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Preface
The Significance of the Circle. The circle may be considered as one of
the most basic geometric objects at all, whose omnipresence in every-days life
made it to an object of human investigation since the ancient age. Therefore,
the circle also plays a fundamental rôle in Mathematics, and we all know that
a great part of Geometry taught at Secondary- and High Schools is more or
less intimately related to the circle. This made us choose the circle as the
central object of the present course.
Clearly, we all know the circle as an object of great practical meaning, as we
meet it in form of wheels and related objects at many instances. But the circle
is and always was also an object of great impact on Mathematics and Philos-
ophy. In this course, we hope to shed some light to both aspects of the circle.
It is obviously impossible to present a complete picture of the tremendous
wealth of mathematical treasures related to the circle. We shall restrict our-
selves to some mathematical aspects of the circle, which are accessible to el-
ementary Geometry, Algebra and Calculus, as they are taught at High Schools.

Brief Preview to the Content. The present notes contain essentially more
material, than treated in our course. Our idea is, to present a text, which en-
courages the reader to study the subjects treated in the course in more detail
on his own. The course is rather understood to just give a guideline, how to
work through the notes. We follow the idea, that the notes should be written
in stringent mathematical style, with proper definitions, strictly formulated
statements, and deductive proofs, as far as possible. So, part of our presenta-
tion will exceed what can be treated in the class room. But we hope that this
offers a chance to the reader, to brush up what he has learned while attending
University. It namely is a most important issue for mathematics teacher, that
they keep staying familiar with professional mathematical thinking.
But clearly, we also keep in mind the point of view of teaching Mathematics
in High School. As said already above, the choice of our theme was inspired
by this “class-room perspective”. But we also include a number of examples
and exercises, which can be transferred directly to the classroom. To provide
some help for this transfer, we include a special section “Didactic Comments”
to each Chapter. For some proofs, we also offer two variants, with the idea to
increase the chance to find a presentation fitting to the class-room.
A further aim of this course is to do initiate some “eye-opening”, by introduc-
ing subjects which are natural and inspiring extensions of what we did while
treating the circle. So, inspired by the classical definition of circle, we to in-
troduce the concept of metric and present a few examples of metrics in the
plane. We also refer to the Bible to discuss the statement, that the “circum-
ference of a round vessel of diameter of 10 ells is 30 ells”. Moreover, we present
an anecdote which claims that the circumference of a circle is three times its
diameter – and turn this statement in challenging exercise. We also twice
consider the cycloid, a curve intimately related to the circle. The problem of
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defining the notion of circumference of a circle in a proper way will lead us to
look at lengths of smooth parametrized curves. Here we use some arguments,
which go beyond what can be treated at High School. Our aim is to “bring
back to the the readers ear some sounds” they heard during their University
studies. We do this, to give evidence, that the elementary subjects treated at
High School usually are just the tip of the “iceberg” of some deeper mathe-
matical considerations. This hopefully provokes some eye-opening (or rather
ear-opening) in the readers. Generalizing the notion of length of a curve, we
even just look at path lengths of sets. This subject is illustrated by a number
of examples and exercises, which could be treated at High School – hopefully
with an “eye-opening” effect. Finally, we take up the problem of squaring the
circle. This will lead us to two different types of eye-opening: We namely first
discuss how to perform the four basic arithmetic operations by straightedge
and compasses. This clearly is eye-opening on the class-room level. Then we
recall and make precise the notions of constructible, algebraic and transcen-
dent numbers. This second eye-opening takes place on the teachers level and
will remind the readers of some subjects they heard in their basic Algebra
courses at University.

These notes are divided in five Chapters, namely:

Chapter 1: The Circle
Chapter 2: Approaching π
Chapter 3: Defining π as a Limit
Chapter 4: What is the Circumference?
Chapter 5: Squaring the Circle.

Prerequisites. Clearly, we have to assume that the reader has a basic back-
ground in Set Theory, Elementary Logics, Elementary Arithmetics, Elemen-
tary and Linear Algebra, Plane Geometry, Vector Geometry, Basic Calculus
and – above all – the motivation and practice to follow some basic abstract
mathematical arguments. We now fix a few notations which we will keep
throughout these notes.

0.1 Notations and Conventions. (A) (Basic Sets of Numbers) By R we
denote the set of real numbers, by Q the subset of R which consists of all
rational numbers – hence of all fractions – and by Z the set of all integers. The
numbers which belong to the set R \Q, hence the non-rational real numbers,
are referred to as irrational numbers. Note that we have

Z  Q  R
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with

Z = {0,±1,±2, . . .},

Q = {a
b
| a ∈ Z, b ∈ Z \ {0}}, and

R = {limn→∞qn | qn ∈ Q, qn ≤ qn+1 ≤ Q for n = 1, 2, . . . and some Q ∈ Q}.

(B) (Specified Sets of Numbers) If S ⊆ R and a ∈ R we write

S≥a := {s ∈ S | s ≥ a} and S>a := {s ∈ S | s > a}.

Similarly, for each b ∈ R we set

S≤b := {s ∈ S | s ≤ b} and S<b := {s ∈ S | s < b}.

This allows to introduce the set of non-negative integers and the set of natural
numbers respectively by

N0 := Z≥0 and N := Z≥1 = N0 \ {0}.

If a, b ∈ R we also may define the closed interval respectively the open interval
between a and b respectively by:

[a, b] := R≥a ∩ R≤b + {x ∈ R | a ≤ x ≤ b}.

]a, b[:= R<a ∩ R>b + {x ∈ R | a < x < b}.

(C) (Basic Notions of Plane Geometry) Our basic geometric object is the
(standard affine) plane, which we shall denote by E. We endow E with a
(standard normal coordinate system) with an x-axis and a y-axis. So, each
point P ∈ E is determined by its pair of coordinates (xP , yP ) ∈ R2. Without
further mention, we use this to identify the point P ∈ E with its pair of
coordinates (xP , yP ) and hence write

E = R2 = {(x, y) | x, y ∈ R}.

The line segment between two points P,Q ∈ E will be denoted by |PQ|. So in
the above notations we have

|PQ| = |QP | = {(txP + (1− t)xQ, tyP + (1− t)yQ) | 0 ≤ t ≤ 1}.

The distance between two points P,Q ∈ E coincides with the length of the line
segment |PQ| and is given by

dist(P,Q) =
√

(xQ − xP )2 + (yP − yP )2.

(D) We also will sometimes consider R2 as a vector space over R. In this case
we consider the pairs (x, y) ∈ R2 as as vectors and we write them as columns,
hence in the form (

x
y

)
∈ R2.
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Keep in mind, that in this context the addition of vectors respectively the
scalar multiplication of vectors with real numbers are respectively defined by(

x
y

)
+

(
x′

y′

)
:=

(
x+ x′

y + y′

)
and λ

(
x
y

)
:=

(
λx
λy

)
, for all x, x′, y, y′, λ ∈ R.

The length or norm of the vector

−→v =

(
x
y

)
∈ R2

is given by

‖−→v ‖ =
∥∥(x

y

)∥∥ :=
√
x2 + y2.

If P,Q ∈ E = R2 are two points, the vector pointing form P to Q is given by

−→
PQ :=

(
xQ − xP
yQ − yP

)
.

Observe, that in this situation we have

dist(P,Q) = ‖
−→
PQ‖.

Often we write
O := (0, 0) ∈ E

for the origin of our coordinate system, so that – for each point P ∈ E – the
vector

−→
OP =

(
xP
yP

)
∈ R2

is the position vector of P .

(E) (Basic Notions from Calculus) We assume that the reader has good knowl-
edge on the basics of calculus, such as limits, suprema, infima, continuous
functions, derivatives, Riemann integration.

(F) (Basic Notions from Linear and Abstract Algebra) In our last chapter,
we assume that the reader knows certain basic notions from Linear Algebra
and Abstract Algebra. This includes the notion of dimension of vector spaces
(over the rational numbers) and the handling of polynomials with rational
coefficients.

Acknowledgement. The author’s thanks go to Professor Ernest Beyaraza,
for having initiated the North-South Cooperation between the University of
Zürich and Kabale University and Uganda Martyr’s University in Kabale,
which among other activities resulted in the present course. He also thanks
very much to the great and generous hospitality and support offered to the
Summer School by St. Mary’s College at Rushoroza, Kabale. He also thanks
to all the participants, who did sacrifice a holyday week for attending this
course and for their attention and willingness to learn.
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1. The Circle
The Elementary Description of the Circle. As usually in Mathematics,
we need to define our objects of investigation, before we can start to study
them. So, we now right away repeat the well-known definition of circle, which
actually seems to go back to Euclid (Greek Mathematician, ca. 300 B.C.):

1.1 Definition. (A) (Metric Definition of the Circle) A circle C in the plane
E is the locus (or – equivalently – the set) of all points P in E which have the
same distance (say r) from a given point (say Z) in E. In this situation, the
point Z is called the center of the circle C and the common distance r of all
points of C from the center Z is called the radius of C. In terms of Set Theory
we thus could write

C = Cr(Z) := {P ∈ E | dist(P,Z) = r}.

(B) (Metric Definition of Closed and open Circular Disks) Let C = Cr(Z) ⊆ E
be the circle of radius r and center Z. Then we introduce the closed disk with
boundary C, thus the set

D = Dr(Z) := {P ∈ E | dist(P,Z) ≤ r},

which we call also the closed disk of radius r and center Z. Sometimes, it will
also be appropriate to consider the interior of the closed disk Dr(Z), hence
the set

U = Ur(Z) := Dr(Z) \ Cr(Z) = {P ∈ E | dist(P,Z) < r},

which is also called the open disk of radius r and center Z.
Let us also recall that mainly in analysis the two disks Dr(Z) and Ur(Z) are
called respectively the closed or open r-neighborhood of Z, with r replaced by
the Greek letter ε > 0.

Figure 1.1: Circle and Disk with Center Z and Radius r
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1.2 Remark. (A) (The Relative Nature of the Metric Definition of the Circle)
Clearly, the above definition is of relative nature. It namely supposes, that the
notion of plane and the notion of distance between points in this plane are
already available. So, if one would like to proceed in a completely rigorous way,
one first would have to introduce these two notions in a consistent way. This
actually is a task of Axiomatic Geometry, which goes beyond the framework
of these lectures.
Let us just say here, that Euclids “Elements” are usually considered as the first
attempt to build up a mathematical theory in an axiomatic manner. From
the point of view of contemporary Mathematical Logics, the “Elements” do
not yet quite satisfy the requirements of being really an axiom based theory.
Nevertheless the impact of Euclid’s idea, to build up a mathematical theory
only by logical deduction from a few axioms, was of basic significance for the
development of Mathematics at all.
It was actually only towards the end of the 19th century, when a strictly
axiomatic build-up of Geometry was formulated, for example by the German
mathematician David Hilbert (1863-1943).

(B) (The Premathematical Aspect of the Metric Definition of the Circle) From
a heuristic or premathematical point of view, the above definition of circle is
quite satisfactory, and it indicates for example how a circle can be drawn by
means of a nail (marking the center Z) and a string of length r fixed to this
nail.
A technically more advanced version of the same idea is the use of compasses
(see Figure 1.2).

Figure 1.2: Drawing a Circle with Center Z and Radius r

Metrics and Generalized Circles. The metric definition of the circle and
of the circular disk make indeed sense in a very general setting - namely in the
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situation in which the plane E is replaced by an arbitrary metric space. We
present this idea below. The first step consists in introducing the notion of
metric space, or equivalently, the notion of metric on a set. We also will intro-
duce a few metrics of the plane, among them the standard metric, hence the
usual distance. A metric is a device mimicking – more precisely: generalizing
– the notion of distance in the plane. Correspondingly, using a metric instead
the usual distance to define a circle, will give us new types of “circles”, which
sometimes are of unexpected shape.

1.3 Definition, Remark and Exercise. (A) (The Concept of Metric Space)
Let M be a non-empty set. A metric on M is a map

d : M×M −→ R, (P,Q) 7→ d(P,Q) ∈ R (∀P,Q ∈M)

which assigns to each pair (P,Q) of elements P,Q ∈M a real number d(P,Q)
– a real number which is considered as the distance between P and Q. So,
one subjects the map d : M×M −→ R, to some additional conditions, which
reflect the idea of distance in a very general manner. These requirements on
the map d are:

(a) (Symmetry) d(P,Q) = d(Q,P ) for all P,Q ∈M.
(b) (Positivity) For all P,Q ∈ M it holds d(P,Q) ≥ 0 with equality if and

only if P = Q.
(c) (The Triangle Inequality) For all P,Q,R ∈M it holds

d(P,R) ≤ d(P,Q) + d(Q,R).

