R+

(M)→ D
(
D(H i

R+
(M))

)
= D(Ki(M))

is defined according to Construction and Remark 3.1 C)b).

b) (Base Ring Independence of Deficiency Modules) If M is a graded R-module
and a  R is a proper graded ideal with aM = 0 we have aKi(M) = 0.
In addition (up to isomorphism of graded R-modules) the module Ki(M)
remains the same if we consider M as as a graded R/a-module.

C) (Deficiency Modules of Finitely Generated Modules) Let the notations be
as in parts A) and B) and assume that the graded R-module M is finitely
generated. One easily can prove the following facts:

a) H i
R+

(M) and Ki(M) belong to the class FR (see Remark and Definition 3.2
A)).

b) dimK(Ki(M))n = hiM(−n) for all n ∈ Z.

c) beg(Ki(M)) = −end(H i
R+

(M)) > −∞.

d) sup{i ∈ N0 | Ki(M) 6= 0} = dimR(M).

e) The natural homomorphism of graded R-modules of statement B)a) be-
comes an isomorphism

κi,M : H i
R+

(M)
∼=−→ D(Ki(M)).

D) (The Deficiency Sequence) Keep the above notations and hypothesis and
let

S : 0→ N
h−→M

l−→ P → 0

be an exact sequence of graded R-modules. We apply the exact graded coho-
mology sequence with respect to R+ and associated to S (see [8](8.26)A) for
example) and then apply the exact contravariant graded duality functor D(•)
to the resulting sequence. In doing so, we end up with a natural exact sequence
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of graded R-modules

. . . // Ki+1(M)
Ki+1(h)

// Ki+1(N)
εi
S //

Ki(P )
Ki(l)

// Ki(M)
Ki(h)

// Ki(N)
εi−1
S //

Ki−1(P ) // . . .

. . . // K1(M)
K1(h)

// K1(N)
ε0
S //

K0(P )
K0(l)

// K0(M)
K0(h)

// K0(N) // 0

in which the maps εiS are induced by the corresponding connecting homomor-
phism in the cohomology sequence associated to S. We call this sequence the
deficiency sequence associated to S.

In the next exercise we prepare some arguments which will be used repeatedly
later.

3.4. Remark. A) (Deficiency Modules and Torsion). Let K be a field, let
R = K ⊕ R1 ⊕ R2 ⊕ . . . be a Noetherian homogeneous K-algebra and let M
be a graded R-module. Let us recall, that an R-module T is said to be R+-
torsion, if T = ΓR+(T ). On use of the corresponding statements on induced
homomorphisms between local cohomology modules (see [8] (3.18) for example)
it is easy to see that:

a) If M is R+-torsion, then Ki(M) = 0 for all i ∈ N.

b) If M is finitely generated, then K0(M) is R+-torsion, finitely generated
and satisfies dimK(K0(M)) = dimK(H0

R+
(M)) <∞.

c) If N ⊆ M is a graded submodule which is R+-torsion and p : M → M/N
is the canonical homomorphism, then the induced homomorphism

Ki(p) : Ki(M/N)→ Ki(M)

is an isomorphism if i > 0 and a monomorphism if i = 0.

B) (Deficiency Modules and Non-Zero Divisors) Let the notations and hy-
potheses be as in part A). For any R-module N let

NZDR(N) := {x ∈ R | xn 6= 0. ∀n ∈ N \ {0}}

denote the set of non-zero divisors of R with respect to N . Now, let t ∈ N and
let x ∈ Rt ∩ NZDR(M). If we form the deficiency sequence associated to the
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short exact sequence of graded R-modules

S : 0→M(−t) x−→M
p−→M/xM → 0

and write εiM,x := εi
S

for all i ∈ N0 (see Remark and Definition 3.3 D)), we can
say:

a) For each i ∈ N0 there is an exact sequence of graded R-modules

Ki+1(M)
x−→ Ki+1(M)(t)

εiM,x−−→ Ki(M/xM)
Ki(p)−−−→ Ki(M)

x−→ Ki(M)(t).

Consequently

b) For each i ∈ N0 there is a short exact sequence of graded R-modules

0→
(
Ki+1(M)/xKi+1(M)

)
(t)→ Ki(M/xM)→ (0 :Ki(M) x)→ 0.

Now we are ready to give a first result on the structure of deficiency modules.

3.5. Proposition. Let K be a field, let R ∈ N0 and let R := K[x1,x2, . . . ,xr]
be a polynomial ring.

a) If i 6= r, then Ki(R) = 0.

b) Kr(R) ∼= R(−r).

Proof. As R+ is generated by the R-sequence x1,x2, . . . ,xr, we have H i
R+

(R) =
0 for all i 6= r (see [8] (6.7)A) for example). So, statement a) follows from
Remark and Definition 3.3 C)b).

We prove statement b) by induction on r. If r = 0, we have R = K = H0
R+

(R).

If we apply Remark and Definition 3.3 C)b) with i = 0 it follows that K0(M) =
K = R = R(−0).

So let r > 0. We consider the polynomial ring

R′ := K[x1,x2, . . . ,xr−1].

By induction we have Kr−1(R′) ∼= R′(−r+1). Observe that there is an isomor-
phism of graded R-modules R′ ∼= R/xrR. So, by the Base Ring Independence
of Deficiency Modules Remark and Definition 3.3 B)b) we get an isomorphism
of graded R-modules

Kr−1(R/xrR) ∼= (R/xrR)(−r + 1).

If we apply the short exact sequence Reark 3.4 B)b) with i = r − 1, x = xr,
M = R and keep in mind that Kr−1(R) = 0 we therefore get isomorphisms of
graded R-modules

Kr(R)/xrK
r(R) ∼= Kr−1(R/xrR)(−1) ∼= (R/xrR)(−r).

As a consequence

Kr(R)/(R+)Kr(R) ∼= R/(xrR)(−r)/(R+)(R/xrR)(−r) ∼=
∼=
(
(R/xrR)/(R+)(R/xr)

)
(−r) ∼= (R/R+)(−r).
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This shows that Kr(R)/(R+)Kr(R) is generated by a single element of degree
r. As beg(Kr(M)) = −end(Hr

R+
(R)) > −∞ (see Remark and Definition 3.3

C)c)), the Graded Nakayama Lemma implies that Kr(R) = Ra for some a ∈
Kr(R)r. So, there is an epimorphism of graded R-modules

R(−r) π−→ Kr(R)→ 0, f 7→ fa.

Now, let x ∈ Rt \ {0} for some t ∈ N. Then dimR(R/xR) < r shows that
the multiplication map x : Hr

R+
(R)(−t)→ Hr

R+
(R) is surjective. Therefore the

multiplication map x : Kr(R)→ Kr(R)(t) is injective. This shows, thatKr(R)
is R-torsion-free and hence of dimension r. This proves, that the epimorphism
π is indeed an isomorphism. �

Now, we are ready to prove the following Main Theorem on Deficiency Mod-
ules.

3.6. Theorem. Let K be a field, let R = K ⊕ R1 ⊕ R2 ⊕ . . . be a Noetherian
homogeneous K-algebra, let M be a finitely generated graded R-module and let
i ∈ N0. Then

a) Ki(M) is a finitely generated graded R-module.

b) dimK(Ki(M)n) = hiM(−n) for all n ∈ Z.

c) beg(Ki(M)) = −end(H i
R+

(M)) > −∞.

d) Ki(M) = 0 for all i > dimR(M).

e) dimR(Ki(M)) ≤ i for all i ≤ dimR(M) with equality if i = dimR(M).

Proof. ”a)“: We find a polynomial ring S = K[x1,x2, . . . ,xr] and a proper
graded ideal a  S such that R = S/a. According to the Base Ring Indepen-
dence of Deficiency Modules Remark and Definition 3.3 B)b) we may consider
M as a graded S-module and hence assume that R = K[x1,x2, . . . ,xr]. If
M = 0 we have Ki(M) = 0. So, let M 6= 0. We show by induction on
the homological dimension h := hdim(M)(∈ N0) of M that Ki(M) is finitely
generated. If h = 0, we have an isomorphism of graded R-modules

M ∼=
s⊕

k=1

R(−ak), ak ∈ Z, ∀k ∈ {1, 2, . . . , s}, a1 ≤ a2 ≤ . . . ≤ as.

So, by Proposition 3.5 and the additivity of the contravariant functor of graded
R-modules Ki(•) we get Ki(M) = 0 if i 6= r and Kr(M) ∼=

⊕s
k=1 R(−r+ ak).

Now, let h > 0 and consider a minimal presentation

S : 0→ N → F →M → 0, F =
s⊕

k=1

R(−ak), a1 ≤ a2 ≤ . . . ≤ as

of M . As hdim(N) = hdim(M) − 1 = h − 1, by induction, Kj(N) is finitely
generated for all j ∈ N0. By the case h = 0 we have Kj(F ) = 0 for all j 6= r,
and Kr(F ) is a graded free R-module of finite rank. So, the deficiency sequence
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Remark and Definition 3.3 D) associated to S gives rise to isomorphisms of
graded R-modules

Kj+1(N) ∼= Kj(M), ∀j ∈ {0, 1, . . . , r − 2},

an epimorphism of graded R-modules

Kr(N)→ Kr−1(M)→ 0,

and a short exact sequence of graded R-modules

Kr+1(N)→ Kr(M)→ Kr(F ).

Hence, Ki(M) is finitely generated if i ≤ r. As Ki(M) = 0 if i > dimR(M)
(see (3.3)C)d)) and as dimR(M) ≤ r, we get our claim.

”b)“: This is nothing else than Remark and Definition 3.3 C)b).

”c)“: This is a restatement of Remark and Definition 3.3 C)c).

”d)“: This is clear by Remark and Definition 3.3 C)d).

”e)“: We do not prove this here. Instead we refer to [5] (9.7). �

We now use the previous development to introduce Cohomological Hilbert Poly-
nomials of graded modules and Cohomological Serre Polynomials of coherent
sheaves and the related concepts of Cohomological postulation Numbers.

3.7. Remark and Definition. A) (Cohomological Hilbert Polynomials) Let
K be a field, let R = K ⊕ R1 ⊕ R2 ⊕ . . . be a Noetherian homogeneous K-
algebra and let M be a finitely generated graded R-module. Fix i ∈ N0 and
consider the Hilbert polynomial PKi(M) of the finitely generated graded R-
module Ki(M). Then, by the definition of PKi(M) and by Theorem 3.6 b) we
have

hiM(n) = dimK(Ki(M)−n) = PKi(M)(−n), ∀n� 0.

If we set

piM(X) := PKi(M)(−X)

we thus have

hiM(n) = piM(n), ∀n� 0.

The polynomial piM ∈ Q[X] is called the i-th cohomological Hilbert polynomial
of M .