Figure 1.3: The Notion of Metric

By a metric space we mean a pair (M, d) in which M 6= ∅ is a (non-empty) set
and d : M×M→ R is a metric on M.
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(B) (The Standard Metric of the Plane) Convince yourself – in the sense of an
exercise – that the assignment

dist : E× E −→ R, (P,Q) 7→ dist(P,Q) (∀P,Q ∈ E)

defines a metric on the plane E. This metric is called the standard metric on
the plane E.
To describe this metric in a more formal way, we introduce a rectangular stan-
dard coordinate system in E, consisting of an x- and a y-axis. Then consider
the points

P = (xP , yP ) ∈ E and Q = (xQ, yQ) ∈ E
with coordinates xP , yP and xQ, yQ respectively. Check as an exercise, that

dist(P,Q) =
√

(xQ − xP )2 + (yQ − yP )2.

Prove, exclusively on use of this algebraic description of distance, that the
map dist : E × E → R satisfies indeed the three requirements of symmetry,
positivity and of the triangle inequality as formulated in part (A).

Figure 1.4: The Standard Metric

(C) (The New York Taxi Driver Metric) Let again P = (xP , yP ) ∈ E and
Q = (xQ, yQ) ∈ E be two points in the plane E with coordinates xP , yP and
xQ, yQ respectively. We set

d[sc](P,Q) := |xQ − xP |+ |yQ − yP |.

Prove that the assignment

d[sq] : E× E −→ R, (P,Q) 7→ d[sq](P,Q) ∈ R (∀P,Q ∈ E)
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defines a metric on the plane E. This metric is called the square metric or the
New York taxi driver metric.

Figure 1.5: The New York Taxi Driver Metric

Explain the name of New York taxi driver metric. Show also, that

dist(P,Q) ≤ d[sq](P,Q) ∀P,Q ∈ E.
Fix some point O ∈ E and sketch the set

{Q ∈ E | dist(P,O) = d[sq](P,O)}.

(D) (The French Railway Metric) We fix a point O ∈ E and set

d[O](P,Q) :=

{
dist(P,Q), if O,P and Q are collinear ,

dist(P,O) + dist(O,Q), else

for all P,Q ∈ E. Prove, that the assignment

d[O] : E× E −→ R, (P,Q) 7→ d[O](P,Q) ∈ R (∀P,Q ∈ E)

defines a metric on the plane E. This metric is called the central point metric
or French railway metric on E with respect to O.
Explain the name of French railway metric. Show that

dist(P,Q) ≤ d[O](P,Q) for all P.Q ∈ E.
Fix P ∈ E \ {O} and sketch the sets

U := {Q ∈ E | dist(P,Q) = d[O](P,Q)},

V := {Q ∈ E | d[O](P,Q) ≤ 3dist(P,Q)},
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Let O := (0, 0), P := (0, 2) compute the function

f : R −→ R given by t 7→ f(t) := d[O]((t, 1), P ) for all t ∈ R
and sketch the graph of this function.

Figure 1.6: The French Railway Metric

Now, we will define the notion of circle and circular disk with respect to arbi-
trary metrics, and consider a few examples.
1.4 Definition and Exercise. (A) (Metric Circles and Disks) Let

d : E× E −→ R, (P,Q) 7→ d(P,Q) ∈ R (∀P,Q ∈ E)

be a metric on E. Let Z ∈ E and r ∈ R>0. Then, the circle of radius r and
center Z with respect to d is defined as

C[d]r (Z) := {P ∈ E | d(P,Z) = r}.
Moreover the closed and open disk of radius r and center Z with respect to d
are respectively defined by

D[d]
r (Z) := {P ∈ E | d(P,Z) ≤ r},

U [d]
r (Z) := {P ∈ E | d(P,Z) < r},

(B) (Strange Circles) Sketch the following disks an circles:

(a) D[d[O]]
2 (Z) and C[d

[O]]
5
2

(Z) for O,Z ∈ E with dist(O,Z) = 1.

(b) D[d[sq]]
2 (Z) and D[d[O]]

5
2

(Z) for O,Z ∈ E with dist(O,Z) = 1.

(c) U [d[O]]
1
2

(Z) and C[d
[O]]

1
2

(Z) for O,Z ∈ E with dist(O,Z) = 1.



12

Parametrizing the Circle. After this look at strange circles and disks, we
return to our standard circle, which we aim to describe now by means of a
parametrization. This analytic description is obviously a most powerful tool
to describe and to study the circle. But parametrizations are indeed a much
more general tool, which allows to describe and to study arbitrary plane curves.
The basic idea of the parametric description is to study geometric properties
of plane curves by means of analytic tools, usually from bi-variate calculus.
We will make use of this later in our course at several instances.
Another analytic or algebraic approach to plane curves is to describe them as
sets of points whose coordinates satisfy a given bi-variate equation. This way
of looking at plane curves is often called the implicit description. This way to
look at curves is inherent to Algebraic Geometry or Analytic Geometry. Nev-
ertheless, in this course, we will not treat the implicit approach to the circle
or other curves.
Both – the parametric and the implicit approach to plane curves rely funda-
mentally on the concept of coordinatization of the plane, hence the use of a
(standard) coordinate system. The idea of coordinatization of the plane (or
of the space) was around in Mathematics already very early. But it was only
the French mathematician and philosopher R. Descartes (1596-1650, latinized
name: Cartesius) who introduced and used this concept in a systematic way
and thus revolutionized Mathematics fundamentally. Therefore, standard co-
ordinate systems in the plane or in space are often called Cartesian coordinate
systems. The notion of Cartesian product used for example in Set Theory also
refers to this.

1.5 Exercise and Definition. (A) (The Standard Parametrization of the
Circle) Let Z = (xZ , yZ) ∈ E = R2 and let r ∈ R>0. We consider the map

ϕ = ϕ[Z]
r : [0, 2π] −→ R2 = E, t 7→ ϕ(t) = ϕ[Z]

r (t) := (x(t), y(t))

with coordinate functions x, y : [0, 2π] −→ R given by

x(t) := xZ + rcos(t) and y(t) := yZ + rsin(t) for all t ∈ [0, 2π],

where cos(t) and sin(t) are understood to be formed in the ”rad”-mode, so that
t is an angle expressed in its arc-length, as usually in Calculus. Show that:

(a) Im(ϕ
[Z]
r ) := ϕ

[Z]
r ([0, 2π]) = Cr(Z).

(b) ϕ
[Z]
r (0) = ϕ

[Z]
r (2π).

(c) If 0 ≤ s < t ≤ 2π and s 6= 0 or t 6= 2π, then ϕ
[Z]
r (s) 6= ϕ

[Z]
r (t). (Hint:

Use that cos(s) = sin(t) implies t = 2π− s, and that t = 2π− s implies
sin(s) = −sin(t).)

The map ϕ
[Z]
r : [0, 2π] −→ R2 = E is called the standard parametrization of

the circle Cr(Z). Often, one also refers to the induced surjective map

ϕ[Z]
r : [0, 2π]� Cr(Z)

as the standard parametrization of Cr(Z).
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Figure 1.7: Standard Parametrization of the Circle Cr(Z)

(B) (The Vectorial Derivative) We consider the standard parametrization

ϕ = ϕ[Z]
r : [0, 2π] −→ R2 = E, t 7→ ϕ[Z]

r (t) := (x(t), y(t))

and its (vectorial) derivative

ϕ̇ =
(
ϕ[Z]
r

)̇
: [0, 2π] −→ R2, t 7→ ϕ̇(t) =

(
ϕ[Z]
r

)̇
(t) := (ẋ(t), ẏ(t)), where

ẋ(t) :=
dx

dt
(t) and ẏ(t) :=

dy

dt
(t) for all t ∈ [0, 2π]

are the derivatives of the two coordinate functions x, y : [0, 2π] −→ R. Verify
that

(a) ϕ̇(t) = (−rsin(t), rcos(t)) for all t ∈ [0, 2π].
(b) ‖ϕ̇(t)‖ = r for all t ∈ [0, 2π].

(c) For all t ∈ [0, 2π], the two vectors ϕ̇(t) and
−−−→
Zϕ(t) are perpendicular to

each other.
(d) For all t ∈ [0.2π], line through ϕ(t) with directional vector ϕ̇(t) meets

the circle Cr(Z) precisely in the point ϕ(t) – and hence is the tangent
line to Cr(Z) at this point.

What is shown in exercise (d) allows us to say that for all t ∈ [0, 2π] the

vector ϕ̇(t) =
(
ϕ
[Z]
r

)̇
(t) is a tangent vector to the circle Cr(Z) at the point

ϕ(t) = ϕ
[Z]
r (t) ∈ Cr(Z).
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Figure 1.8: Tangent Vector and Tangent Line to Cr(Z) at ϕ[Z]
r (t)

Prepaving a Path to Approach the Number π. In the next Chapter we
will approach the number π by computing circumferences of certain regular
polygons on a circle. To pave the way to this proceeding, we therefore will
introduce below the subject of polygons on a circle by means of our standard
parametrization. To solve the exercises one needs basic trigonometry.

1.6 Definition and Exercise. (A) (Polygons on the Circle) Throughout we
fix r ∈ R>0 and write O for the origin (0, 0) of our coordinatized plane E = R2.
Then, we consider the circle

C := Cr(O) = {(x, y) ∈ R2 | x2 + y2 = r2}
of radius r and centered at the origin O. Moreover, we consider the standard
parametrization

ϕ = ϕ[O]
r : [0, 2π] −→ C, t 7→ ϕ(t) = ϕ[O]

r (t) = (rcos(t), rsin(t)).

Then, we fix n ∈ N and consider a finite sequence

t• :=
(
ti
)n
i=0
∈ [0, 2π]n+1 with 0 = t0 < t1 < t2 < · · · < tn−1 < tn.

Such a sequence is called an n-partition or just a partition of the interval [0, 2π].
The sequence

P• =
(
Pi
)n
i=0

with Pi := ϕ(ti) = ϕ[O]
r (ti) ∈ C, (i = 0, 1, 2, . . . , n− 1, n)

is called the n-gon with vertices Pi in C induced by the partition t•. We also
write this n-gon in the form

ϕ(t•) = ϕ[0]
r (t•) =

(
ϕ(ti)

)n
i=0

=
(
ϕ[O]
r (ti)

)n
i=0
.
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The points Pi = ϕ(ti) ∈ C are called the vertices of the n-gon P•. Observe in
particular that (see Exercise and Definition 1.5 (A)(c))

P0 = Pn and Pi 6= Pj for i, j ∈ {0, . . . , n} with i 6= j and {i, j} 6= {0, n}.

Arbitrary n-gons of this type are called polygons on the circle or polygons with
vertices on the circle C.

Figure 1.9: n-Gon with Vertices on C

(B) (The Edges) Let n ∈ N and let t• :=
(
ti
)n
i=0

be an n-partition of the
interval [0, 2π]. We consider the induced n-gon P• = ϕ(t•) with vertices on C.
For each i ∈ {1, 2, . . . , n}, the i-th edge of the polygon P• is defined as the line
section |Pi−1Pi| between the two vertices Pi−1 and Pi. Correspondingly, i-th
central angle of the polygon P• is the angle of the triangle Pi−1OPi at O and
hence given in the “rad-mode” by

αi = α
[P•]
i := ∠Pi−1OPi = ti − ti−1, i = 1, 2, . . . , n

or in the “degree-mode” by
ti − ti−1

2π
360o.

Prove the following relations, in which angles are understood to be taken in
the “rad-mode”:

(a) For each i ∈ {1, 2, . . . , n}, the length of the i-th edge of the polygon P•
is given by

f
[i]
P•

:= dist(Pi, Pi−1) = 2rsin
(ti − ti−1

2

)
.
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(b) The circumference or perimeter of the polygon P•, hence the sum of
the lengths of all its edges, is given by

c[P•] :=
n∑
i=1

f
[i]
P•

= 2r
n∑
i=1

sin(
ti − ti−1

2
).

Figure 1.10: Edge, Central Angle and Circumference of a Polygon on C

(C) (Regular Polygons) We keep the previous notations and hypotheses. We
say that the n-partition t• of [0, 2π] is regular or equidistant if ti − ti−1 takes
the same value for all i ∈ {1, 2, . . . , n}. So, in this case, we may write

ti =
2π

n
i for all i ∈ {0, 1, . . . , n− 1, n}.

In this situation, we say that the induced n-gon P• = ϕ(t•) = ϕ
[O]
r (t•) is

a regular n-gon with vertices on C. Prove that for a regular n-gon P• with
vertices on C the following statements hold:

(a) For each i ∈ {1, 2, . . . , n} the i-th central angle is given by

αi =
2π

n
.

So all central angles of P• are the same.
(b) For each i ∈ {1, 2, . . . , n} the length of the i-th edge is given by

fP• = 2rsin(
π

n
).

So, all edges of P• have the same length.



17

(c) The circumference of P• is given by

cn := c[P•] = 2nrsin(
π

n
)

Finally use the previous results to show that

(d) The sequence (cn)n∈N of the circumferences cn of regular n-gons with
vertices on C is convergent and satisfies

limn→∞cn = 2rπ = πd.

Hints for Teachers. Below, we shall include a few hints and suggestions,
which could be helpful to transfer the material treated in this section to the
level of High School Teaching. Obviously, we will not give some “preparations
for lectures”, but rather some encouragement and initiation how certain of the
treated subjects could help to get new ideas for your teaching. Most of this
things will be not completely new for you, but we hope that they help you to
get some new views to the subjects you regularly teach at High School.

1.7 Didactic Comments. (A) (Transfer to the Classroom) The material
presented in this chapter is rather directly transferable to the classroom. It
is most important to notice, that the metric definition of the circle given in
Definition 1.1 (A) is already a nice opportunity to illustrate how Mathematics
approaches the problem of defining its objects of investigation. The author
remembers well, that the metric definition of the circle sounded to him like
a piece of poetry when he heard it the first time at the age of at about 12,
clearly in a slightly old-fashioned German.
Try to make this definition sound like a short poem to your class: “The circle
is the geometric locus of all points in the plane which have the same distance
from a given point”. But what is the relation between mathematics and po-
etry? It is the word, which expresses a thought. In case of our circle, this
thought is at the same time very simple and very deep: simple, as it defines
the circle by a very easy and comprehensible property – deep, as it reveals the
essential property of a circle and needs no further explanation.
So, the metric definition of circle is like a prototype of how a mathematical
definition should be shaped. Moreover, as we already realized earlier, the met-
ric definition of the circle also gives an immediate hint how to draw circles in
practice. May be, it was on the base of such thoughts, that in ancient Cul-
tures the circle was considered to be the most fundamental and most beautiful
geometric object. As a teacher, you should not be anxious, to let this kind
of thoughts enter your teaching. Such ideas could rise the interest in Mathe-
matics, Philosophy or Science the minds of your pupils. Do not forget, that a
deep understanding of simple things is a sound basis for the understanding of
complex phenomena.
Also, the notion of metric, as introduced and illustrated by examples in Defi-
nition, Remark and Exercise 1.3 is not beyond the level of High School Mathe-
matics. In particular, the “strange metrics” and the resulting “strange circles”
(see Definition and Exercise 1.4) are subjects which attract the attention of
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High School students, as the author could experience at several instances. Be-
low, we shall say a few more words on this.
The standard parametrization of the circle (see Exercise and Definition 1.5)
is a theme often treated on advanced High School level. So, we have not to
comment a lot on this. We hope, that our presentation encourages you to put
impact on this important subject, which relates Geometry, Trigonometry and
Calculus in an appealing way.
We hope, that our approach to polygons with vertices on a circle (see Defini-
tion and Exercise 1.6) gives you some ideas for your teaching. The suggested
exercises to this subject can be solved on use of elementary Trigonometry and
they could give rise to concrete examples, like calculating the circumference of
a n-gon for some small values of n, like 1, 2, 3, 4, 5, 6, 7 . . ..

(B) (More about Metrics) If guided properly, your students also can invent new
metrics, which are not among the above examples. Another such metric could
be the Swiss railway tunnel metric: You draw a line (the mountain ridge),
then you delete one point in this line (the tunnel). If two points are on the
same side of your line, you take as their distance the usual one. If the points
are on different sides of the line, you relate them by the shortest path passing
through the removed point (the tunnel) and take the length of the connecting
path as their distance. So, in principle you measure the length of a journey
between two points, under the condition that you have to use the tunnel to
pass the mountain. Clearly, the game can be made more realistic by taking
several tunnels and tunnels of positive length.
The circular disks in such a metric tell you, how far you can travel maximally
from a given point if you have to observe the constraints of your traffic network.
Now your students must realize, that the concept of metric and of circle or
disk with respect to such a metric is more than an idle toy for mathematicians:
it is a tool of great practical impact.
Let us hint another application of metrics: we look at all possible words of
given length, say n, written down in our (24 -lettered) alphabet. Here by word
we mean an arbitrary string of n letters, independent on the fact that this
string forms a word in the common sense. Then let Wn be the set of all these
words. We write each word in the form

L• = L1L2 . . . Ln where Li is the letter at the i− th position.

If we have two words L•,M• ∈Wn, we define the distance between these two
words as the numbers of positions, at which the letters of the two words are
different, thus by

d[W ](L•,M•) := #{i ∈ {1, 2, . . . , n} | Li 6= Mi}, (∀L•,M• ∈Wn.

This defines a metric on Wn, the so-called word metric.
A problem in telecommunication networks is the fact, that letters in word may
be transmitted wrongly. But there are ingenious mathematical procedures,
which allow to encode words by an assignement

γ : Wn −→Wm with m ∈ N≥n, with an associated number δ = δ(γ)
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such that the following holds:

(a) For each word L′• ∈Wm there is at most one word L• such that

d[W ]

(
L′•, γ(L•)

)
≤ δ

This means, that L′• ∈Wm is an erroneous transmission of L• ∈Wn with at
most δ errors, then the correct transmission γ(L•) of L• can be recovered. So,
the code in question may correct transmission errors, if not more than δ of them
do occur. Such error correcting codes are used today at many instances. One
technical device, which makes use of them, are CD-players. Here, these codes
are used to “repair” a CD which has “not to many” recorded disturbations.
This is one more of many other practical applications in which the concept of
metric comes up. Why not to tell such a thing in a “relaxing moment” in your
class, just do let the students know, that Mathematics goes much beyond what
one usually sees directly in every-days life, and that it is a kind of “omnipresent
but hidden key technology”.

1.8 Conclusive Remarks. In Exercise and Definition 1.5 and Definition and
Exercise 1.6 we have already used the number π in several ways. In the Chap-
ters to come, we shall indeed revisit this number and try to regain and explain
it in strict mathematical terms. This will give us a chance, to discuss a number
of fundamental notions and ideas from Geometry, Analysis and Algebra. In
Chapter 4 we then will come back to the preparing considerations made above.
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2. Approaching π
First Approaches. Let C = CZ(r) be a circle of radius r and diameter
d = 2r. Then it is taught to us already in early Secondary School, that the
circumference or perimeter of C is given by the formula

c = πd, where π = 3.1415 . . . .

We all are using and applying this formula many times, very often without
thinking much about its mathematical and philosophical background. In par-
ticular, the occurring number π was on object of fascination since the ancient
age. How can this number be determined, computed or at least approximated?
Classically there were two ways to approach these questions:

(a) By physical experiment, for example by wrapping a rope or string
around a circular disc or a cylinder of known diameter d and by mea-
suring the length c̃ of the string and forming the ratio c̃/d.

(b) By mathematical approximation, for example by computing for large n,
the circumference cn of a regular n-gon with vertices on the circle C of
diameter d – and then finally forming the ratio cn/d.

The “experimental” approach clearly is more ancient and sufficient for most
practical applications. The same applies for other experimental methods, like
comparing the distance between two points and the number of turns of a wheel
of known diameter needed to travel this distance... We shall come back to this
experimental approach in the exercises at the end of this section.

Using Inscribed Regular 2n-Gons. We now aim to consider the approach
by mathematical approximation on use of regular n-gons inscribed to the circle
C – thus with vertices on C – as mentioned above. To express the circumference
cn of an arbitrary regular n-gon with vertices on the given circle C in terms of
the diameter d of this circle, needs some trigonometry. In order to avoid this,
we prefer to approximate the number π only by means of the circumferences
c2n of regular 2n-gons for “large” n. More precisely, we aim to approximate
the number π by the ratio

πn :=
c2n

d
for n large n.

A heuristic justification for this approach is the premathematical observation,
that the regular 2n-gons with vertices on C “better and better approximate
the circle C if n becomes larger and larger”. From a strict mathematical point
of view, this justification is not satisfactory, as it does not explain in precise
terms what it means, to “approximate the circle C”. Moreover, this justifi-
cation does not tell us, how the length of a curve (like the circle) should be
understood in stringent mathematical terms. It is only in Chapter 3 and 4,
that we will take up these two questions.
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Figure 2.1: Regular 2n-Gons Inscribed to C, (n = 1, 2, 3, 4, . . .)

As we shall see below, the sequence of the ratios(
πn)n∈N =

(c2n
d

)
n∈N, ( with c2n = πnd for all n ∈ N)

satisfies a recursive formula, which can be deduced by elementary ideas, not
relying on trigonometry. More precisely, we can say:

2.1 Proposition. For each n ∈ N let c2n denote the circumference of a regular
2n-gon with vertices on the circle C of diameter d and set πn := c2n

d
. Then we

have

(a) π1 = 2.
(b) For all n ∈ N it holds:

πn+1 = 2n
√

2

√
1−

√
1−

(πn
2n
)2
.

Proof. (a): If n = 1, we are in the “degenerate” case of a 21 = 2-gon, which
consists just of twp points P,Q ∈ C lying opposite to each other on C, this
means on a line through the center Z of C.

Figure 2.2: A regular 2-Gon on the Circle C
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Clearly, in this situation, the circumference c2 = π1d of the 2-gon in question
is twice the distance between P an Q, thus π1d = c2 = 2d, hence π1 = 2. This
proves statement (a).

(b): For each n ∈ N we denote the length of one edge of a regular 2n-gon with
vertices on C by fn, so that

fn =
c2n

2n
and fn+1 =

c2n+1

2n+1
.

We no pass from the 2n-gon to the 2n+1-gon by introducing a new vertex Q
in the middle of each arc on C which relates two consecutive vertices P, P ′ of
the given 2n-gon. This leaves us with the situation sketched in the following
figure, in which Q′ denotes the point in which the line segment between Z and
Q and the edge between P and P ′ intersect each other:

Figure 2.3: Relating fn+1 and fn

Observe, that the triangle ZQ′P ′ has a right angle in Q′ and that the hy-
pothenuse ZP ′ has length r, whereas the cathete Q′P ′ has lenth fn

2
. So, by

the Theorem of Pythagoras the remaining cathete ZQ′ has length

h :=

√
r2 −

(fn
2

)2
Observe, that the triangle Q′P ′Q has a right angle in Q′ and that its cathetes
Q′P ′ and Q′Q are respectively of length fn

2
and r−h. So, again by Pythagoras,
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the hypothenuse QP ′ of this triangle has length

fn+1 =

√(fn
2

)2
+ (r − h)2 =

=

√(fn
2

)2
+ r2 − 2rh+ h2 =

=

√(fn
2

)2
+ r2 − 2r

√
r2 −

(fn
2

)2
+ r2 −

(fn
2

)2
=

=

√
2r2 − 2r

√
r2 −

(fn
2

)2
=

=

√
2r2 − 2r2

√
1−

(fn
2r

)2
=

=
√

2r

√
1−

√
1−

(fn
2r

)2
=

=
1√
2
d

√
1−

√
1−

(fn
d

)2
.

As

πn+1 =
c2n+1

d
=

2n+1fn+1

d
and fn =

c2n

2n
=
πnd

2n

it follows

πn+1 =
2n+1fn+1

d
=

2n+1

√
2

√
1−

√
1−

(fn
d

)2
=

=
2n+1

√
2

√
1−

√
1−

(πnd
2nd

)2
=

= 2n
√

2

√
1−

√
1−

(πn
2n
)2
.

This is the requested recursive relation. �

2.2 Application and Exercise. (A) (Numerical Computation of the Num-
bers πn) On use the formulas given in Proposition 2.1 we may successively
compute the values of πn by means of a calculator for n = 1, 2, . . . , 8 and
present them in the table below. Verify these values by means of your calcu-
lator and compute π10.
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n πn (approximate value) number of vertices name of the polygon
1 2.000000 . . . 2 double edge
2 2.828427 . . . 4 square
3 3.061467 . . . 8 octagon
4 3.121445 . . . 16 hexadecagon
5 3.136554 . . . 32
6 3.140337 . . . 64
7 3.141346 . . . 128
8 3.141583 . . . 256

(B) Write a computer program to compute the consecutive values of πn.