B) (First Properties of Cohomological Hilbert Polynomials) Let the notations
and hypotheses be as in part A). Prove the following facts. (For statement c)
see Reminder and Remark 1.8)

a) deg(piM) ≤ i− 1 with equality if i = dimK(M) > 0.

b) piM(r)(X) = piM(r +X) for all r ∈ Z.

c) PM(X) =
∑dimR(M)−1

i=1 (−1)i−1piM(X) =
∑

n∈N0
(−1)i−1piM(X).
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C) (Cohomological Postulation Numbers of Graded Modules) Let the notations
and hypotheses be as in parts A) and B). Then clearly

νiM := inf{n ∈ Z | piM(n) 6= hiM(n)} ∈ Z ∪ {∞}.

The number νiM is called the i-th cohomological postulation number of M .
Prove the following statements:

a) νiM =∞ if and only if H i
R+

(M) = 0.

b) If νiM <∞, then νiM ≤ end(H i
R+

(M)).

c) νiM(r) = νiM − r for all r ∈ Z.

D) (Cohomological Serre Polynomials) Let (R,M) be as in parts A) and B), set

X := Proj(R) and let F = M̃ be the coherent sheaf induced by M . Then, it
follows by Notation and Reminder 1.4 B)d),f) and Notation and Reminder 1.5
C) that for all i ∈ N0 we have

a) pi+1
M (n) = hiF(n) for all n� 0.

So, in particular, for each i ∈ N0 there is a unique polynomial (namely pi+1
M )

piF ∈ Q[X] : hiF(n) = piF(n), ∀n� 0,

the i-th cohomological Serre polynomial of F . It follows easily that

b) deg(piF) ≤ i, with equality if i = dim(F) ≥ 0.

c) If i > dim(F), then piF = 0.

d) PF =
∑dim(F)

i=0 (−1)ipiF =
∑

i∈N0
(−1)ipiF .

E) (Cohomological Postulation Numbers of Sheaves) Let the notations be as
in part D). Then clearly

νiF := inf{n ∈ Z | piF(n) 6= hiF(n)} ∈ Z ∪ {∞}.

The number νiF is called the i-th cohomological postulation number of F . The
following statements are easy to prove:

a) If i ∈ N, then νiF = νi+1
M .

b) ν0
F ≥ min{ν1

M , beg(M)}.
c) If F 6= 0, then ν

dim(F)
F ∈ Z.

d) If i > dim(F), then νiF =∞.

An important fact is the following observation.

3.8. Proposition. Let i ∈ N0, let K be a field, let R = K ⊕ R1 ⊕ R2 ⊕ . . . be
a Noetherian homogeneous K-algebra and let M be a finitely generated graded
R-module. Then

νiM ≥ −reg(Ki(M)).
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Proof. This follows easily from the definition of νiM and by Reminder and
Remark 1.8 B)c). �

Next, we introduce the notion of Canonical Module.

3.9. Definition. Let K be a field, let R = K ⊕R1⊕R2⊕ . . . be a Noetherian
homogeneous K-algebra and let M 6= 0 be a finitely generated graded R-
module. We define the canonical module K(M) of M as the highest order non
vanishing module of deficiency of M , thus:

K(M) := KdimR(M)(M).

Moreover we set K(0) := 0

Next, we aim to prove a basic result canonical modules. We begin with a
statement on the Grade of Canonical Modules. This result hints an important
property of the operation of taking canonical modules: namely its ”improving
effect on grade“. We start by recalling the notion of Grade.

3.10. Reminder. Let M be a finitely generated module over the Noetherian
ring R and let a ⊆ R be an ideal of R. Then the grade

gradeM(a)

of a with respect to M is defined as the supremum of lengths r of M -sequences

x1, x2, . . . , xr ∈ a : xi ∈ NZDR(M/
i−1∑
j=1

xjM), ∀i ∈ {1, 2, . . . , r},

in a. Keep in mind the well known fact (see [8](4.4)(4.6) for example)

gradeM(a) = inf{i ∈ N0 | H i
a(M) 6= 0}.

3.11. Proposition. Let K be a field, let R = K⊕R1⊕R2⊕ . . . be a Noetherian
homogeneous K-algebra and let M be a finitely generated graded R-module.
Then dimR(K(M)) = dimR(M) and moreover

gradeK(M)(R+) ≥ min{2, dimR(M)}.

Proof. Let d := dimR(M). If d ≤ 0 our claim is obvious. So, let d > 0.
By Theorem 3.6 e) we know that K(M) is of dimension d. Now set M̄ :=
M/ΓR+(M). Then dimR(M̄) = d and hence K(M̄) = Kd(M̄) ∼= Kd(M) =
K(M) (see Remark 3.4 A)c)). This allows us to replace M by M̄ and hence to
assume that ΓR+(M) = 0. So, by the Homogeneous Prime Avoidance Principle
we find some t ∈ N and some x ∈ Rt∩NZDR(M). Now, by the exact sequence
Remark 3.4 B)b), applied with i = d, we get an epimorphism

Kd(M/xM)→ (0 :Kd(M) x)→ 0.

As x ∈ R+ ∩ NZDR(M) we also have dimR(M/xM) = d − 1 and hence
Kd(M/xM) = 0 (see Theorem 3.6 d)). It follows that (0 :Kd(M) x) = 0

and hence x ∈ NZDR(Kd(M)). Thus, if d = 1, we get our claim. So, let d > 1.
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Another use of the sequence Remark 3.4 B)b), this time applied with i = d−1,
yields a monomorphism

0→
(
Kd(M)/xKd(M)

)
(t)→ Kd−1(M/xM).

As dimR(M/xM) = d−1 > 0 we have Kd−1(M/xM) = K(M/xM) and hence
by induction we get gradeKd−1(M/xM)(R+) > 0, hence ΓR+(M/xM) = 0. Now,

the above monomorphism shows that ΓR+

(
(Kd(M)/xKd(M))(t)

)
= 0 and

hence ΓR+(Kd(M)/xKd(M)) = 0, so that gradeKd(M)/xKd(M)(R+) ≥ 1. As

x ∈ R+ ∩ NZDR(Kd(M)) it follows that gradeKd(M)(R+) ≥ 2 and this proves
our claim. �



4. Regularity of Modules of Deficiency

Already in Mumford’s Lecture Notes [30] the study of the regularity of de-
ficiency modules is called to be of basic significance. In this section, we are
precisely concerned with this issue. Our main result is, that the regularity
of the deficiency modules Ki(M) of a given finitely generated graded module
M over a Noetherian homogeneous K-algebra R is bounded in terms of the
cohomology diagonal of M and the beginning of M . We rephrase this in more
precise terms: Let d ∈ N and let i ∈ N0. Then, there is a function

Gi
d : Nd

0 × Z→ Z

such that for each pair (R,M) ∈Md we have the estimate

reg
(
Ki(M)

)
≤ Gi

d

(
d0
M(0), d1

M(−1), . . . , dd−1
M (1− d), beg(M)

)
,

where the number djM(−j) is the j-th geometric cohomological Hilbert function
of M evaluated at the argument −j, (see Notation and Reminder 1.4 B)).

We begin with some preparations. First we recall the Notion of Filter-Regular
Element.

4.1. Definition and Remark. A) (Filter-Regular Elements) Let K be a field,
let R = K⊕R1⊕R2⊕ . . . be a Noetherian homogeneous K-algebra and let M
be a finitely generated graded R-module. Let t ∈ N and let x ∈ Rt. Then x is
said to be filter-regular with respect to M if the following equivalent conditions
are satisfied:

(i) x ∈ NZDR(M/ΓR+(M)).

(ii) x /∈
⋃

p∈AssR(M)∩Proj(R) p.

(iii) (0 :R x) ⊆ ΓR+(M).

(iv) end(0 :R x) <∞.

(v) The multiplication map x : Mn →Mn+1 is injective for all n� 0.

B) (Existence of Filter-Regular Elements) Let the hypotheses and notations
be as in part A). Then, on use of the Homogeneous Prime Avoidance Principle
we can say:

a) There is some t0 ∈ N such that for each integer t ≥ t0 there is an element
x ∈ Rt which is filter-regular with respect to M .

b) If K is infinite, the number t0 of statement a) may be chosen to be 1.

Here comes a first result about filter-regular elements.

4.2. Lemma. Let K be a field, let R = K ⊕ R1 ⊕ R2 ⊕ . . . be a Noetherian
homogeneous K-algebra, let M be a finitely generated graded R-module and let
x ∈ R1 be a filter-regular element with respect to M . Then

reg1(M) ≤ reg(M/xM) ≤ reg(M).
36



37

Proof. We have two short exact sequences of graded R-modules

0→ (0 :M x)→M →M/(0 :M x)→ 0,

0→ (M/(0 :M x))(−1)→M →M/xM → 0.

As (0 :M x) is R+-torsion we get an isomorphism of graded R-modules

H1
R+

(M) ∼= H1
R+

(M/(0 :M x)),

so that reg1(M/(0 :M x)) = reg1(M). Now, if we apply cohomology to the
second exact sequence it follows by Reminder and Definition 2.2 A)c),g) that

reg1(M) = reg1
(
M/(0 :M x)

)
= reg

(
(M/(0 :M x))(−1)

)
− 1 ≤

≤ max{reg1(M), reg(M/xM) + 1} − 1,

whence reg1(M) ≤ reg(M/xM).

By another application of cohomology to the second sequence and observing
Reminder and Definition 2.2 A)c),i) we similarly get

reg(M/xM) ≤ max{reg1
(
(M/(0 :M x))(−1)

)
− 1, reg(M)} =

= max{reg1(M), reg(M)} = reg(M),

whence reg(M/xM) ≤ reg(M). �

Here comes a first application of the previous lemma, which will be of use in
the proof of the main result of this section.

4.3. Proposition. Let K be a field, let R = K⊕R1⊕R2⊕ . . . be a Noetherian
homogeneous K-algebra, let M be a finitely generated graded R-module, let x ∈
R1 be filter-regular with respect to M and let m ∈ Z be such that reg(M/xM) ≤
m and gendeg((0 :M x)) ≤ m. Then

reg(M) ≤ m+ h0
M(m).

Proof. By Lemma 4.2 we have reg1(M) ≤ reg(M/xM) ≤ m. So, it remains to
show that

end(H0
R+

(M)) ≤ m+ h0
M(m).

The short exact sequence of graded R-modules

0→ (M/(0 :M x))(−1)→M →M/xM → 0

induces exact sequences of K-vector spaces

0→ H0
R+

(M/(0 :M x))n → H0
R+

(M)n+1 → H0
R+

(M/xM)n+1

for all n ∈ Z. As H0
R+

(M/xM)n+1 = 0 for all n ≥ m, we therefore obtain

H0
R+

(M/(0 :M x))n ∼= H0
R+

(M)n+1, ∀n ≥ m.

The short exact sequence of graded R-modules

0→ (0 :M x)→M →M/(0 :M x)→ 0
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and the facts that

H0
R+

(
(0 :M x)

)
= (0 :M x), and H1

R+

(
(0 :M x)

)
= 0

induce short exact sequences of K-vector spaces

0→ (0 :M x)n → H0
R+

(M)n → H0
R+

(M/(0 :M x))n → 0, ∀n ∈ Z.
So, for all n ≥ m we get an exact sequence of K-vector spaces

0→ (0 :M x)n → H0
R+

(M)n
πn−→ H0

R+
(M)n+1 → 0.