Approximating π – A Gem for the Classroom. Approximating π as
suggested above or in some other elementary way, can be considered as a real
gem for the teaching of Mathematics at High School. Below, we want to justify
this point of view, and we hope to encourage you to think about further details
how you can bring this matter to become fertile for your teaching.

2.3 Didactic Comments. (A) (Transfer to the Classroom) A valuable ap-
proach could be to explain that we aim to approximate the number π by the
the numbers πn = c2n

d
for large n and to make some sketches for n = 1, 2, 3

thus for the regular 2, 4, 8-gon. Then one could write down the formulas given
in Proposition 2.1 without any prove. But it is most important to explain,
what these formulas achieve, concerning the sequence (πn)n∈N:

• They give us the initial value π1 (see statement (a) of Proposition 2.1).

• If we have already computed the n-th value πn in our sequence, we can
compute the next value πn+1 (see statement (b) of Proposition 2.1).

This means, that the recursive relations given in Proposition 2.1 allow to com-
pute successively the numbers π1, π2, π3, . . . as already performed in Applica-
tion and Exercise 2.2.
Also, it is most important to illustrate the use of this idea by putting it to
practice, and to use the recursive formulas of Proposition 2.1 to compute suc-
cessively a few of the numbers πn and comparing the outcome with the the
above table for these values. Also, you may discuss the outcome of the said
computation, by consulting a numerical approximation of π given in some ta-
ble or looked up at internet.
Next, one also could hint the notion of convergent sequence and write down
and speak out (for the class eventually for the first time) the conjectured (!!)
relation

π = limn→∞πn.

Finally, one could discuss the notion of recursively defined sequence – and
point out to the class the great meaning of the Principle of Recursion and
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the related Principle of Complete Induction, which are two of the most funda-
mental principles of Mathematics at all. As a number of students could have
already some experience with computers, bring it to their mind, that in fact
almost each computer program they have written or applied, made use (may
be in disguised form) of the Principle of Recursion. It is really worth to discuss
this basic theme of Mathematics – namely the Principle of Recursion – at “any
occasion”, and here is such an occasion!
An ultimate step could be to prove Proposition 2.1. Clearly, this is a challenge
which might be on the upper edge of comprehension of your class. But do
not forget: It is very good to perform then and now something, which may
stress the comprehension of the average student – as long as such “extras” are
short and “rare events”. In doing so, you challenge the most gifted students
and help them to increase their enthusiasm for Mathematics. In relation to
this, it could be recommendable to really use the notions of Proposition and
Proof and telling to your students, that proving conjectured or claimed results
– hence Propositions or Theorems – is the basic issue of Mathematics.
So, by performing the mentioned proof, you can demonstrate them “Mathe-
matics at work”. This also could be done individually for one single student
or a smaller group of specially motivated students, by giving them the proof
in written form, make them prepare a presentation of it and perform the proof
later in front of the class.

Observe, that the proposition and the proof in question use only very basic
notions of Geometry and a certain ability to handle basic algebraic terms. As
geometric and algebraic considerations are closely linked in our arguments,
the problem under discussion is of “interdisciplinary” nature, too. Besides the
mentioned basic notions of Mathematics, the proof in question also requires a
certain maturity in mathematical thinking: namely, to follow the track of an
argument, that cannot be performed just by a straight forward application a
well known formula.
At the end, let us summarize the didactic highlights of the theme:

• The idea of approximating a number by a (convergent) sequence of numbers.
• The notion of a recursively defined sequence of numbers.
• The experience, that geometric problems can be approached by Algebra.
• The experience to perform a proof of a stated claim.

(B) (The Relation to Trigonometry) The geometric arguments performed in
the proof of Proposition 2.1 can also be performed in a more general context.
Namely, let P, P ′ two points on the circle C whose distance is f ′(≤ d). Let Q
be the point on C which is located precisely in the middle of the shorter arc
between P and P ′ on C. Denote the distance between P and Q by f . Then,
the argument given in the proof of Proposition 2.1 in order to relate fn+1 and
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fn, applies literally to show that

f =
1√
2
d

√
1−

√
1−

(f ′
d

)2
.

Denote the angle ∠PZP ′ ≤ 180o of the triangle PZP ′ at Z by α and observe
that the angle ∠PZQ of the triangle PZQ at Z equals α

2
. In particular we

have
f ′ = 2sin(

α

2
)r and f = 2sin(

α

4
)r.

An easy computation shows, that this leads to the formula.

sin(
α

4
) =

1√
2

√
1−

√
1− sin(

α

2
)2, or, with β :=

α

2

sin(
β

2
) =

1√
2

√
1−

√
1− sin(β)2 =

1√
2

√
1− cos(β).

This is nothing else than the well-known trigonometric “Half-Angle Formula”
for the Sinus. So, our proof of Proposition 2.1 (b) could also be used to es-
tablish this latter formula with students who have already basic notions of
Trigonometry.
Conversely, the above relation between f and f ′ can easily be deduced on use
the trigonometric Half-Angle Formula. So, for a class, knowing already this
latter formula, this gives another approach to the previously shown relation
between fn+1 and fn, and hence to the proof of Proposition 2.1.

(C) (Further Polygonal Approximations) Finally, we could use another variant
of Proposition 2.2 to approximate π. Namely, assume that – for some m ∈ N
– we may express the circumference cm of the regular m-gon on C in terms of
the diameter d, so that we can compute the number

π[m] :=
cm
d
.

Then, we can indeed approximate π by the numbers

π[m]
n :=

cm2n−1

d
for large n.

Namely, going once more through the arguments of the proof of Proposition
2.1 we namely immediately may derive the following recursive relations:

(a) π
[m]
1 = π[m].

(b) π
[m]
n+1 = 2n

√
2

√
1−

√
1−

(
π
[m]
n

2n

)2
for all n ∈ N.

Observe, that with m = 2 we get back the recursive relations of Proposition
2.1, so that we have found a generalization of this proposition.
These new relations can be successfully applied for example in the case m = 6,
thus in the case, where “the circle C is approximated by the regular 6 · 2n-gons
n = 1, 2, . . .”.
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A Few Concrete Occurrencies of π. After this first strictly formal ap-
proach to the number π, we now also will discuss some practical occurrences
of π.

2.4 Remarks and Exercises. (A) (A View to the Thora) In the First Book of
Kings, Chapter 7, Verses 23-26 (thus in the Old Testament of the Bible, hence
the Hebrew Thora) the “Sea” is described: a huge vessel made of bronze,
set up in the Temple of Jerusalem. In verse 23 it is written: “Its measure
was 10 ells (or ”cubits“, that is ”king size ells“, 52.5 cm each) from one edge
to the other; it was completely round and its height was five ells. A string
of thirty ells could suround it completely”. Does this mean, that the Bible
(respectively the Thora) claims that π = 3? Here come two ways, how the
apparent contradiction can be understood:

• The “Sea” had not a cylindric shape!

Indeed in verse 26 we read: “Its (upper) border was shaped as the border of
a calice, similar to a lily flower.” So, we can imagine that the diameter was
measured by spanning a transverse string at the “upper edge of the calice”, but
that the circumference was measured by wrapping a string around the “taille
of the calice”. Sketch the “Sea” and compute the diameter d of its “taille” (in
ells and in centimeters), using the approximate value of π computed in the last
line of the table in 2.2 (A). If you feel challenged as an artist, try to complete
the sketch of the “Sea” (may be, even with its “Support”) according to the
details you find in the First Book of Kings.

Figure 2.4: The Sea in the Temple of Jerusalem, “Shaped as Lily Flower”
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Recently, at the occasion of the “International Conference on Commutative Al-
gebra and its Interactions to Algebraic Geometry and Combinatorics”, which
took place at Hanoi in December 2013, the author had breakfast with his col-
legue Gennady Lyubeznik from the University of Minnesota, an internationally
reknown specialist in Commutative Algebra – and of Jewish faith. Gennady
has an excellent knowledge of the Thora, which he reads in Hebrew Language.
So, the author did ask him his opinion about the question, whether the Thora
claims π = 3? His answer was:

• The “Sea” was curved everywhere ( = “completely round”) but not
circular, shaped like an ellipse.

So, assume that the (upper edge) of the “Sea” is an ellipse, which maximal
diameter d = 10 (ells) and minimal diameter d′ < d. Determine d′ (approxi-
mately) such that the perimeter c of this “elliptic upper edge” takes the value
of 30 ells. Use various approximative formulas for the perimeter of the ellipse
to do this, for example:

c = π
√
dd′, c = π

d+ d′

2
or c = π

√
d2 + d′2

2
.

Comment your findings.

(B) (An Inspiring Anecdote) Rather an anecdote must be the story, that on
the Campus of some University in Michigan it was carved in stone:

•• ”The circumference of a circle is three times its diameter”.

My collegue Gennady Lyubeznik and me also discussed this claim at the occa-
sion of the mentioned breakfast. Our discussion lead us to the conclusion, that
this obviously is true for a large circle on Earth, provided that the diameter is
measured on the ground, this means on the surface of the Earth. We model
this surface by a sphere S of circumference C ≈ 40‘000 Km. Actually to solve
our problem, we need not specify a concrete value for C.
So, we assume that our circle C of circumference c lies on a sphere S of circum-

ference C > c. Let d̃ be the spherical diameter of C on S. So d̃ is the length
of the shortest arc on the sphere S which connects to opposite points on our
circle C. The situation is sketched in Figure 2.5.
Now, our task is to find the right position of C on S – more precisely the right
value of the proportion c : C – such that

c

d̃
= 3.

We leave this as an exercise, but we will provide below some hints how to solve
it.
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Figure 2.5: Circle on a Sphere

Express the ratio

π̃ = π̃(γ) = π̃(
c

C
) :=

c

d̃
=
πd

d̃
= π

d

d̃

in terms of the ratio γ := c
C

. Determine the limit

π0 := limγ→0π̃(γ).

Determine γ such that π̃(γ) = 3. To do so, set

γ := cos(β), with 0 ≤ β ≤ π

2

and show that with this choice we must have

π

π̃(γ)
=
d

d̃
=
π − 2β

2cos(β)
.

Finally assume that the circle C is located on the “Northern hemisphere” and
has its center of the “axis of the Earth”. Compute its “Northern geographic
altitude”.

(C) (A Rolling Wheel) A wheel of diameter d = 1 meter, and carrying a marked
point P on its periphery, is used to approximate experimentally the value π
by rolling it along a straight line on a plane. When the wheel begins to roll,
the point P coincides with some point S in the plane. The curve described by
the point P is called a cycloid.
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Figure 2.6: Cycloid

Suppose that the (center Z of) the wheel moves with constant speed of 1 – for
example 1 meter/second – and that the center Z(0) of the wheel lies precisely
over the point S if t = 0. Introduce a Cartesian system of coordinates with
origin in Z(0), horizontal x-axis and vertical y-axis. Let Z(t) denote the center
of our circle at time t. Moreover let

P (t) =

(
x(t)
y(t)

)
be the position of the point P at the time t. Give a parametrization of the
cycloid, by making explicit the two coordinate functions

t 7→ x(t) and t 7→ y(t) for all t ≥ 0.

Determine the vectorial, and the absolute velocity, as well as the vectorial and
the absolute acceleration of the point P (t).
Assume that after 3

8
turns of the wheel from its starting position a drop of

water which moved with the point P (t) flies away. At which distance from
S, the water drop falls onto the plane? What is the maximal height over the
plane of the drop during its flight?
Assume that the position at which the point P lies in the base plane can be
determined only up to an error of 1cm. The wheel is stopped after 100 full
turns - in the position where P can be assumed to touch again the base plane.
Up to what error π can be determined by this experiment?
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(C) (Bi-Hexagonal Approximations of π) Compute the values of π′n := π
[6]
n for

n = 1, 2, . . . , 7 (see Didactic Comments 2.3 (C)) to approximate π and present
the result in the following table.

n π′n (approximate value) number of vertices name of the polygon
1
2
3
4
5
6
7

(D) (Approximating an Approximation) Already in the Ancient Age, the num-
ber π was approximated by the fraction 22

7
. Determine n ≤ 8 and n′ ≤ 7 such

that πn resp. π′n is closest to the approximating fraction 22
7

.

(E) (Completing Some Proofs) Perform in detail the arguments hinted in the
Didactic Comments 2.3 (C) and (B).
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3. Defining π as a Limit
The Problem of Convergence. In the Didactic Comment 2.3 (A) we have
already hinted the conjectured relation π = limn→∞πn. From a premathemat-
ical point of view, this seems an obvious relation, as the regular 2n-gons on C
“better and better approximate the circle C”. But, from the strictly mathe-
matical point of view, this heuristic observation is not yet satisfactory. Namely,
viewed with the mathematicians eyes, we are left now with the following three
questions:

(Q1) Is the sequence (πn)n∈N indeed convergent at all?
(Q2) If the sequence (πn)n∈N is convergent, can we estimate the difference

between its limit and the approximating number πn for all n ∈ N?
(Q3) If the sequence (πn)n∈N is convergent, is it justified to say that its limit

is the quotient of the circumference of C by the diameter of C, hence
what we defined heuristically as the number π?

Using Circumscribed Regular 2n-Gons. We now attack the first two of of
these three questions, which both can indeed be approached by mathematical
tools from basic High School (Pre-)Calculus, provided we make right use of
these tools.
The third question is of essentially more mathematical depth and exceeds – at
least in its full width – what we can expect to be understood by High School
Students. Therefore, we later shall treat this question in an extra Chapter,
namely Chapter 4.

For, each n ∈ Z≥2 we consider the “smallest regular 2n-gon which contains the
circle C”, hence a regular 2n-gon whose edges are all tangent to C and touch
C in their midpoint. We denote the circumference of such a circumscribed
regular 2n-gon by c2n and set

πn :=
c2n

d
for all n ∈ N.

Our heuristic idea is to approximate the circumference of our circle simultane-
ously by the circumferences of its inscribed and circumscribed regular 2n-gons.
This idea indeed carries further and will lead us to a strict proof of question
(Q1) and a satisfactory affirmative answer to question (Q2).

3.1 Remark. Observe that we have:

π2 = 4.

Indeed, in the case n = 2, the regular circumscribed polygon in question is just
a square whose 4 edges touch the circle C, hence a square which is circumscribed
to this circle.
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Figure 3.1: Square Circumscribed to the Circle

Clearly, this square has edges of length d, so that its circumference c22 = c4
equals 4d. Consequently

π2 =
c22

d
=

4d

d
= 4.

Comparing the “Inside” and the “Outside” Approach. The essential
step, needed to approach the previously mentioned two questions (Q1) and
(Q2), is given by the following result, which compares the values of our two
(hopefully) approximating sequences for π and estimates the difference be-
tween corresponding values in these sequences:

3.2 Proposition. For each n ∈ N, let c2n denote the circumference of a
regular 2n-gon with vertices on the circle C of diameter d and set πn := c2n

d
.

For each n ∈ Z≥2 let c2n denote the circumference of a regular 2n-gon whose
edges are all tangent to the circle C and set πn := c2n

d
.

Then we have

(a) For all n ≥ 2 it holds:

πn = πn
1√

1−
(
πn
2n

)2 .
(b) For all n ≥ 2 it holds πn < πn.
(c) For all n ≥ 1 it holds πn < πn+1.
(d) For all n ≥ 2 it holds πn > πn+1.
(e) For all n > 3 it holds πn − πn < 1

22n−8
√
15

.

Proof. : (a): For each n ≥ 1 (respectively ≥ 2) let – once more –

fn =
πn
2n
d respectively fn =

πn
2n
d
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denote the length of a single edge of a regular 2n-gon with vertices on C re-
spectively with edges tangent to C. Then, we have the situation sketched in
Figure 3.3, in which Q and Q respectively denote the mid-points of the the
edges of the two 2n-gons under consideration.

Figure 3.2: Relating fn and fn

Observe, that by Pythagoras the line segments from Z to Q and from Z to Q

have length√(d
2

)2 − (fn
2

)2
=

√(d
2

)2 − ( πnd
2n · 2

)2
=
d

2

√
1−

(πn
2n
)2

respectively
d

2
.

It follows by similarity that

fn : fn =
d

2
:
d

2

√
1−

(πn
2n
)2

= 1 :

√
1−

(πn
2n
)2
, hence

πn : πn =
πn
2n
d :

πn
2n
d = fn : fn = 1 :

√
1−

(πn
2n
)2
,

so that, indeed

πn = πn
1√

1−
(
πn
2n

) .
(b): This is immediate by statement (a), as

√
1−

(
πn
2n

)
< 1.

(c): We offer an algebraic and a geometric proof for this statement.
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1. Algebraic Proof: Let n ∈ N. Observe that√
1−

(πn
2n
)2

=

√
1− 2

π2
n

22n+1
<

√
1− 2

π2
n

22n+1
+

π4
n

(22n+1)2
=

=

√(
1− π2

n

22n+1

)2
= 1− π2

n

22n+1
.

It follows that

1−
√

1−
(πn

2n
)2
> 1−

(
1− π2

n

22n+1

)
=

π2
n

22n+1
.

So, by Proposition 2.1 (b) we obtain

π2
n+1 =

[
2n
√

2

√
1−

√
1−

(πn
2n
)2]2

= 22n+1
(
1−

√
1−

(πn
2n
)2)

>

> 22n+1 π2
n

22n+1
= π2

n,

hence π2
n+1 > π2

n. As πn and πn+1 are both positive, it follows that, indeed
πn+1 > πn.

2. Geometric Proof: Let n ∈ N.

Figure 3.3: Relating fn and 2fn+1



36

According to Figure 3.4 we have an equilateral triangle with base fn and with
two edges of length fn+1. Therefore we get

2fn+1 > fn,

and hence
2
πn+1

2n+1
d >

πn
2n
d.

It follows that πn+1 > πn.

(d): Again, we offer an algebraic and a geometric proof.

1. Algebraic Proof: Let n ∈ Z≥2. Observe that by statement (a) and Proposi-
tion 2.1 (b) we may write:

π2
n+1 =

π2
n+1

1− π2
n+1

22n+2

=
22n+1

(
1−

√
1−

(
πn
2n

)2)
1− 1

22n+2 · 22n+1
(
1−

√
1−

(
πn
2n

)2) =

=
22n+1

(
1−

√
1−

(
πn
2n

)2)
1
2

(
2−

(
1−

√
1−

(
πn
2n

)2) =
22n+2

(
1−

√
1−

(
πn
2n

)2)
1 +

√
1−

(
πn
2n

)2 =

=
22n+2

(
1−

√
1−

(
πn
2n

)2)(
1 +

√
1−

(
πn
2n

)2)
(
1 +

√
1−

(
πn
2n

)2)2 =

=
22n+2

(
1− (1−

(
πn
2n

)2
)
)

(
1 +

√
1−

(
πn
2n

)2)2 =
22n+2 π

2
n

22n(
1 +

√
1−

(
πn
2n

)2)2 =
22π2

n(
1 +

√
1−

(
πn
2n

)2)2 .
Moreover, by statement (a), we get

π2
n =

π2
n

1−
(
πn
2n

)2 .
Setting

u :=

√
1−

(π2
n

2n
)2
,

we thus obtain

π2
n+1 =

4

(1 + u)2
π2
n and π2

n =
1

u2
π2
n.

Observe, that 0 < u < 1, so that 3u2 − 2u− 1 < 0, hence 4u2 < u2 + 2u+ 1 =
(1 + u)2, thus

4

(1 + u)2
<

1

u2
.

Therefore we have that π2
n+1 < π2

n. As πn+1 and πn are both positive, it follows
indeed, that πn+1 < πn.
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2. Geometric Proof: Let n ∈ Z≥2. If we reconsider the situation sketched in
Figure 3.2, we see immediately that (see Figure 3.5 below)

fn+1 = 2
fn+1

2
<
fn
2
.

Figure 3.4: Comparing fn+1 and
fn
2

Therefore, indeed:

πn+1 =
2n+1fn+1

d
<

2n+1 fn
2

d
=

2nfn
d

= πn.

(e): Let n > 3. According to statement (a) we have

πn − πn = πn
1√

1−
(
πn
2n

)2 − πn = πn
( 1√

1−
(
πn
2n

)2 − 1
)

=

= πn
1−

√
1−

(
πn
2n

)2√
1−

(
πn
2n

)2 .

By statements (b) and (d) and by Remark 3.1 we have

πn < πn ≤ π2 = 4 = 22.

It follows that (πn
2n
)2
<
(22

2n
)

=
( 1

2n−2
)2

=
1

22n−4 .
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Consequently, as 1
22n−4 ≤ 1

16
, we get√

1−
(πn

2n
)2
>

√
1− 1

22n−4 ≥
√

1− 1

16
=

√
15

4
.

Moreover, as 0 < 1−
(
πn
2n

)2
< 1, we have√

1−
(πn

2n
)2
> 1−

(πn
2n
)2
> 1− 1

22n−4 ,

whence

1−
√

1−
(πn

2n
)2
< 1−

(
1− 1

22n−4

)
=

1

22n−4 .

Altogether, we thus obtain, indeed

πn − πn = πn
1−

√
1−

(
πn
2n

)2√
1−

(
πn
2n

)2 < 22
1

22n−4
√
15
4

=
1

22n−8
√

15
,

as requested. �

Answering Questions (Q1) and (Q2). Now, we get the following conse-
quence of Proposition 3.2, which will allow to answer affirmatively the two
mentioned questions. This will be done by showing that our two approximat-
ing sequences converge to a common limit and by giving an estimate of the
difference between the values of these sequences and their common limit.

3.3 Corollary. Let the notations and hypotheses be as in Proposition 3.2.
Then, the two sequences

(πn)n≥1 and (πn)n≥2

are both convergent and have the same limit, say

π := limn→∞πn = limn→∞πn.

Moreover:

(a) For all n ≥ 2 it holds πn < π < πn.
(b) For all n > 3 it holds

0 < π − πn, πn − π <
1

22n−8
√

15
.

Proof. For each n ≥ 2 we consider the closed interval

In :=
[
πn, πn

]
= {x ∈ R | πn ≤ x ≤ πn}.

By statements (b), (c) and (d) of Proposition 3.2 it follows immediately, that

In+1 ⊆ In for all n ≥ 2.

This means, that(
In
)
n≥2 is a sequence of nested closed intervals .
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So, by the completeness of R, there is some

π ∈
⋂
n≥2

In, whence πn < π < πn for all n ≥ 2.

Moreover, statement (e) of Proposition 3.2 now yields that

0 < π − πn, πn − π <
1

22n−8
√

15
for all n > 3.

It thus remains to show that the number π is the common limit of the two
sequences (πn)n≥1 and (πn)n≥2, hence that

π = limn→∞πn = limn→∞πn.

To this end, chose an arbitrary real number ε > 0. As

limn→∞
1

22n−8
√

15
= 0,

there is some integer n(ε) > 3 such that

1

22n−8
√

15
< ε for all n ≥ n(ε).

So, as π − πn and πn − πn are both positive, we finally obtain

|π − πn| = π − πn <
1

22n−8
√

15
< ε for all n ≥ n(ε)

and

|π − πn| = πn − π <
1

22n−8
√

15
< ε for all n ≥ n(ε).

As ε > 0 was chosen arbitrarily it follows indeed, that the two sequences
(πn)n≥1 and (πn)n≥2 both converge to π, and this concludes our proof. �

As a further immediate consequence of this result we see, that we can answer
affirmatively the first two of our three original questions. We namely have.

3.4 Corollary. Let the notations and hypotheses be as in Corollary 3.3.

(a) The sequence (πn)n≥1 converges.
(b) With π := limn→∞πn we have the estimate

0 < π − πn <
1

22n−8
√

15
for all n > 3.

3.5 Exercises and Remarks. (A) (A Recursive Formula for the Numbers
πn+1: An Algebraic Proof) Going back to the algebraic proof of statement (d)
of Proposition 3.2 you will be able to immediately establish the equality

πn+1 =
2πn

1 +
√

1−
(
πn
2n

)2 for all n ≥ 2.
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On use of statement (a) of Proposition 3.2 you also will derive immediately
the equality

πn =
πn√

1 +
(
πn

2n

)2 for all n ≥ 2.

Use this, to derive the recursive relation

πn+1 =
πn

1 +
√

1 +
(
πn

2n

)2 for all > n ≥ 2.