To prove our claim we may assume that end(H0
R+

(M)) > m. As

end((0 :M x)) = end
(
H0
R+

(M)
)
, and gendeg((0 :M x)) ≤ m

it follows that

(0 :M x)n 6= 0, ∀n ∈ {m,m+ 1, . . . , end(H0
R+

(M))}.
Hence for all these values of n the homomorphism πn is surjective but not
injective. Therefore

h0
M(n) > h0

M(n+ 1), ∀n ∈ {m,m+ 1, . . . , end(H0
R+

(M))}.

So, in the range n ≥ m the function n 7→ h0
M(n) is strictly decreasing until it

reaches the value 0. Therefore h0
M(n) = 0 for all n > m+ h0

M(m). This proves
our claim. �

In the proof of our main result we have to perform a number of induction
arguments, which use filter-regular elements of degree 1. In general, such
elements only exist if the base field K of our Noetherian homogeneous ring
R is infinite (see Definition and Remark 4.1 B)b)). So, we must be able to
replace R by an appropriate Noetherian homogeneous algebra over an infinite
field. The following remark is aimed to prepare this. For a more detailed
presentation of the subject we recommend to consult [5] (10.7).

4.4. Remark. A) (Base Field Extensions of Homogeneous Algebras) Let K be
a field, let R = K ⊕ R1 ⊕ R2 ⊕ . . . be a Noetherian homogeneous K-algebra
and let K ′ be an extension field of K. Then, the K ′ algebra R′ := K ′ ⊗K R
carries a natural grading, given by

R′ = K ′ ⊗K R = K ′ ⊕ (K ′ ⊗K R1)⊕ (K ′ ⊗K R2)⊕ . . . ,
which turns R′ into a Noetherian homogeneous K ′-algebra with irrelevant ideal
R′+ = R+R

′.

B) (Base Field Extensions and Graded Modules) Let the notations and hy-
potheses be as in part A) and assume in addition, that M =

⊕
n∈ZMn is a

graded R-module. Then, the R′-module M ′ := R′⊗RM = K ′⊗KM carries a
natural grading given by

M ′ = R′ ⊗RM = K ′ ⊗K M =
⊕
n∈Z

K ′ ⊗K Mn.

Moreover we can say:
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a) gendeg(M ′) = gendeg(M).

b) beg(M ′) = beg(M).

c) end(M ′) = end(M).

d) dimK′(M
′
n) = dimK(Mn) for all n ∈ Z.

e) M ′ is finitely generated over R′ if and only if M is finitely generated.

C) (Base Field Extensions and Local Cohomology) Keep the notations and
hypotheses of parts A) and B). Then, the Graded Flat Base Change Property
of Local Cohomology (see [13] (14.1.9) or [5] (1.15)) gives rise to isomorphisms
of graded R′-modules

H i
R′+

(M ′) ∼= R′ ⊗R H i
R+

(M) = K ′ ⊗K H i
R+

(M), ∀i ∈ N0.

If the graded R-module M is finitely generated, we thus can say (see statements
a)-e) of part B)):

a) hiM ′(n) = hiM(n) for all i ∈ N0 and all n ∈ Z.

b) diM ′(n) = diM(n) for all i ∈ N0 and all n ∈ Z.

c) regl(M ′) = regl(M) for all l ∈ N0.

D) (Base Field Extensions and Deficiency Modules) Keep the above notations
and hypotheses. Then by the fact that taking vector-space duals naturally
commutes with field extensions the observations made in part C) imply that
there are isomorphisms of graded R-modules

Ki(M ′) ∼= R′ ⊗R Ki(M) = K ′ ⊗K Ki(M), ∀i ∈ N0.

Consequently, for each finitely generated graded R-module M, statement b) of
part C) implies

a) reg(Ki(M ′)) = reg(Ki(M)) for all i ∈ N0.

4.5. Lemma. Let K be a field, let R = K ⊕ R1 ⊕ R2 ⊕ . . . be a Noetherian
homogeneous K-algebra and let M be a finitely generated graded R-module.
Then, for all i ∈ N0 and all n ≥ i we have

dimK

(
Ki+1(M)n

)
≤

i∑
j=0

(
n− j − 1

i− j

)[ i−j∑
l=0

(
i− j
l

)
di−lM (l − i)

]
.

Proof. We only sketch this proof. For more details see [5] (10.4). If K is finite,
we chose an infinite extension field K ′ of K. Then, the observations made in
Remark 4.4 allow to replace R and M respectively by R′ := K ′ ⊗K R and
M ′ := R′⊗RM = K ′⊗KM . So we may assume at once that the base field K
is infinite. Our first aim is to show the following statement (see [5](8.12)):

a) diM(−n) ≤
∑i

j=0

(
n−j−1
i−j

)[∑i−j
l=0

(
i−j
l

)
di−lM (l − i)

]
, ∀i ∈ N0, ∀n ≥ i.
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By Definition and Remark 4.1 B)b) we find an element x ∈ R1 which is filter-
regular with respect to M . In view of the natural isomorphisms of graded
R-modules Di

R+
(M) ∼= Di

R+
(M/ΓR+(M)) for all i ∈ N0 we may replace M by

M/ΓR+(M) and hence assume the x ∈ NZD(M). The right derived sequence
of the functor DR+(•) associated to the short exact sequence of graded R-
modules

S : 0→M(−1)
x−→M →M/xM → 0

gives rise to a monomorphism of graded R-modules

0→ D0
R+

(M)(−1)
x−→ D0

R+
(M)

and exact sequences of graded R-modules

Di−1
R+

(M)→ Di−1
R+

(M/xM)→ Di
R+

(M)(−1)
x−→ Di

R+
(M), ∀i ∈ N.

Consequently we get

b) d0
M(−n) ≤ d0

M(−(n− 1)), ∀n ∈ Z

and diM(−n) ≤ diM(−(n − 1)) + di−1
M/xM(−(n − 1)) for all i ∈ N and all n ∈ Z

and hence

c) diM(−n) ≤ diM(−i) +
∑n−1

m=i−1 d
i−1
M/xM(−m), ∀i ∈ N,∀n ∈ Z.

d) djM/xM(−j) ≤ djM(−j) + dj+1
M (−(j + 1)), ∀j ∈ N0.

Now, inequality b) proves statement a) if i = 0. The inequalities c) and
d) together with the Pascal equalities for binomial coefficients allow to prove
statement a) by induction on i.

Finally, we show that statement a) implies our lemma. If i > 0, by Notation
and Reminder 1.4 B)f) we have

diM(−n) = hi+1
M (−n).

Moreover h0
M(−n) ≤ dimK(Mn), whence

h1
M(−n) ≤ dimK(M−n)− h0

M(−n) + h1
M(−n) = d0

M(−n).

As hi+1
M (−n) = dimK(Ki+1(M)n) (see Theorem 3.6 b)) our claim follows. �

Now, we define the bounding functions Gi
d : N0×Z→ Z, which were mentioned

already at the beginning of this section.

4.6. Definition. (A Class of Bounding Functions) For all d ∈ N and all i ∈
{0, 1, . . . , d} we define the functions

Gi
d : Nd

0 × Z→ Z

recursively as follows. In the case i = 0 we define

(i) G0
d(x0, x1, . . . , xd−1, y) := −y.

In the case i = 1 we set:
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(ii) G1
1(x0, y) := y − 1;

(iii) G1
d(x0, x1, . . . , xd−1, y) := max{0, 1− y}+

∑d−2
i=0

(
d−1
i

)
xd−i−2, if d ≥ 2.

In the case i = d = 2 we define

(iv) G2
2(x0, x1, y) := G1

2(x0, x1, y) + 2.

Now, assume that d ≥ 3 and that the functions Gi−1
d−1, G

i
d−1 and Gi−1

d are
already defined. In order to define the function Gi

d we first intermediately
introduce the following notation:

(v) mi := max{Gi−1
d−1(x0+x1, . . . , xd−2+xd−1, y), Gi−1

d (x0, . . . , xd−1, y)+1}+1.

(vi) ni := Gi
d−1(x0 + x1, ..., xd−2 + xd−1, y),

(vii) ti := max{mi, ni},
(viii) ∆ij :=

∑i−j−1
l=0

(
i−j−1
l

)
xi−l−1.

Using these notational conventions, we define

(ix) Gi
d(x0, . . . , xd−1, y) := ti +

∑i−1
j=0 ∆ij, ∀i ∈ {2, 3, . . . , d− 1}.

Finally, if d ≥ 3 and Gd−1
d−1 and Gd−1

d are already defined, we set (see (v))

(x) Gd
d(x0, . . . , xd−1, y) := md.

In order to prove our main result, we need a particular property of the previ-
ously defined bounding function

4.7. Remark. (Monotonicity of the Bounding Functions Gi
d) Let d ∈ N0, let

i ∈ {0, 1, . . . , d} and let

(x0, x1, . . . , xd−1, y), (x′0, x
′
1, . . . , x

′
d−1, y

′) ∈ Nd
0 × Z

such that
xj ≤ x′j, ∀j ∈ {0, 1, . . . , d− 1}, y′ ≤ y.

It is easy to see by induction on i and d, that under these circumstances we
have

Gi
d(x0, x1, . . . , xd−1, y) ≤ Gi

d(x
′
0, x
′
1, . . . , x

′
d−1, y

′).

The following remark generalizes an argument made in the proof of Lemma
4.5.

4.8. Remark. Let K be a field, let R = K ⊕ R1 ⊕ R2 ⊕ . . . be a Noetherian
homogeneous K-algebra, let M be a finitely generated graded R-module, let
t ∈ N and let x ∈ Rt be filter-regular with respect to M . Then, it is easy to
verify, that for all i ∈ N0 and all n ∈ Z we have the inequality

diM/xM(n) ≤ diM(n) + di+1
M (n− t).

Now, we are ready to formulate and to prove the announced main result.
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4.9. Theorem. Let d ∈ N, let i ∈ {0, 1, . . . , d}, let K be a field, let R =
K ⊕ R1 ⊕ R2 ⊕ . . . be a Noetherian homogeneous K-algebra and let M be a
finitely generated graded R-module with dimR(M) = d. Then

reg
(
Ki(M)

)
≤ Gi

d

(
d0
M(0), d1

M(−1), . . . , dd−1
M (1− d), beg(M)

)
.

Proof. We proceed by induction on i. By Theorem 3.6 e) we have dimR(K0(M)) ≤
0. So, in view of Theorem 3.6 b) we get

reg(K0(M)) = end(K0(M)) = −beg(H0
R+

(M)) ≤ −beg(M) =

G0
d

(
d0
M(0), d1

M(−1), . . . , dd−1
M (1− d), beg(M)

)
.

This clearly proves the case i = 0.

So let i > 0. As in the proof of Lemma 4.5 we may use the observations made
in Remark 4.4 to assume that K is infinite.

Let M̄ := M/ΓR+(M). Then dimR(M̄) = d, and in view of the natural

isomorphisms of graded R-modules Di
R+

(M) ∼= Di
R+

(M̄) we have dj
M̄

(n) =

djM(n) for all j ∈ N0 and all n ∈ Z . In addition beg(M) ≤ beg(M̄), whence
by Remark 4.7 we get

Gi
d

(
d0
M̄(0), d1

M̄(−1) . . . , dd−1
M̄

(1− d), beg(M̄)
)
≤

≤ Gi
d

(
d0
M(0), d1

M(−1), . . . , dd−1
M (1− d), beg(M)

)
.

As moreover we have an isomorphism of graded R-modules Ki(M̄) ∼= Ki(M)
(see Remark 3.4 A)c)), we thus may replace M by M̄ and hence assume that
ΓR+(M) = 0. Therefore we find some element x ∈ R1 ∩NZDR(M). By Homo-
geneous Prime Avoidance we may assume in addition, that x is filter-regular
with respect to the modules K0(M), K1(M), . . . Kd(M). By Remark 3.4 B)b)
there is an exact sequence of graded R-modules

a) 0→
(
Kj+1(M)/xKj+1(M)

)
(+1)→ Kj(M/xM)→ (0 :Kj(M) x)→ 0,

for all j ∈ N0. Since H0
R+

(M) = 0 we have K0(M) = 0 (see Theorem 3.6 b)
for example), so that the sequence a) gives rise to an isomorphism of graded
R-modules

b)
(
K1(M)/xK1(M)

)
(+1) ∼= K0(M/xM).

As dimR(K0(M/xM)) ≤ 0 (see Theorem 3.6 e)), the above isomorphism shows
that K1(M)/xK1(M) is R+-torsion, so that (see Theorem 3.6 b))

reg
(
K1(M)/xK1(M)

)
= reg

(
K0(M/xM)

)
+ 1 = end

(
K0(M/xM)

)
+ 1 =

1− beg
(
H0
R+

(M/xM)
)
≤ 1− beg(M/xM) ≤ 1− beg(M).

It follows that

c) reg
(
K1(M)/xK1(M)

)
≤ 1− beg(M).
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We first assume that d = 1. Then clearly i = 1, whence Ki(M) = K1(M) =
K(M) so that by Proposition 3.11 we get gradeK1(M)(R+) = 1 henceH0

R+
(K1(M)) =

0, so that reg(K1(M)) = reg1(K1(M)). It follows that (see Lemma 4.2)

reg
(
K1(M)

)
≤ reg

(
K1(M)/xK1(M)

)
≤ 1− beg(M) = G1

1(d0
M(0), beg(M)

)
.

This proves our claim if d = 1.

So, assume from now on, that d ≥ 2. We first treat the case i = 1. To do so,
we consider the sequence a) for j = 1, hence

d) 0→
(
K2(M)/xK2(M)

)
(+1)→ K1(M/xM)→ (0 :K1(M) x)→ 0.

If d = 2, we have dimR(M/xM) = 1 and so by the already treated case d = 1
we get

reg
(
K1(M/xM)

)
≤ 1− beg(M/xM) ≤ 1− beg(M).

Consequently by Reminder and Definition 2.2 A)e) we have

gendeg
(
(0 :K1(M) x)

)
≤ gendeg

(
K1(M/xM)

)
≤

≤ reg
(
K1(M/xM)

)
≤ 1− beg(M).

Assume first that m0 := 1 − beg(M) ≤ 0. Then, by Proposition 4.3 (applied
with m = 0) we obtain (see Theorem 3.6 b))

reg
(
K1(M)

)
≤ 0 + h0

K1(M)(0) ≤ dimK

(
K1(M)0

)
= h1

M(0) ≤ d0
M(0).

Now, assume that m0 := 1−beg(M) > 0. Then d0
M(−m0) ≤ d0

M(0) (see state-
ment b) in the proof of Lemma 4.5). So by statement c), by Proposition 4.3
and by Theorem 3.6 b) we get

reg
(
K1(M)

)
≤ m0 + h0

K1(M)(m0) ≤ m0 + dimK(K1(M)m0) =

= 1− beg(M) + h1
M(−m0) ≤ 1− beg(M) + d0

M(−m0) ≤ 1− beg(M) + d0
M(0).

Therefore, bearing in mind Definition 4.6 (iii) we finally obtain

reg
(
K1(M)

)
≤ max{d0

M(0), 1− beg(M) + d0
M(0)} ≤

≤ max{0, 1− beg(M)}+ d0
M(0) = G1

2

(
d0
M(0), d1

M(−1), beg(M)
)
.

This proves the case in which d = 2 and i = 1.

Now, let d ≥ 3, but still let i = 1. Then, by induction on d we may write (see
Definition 4.6 (iii))

reg
(
K1(M/xM)

)
≤ G1

d−1

(
d0
M/xM(0), . . . , dd−2

M/xM(2− d), beg(M/xM)
)

=

= max{0, 1− beg(M/xM)}+
d−3∑
i=0

(
d− 2

i

)
dd−i−3
M/xM(i+ 3− d).

According to Remark 4.8 we have

dd−i−3
M/xM(i+3−d) ≤ dd−i−3

M (i+3−d)+dd−i−2
M (i+2−d), ∀i ∈ {0, 1, . . . , d−3}.

Therefore we obtain
reg
(
K1(M/xM)

)
≤
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≤ max{0, 1−beg(M)}+
d−3∑
i=0

(
d− 2

i

)[
dd−i−3
M (i+3−d)+dd−i−2

M (i+2−d)
]

=: t0.

By the exact sequence d) and Reminder and Definition 2.2 A)e) we now get

gendeg
(
(0 :K1(M) x)

)
≤ reg

(
K1(M/xM)

)
≤ t0.

By the above inequality c) and the definition of t0 we have

reg
(
K1(M)/xK1(M)

)
≤ t0.

As t0 ≥ 0 we also have d0
M(−t0) ≤ d0

M(0). So, by Proposition 4.3 and Theo-
rem 3.6 b) we obtain the inequalities

reg
(
K1(M)

)
≤ t0 + h0

K1(M)(t0) ≤ t0 + dimK

(
K1(M)t0

)
=

= t0 + h1
M(−t0) ≤ t0 + d0

M(−t0) ≤ t0 + d0
M(0) =

= max{0, 1−beg(M)}+
d−3∑
i=0

(
d− 2

i

)[
dd−i−3
M (i+3−d)+dd−i−2

M (i+2−d)
]
+d0

M(0) =

= max{0, 1−beg(M)}+dd−2
M (2−d)+

d−3∑
i=1

[(d− 2

i− 1

)
+

(
d− 2

i

)]
dd−i−2
M (i+2−d)+

+(d− 2)d0
M(0) + d0

M(0) =

= max{0, 1− beg(M)}+
d−3∑
i=0

(
d− 1

i

)
dd−i−2
M (i+ 2− d) + (d− 1)d0

M(0) =

= max{0, 1− beg(M)}+
d−2∑
i=0

(
d− 1

i

)
dd−i−2
M (i+ 2− d).

In view of Definition 4.6 (iii) this means that

reg
(
K1(M)

)
≤ G1

d

(
d0
M(0), d1

M(−1), . . . , dd−1
M (1− d), beg(M)

)
.

So, we have settled the case i = 1 for all d ∈ N.

We now attack the cases with i ≥ 2. We begin with the case in which d = 2
and hence i = 2. In view of the exact sequence d) we obtain (see Reminder
and Definition 2.2 A)c),f))

reg
(
K2(M)/xK2(M)

)
≤ max{reg

(
K1(M/xM)

)
, reg

(
(0 :K1(M) x)

)
+ 1}+ 1.

Observe that dimR(M/xM) = 1, so that by what we know from the already
treated case i = d = 1 we get

reg
(
K1(M/xM)

)
≤ G1

1

(
d0
M/xM(0), beg(M/xM)

)
=

= beg(M/xM)− 1 ≤ beg(M)− 1.

As x is filter-regular with respect to K1(M), we have (0 :K1(M) x) ⊆ H0
R+

(M),
so that

reg
(
(0 :K1(M) x)

)
= end

(
(0 :K1(M) x)

)
≤ end

(
H0
R+

(K1(M))
)
≤ reg

(
K1(M)

)
.
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By what we know from the already treated case with i = 1 and d = 2 we have

reg
(
K1(M)

)
≤ G1

2

(
d0
M(0), d1

M(−1), beg(M)
)

= max{0, 1− beg(M)}+ d0
M(0).

Therefore we get

reg
(
K2(M)/xK2(M)

)
≤ max{1−beg(M),max{0, 1−beg(M)}+d0

M(0)+1}+1

≤ max{0, 1− beg(M)}+ d0
M(0) + 2.

As gradeK2(M)(R+) = gradeK(M)(R+) ≥ min{2, d} = 2 = d (see Proposi-

tion 3.11) we have gradeK2(M)(R+) = 2, whence Hj
R+

(K2(M)) = 0 for j = 0, 1.

This means that reg(K2(M)) = reg1(K2(M)). So by Lemma 4.2 we obtain

reg
(
K2(M)

)
≤ reg

(
K2(M)/xK2(M)

)
≤

≤ max{0, 1− beg(M)}+ d0
M(0) + 2 = G2

2

(
d0
M(0), d1

M(−1), beg(M)
)
.

This completes our proof in the cases with i ≥ 2 and d = 2.

So, let d > 2 and i ≥ 2. By Remark 4.8 we have

djM/xM(−j) ≤ djM(−j) + dj+1
M (−j − 1), ∀j ∈ N0.

Let k ∈ {0, 1, . . . , d− 1}. Then, by induction on d and in view of Remark 4.7
we have

reg
(
Kk(M/xM)

)
≤ Gk

d−1

(
d0
M/xM(0), . . . , dd−2

M/xM(2− d), beg(M/xM)
)
≤

≤ Gk
d−1

(
d0
M(0) + d1

M(−1), . . . , dd−2
M (2− d) + dd−1

M (1− d), beg(M)
)

=: nk.

Therefore

e) reg
(
Kk(M/xM)

)
≤ nk for all k ∈ {0, 1, . . . , d− 1}.

Clearly, by induction on i we have

f) reg
(
Ki−1(M)

)
≤ Gi−1

d

(
d0
M(0), d1

M(−1), . . . , dd−1
M (1− d), beg(M)

)
=: vi−1.

If we apply the exact sequence a) with j = i − 1 we get (see Reminder and
Definition 2.2 A)c),f))

reg
(
Ki(M)/xKi(M)

)
≤ max{reg

(
Ki−1(M/xM)

)
, reg

(
(0 :Ki−1(M) x)

)
+1}+1.

By the inequality e) we have

reg
(
Ki−1(M/xM)

)
≤ ni−1.

Moreover, as x is filter-regular with respect to Ki−1(M) we have once more
reg
(
(0 :Ki−1(M) x)

)
≤ end

(
H0
R+

(Ki−1(M))
)
≤ reg

(
Ki−1(M)

)
, so that by the

inequality f) we have

reg
(
(0 :Ki−1(M) x)

)
≤ vi−1.