(B) (A Recursive Formula for the Numbers πn+1: A Geometric Proof) Let the
notations be as in part (A) and as in the proof of statement (d) of Proposition
3.2. verify first, that

πn

1 +
√

1 +
(
πn

2n

)2 =
22n+1

πn

(√
1 +

(πn
2n
)2 − 1

)
for all n ≥ 2.

Then, use the figure below (in which α = 2π
2n

) to prove the recursion formula
of part (A).

Figure 3.5: Relating fn+1 and fn

(C) (Approximating π by the numbers πn). Compute the numbers πn, the
differences πn − πn and the upper bound 1/(22n−8

√
15) for these differences

for n = 2, 3, . . . , 8 – either by using the values computed in Application and
Exercise 2.2 (A) and the formula of Proposition 3.2 (a) – or else on use of the
recursion formula of part (A). Write down the result in the following table.
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n πn πn − πn 1/(22n−8
√

15)
2
3
4
5
6
7
8

(D) (The Area of the Circular Disk) Let An and An denote the area of a regular
n-gon inscribed respectively circumscribed to the circle C of diameter d and
radius r. Prove that for all n ≥ 2 we have

A2n = πnr
2 and A2n = πn

√
1−

(πn
2n
)2
r2.

Use this to explain heuristically why it is justified to say that the area of the
circular disk of radius r is given by

A = πr2.

(E) (Approximating π up to 6 Digits) Use the inequality of Corollary 3.3 (b)
in order determine some integer n0 > 3 such that

πn − πn < 10−6 and hence πn − π, π − πn < 10−6 for all n ≥ n0.

Not Loosing Courage. At first glance, you might feel that this chapter is not
very helpful for your teaching at High School. Nevertheless, below, we try to
encourage you to dare make enter some of the treated matters to your teaching.

3.6 Didactic Comments. (A) (Transfer to the Classroom) At a first glance,
Proposition 3.2 may seemingly be beyond of the reach of High School Math-
ematics, at least concerning its proof. But again, you could proceed in two
steps, and first just give the statements, in particular the formula given in
statement (a). Then you could already attack Exercise 3.5 (C). In a second
turn you could prove (some of) the statements of Proposition 3.2 – obviously
with the presented geometric arguments. These arguments surely are accessi-
ble to what you can do in the classroom.
Corollary 3.3 first of all is addressed to you, this means the teachers. So, con-
sider its proof and reflect it in the sense of a reminder what you have learned
in your Undergraduate Calculus course. This brings you a few steps ahead of
your class and makes you argue in a way which slightly exceeds what you likely
can do in the classroom. But as an extra challenge you could give the consid-
eration of this proof as an object of study for a (group of) highly motivated
students. Or you could take the challenge on your own, and reduce the ar-
guments of the proof to a level which is accessible to the majority of your class.
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(B) (A General Consideration) Let the students share the insight, how much
Mathematics is hidden behind a simple object as the circle, and do not be
afraid to tell them, that there is indeed a substantial portion of much deeper
and much more advanced Mathematics related to the circle and the number
π. This could help to promote the scientific curiosity of your students, at least
of those, who have already a particular interest in Mathematics.
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4. What is the Circumference?
Approximation by Regular Polygons. In this chapter we shall consider
the third initial question posed at the beginning of Chapter 3: How to justify
the idea that the circumference of the circle can be considered as the limit

π := limn→∞πn = limn→∞πn.

This justification problem is related to a much more general question, namely
the problem of defining properly the length of a curve or – in other words the
problem of rectification of curves. An exhaustive treatment of this problem
would by far exceed the framework of this course. Nevertheless, we will hint
some details, which could help to brush up a few things you likely have learned
once when attending University. We believe, that such a brushing up oppor-
tunity does not harm to a Mathematics teacher, and can even reveal – once
more, hopefully – the intellectual beauty of the field he is teaching.

4.1 Remarks. (A) (How to Define the Circumference?) In Chapter 3 we fixed
a circle C of diameter d and defined πn := c2n

d
, where c2n was the circumference

of a regular 2n-gon with vertices on C. (See also Definition and Exercise 1.6.)
Then we used the heuristic idea that the circumferences c2n of these polygons
should converge to the circumference c of our circle C. Yet heuristically – this
gave us the idea that the sequence πn = c2n

d
must converge to the ratio c

d
between the circumference c of the circle C and the diameter d of this circle.
Then, we provided a proper proof of the fact that the sequence (πn)n∈N con-
verges at all. We denoted the limit of this sequence by π. In view of our
heuristic considerations we were ready to believe that this limit is indeed the
requested ratio c

d
, or – equivalently – that c = πd. But actually, in this way we

have computed the circumference c (or the mentioned ratio) without having
defined the notion of circumference at all. More precisely, we have left open
the question:

(Q4) How can we define the notion of circumference of a circle?

Clearly, a possible way to define this circumference would just be to say:

(A4) The circumference of the circle C with diameter d is the number c := πd,
where π := limn→∞πn, is the limit of our convergent sequence(

πn =
c2n

d

)
n∈N.

(B) (Sequences of Regular Polygons) If we agree to accept the previous defini-
tion of circumference, we are faced with a new problem. Namely, let

π′n :=
c3n

d
, (n ∈ N)

be the ratio between the circumference c3n of a regular 3n-gon with vertices
on C and the d diameter of this circle. Why should it be forbidden, to show
that the sequence (π′n)n∈N converges to some limit π′, and then to define the
circumference of C as c′ := π′d. But this would leave us with the task to show
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that π′ = π.
Otherwise there would be no sensible way to define the circumference of C.
Indeed, 2n-gonists would have to use a different circumference from that of
3n-gonists, not to speak about 5n-gonists or 7n-gonists. . .. But also simple
n-gonists, or 3n-gonists or even 5n− 4-gonists might come along and claim to
compete for the definition of the circumference. This means, that finally one
would have to admit to the pace for the computation of π all sequences of the
form (cni

d

)
i∈N, for which ni

i→∞−→ ∞,

where cni
denotes the circumference of a regular ni-gon with vertices on C. In

other words, all “regular polygonists” could claim to have the right value of
circumference of our circle C.
But indeed, at least those among you who have solved exercise (d) of Definition
and Exercise 1.6 (C), have already achieved a reconciliation among all possible
types of regular polygonists. Namely, by what you (should) have shown there,
it follows (as you hopefully will prove now):

(R1) For all sequences (ni)i∈N of integers ni ∈ Z≥2 with limi→∞ni = ∞ the
sequence

( cni

d

)
i∈N converges to the limit π of (A4).

That this common limit exists, shows that all regular polygonists have found
a convincing way to define the circumference of our circle C.
Daring More: Approximations by Irregular Polygons. If you content
yourself to be a member of the regular polygonists union, you may skip the
rest of the chapter, on taking the risk, that you could miss some interesting
features. But if you agree that one should also admit arbitrarily shaped or
irregular polygons with vertices on C to compete for the computation of the
circumference, you are invited to follow our further developments.

4.2 Remarks. (A) (Admitting Sequences of Irregular Polygons) To introduce
the new situation, we go back once more to the concepts we have developed
already in Exercise and Definition 1.5 and Definition and Exercise 1.6. We
first introduce the radius r = d

2
of C. For the sake of simplicity we also assume

that the circle C is centered at O = (0, 0). Then we consider the standard
parametrization

ϕ = ϕ[O]
r : [0, 2π] −→ R2 = E, t 7→ ϕ(t) = ϕ[O]

r (t) := (x(t), y(t)) with

x(t) := rcos(t) and y(t) := rsin(t) for all t ∈ [0, 2π],

where cos(t) and sin(t) are again understood in the ”rad”-mode, as usually
in Calculus. Then, we consider an arbitrary n-partition of the closed interval
[0, 2π]:

t• :=
(
ti
)n
i=0
∈ [0, 2π]n+1 with 0 = t0 < t1 < t2 < · · · < tn−1 < tn.

In addition, we consider the induced n-gon with vertices on C:
P• =

(
Pi
)n
i=0

with Pi := ϕ(ti) = ϕ[O]
r (ti) ∈ C, (i = 0, 1, 2, . . . , n− 1, n),
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which we shall write again in the form

ϕ(t•) = ϕ[O]
r (t•) =

(
ϕ(ti)

)n
i=0

=
(
ϕ[O]
r (ti)

)n
i=0
.

Finally, we consider the circumference of the polygon P• (see Definition and
Exercise 1.6 (B)(b)):

c[P•] = c[ϕ(t•)] :=
n∑
i=1

dist(Pi, Pi−1) =

=
n∑
i=1

dist(ϕ(ti), ϕ(ti−1)) = 2r
n∑
i=1

sin(
ti − ti−1

2
).

Now, our aim must be to show that the circumferences of all sequences of
polygons with vertices on C which are defined “by finer and finer partitions”
converge to the same value.

(B) (Reformulating our Task) We now aim to reformulate the reconciliation
task mentioned at the end of part (A) in precise terms. First of all, if

t• :=
(
ti
)n
i=0
∈ [0, 2π]n+1 with 0 = t0 < t1 < t2 < · · · < tn−1 < tn.

is a arbitrary partition of the interval [0, 2π], we introduce the fineness of t•
by

f(t•) := max{ti − ti−1 | i = 1, 2, . . . , n}.
Now, in order to solve the task we gave ourselves in part (A), we aim to show
the following:

(R2) There is a number c ∈ R such that for all sequences of partitions

(t[k]• )k∈N where t[k]• = (t
[k]
i )nk

i=0, with 0 = t
[k]
0 < t

[k]
1 < . . . < t

[k]
nk−1 < t[k]nk

= 2π

such that limk→∞f(t[k]• ) = 0 it holds

limk→∞2r

nk∑
i=1

sin(
t
[k]
i − t

[k]
i−1

2
) = c.

Indeed, we have the following result.

4.3 Proposition. The reconciliation result (R2) mentioned in Remark 4.2
(B) holds.

Proof. First of all, let us recall the well known fact – usually established in
basic calculus – that

limx→0
sin(x)

x
= 1.

So, for each ε ∈ R>0 there is some δ(ε) ∈ R>0 such that

|sin(x)

x
− 1| < ε for all x ∈ R \ {0} with |x| < δ(ε).

It follows that

(@) |sin(x)− x| < |x|ε for all x ∈ R with |x| < δ(ε).
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Now, let the sequence of partitions (t
[k]
• )k∈N be such that limk→∞f(t

[k]
• ) = 0.

Then, it follows that for each ε ∈ R>0 there is some k0(ε) ∈ N such that

f(t[k]• ) < δ(ε) for all k > k0(ε).

As
t
[k]
i −t

[k]
i−1

2
≤ f(t

[k]
• )
2

for all i ∈ {1, 2, . . . , nk} it follows that

(@@)
t
[k]
i −t

[k]
i−1

2
< δ(ε)

2
for all k > k0(ε) and all i ∈ {1, 2, . . . , nk}.

If we apply statements (@) and (@@) with x :=
t
[k]
i −t

[k]
i−1

2
and with 2ε

r
instead

of ε, we thus obtain∣∣sin(t[k]i − t[k]i−1
2

)
−
t
[k]
i − t

[k]
i−1

2

∣∣ < (
t
[k]
i − t

[k]
i−1

2
)
2ε

r
=

= (t
[k]
i − t

[k]
i−1)

ε

r
for all k > k0(

2ε

r
) and all i ∈ {1, 2, . . . , nk}.

Consequently, for all ε ∈ R>0 and all k > k0(
2ε
r

) we have

∣∣2r nk∑
i=1

sin(
t
[k]
i − t

[k]
i−1

2
)− 2rπ

∣∣ =
∣∣2r nk∑

i=1

sin(
t
[k]
i − t

[k]
i−1

2
)− r

nk∑
i=1

(t
[k]
i − t

[k]
i−1)
∣∣ =

=
∣∣2r nk∑

i=1

sin(
t
[k]
i − t

[k]
i−1

2
)− 2r

nk∑
i=1

t
[k]
i − t

[k]
i−1

2

∣∣ =

= 2r
∣∣ nk∑
i=1

sin(
t
[k]
i − t

[k]
i−1

2
)−

t
[k]
i − t

[k]
i−1

2

∣∣ ≤
≤ 2r

nk∑
i=1

∣∣sin((t[k])i − t[k]i−1
2

)
−
t
[k]
i − t

[k]
i−1

2

∣∣ <
< 2r

nk∑
i=1

(t
[k]
i − t

[k]
i−1)

ε

r
= 2r2π

ε

r
= 4πε.