Thus, gathering together, we we obtain (see Definition 4.6 (v)):

g) reg
(
Ki(M)/xKi(M)

)
≤ max{ni−1, vi−1 + 1}+ 1 = mi.
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Assume first, that 2 ≤ i ≤ d − 1. By the definitions of vi and ni (see Defini-
tion 4.6 (v),(vi)) it follows easily

ti := max{mi, ni} ≥ i.

Moreover, if we apply the sequence a) with j = i and keep in mind the in-
equality e) we get (see also Reminder and Definition 2.2 A)e))

gendeg
(
(0 :Ki(M) x)

)
≤ reg

(
Ki(M/xM)

)
≤ ni.

So, by Proposition 4.3, applied to the graded R-module Ki(M) with m := ti
and with Lemma 4.5 applied with n = ti and with i− 1 instead of i we obtain

reg
(
Ki(M)

)
≤ ti + h0

Ki(M)(ti) ≤ ti + dimK

(
Ki(M)ti

)
≤

≤ ti +
i−1∑
j=0

(
ti − j − 1

i− j − 1

)[ i−j−1∑
l=0

(
i− j − 1

l

)
di−l−1
M (l − i+ 1)

]
.

In view of Definition 4.6 (viii),(ix) this means that

reg
(
Ki(M)

)
≤ Gi

d

(
d0
M(0), d1

M(−1), . . . , dd−1
M (1− d), beg(M)

)
.

This completes our proof in the cases with i ≤ d− 1.

It remains to treat the cases with i = d > 2. Observe that by Proposition 3.11
we have gradeKd(M)(R+) = 2, so that again reg

(
Kd(M)

)
= reg1

(
Kd(M)

)
.

Keep in mind, that x is filter-regular with respect to Kd(M). So, if we apply
Lemma 4.2 to this latter module and bear in mind the previous inequality g)
we obtain

reg
(
Kd(M)

)
≤ reg

(
Kd(M)/xKd(M)

)
≤ md.

In view of Definition 4.6 (x) this means that

reg
(
Kd(M)

)
≤ Gd

d

(
d0
M(0), d1

M(−1), . . . , dd−1
M (1− d), beg(M)

)
.

This completes our proof. �

4.10. Corollary. Let d ∈ N, and let x0, x1, . . . , xd−1 ∈ N0 and y ∈ Z. Then
for each pair (R,M) ∈Md such that

djM(−j) ≤ xj ∀j ∈ {0, 1, . . . , d− 1}, beg(M) ≥ y

it holds

reg
(
Ki(M)

)
≤ Gi

d(x0, x1, . . . , xd−1, y), ∀i ∈ {0, 1, . . . , d}.

Proof. This is immediate by Theorem 4.9 and Remark 4.7. �

4.11. Remark. A) (Around Regularity of Deficiency Modules) (see [10]) The
main result Theorem 4.9 of the present section and its consequence Corollary
4.10 may be proved in a more general context. These results namely hold
over all Noetherian homogeneous rings R =

⊕
n∈N0

Rn with Artinian local
base Ring R0. Clearly, in this general setting, the notion of deficiency module
has to be defined in a different way. Moreover, these results have a number
of further applications, which we quote here in simplified form. We always
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assume that R is as above, that M is a finitely generated graded R-module
and that i ∈ N0.

a) The invariant reg(Ki(M)) is bounded in terms of the three invariants
beg(M), reg2(M) and PM(reg2(M)).

b) If a ⊆ R is a graded ideal, then reg(Ki(a)) and reg(Ki(R/a)) can be
bounded in terms of the three invariants reg2(a), length(R0), reg1(R) and
the number of generating one-forms of R.

B) (The Case of Polynomial Rings) In the particular case, where

R = R0[x1,x2, . . . ,xd]

is a standard graded polynomial ring over the Artinian local ring R0, we have
in addition the following statements.

c) If U 6= 0 is a finitely generated graded R-module and M ⊆ U is a graded
submodule, then reg(Ki(M)) and reg(Ki(U/M)) are bounded in terms of
d, length(R0), beg(U), reg(U), the number dimR0/m0(U/(m0 + R+)U) of
generators of U and the generating degree gendeg(M) of M .

d) If U and M are as in statement c), then reg(Ki(M)) and reg(Ki(U/M)) are
bounded in terms of length(R0), beg(U), reg(U), the Hilbert polynomial
PU of U and the Hilbert polynomial PM of M .

e) It p : F → M → 0 is an epimorphism of graded R-modules such that F
is free and of finite rank r, then reg(Ki(M)) is bounded in terms of d, r,
length(R0), beg(F ), gendeg(F ) and gendeg(Ker(p)).

C) (Presentation Matrices) Keep the notations and hypotheses of part B), but
assume in addition, that the base ring R0 is a field. Let

s⊕
j=1

R(−βj)
q−→

r⊕
i=1

R(−αi) −→M −→ 0

α1 ≤ α2 ≤ · · · ,≤ αr, β1 ≤ β2 ≤ · · · ,≤ βs(
with r, s ∈ N, and αi, βj ∈ Z for all i = 1, 2, . . . r and all j = 1, 2, . . . s

)
be a free graded presentation of the finitely generated graded R-module M
with presentation matrix A. So, we have

A = [aij | i = 1, 2, . . . , r; j = 1, 2, . . . , s] ∈ Rs,r,

with ai,j ∈ Rβj−αi
,
(
i = 1, 2, . . . , r, j = 1, 2, . . . , s

)
– and the map q is given by

f1

f2

fs

 7→

∑s

j=1 a1,jfj∑s
j=1 a2,jfj

∑s
j=1 ar,jfj

 (
f1, f2, . . . , fs ∈ R

)
.
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Now, it follows from statement e) of part B), that the numbers reg(Ki(M))
are bounded in terms of the number d of indeterminates of our polynomial
ring, the number of rows r of the matrix A and the two degrees α1, αr and the
maximal degree of all entries of A. This is particularly important from the
point of view of Computational Algebraic Geometry. Namely, in the setting
of this theory, graded modules over the polynomial ring R are given by the
strings of numbers

α := (α1, α2, . . . , αr) ∈ Zr and β := (β1, β − 2, . . . , βs) ∈ Zs

and the presentation matrix A. Our result says in particular, that the invari-
ants reg

(
Ki(M)

)
are bounded in terms of d and of the two strings α and β.

Actually, to bound the regularities in questions, only the invariants d, r, α1, αr
and βs must be known. The strings α and β fix a discrete skeleton for the
module M, whereas the entries ai,j encode the continuous data of M . So, the
invariants reg

(
Ki(M)

)
are bounded by the discrete skeleton of M.

What we have just observed is particularly appealing, if M is a cyclic R-
module generated in degree 0 and hence of the form M = R/a, where a  R
is a (non-zero) proper graded ideal. In this case, we namely may chose

r = 1, α1 = 0 and A = (a1, a2, . . . , as),

where (aj)
s
j=1 is a (minimal) homogeneous system of generators of the ideal

a. Now, the invariants reg
(
Ki(R/a)

)
are bounded only in terms of d and the

generating degree

gendeg(a) = max{deg(aj) | j = 1, 2, . . . , s}
of a.



5. Bounding Cohomology

Now, we return to our original aim, which was to give criteria allowing to
specify classes D ⊆ St of finite cohomology for a given positive integer t. We
begin with a bound for the cohomological postulation numbers

νiM := inf{n ∈ Z | piM(n) 6= hiM(n)}

of a finitely generated graded module M over a Noetherian homogeneous K-
algebra R, as they were introduced in Remark and Definition 3.7 C). The
notations are the same as in Section 4.

5.1. Proposition. Let d ∈ N, let i ∈ {0, 1, . . . , d−1}, let x0, x1 . . . , xd−1 ∈ N0,
let y ∈ Z, let (R,M) ∈Md such that

djM(−j) ≤ xj ∀i ∈ {0, 1, . . . , d− 1}, beg(M) ≥ y.

Then

νiM ≥ −Gi
d(x0, x1, . . . , xd−1, y).

Proof. This is immediate by Corollary 4.10 and Proposition 3.8. �

We first aim to apply this result in she sheaf theoretic context using the concept
of postulation number of sheaf as defined in Remark and Definition 3.7 E). To
this end we now introduce some appropriate notation.

5.2. Notation. Let t ∈ N0 and let i ∈ {0, 1, . . . , t}. We define the bounding
function

Lit : Nt+1
0 → Z

by setting

Lit(x0, x1, . . . , xt) := −Gi+1
t+1(x0, x1, . . . , xt, 0), ∀x0, x1, . . . , xt ∈ N0,

where the function

Gi+1
t+1 : Nt

0 × Z→ Z

is defined according to Definition 4.6.

Now, we are ready to formulate and to prove our first main application of
Proposition 5.10, which says that the cohomology diagonal of a coherent sheaf
F over a projective K-scheme X bounds the cohomological postulation numbers
of the sheaf F .

5.3. Theorem. Let t ∈ N0, let i ∈ {0, 1, . . . , t}, let x0, x1, . . . , xt ∈ N0, and let
(X,F) ∈ St such that

hjF(−j) = hi(X,F(−j)) ≤ xj ∀j ∈ {0, 1, . . . , t}.

Then

νiF ≥ Lit(x0, x1, . . . , xt).
49
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Proof. We chose a pair (R,M) ∈Mt+1, such that (X,F) = (Proj(R), M̃). As

M̃ = M̃≥0 we may replace M by M≥0 and hence assume that

beg(M) ≥ 0.

Keep in mind that dimR(M) = t+ 1 and that by Notation and Reminder 1.5
C) we have

djM(−j) = hj(X,F(−j)) ≤ xj, ∀j ∈ {0, 1, . . . , t}.
So, we may apply Proposition 5.10 with y = 0 and with i+ 1 instead of i and
obtain

νi+1
M ≥ −Gi+1

t+1(x0, x1, . . . , xt, 0) = Lit(x0, x1 . . . , xt).

By Remark and Definition 3.7 E)a) we have in addition that νiF = νi+1
M pro-

vided that i > 0. In these cases we therefore have our claim. So, it remains to
consider the case i = 0. By Remark and Definition 3.7 E)b) and the previous
estimate we have

ν0
F ≥ min{ν1

M , 0} ≥ min{L0
s(x0, x1, . . . , xs), 0}.

According to Definition 4.6 (iii) we have

L0
s(x0, x1, . . . , xs) = −G1

s+1(x0, x1, . . . , xs, 0) < 0,

so that indeed ν0
F ≥ L0

s(x0, x1, . . . , xs), as requested. �

In order to draw conclusions from the previous estimate we need a further
result, which was originally shown in [12]. In these lectures, we will not prove
it. For a complete and self-contained presentation we recommend to consider
Section 8 of [5].

5.4. Theorem. Let t ∈ N0 and let (X,F) ∈ St. Then

a) reg(F) ≤
(
2
∑t

i=1

(
t−1
i−1

)
hiF(−i)

)2t−1

=: B.

b)
∑t

i=1

(
t−1
i−1

)
hiF(n− i) ≤ B

2
for all n ∈ N0.

Now, combining Theorem 5.3 and Theorem 5.4 and using the terminology
introduced in Section 1, we get the following finiteness result:

5.5. Theorem. Let t ∈ N0, let r ∈ Z and let x0, x1, . . . , xt ∈ N0. Then the
class

D = Dx0,x1,...,xt := {(X,F) ∈ St | hiF(r − i) ≤ xi, ∀i ≤ t}
is of finite cohomology.

Proof. After twisting we may assume that r = 0. Let B as in Theorem 5.4 a)
and set

C := min{−t,min{−Lit(x0, x1, . . . , xt) | i = 0, 1, . . . , t}}.
According to Theorem 5.4 a),b) the class D is of finite cohomology on the set

S := {(i, n) | 1 ≤ i ≤ t, n ≥ −i}.
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Moreover, the inequality a) proved in the current of the proof of Lemma 4.5
together with the observations made in Notation and Reminder 1.5 C) yields
that

a) hiF(n) ≤
∑i

j=0

(−n−j−1
i−j

)[∑i−j
k=j

(
i−j
k−j

)
xk
]

for all i ∈ N0, all n ≤ −i and all

pairs (X,F) ∈ D.

This implies that the class D is of finite cohomology on the set

T := {(i, n) | 0 ≤ i ≤ t, C − t− 2 ≤ n ≤ −i}.
By Theorem 5.4 we have νiF ≥ C and hence

b) piF(n) = hiF(n) for all (X,F) ∈ D, for all i ∈ N0 and for all n ≤ C − 1.

In particular, for all (i, n) ∈ T we have piF(n) = hiF(n). As D is of finite
cohomology on T and all polynomials piF are of degree at most t, it follows:

c) The set {piF | 0 ≤ i ≤ t, (X,F) ∈ D} is finite.

But now another use of the previously observed coincidence b) of cohomological
Hilbert functions hiF and cohomological Serre polynomials piF in the range
n ≤ C − 1 for all (X,F) ∈ D, it follows that the family D is also of finite
cohomology on the set

U := {(i, n) | 0 ≤ i ≤ t, n ≤ −i}.
It thus remains to show that the class D is of finite cohomology on the set

V := {0} ×N.
Observe first, that by statement c) and by Remark and Definition 3.7 D)d)
the set of Serre-polynomials {PF | (X,F) ∈ D} is finite. So, from Reminder
and Remark 1.8 C)c) and Theorem 5.4 a) it follows that the set of restricted
functions

{h0
F �Z>B

: Z>B → N0 | (X,F) ∈ D}
is finite. But this implies, that the class D is of finite cohomology on the set

W := {0} × Z>B.
It remains to be shown that the class D is of finite cohomology on the finite
set

I := V \W = {0} × {1, 2, . . . , B}.
This means to show that the set of restricted functions

H := {h0
F �{1,2,...,B}: {1, 2, . . .} → N0 | (X,F) ∈ D}

is finite. As in statement b) in the proof of Lemma 4.5 we see that d0
M(n−1) ≤

d0
M(n) for all n ∈ Z and all (R,M) ∈Mt+1. So, by Notation and Reminder 1.5

C) we get
h0
F(n− 1) ≤ h0

F(n), ∀n ∈ Z, ∀(X,F) ∈ St.
As the class D is of finite cohomology on the singleton set {(0, B+1)} it follows
immediately, that the set H is finite. �
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Rephrasing the previous result we may say:

5.6. Corollary. Let t ∈ N0 and let r ∈ Z. Then, a subclass D ⊆ St is of finite
cohomology if and only if it is of finite cohomology on the diagonal subset

∆ = ∆r = ∆t
r := {(i.r − i) | i = 0, 1, . . . , t}.

Proof. This is immediate by Theorem 5.5. �

5.7. Definition and Remark. A) (Bounding Sets for Cohomology) Let t ∈ N0

and let D ⊆ St. A subset

S ⊆ {0, 1, . . . , t} × Z
is called a bounding set for cohomology with respect to the class D, if each
subclass E ⊆ D which is of finite cohomology on S is of finite cohomology at
all. If S is a bounding set with respect to the full class St it is called a bounding
set for cohomology (at all).

B) (Rephrasing Corollary 5.6) Keep the notations and hypotheses of part A).
We now may rephrase Corollary 5.6 as follows:

a) Each set S ⊆ {0, 1, . . . , t} × Z which contains a diagonal subset ∆ = ∆t
r is

a bounding set for cohomology.

The reformulation of Corollary 5.6 suggested above gives rise to the question,
whether there is a combinatorial characterization of all bounding sets. In order
to deal with this problem, we define the notion of quasi-diagonal set.

5.8. Definition. (Quasi-Diagonal Sets) Let t ∈ N0. A subset

Σ ⊆ {0, 1, . . . , t} × Z
is said to be a quasi-diagonal (subset) if there are integers nt < nt−1 < . . . < n0

such that
Σ = {(i, ni) | i = 0, 1, . . . , t}.

Observe, that each diagonal subset ∆ = ∆t
r = {(i, r − i) | i = 0, 1 . . . , t} ⊆

{0, 1, . . . , t} × Z is a quasi-diagonal subset.

We next prove the following auxiliary result.

5.9. Lemma. Let t ∈ N0, let nt < nt−1 < . . . < n0 be integers and let D ⊆ St
be a subclass which is of finite cohomology on the quasi-diagonal subset

Σ := {(i, ni) | i = 0, 1, . . . , t} ⊆ {0, 1, . . . , t} × Z.
Then, the class D is of finite cohomology on the diagonal set

∆ = ∆t
t+nt

:= {(i, t+ nt − i) | i = 0, 1, . . . , t}.

Proof. . After twisting, we may assume that nt = −t, so that

∆ = ∆t
0 = {(i,−i) | i = 0, 1, . . . , t}.

The statement a) made in the proof of Theorem 5.5 yields the estimate
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a) hiF(n) ≤
∑i

j=0

(−n−j−1
i−j

)[∑i−j
k=j

(
i−j
k−j

)
hkF(−k)

]
, for all i ∈ N0, for all n ≤ −i

and for all pairs (X,F) ∈ St.

Now, we prove our claim by induction on the number

σ = σ(Σ) := n0 − t (≥ t).

If σ = t we have Σ = ∆ and our claim is obvious.

So, let σ > t. Then there is some i ∈ {0, 1, . . . , t− 1} such that ni − ni+1 > 1.
We chose i := i(Σ) minimal with this property and proceed by induction on
i = i(Σ). Assume first, that i = 0. Then n1 + 1 < n0 and it follows by the
above statement a) applied with i = 0 that

h0
F(n1 + 1) = h0

F(n0)(n1 + 1− n0) ≤ h0
F(n0)(0) = h0

F(n0), ∀(X,F) ∈ D.
But this implies that the class D is of finite cohomology on the set

Σ′ := {(0, n1 + 1)} ∪ {(j, nj) | j = 1, 2 . . . , t}.
But for this set we also have σ(Σ′) < σ(Σ) = σ. Therefore, by induction the
class D is of finite cohomology on the set ∆.

Now, let i > 0. Then clearly nj − 1− n0 = −j − 1 for all j = 0, 1, . . . , i, hence
nk = n0−k for all k = 0, 1, . . . , i. Therefore the class D is of finite cohomology
on the non-empty set

{(k, n0 − k) | k = 0, 1, . . . , i} = {(k, nk) | k = 0, 1, . . . , i} ⊆ Σ.

So, there is some h ∈ N0 such that

hkF(n0)(−k) = hkF(n0 − k) ≤ h, ∀k ∈ {0, 1, . . . , i}, ∀(X,F) ∈ D.
By the above statement a) – applied with F(n0) instead of F – it follows that
there is some h′ ∈ N0 such that

hiF(ni − 1) = hiF(n0)(ni − 1− n0) = hiF(n0)(−i− 1) ≤ h′, ∀(X,F) ∈ D.
From this we obtain that the class D is of finite cohomology on the set

Σ′′ := {(j, nj) | j = 0, 1, . . . , i−1}∪{(i, ni−1)}∪{(k, nk) | k = i+1, i+2, . . . , t}.
As i(Σ′′) = i(Σ)− 1 = i− 1, we may conclude by induction. �

Now, we can deduce the following result.

5.10. Proposition. Let t ∈ N0 let S ⊆ {0, 1, . . . , t} × Z be a subset which
contains a quasi-diagonal subset

Σ = {(i, ni) | i = 0, 1, . . . , t}, nt < nt−1 < . . . < n0

and let D ⊆ St a subclass which is of finite cohomology on S. Then, the class
D is of finite cohomology at all.

Proof. This is clear by Corollary 5.6 and Lemma 5.9. �

In particular, we can say.
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5.11. Corollary. Let t ∈ N0. Then each set S ⊆ {0, 1, . . . , t} × Z which
contains a quasi-diagonal subset Σ is a bounding set for cohomology.

Proof. This is immediate by Proposition 5.10. �

So, we have seen, that for a set S ⊆ {0, 1, . . . , t} × Z a sufficient condition
for being a bounding set for cohomology is to contain a quasi-diagonal. It is
natural to ask whether this condition is also necessary. This is indeed the case,
as stated by the following result.

5.12. Theorem. Let t ∈ N0. Then, a set S ⊆ {0, 1, . . . , t} × Z is a bounding
set for cohomology, if and only if it contains a quasi-diagonal set.

Proof. The sufficiency of the condition to contain a quasi-diagonal is stated
in Corollary 5.11. The necessity needs some extra work: one supposes that
the set S does not contain a quasi-diagonal. Then, using appropriate vector
bundles on certain Segre products, one constructs families of pairs (X,F) ∈ St
which are of finite cohomology on S but not on the set {0, 1, . . . , t} × Z. For
a detailed proof see [11] (4.6). �

We now give a number of applications of the previous results, which generalize
what we said in Example 1.9 about Hilbert schemes. We begin with linking
classes of finite cohomology to classes of bounded regularity.

5.13. Remark. A) (Specifying classes of Finite Cohomology) Let t ∈ N0 and
let D ⊆ St be a subclass. Fix a quasi-diagonal subset

Σ = {(i, ni) | i = 0, 1, . . . , t} ⊆ {0, 1, . . . , t} × Z, nt < nt−1 < . . . < n0.

Then Proposition 5.10 says that the class D is of finite cohomology if and only
if the set

{hi(X,F(ni)) | (X,F) ∈ D} = {hiF(ni) | (X,F) ∈ D}
is finite for all i ∈ {0, 1, . . . , t}. So, the t+ 1 numerical invariants hiF(ni) with
i = 0, 1, . . . , t may be used to specify subclasses D ⊆ St of finite cohomology.
Indeed, specifying such classes by subjecting numerical invariants to some
conditions, is a basic issue. In this spirit we add the following statements,
whose proves are straightforward:

a) The class D ⊆ St is of finite cohomology if and only if there are integers
r ∈ Z and h ∈ N0 such that reg(F) ≤ r and h0(X,F(r)) ≤ h for all pairs
(X,F) ∈ D.