If we apply this with ε
4π

instead of ε we finally obtain

∣∣2r nk∑
i=1

sin(
t
[k]
i − t

[k]
i−1

2
)− 2rπ

∣∣ < ε for all ε > 0 and all k > k0(
ε

2πr
).

Setting k1(ε) := k0(
ε

2πr
), we thus have

∣∣2r nk∑
i=1

sin(
t
[k]
i − t

[k]
i−1

2
)− 2rπ

∣∣ < ε for all ε > 0 and all k > k1(ε).

This shows that

limk→∞2r

nk∑
i=1

sin(
t
[k]
i − t

[k]
i−1

2
) = 2rπ.

�
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As an immediate application of the previous result we get:

4.4 Corollary. Let C = Cr(O) be the circle of radius r, diameter d and center
O. Then, for all sequences of partitions

(t[k]• )k∈N, t[k]• = (t
[k]
i )nk

i=0, (0 = t
[k]
0 < t

[k]
1 < . . . < t

[k]
nk−1 < t[k]nk

= 2π)

of [0, 2π] such that

limk→∞f(t[k]• ) = 0

it holds

limk→∞c
[ϕ(t

[k]
• )] = limk→∞2r

nk∑
i=1

sin(
t
[k]
i − t

[k]
i−1

2
) = 2rπ,

where c[ϕ(t
[k]
• )] denotes the circumference of the polygon P k

• := ϕ(t
[k]
• )

Proof. This is an immediate consequence of Proposition 4.3 and its proof. �

Taking a Higher Challenge: Rectifying Smooth Curves. Now, we have
properly solved the rectification problem for the circle, this means the problem
to define the circumference of a circle. It is natural to ask, whether the pre-
vious ideas generalize to more general curves. First one could consider closed
curves, as the circle. But it would be more appealing, to solve the rectification
problem for non-closed curves too, by replacing the notion of circumference
by the notion of length. So, more precisely, we may ask: is there a larger
class of plane curves S, for which we can define the notion of length of S in
an appropriate way. In the case of the circle, the clue to the solution of this
problem was the use of the standard parametrization, a parametrization which
we shall recognize below as being smooth. Therefore, we shall follow this track
and introduce the notion of length of smoothly parametrized curves. You will
recognize, that you most likely had studied this subject in your former Cal-
culus Course at University, or that you have actually treated the subject in a
more heuristic way with your own classes, at least to a certain extend.

4.5 Remark, Reminder, Definition and Exercise. (A) (Polygons on
Smoothly Parametrized Curves) Let S ⊆ E = R2. Assume that there is a
closed interval

[a, b] = {x ∈ R | a ≤ x ≤ b} ∈ R with a < b

and a map

ϕ : [a, b] −→ E = R2, t 7→ ϕ(t) =

(
x(t)
y(t)

)
such that

(a) S = ϕ
(
[a, b]

)
.

(b) The two coordinate functions x, y : [a, b] −→ R of ϕ are both continu-
ously differentiable.
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Condition (a) means, that the set S is parametrized by the map ϕ, so that we
can regard it as a curve.
Condition (b) means that the parametrization map ϕ is smooth. So, we assume
that the derivatives

ẋ(t) =
d

dt
x(t) and ẏ(t) =

d

dt
y(t) exist for all t ∈ [a, b]

and the two derivation functions

ẋ, ẏ : [a, b]→ R, given by t 7→ ẋ(t) respectively t 7→ ẏ(t) are continuous.

In this situation, we call S, or more precisely

ϕ : [a, b]� S,

a smoothly parametrized curve. Observe, that

(c) The standard parametrization ϕ = ϕ
[Z]
r : [0, 2π] � C = Cr(Z) of the

circle C is smooth and hence turns C into a smoothly parametrized
curve.

Now, we aim to formulate the rectification problem for smoothly parametrized
curves and we shall do this by generalizing what we did in the case of the circle.
Again, we start with the notion of partition. More precisely, by a partition of
the interval [a, b] we mean a finite sequence

t• = (t0, t1, . . . , tn) with a = t0 < t1 < · · · < tn−1 < tn = b.

We now consider the sequence

P• = (Pi)
n
i=0 ∈ Sn with Pi := ϕ(ti) ∈ S for all i = 0, 1, . . . , n,

which we call the polygon on S induced by the partition t•. The points Pi ∈ S
are again called the vertices of our polygon. Again, we also shall write

P• = ϕ(t•).

Now, the polygonal path induced by the partition t• is the sequence(
|Pi−1Pi|

)n
i=1

of line segments |Pi−1Pi| (i = 1, 2, . . . , n)

between all pairs of consecutive vertices of our polygon on S. Such paths
are just referred to as polygonal paths on S. Instead of the circumferences
of polygons with vertices on the circle, we now shall use the total lengths of
polygonal paths on the curve S to approximate the length of this curve. Below,
we shall make this more precise.
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Figure 4.1: Polygonal Path P0, P1, . . . , Pi−1, Pi, . . . , Pn−1, Pn on S
The length of the polygonal path induced by the partition t• is obviously given

by:

λ(P•) = λ
(
ϕ(t•)

)
:=

n∑
i=1

dist(Pi, Pi−1) =

=
n∑
i=1

√(
x(ti)− x(ti−1)

)2
+
(
y(ti)− y(ti−1)

)2
.

Now, again our aim must be to show, that the lengths of all polygonal paths
with vertices on S which are defined “by finer and finer partitions” converge
to the same value.

(B) (Reformulating the Rectification Problem for Curves) We follow the trace
hinted by what we did in Remark 4.2 (B) for the circle. So, again, the fineness
of the partition t• = (t0, . . . , tn) of [a, b] is defined by

f(t•) := max{ti − ti−1 | i = 1, . . . , n}.

Now, to solve the task we gave ourselves in part (A), we aim to show the
following:

(RC) There is a number λ(ϕ) ∈ R such that for all sequences of partitions

(t[k]• )k∈N, where t[k]• = (t
[k]
i )nk

i=0, with a = t
[k]
0 < t

[k]
1 < . . . < t

[k]
nk−1 < t[k]nk

= b

such that limk→∞f(t[k]• ) = 0 it holds
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limk→∞λ(ϕ(t[k]• )) = limk→∞

n∑
i=1

dist
(
ϕ(t

[k]
i ), ϕ(t

[k]
i−1)
)

=

= limk→∞

n∑
i=1

√(
x(t

[k]
i )− x(t

[k]
i−1)
)2

+
(
y(t

[k]
i )− y(t

k]
i−1)
)2

=

= λ(ϕ).

The solution of this problem can be given by showing that the requested num-
ber λ(ϕ) can be represented as an integral. Below, we shall formulate this
solution, without proving it. In case our problem finds an affirmative answer,
the number λ(ϕ) we are looking for is called the length of the curve S with
respect to the parametrization ϕ.
Observe that the number λ(ϕ) may heuristically be understood as the total
length of the trajectory travelled by the point ϕ(t) if t runs from a to b. This is
particularly illuminating heuristic point of view, if t is considered as time (see
Exercise (d) in Part (C) below).

(C) (Computing the Curve Length by Integration) A basic theorem – usually
proved in Advanced Calculus courses, and made evident in Undergraduate
Calculus courses – claims:

(RC1) For each smooth parametrization

ϕ : [a, b]� S

of the curve S, the requested curve length of S with respect to ϕ exists
and is given by

λ(ϕ) =

∫ b

a

√
ẋ(t)2 + ẏ(t)2dt =

∫ b

a

‖ϕ̇‖dt,

where ‖ϕ̇‖ =
√
ẋ(t)2 + ẏ(t)2 denotes the norm of the (vectorial) deriv-

ative

ϕ̇(t) =

(
ẋ(t)
ẏ(t)

)
of ϕ at t.

We shall give a proper proof of this statement later. For the moment, we
content ourselves to illustrate the meaning of this claim by some exercises.

(a) Use the integral formula of (RC1) to compute the circumference of a
circle.

(b) Let f : [a, b] −→ R be a continuously differentiable function. Prove by
the integral formula given in (RC1), that the length of the graph

Graph(f) := {(x, f(x)) ∈ R2 | x ∈ [a, b]}

is given by ∫ b

a

√
1 + (f ′(x))2dx.
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(c) Give a heuristic argument to justify the integral formula for λ(ϕ) given
in (RC1). To do so, make evident and then use that√(
x(ti)− x(ti−1)

)2
+
(
y(ti)− y(ti−1)

)2 ≈√ẋ(ti)2 + ẏ(ti)2
(
ti − ti−1

)
if ti ≈ ti−1,

where “≈” is used to denote the relation “approximately equal”.
(d) Assume that the variable t in the parametrization ϕ : [a, b] � S is

time, so that ϕ(t) is the position of a point on the curve S at time t.
Give a physically evident explanation for the integral formula for λ(ϕ)
given in (RC1).

(D) (Revisiting the Cycloid) We consider the cycloid S ⊆ E = R2 introduced
in Part (B) of Remark and Exercise 2.4 in a slightly more general setting,
namely parametrized by

ϕ : [0, 2π] −→ R2, t 7→ ϕ(t) :=

(
x(t)
y(t)

)
with

x(t) := rt− rsin(t) and y(t) := −rcos(t), (∀t ∈ [0, 2π]),

for a fixed value r ∈ R>0. Make clear, that the map

ϕ : [0, 2π]� S := ϕ([0, 2π])

is a smooth parametrization of S. Prove that

(a) For all t ∈ [0, 2π], the vectorial derivative

ϕ̇(t) :=

(
ẋ(t)
ẏ(t)

)
satisfies the equality

‖ϕ̇(t)‖ =
√
ẋ(t)2 + ẏ(t)2 = r

√
2
√

1− cos(t).

(b) Use the relation −cos(t) = cos(π − t) to show that√
1− cos(t) =

√
2cos

(π − t
2

)
for all t ∈ [0, 2π].

(c) Use statements (a) and (b) to compute the length

λ(ϕ) =

∫ 2π

0

‖ϕ̇(t)‖dt

of the parametrized cycloid S.

(E) (The Absolute Curve Length) If one likes to have a notion of curve length,
which is independent on the choice of a smooth parametrization, one may
define:

λ(S) := inf
(
{λ(ϕ) | ϕ : [a, b]� S is a smooth parametrization of S}

)
.

Here inf(S) ∈ R ∪∞ is used to denote the infimum of a set S ⊆ R. This new
invariant λ(S) – which equals∞ if S does not admit a smooth parametrization
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– is called the absolute length of S.
We say that a smooth parametrization ϕ : [a, b]� S is simple, if

‖ϕ̇(t)‖ for all t ∈]a, b[.

It can be shown that the following holds:

(a) If ϕ : [a, b] � S is a smooth and simple parametrization, then the
absolute length of S is given by

λ(S) = λ(ϕ) =

∫ b

a

‖ϕ̇(t)‖dt.

Clearly, the standard parametrization ϕ
[Z]
r : [0, 2π] � C = Cr(Z) of the circle

is smooth and simple. So, in view of Corollary 4.4 we may say:

(b) The circumference of the circle Cr(Z) is its absolute length, thus

λ
(
Cr(Z)

)
= 2rπ.

Now, prove the following statements:

(c) The smooth parametrization ϕ : [0, 2π] � S of the cycloid S given in
part (D) is simple.

(d) The absolute length λ(S) of the above cycloid S coincides with the
value λ(ϕ) computed in (D)(c).

(e) A motorcyclist is running with constant speed of 45km/h. The wheels
of his bike have a diameter of 48cm. How long does he have to run until
a marked point on the running face of tire has travelled 1 km further
than himself?

Now, we shall establish the claim (RC1). We add this proof as a kind of
refresher for those of you who like to through a glance “of mathematical nos-
talgia” back to their time at the University, where strict arguing and stringent
reasoning were basic issues.

4.6 Proposition The claim (RC1) of Remark, Reminder, Definition and
Exercise 4.5 (C) holds.

Proof. Let

ϕ : [a, b]� S ⊆ R2, t 7→ ϕ(t) =

(
x(t)
y(t)

)
be a smooth parametrization. Then the derivation functions

ẋ, ẏ : [a, b] −→ R, t 7→ ẋ(t), t 7→ ẏ(t) (∀t ∈ [a, b])

exist and are both continuous. So the modulus or norm function

‖ϕ̇‖ : [a, b] −→ R, t 7→ ‖ϕ̇(t)‖ =
√
ẋ(t)2 + ẏ(t)2 (∀t ∈ [a, b])

is continuous to. Thus, we know from Calculus, that the integral

λ(ϕ) :=

∫ b

a

‖ϕ̇(t)‖dt =

∫ b

a

√
ẋ(t)2 + ẏ(t)2dt
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exists. Now, let

(t[k]• )k∈N, where t[k]• = (t
[k]
i )nk

i=0, with a = t
[k]
0 < t

[k]
1 < . . . < t

[k]
nk−1 < t[k]nk

= b

be a sequence of partitions of [a, b] such that

(@) limk→∞f(t
[k]
• ) = 0.