B) (Classes of Bounded Regularity) We say that the class D ⊆ St is of bounded
regularity if the set of integers

{reg(F) | (X,F) ∈ D}
has an upper bound in Z. On use of our previously shown results, it follows
easily:
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b) The class D ⊆ St is of finite cohomology if and only if it is of bounded
regularity and the set of Serre polynomials {PF | (X,F) ∈ D} is finite.

C) (Regularity and Classes of Subsheaves and Quotient Sheaves) Let t ∈ N0.
we consider the class

S≤t :=
t⋃
i=0

S i

of all pairs (X,F) in which X is a projective scheme over some field K and F
is a coherent sheaf of OX-modules with dim(F) ≤ t. The notions of subclass
D ⊆ S≤t of finite cohomology and of subclass of bounded regularity are defined
in the obvious way as previously. Now, let C,D ⊆ S≤t. We say that D is
a class of subsheaves with respect to C if for all pairs (X,F) ∈ D there is a

monomorphism of sheaves 0→ F h−→ G with (X,G) ∈ C. Again, on use of our
previous results, one may verify the following claim:

a) Let C,D ⊆ S≤t be such that C is of finite cohomology and D is a class of
subsheaves with respect to C. Then the class D is of finite cohomology if
and only if it is of bounded regularity.

If X is a projective scheme over some field K and F ,G are two coherent sheaves
of OX-modules we say that F is a quotient of G if there is an epimorphism of

sheaves G h−→ F → 0. Accordingly we say that D is a class of quotient sheaves
with respect to C if for each pair (X,F) ∈ D there is a pair (X,G) ∈ C such
that F is a quotient of G. In this setting it follows from our previous results:

b) Let C,D ⊆ S≤t be such that C is of finite cohomology and D is a class of
quotient sheaves with respect to C. Then the class D is of finite cohomology
if and only if it is of bounded regularity.

D) (Serre Polynomials and Classes of Subsheaves and Quotient Sheaves) We
now generalize what was said about Hilbert schemes in Example 1.9. Keep the
notations and hypotheses of part C). Let C,D ⊆ St be subclasses. We recall
the following fact, which generalizes Mumford’s basic Bounding Result given
in [30] (see [5] or [13] (20.4.18)).

a) For each polynomial p ∈ Q[X] of degree t and each integer ρ ∈ Z there is a
number β = βr(ρ) such that for each projective scheme X and each epimor-
phism of coherent sheaves of OX-modules F → H → 0 with reg(F) ≤ ρ
and PH = p one has reg(H) ≤ β.

Using this, it is not hard to prove the following statement

b) Let D be a class of subsheaves (resp. of quotient sheaves) with respect
to C and assume that C is of finite cohomology. Then, class D is of finite
cohomology if and only if the set of Serre polynomials {PF | (X,F) ∈ D}
is finite.
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The following special case of the previous statement covers most closely our
observation on Hilbert schemes made in Example 1.9. Fix a pair (X,G) ∈ S≤t
and let D be a class of subsheaves or of quotient sheaves of G. Then, it is not
hard to verify that the following statements are equivalent.

(i) D is a class of finite cohomology.

(ii) D is a class of bounded regularity.

(iii) The set {PF | (X,F) ∈ D} is finite.

Now we give another remark, which concerns bounding sets for cohomology
with respect to specific subclasses of St.

5.14. Remark. A) (Bounding Sets for Classes of Vector Bundles) Let t ∈ N.
It is natural to ask, whether for appropriate subclasses of D ⊆ St there are
more bounding sets for cohomology than those specified by Theorem 5.12 . A
particularly interesting setting for this question is given as follows: Let K be
a field, let

V tK ⊆ St

be the family of all algebraic vector bundles over the projective space PtK =
Proj(K[x0,x1, . . . ,xt]) and let S ⊆ {0, 1, . . . , t} × Z. We say that S bounds
cohomology of vector bundles (over PtK), if each subclass D ⊆ V which is of
finite cohomology on S is of finite cohomology at all. One could a fortiori
expect, that for the class V tK of vector bundles – which is considerably smaller
than the class of coherent sheaves St – a weaker condition could suffice that
S bounds cohomology. But indeed, this is not the case, as we shall prove in
Section 6.

B) (Counting Cohomology Tables) Fix an arbitrary (quasi-)diagonal subset

Σ = {(i, ni) | i = 0, 1, . . . , t} ⊆ {0, 1, . . . , t} × Z, (nt < nt−1 < . . . < n0).

and fix a family of non-negative integers

h̄ := (hi)ti=0.

Then clearly we know by Theorem 5.12, that the number of cohomology tables

NΣ,h̄ := #{hF | (X,F) ∈ St : hi(X,F(ni)) = hi, i = 0, 1 . . . , t}

is finite. Going tediously through our arguments on could indeed get some
upper bound for this number, at least in the case where Σ is the standard
diagonal subset {(i,−i) | i = 0, 1, . . . , t}. So, one could get stuck to the idea
of counting all possible cohomology tables with a given standard cohomology
diagonal, or at least to bound there number in a satisfactory way. Clearly, one
cannot expect, that a bound which is obtained on use of the arguments of our
proves will be satisfactory. The enormous discrepancy between the expected
and the actual number of cohomology tables is made evident in the Master
thesis [15].
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So, our bounding results are not appropriate to perform quantitative argu-
ments in the sense of counting cohomology tables. On the other hand our
results furnish at least the equivalence of the following statements, which also
follows easily from the properties of cohomological patterns (see Remark 2.5).

(i) F = 0.

(ii) hi(X,F(−i)) = 0 for all i ∈ {0, 1, . . . , t}.
(iii) There is some r ∈ Z such that H i(X,F(r−i)) = 0 for all i ∈ {0, 1, . . . , t}.
(iv) hiF = 0 for all i ∈ {0, 1, . . . , t}.

C) (Characterizing Cohomology Tables) Refining what we presented in Section
2 and pushing further the idea of counting cohomology tables, one could try
to characterize all families(

hin
)

(i,n)∈{0,1,...,t}×Z ∈ Π(i,n)∈{0,1,...,t}×ZN0

of non-negative numbers hin which occur as cohomology table hF of some pair
(X,F) ∈ St. We do not know the answer to this problem. Clearly it would
be much more interesting and more challenging to answer this question for
some specific classes D ∈ St. So, one could think to choose D to be the class
of all pairs (X,OX), where X ⊆ PrK runs through all closed subschemes with
a given Serre polynomial POX

= p with deg(p) = t, hence through the class
of closed subschemes parametrized by HilbpPr . Another challenge would be to
attack this problem in the case where D is the class of all vector bundles E of
given rank rank(E) = r over a fixed projective space PtK or with given Serre
polynomial PE .



6. Bounding Cohomology of Vector Bundles

We now want to characterize in purely combinatorial terms the sets S ⊆
{0, 1, . . . , t} × Z which bound cohomology on the class of all algebraic vec-
tor bundles over the projective t-space PtK over an arbitrarily given field K.
Our main result will show, that these bounding sets are indeed the same as
the ones which bound cohomology on the full class St. We begin with a few
preparations.

6.1. Notation and Remark. A) (Vector Bundles over Projective Space)
Throughout this section we fix some field K and a positive integer t. We
write V tK for the class of all (algebraic) vector bundles E over the projective
t-space Pt = Proj(K[x0,x1, . . . ,xt]) over K. So, V tK is the class of all locally
free coherent sheaves of OPtK -modules.

Moreover, we shall write indV tK for the class of all indecomposable (algebraic)
vector bundles over PtK , hence, the class of all coherent locally free sheaves of
OPtK -modules E which are not the sum of two non-zero sheaves ofOPtK -modules.

B) (Embedding into the Class of Coherent Sheaves) There is a canonical injec-
tive map

V tK −→ St given by E 7→ (PtK , E) for all E ∈ V tK .
By means of this map, we always consider V tK as a subclass of St and hence
write

indV tK  V tK  St.

The basic ingredient we need to prove the main result of this section, is
actually of combinatorial nature, and concerns the structure of certain sets
S ⊆ {0, 1, . . . , t} × Z. We begin with some preparations. We will use repeat-
edly the diagonal projection

% : {0, 1, . . . , t} × Z −→ Z; (i, n) 7→ %(i, n) := i+ n.

Moreover, if U ⊆ Z we form the supremum sup(U) and the infimum inf(U) of U
in Z∪{±∞} with the usual convention that sup(∅) = −∞ and inf(∅) := +∞.

6.2. Definition. A) (Beginning and Ends of Sets) Let S ⊆ {0, 1, . . . , t} × Z.
Let i ∈ {0, . . . , t}. We define the beginning and the end of the set S at level i
respectively by:

begi(S) := inf{n ∈ Z | (i, n) ∈ S};
endi(S) := sup{n ∈ Z | (i, n) ∈ S}.

B) (Heights, Depths and Widths of Sets) The height and the depth of the set
S ⊆ {0, 1, . . . , t} × Z. are defined respectively by:

height(S) := sup{i ∈ Z | ∃n ∈ Z : (i, n) ∈ S};
depth(S) := inf{i ∈ Z | ∃n ∈ Z : (i, n) ∈ S}.
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The width of S is defined by

width(S) := height(S)− depth(S).

6.3. Reminder. A) (Combinatorial Patterns) According to [9] (1.2), the set
S ⊆ {0, 1, . . . , t} × Z is called a combinatorial pattern, if:

a) depth(S) = 0;
b) (i, n) ∈ S⇒ ∃j ≤ i : (j, n+ i− j + 1) ∈ S;
c) (i, n) ∈ S⇒ ∃k ≥ i : (k, n+ i− k − 1) ∈ S;
d) 0 < i ≤ t⇒ endi(S) <∞.

Observe, that according to Theorem 2.4, the cohomological pattern P(X,F)
of a pair (X,F) ∈ St is a combinatorial pattern of width t, which is in addi-
tion tame, which means that meaning that it satisfies the requirement (f) of
Theorem 2.4.

B) (Minimal Combinatorial Patterns) The set S ⊆ {0, 1, . . . , t}×Z is called a
minimal combinatorial pattern, if it is a combinatorial pattern and if there is
no combinatorial pattern S′  S strictly contained in S.

C) (Diagonal Projections of Combinatorial Patterns) Let S ⊆ {0, 1, . . . , t}×Z
be a combinatorial pattern. Then, according to [9] (2.1) and (2.2), the following
two statements hold for the restriction % : S→ Z of the diagonal projection:

a) The map % : S→ Z is surjective.
b) The map % : S→ Z is bijective if and only if the combinatorial pattern
S is minimal.

D) (A Characterization of Minimal Combinatorial Patterns) Let

Ft := {a := (aj)
p
j=1 | p ∈ N0 and 1 ≤ a1 ≤ a2 ≤ · · · ≤ ap ≤ t− 1}

be the set of all monotonically increasing sequences in {1, . . . , t−1}. According
to the properties of cohomological patterns a)–e) of part A) and statement
b) of part C) there is a bijection between the set Z × Ft and the set of all
minimal combinatorial patterns of width t. Indeed, for each b ∈ Z and each
a = (a1, . . . , ap) ∈ Ft (with p ∈ N0), the set

Mt
b,a :=

(
{0} × Z≥b

)
∪ {(aj, b− j − aj) | 1 ≤ j ≤ p} ∪

(
{t} × Z≤b−t−p−1

)
is a minimal combinatorial pattern of width t. Conversely, each minimal com-
binatorial pattern of width t can be written as Mt

b,a with uniquely determined

b ∈ Z and a ∈ Ft.

Our next result is an Avoidance Principle for Minimal Combinatorial Patterns.
It is the basic combinatorial ingredient for the proof of the main result we are
heading for in this section. This Avoidance Principle has been shown in the
Master Thesis [25]. The proof we give below may be found in [6].
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6.4. Proposition. Assume that the set S ⊆ {0, 1, . . . , t}×Z contains no quasi-
diagonal of width t, that begt(S) 6= −∞ and end0(S) 6= ∞. Then, there is a
minimal combinatorial pattern M of width t such that M ∩ S = ∅.

Proof. Assume that end0(S) = −∞, so that (0, n) /∈ S for all n ∈ Z. Chose
an integer c ≤ begt(S). Then, the minimal combinatorial pattern (see Re-
minder 6.3 B),D))

Mt
c+t,∅ =

(
{0} × Z≥c+t

)
∪
(
{t} × Z≤c−1

)
is disjoint to S.
Assume now that end0(S) 6= −∞, so that end0(S) ∈ Z. Set

b := end0(S) + 1 and c := begt(S).

First, assume that t = 1. As S contains no quasi-diagonal of width t, we then
have c ≥ b− 1 so that M1

b,∅ =
(
{0} × Z≥b

)
∪
(
{1} × Z≤b−2

)
is disjoint to S.

So, assume from now on that t > 1. Our aim is to construct a sequence of
integers (a1, a2, . . . , ap) = a ∈ Ft with p ∈ N0 such that Mt

b,a ∩ S = ∅. To
achieve this, we construct a sequence of integers 0 =: a0 < a1 ≤ a2 ≤ · · · ≤
ai ≤ ai+1 ≤ · · · ≤ ap < t with the following properties:

(1) (ai, b− i− ai) /∈ S for all i ∈ {0, . . . , p}.
(2) If 0 ≤ i < p and ai < ai+1, then (j, b − i − j − 1) ∈ S for all j with

ai ≤ j < ai+1.
(3) p ≥ b− c− t.

By our choice of b and a0, condition (1) is satisfied with 0 instead of p. If
b− c− t ≤ 0 we can set p = 0 and the requested sequence is constructed.
Thus, assume from now on that b − c − t > 0, so that c < b − t . As
(0, b− 1), (t, c) ∈ S and S contains no quasi-diagonal of width t, we have

1 ≤ a1 := inf{k ∈ N0 | (k, b− k − 1) /∈ S} ≤ t− 1.

For this choice of a1, condition (2) is satisfied with 1 instead of p.
Assume now, that the integers a0 < a1 ≤ . . . ≤ as < t (s ∈ N) are already
constructed such that conditions (1) and (2) are satisfied with s instead of p.
If s ≥ b− c− t, we set p := s, and condition (3) is satisfied. So the requested
sequence is constructed in this case. Therefore, it remains to define as+1 if
s < b− c− t. To do so, we distinguish two cases.
If (as, b − s − as − 1) /∈ S, we set as+1 := as. Then, clearly, the sequence
a0, a1, . . . , as+1 satisfies the requirements (1) and (2) with s + 1 instead of p
and we have extended our sequence in the requested way.
So, finally assume that (as, b− s− as − 1) ∈ S. We find integers 0 = i0 < i1 <
. . . < ir < p (r ∈ N0) such that

{i0, . . . , ir} = {i | 0 ≤ i < s and ai < ai+1}.
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Set

T1 :=
r⋃

k=0

{(j, b− ik − j − 1) | aik ≤ j < aik+1} and

T2 := {(j, b− s− j − 1) | as ≤ j < t} ∪ {(t, c)}.
As s < b − c − t it follows that T1 ∪ T2 is a quasi-diagonal of width t. Keep
in mind that by condition (1) we have T1 ⊆ S. As S does not contain a
quasi-diagonal of width t, the set T2 cannot be contained in S. As

(as, b− s− as − 1), (t, c) ∈ T2 ∩ S
it follows that (k, b − k − 1) /∈ S for some k with as < k < t. Choose k mini-
mal with this property and set as+1 := k. Then the sequence a0, . . . , as, as+1

satisfies the properties (1) and (2) with s + 1 instead of p and again we have
extended our sequence in the requested way.
So altogether, the requested sequence is constructed. Setting a = (a1, . . . , ap)
we easily see by conditions (1) and (3) that indeed Mt

b,a ∩ S = ∅. �

The next ingredient needed to prove of our main result is the following Real-
ization Result for Cohomological Patterns of Irreducible Vector Bundles:

6.5. Proposition. Let K be a field and let M ⊆ {0, 1, . . . , t} × Z be a mini-
mal combinatorial pattern of width t. Then, there is an indecomposable vector
bundle E ∈ indV iK , whose cohomological pattern P(E) coincides with M.

Proof. See Proposition 4.5 of [9]. �

Now, we are ready to prove the crucial result we need to reach our goal.

6.6. Proposition. Assume that the set S ⊆ {0, 1, . . . , t}×Z contains no quasi-
diagonal of width t and let K be a field. Then, S does not bound cohomology
in the class V tK of algebraic vector bundles over PtK.

Proof. Assume first, that begt(S) > −∞ and end0(S) < ∞. Then, by Propo-
sition 6.4 there is a minimal combinatorial pattern M of width t such that
M ∩ S = ∅. According to Proposition 6.5, there is a non-zero locally free
indecomposable sheaf E ∈ V tK such that

P(E) := {(i, n) ∈ N0 × Z | hiE(n) 6= 0} = M.

As E⊕r ∈ V tK and hiE⊕r (n) = rhiE(n) for all r ∈ N and all (i, n) ∈ N0 × Z it
follows that the set of cohomology tables {hE⊕r | r ∈ N} is an infinite subset
of

{hF | F ∈ V tK : hiF(n) = 0 for all (i, n) ∈ S}.
Therefore S does not bound cohomology in the class V tK in this case.
Assume now, that begt(S) = −∞ or end0(S) =∞. For each r ∈ N0, set

S[r] := S ∩
(
{0, . . . , t} × {−r,−r + 1, . . . , r − 1, r}

)
.
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Observe that
S =

⋃
r∈N0

S[r].

Clearly, for each r ∈ N0 the set S[r] contains no quasi-diagonal of width t

and moreover satisfies begt(S[r]) ≥ −r and end0(S[r]) ≤ r. So, according to
Proposition 6.4 for each r ∈ N0, there is a minimal combinatorial pattern M[r]

of width t such that
M[r] ∩ S[r] = ∅.

According to Proposition 6.5 for each r ∈ N0 we find a locally free sheaf
E[r] ∈ V tK such that

P(E[r]) := {(i, n) ∈ N0 × Z | hiE[r](n) 6= 0} = M[r].

Now, fix a pair (i, n) ∈ S. Then, there is an integer s(i, n) ∈ N0 such that
(i, n) ∈ S[r] for all r ≥ s(i, n). Consequently hiE[r](n) = 0 for all r ≥ s(i, n).

Therefore
h(i,n) := sup{hiE[r](n) | r ∈ N0} ∈ N0

and hence
hiE[r](n) ≤ h(i,n), for all (i, n) ∈ S and all r ∈ N0.

Our next aim is to show that the set of minimal combinatorial patterns

T := {M[r] | r ∈ N0}
is not finite. Observe first, that for each r ∈ N0 there is some n(r) ∈ N0 such
that (t,−n), (0, n) ∈ M[r] for all n ≥ n(r). Assume now that T is finite, so
that there are finitely many integers r1, . . . , rk with T = {M[r1], . . . ,M[rk]}. As
S = ∪r∈N0S[r] and by our choice of the patterns M[r], we then obtain

S ∩
k⋂
j=1

M[rk] = ∅.

It follows that (t,−n), (0, n) /∈ S for all n ≥ m := max{n(rj) | j = 1, . . . , k}.
But this implies that beg0(S) ≥ −m and end0(S) ≤ m, a contradiction!
So, the set T is infinite, as requested. As a consequence, {hE[r] | r ∈ N0} is an
infinite subset of

{hE | E ∈ V tK : hiE(n) ≤ h(i,n) for all (i, n) ∈ S}.
This shows that S does not bound cohomology in V tK . �

Now, we are ready to prove our main result.

6.7. Theorem. Let K be a field. Then the set S ⊆ {0, . . . , t} × Z bounds
cohomology in the class V tK of algebraic vector bundles over PtK if and only if
S contains a quasi-diagonal of width t.

Proof. This is clear by Theorem 6.6, Theorem 5.12 and by Notation and Re-
mark 6.1 B). �
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6.8. Corollary. Let K be a field and let S ⊆ {0, . . . , t}×Z. Then, the following
statements are equivalent:

(i) S contains a quasi-diagonal of width t.
(ii) S bounds cohomology in the class St.

(iii) S bounds cohomology in the class V tK.

Proof. This is clear by Theorem 5.12 and Corollary 6.7. �

One could ask, whether the previous result still remains true, if one replaces
the class V tK by the smaller class indV tK of indecomposable vector bundles over
PtK . This is not the case, as shown by the following example.

6.9. Example. Let t = 1 and consider the set S := {(0,−1), (1,−1)} ⊆
{0, 1} × Z. Clearly, S does not contain a quasi-diagonal. According to the
algebraic form of Grothendieck’s Splitting Theorem for vector bundles over
the projective line (see [13] (20.5.9) for example), (up to isomorphism) the line
bundles OP1K (n) with n ∈ Z are precisely the indecomposable algebraic vector

bundles over P1
K . So, (up to isomorphism) for each choice of h(0,−1), h(1,−1) ∈ N0

the h(0,−1) + h(1,−1) + 1 bundles

OP1K (n) with − h(1,−1) ≤ n ≤ h(0,−1)

are precisely the indecomposable algebraic vector bundles E over the projective
line P1

K which satisfy hiE(n) ≤ h(i,n) for all (i, n) ∈ S. Hence

#{hE | E ∈ indV1
K : ∀(i, n) ∈ S : hiE(n) ≤ h(i,n)} ≤ h(0,−1) + h(1,−1) + 1.

This clearly shows that the set S does indeed bound cohomology in the class
indV1

K , although it does not contain a quasi-diagonal.

6.10. Question. We do not know a purely combinatorial characterization of
the sets S ⊆ {0, 1, . . . , t} × Z which bound cohomology on the class indV tK .
This leaves us with the question, whether such a combinatorial characterization
can be made explicit. A partial answer to this question is given in [6].
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