Our aim is to show that (see Remark, Reminder, Definition and Exercise 4.5
(B)):

(!!) limk→∞

n∑
i=1

√(
x(t

[k]
i )− x(t

[k]
i−1)
)2

+
(
y(t

[k]
i )− y(t

[k]
i−1)
)2

= λ(ϕ).

By the Mean Value Theorem of Differential Calculus, for all i ∈ {1, 2, . . . , nk},
we find

α
[k]
i , β

[k]
i ∈ [t

[k]
i−1, t

[k]
i ] such that

x(t
[k]
i )− x(t

[k]
i−1)

t
[k]
i − t

[k]
i−1

= ẋ(α
[k]
i ) and

y(t
[k]
i )− y(t

[k]
i−1)

t
[k]
i − t

[k]
i−1

= ẏ(β
[k]
i ).

So, for all k ∈ N and all i ∈ {1, 2, . . . , nk} we have:

x(t
[k]
i )− x(t

[k]
i−1) = ẋ(α

[k]
i )(t

[k]
i − t

[k]
i−1) and y(t

[k]
i )− y(t

[k]
i−1) = ẏ(β

[k]
i )(t

[k]
i − t

[k]
i−1).

Therefore we can say:

(@1) For all k ∈ N and all i ∈ {1, 2, . . . , n} it holds√(
x(t

[k]
i )− x(t

[k]
i−1)
)2

+
(
y(t

[k]
i )− y(t

[k]
i−1)
)2

= (t
[k]
i − t

[k]
i−1)

√
ẋ(α

[k]
i )2 + ẏ(β

[k]
i )2.

By what we have learned in Calculus about the Riemann integral we have

limk→∞

n∑
i=1

(t
[k]
i − t

[k]
i−1)

√
ẋ(α

[k]
i )2 + ẏ(α

[k]
i )2 =

=

∫ b

a

√
ẋ(t)2 + ẏ(t)2dt = λ(ϕ).

It thus remains to show that (see (!!) above):

limk→∞

n∑
i=1

(t
[k]
i − t

[k]
i−1)

√
ẋ(α

[k]
i )2 + ẏ(α

[k]
i )2 =

= limk→∞

n∑
i=1

√(
x(t

[k]
i )− x(t

[k]
i−1)
)2

+
(
y(t

[k]
i )− y(t

[k]
i−1)
)2
.

Expressing the summands in the second limit by means of statement (@1)
above, we thus may restrict ourselves to show that

limk→∞

n∑
i=1

(t
[k]
i − t

[k]
i−1)

√
ẋ(α

[k]
i )2 + ẏ(α

[k]
i )2 =

= limk→∞

n∑
i=1

(t
[k]
i − t

[k]
i−1)

√
ẋ(α

[k]
i )2 + ẏ(β

[k]
i )2.
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Passing to differences between the two involved sums in the limits, we thus are
left with the task to show that

(!!!) limk→∞

n∑
i=1

(t
[k]
i − t

[k]
i−1)
(√

ẋ(α
[k]
i )2 + ẏ(β

[k]
i )2 −

√
ẋ(α

[k]
i )2 + ẏ(α

[k]
i )2

)
= 0.

To do so, we first use the well known inequality

|
√
u−
√
v| ≤

√
|u− v| (∀u, v ∈ R≥0)

in order to establish the following statement.

(@2) For all k ∈ N and all i ∈ {1, 2, . . . nk} we have

∣∣√ẋ(α
[k]
i )2 + ẏ(β

[k]
i )2 −

√
ẋ(α

[k]
i )2 + ẏ(α

[k]
i )2

∣∣ ≤
≤
√∣∣(ẋ(α

[k]
i )2 + ẏ(β

[k]
i )2)− (ẋ(α

[k]
i )2 + ẏ(α

[k]
i )2)

∣∣ =

=

√∣∣ẏ(β
[k]
i )2 − ẏ(α

[k]
i )2

∣∣.
As the function ẏ2 : [a, b] −→ R is continuous and defined on a closed intervall,
it is uniformely continuous. Therefore we can say:

(@3) For all ε ∈ R>0 there is some δ(ε) ∈ R>0 such that |ẏ(t)2 − ẏ(s)2| < ε
for all s, t ∈ [a, b] with |t− s| < δ(ε).

By our hypotheses (@1) we now can say

(@4) For all ε ∈ R>0 there is some k0(ε) ∈ N such that f(t
[k]
• ) < δ(ε) for all

k ≥ k0(ε).

As α
[k]
i , β

[k]
i ∈ [t

[k]
i−1, t

[k]
i ] for all k ∈ N and all i ∈ {1, 2, . . . , nk}, it follows that

|β[k]
i − α

[k]
i | < δ(ε) for all k ≥ k0(ε) and all i ∈ {1, 2, . . . , nk}.

Applying (@3) with s = α
[k]
i and t = β

[k]
i we see that

|ẏ(β
[k]
i )2− ẏ(α

[k]
i )2| < ε for all ε ∈ R>0, all k ≥ k0(ε) and all i ∈ {1, 2, . . . , nk}.

On application of the above statement (@2) we thus get – for all ε ∈ R>0, all
k ≥ k0(ε) and all i ∈ {1, 2, . . . , nk} – the inequality

∣∣√ẋ(α
[k]
i )2 + ẏ(β

[k]
i )2 −

√
ẋ(α

[k]
i )2 + ẏ(α

[k]
i )2

∣∣ ≤
≤
√∣∣ẏ(β

[k]
i )2 − ẏ(α

[k]
i )2

∣∣ < √ε.
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But this implies that for all ε ∈ R>0 and all k ≥ k0(ε) we have∣∣ n∑
i=1

(t
[k]
i − t

[k]
i−1)
(√

ẋ(α
[k]
i )2 + ẏ(β

[k]
i )2 −

√
ẋ(α

[k]
i )2 + ẏ(α

[k]
i )2

)∣∣ ≤
≤

n∑
i=1

(t
[k]
i − t

[k]
i−1)
∣∣√ẋ(α

[k]
i )2 + ẏ(β

[k]
i )2 −

√
ẋ(α

[k]
i )2 + ẏ(α

[k]
i )2

∣∣ ≤
<

n∑
i=1

(t
[k]
i − t

[k]
i−1)
√
ε = (b− a)

√
ε.

This implies our claim (!!!). �

Being Even More Courageous: Attacking Non-Parametrized Curves.
Obviously, one might also ask, whether the notion of (absolute) curve length
can be introduced without using a parametrization. This is indeed possible.
Below, we offer a glance to this idea.

4.7 Remark, Definition and Exercise. (A) (The Path Length of a Point
Set) Let S be any non-empty set in the plane E. Then it is possible to assign
a “number”

λ(S) ∈ R≥0 ∪ {∞}
to the set S, which can be considered in a natural way as the length or the
path length of S. The process of determining this length λ(S) is usually again
called the rectification of S. We briefly recall this concept.
To do so, fix some n ∈ Z≥2 and let us consider the set

Sn+1 := {(P0, P1, . . . , Pn) | P0, P1 . . . Pn ∈ S}

of all sequences of length n + 1 consisting of points P0, P1, . . . , Pn of S. (Ob-
serve, that we do not insist that Pi 6= Pj if i 6= j.) Now, fix such a sequence
(P0, P1, . . . , Pn) ∈ Sn+1. We use the notation

λ(P0, P1 . . . , Pn)

to denote the length of the “shortest connected path” in the plane which
passes through all the points P0, P1 . . . , Pn. Clearly, this path must consist of
line segments between some points Pi and Pj and it must run through all the
points Pi in an appropriate order, such that its length becomes minimal.
To make this more precise, let

Sn+1 := {σ : {0, 1, . . . , n} → {0, 1, . . . , n} | σ is a bijective map }

be the set of all permutations of the numbers 0, 1 . . . , n.(Observe, that we just
have defined the notion of permutation in stringent terms as a bijective map.)
Then we can chose a permutation σ ∈ Sn+1 and run through our points in the
order

Pσ(0), Pσ(1), Pσ(2), . . . , Pσ(n−1), Pσ(n)
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with a path consisting of the n consecutive line segments

|Pσ(i−1)Pσ(i)| with i = 1, 2, . . . , n.

Figure 4.2: Path Through Pσ(0), Pσ(1), Pσ(2), . . . , Pσ(n−1), Pσ(n)

Now, obviously the length of this path is given by the sum

n∑
i=1

dist
(
Pσ(i−1), Pσ(i)

)
.

To determine λ(P0, P1, . . . , Pn), we must try all possible permutations σ ∈
Sn+1 and chose one for which the above sum becomes minimal. In formal
terms, we thus have:

λ(P0, P1, . . . , Pn) := min{
n∑
i=1

dist
(
Pσ(i−1), Pσ(i)

)
| σ ∈ Sn+1}.

Now, let

Λ(S) := {λ(P0, P1, . . . , Pn) | n ∈ N≥2 and P0, P1, . . . , Pn ∈ S} ⊆ R≥0

be the set of all path-lengths λ(P0, P1, . . . , Pn) defined by finite sequences in
S. Assume first, that the set Λ(S) is bounded. Then, there exists some upper
bound b of Λ(S) – thus a number b ∈ R such that λ ≤ b for all λ ∈ Λ(S). In
this case – by the completeness of R – the set Λ(S) has a least upper bound
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or supremum, which we denote by sup
(
Λ(S)

)
. So, we define the previously

mentioned path length of the connected non-empty set S by

λ(S) :=

{
sup
(
Λ(S)

)
, if Λ(S) is bounded

∞, otherwise .

Clearly one now would have to show, that this new and more general no-
tion of curve length coincides with the notion of absolute length for smoothly
parametrized curves, in order to reconciliate the now notion of length with the
former one.

(B)(Length of Smoothly Parametrized Simple Curves) Assume now, that there
is a smooth simple parametrization (see Remark, Reminder, Definition and
Exercise 4.5 (A),(E))

ϕ : [a, b]� S ⊆ E = R2, t 7→ ϕ(t) =

(
x(t)
y(t)

)
.

Then, one can again prove (we omit this here) that:

λ(S) =

∫ b

a

√
ẋ(t)2 + ẏ(t)2dt =

∫ b

a

‖ϕ̇‖dt,

where ‖ϕ̇‖ =
√
ẋ(t)2 + ẏ(t)2 denotes the modulus of the (vectorial) derivative

ϕ̇(t) =

(
ẋ(t)
ẏ(t)

)
of ϕ at t.
So, by what we said in Remark, Reminder, Definition and Exercise 4.5 (E) we
can say:

(a) If S admits a smooth simple parametrization ϕ : [a, b]� C, then

λ(S) = λ(ϕ) = λ(S).

This is the requested reconciliation, which (as already said above) we do not
attempt to prove here.

(C) (Examples by Exercise) Determine λ(S) for the following sets S ⊆ E = R2.

(a) S := Cr(Z) (r ∈ R>0, Z ∈ E).
(b) The cycloid S introduced in Remark, Reminder, Definition and Exer-

cise 4.5 (D).
(c) S := {P,Q} with P,Q ∈ E.
(d) S := |PQ| with P,Q ∈ E.
(e) S := {P,Q,R} with P,Q,R ∈ E.
(f) S := {

(
rcos(2kπ

n
), rsin(2kπ

n
)
)
| k = 0, 1, . . . , n} for r ∈ R>0 and n ∈ N.

(g) S := |PQ| ∪ |QS| with P,Q, S ∈ E not collinear.
(h) S := |PQ| ∪ |RS| with P,Q,R, S ∈ E and |PQ| ∩ |RS| = {T} with

T /∈ {P,Q,R, S}.
(i) S := {(cos(t), sin(t)) | 0 ≤ t ≤ π} ∪ {(0, 0), (0, 2), (2, 0)}
(k) S := Dr(Z) with r ∈ R>0 and Z ∈ E.



58

Resuming what is of use for High School Teaching. Clearly, a great
deal of our serious arguments in this chapter are “hard core Analyisis”. These
arguments are presented in order to remind the readers of a few things they
once learned at University. These things clearly are not intended to enter your
everyday High School teaching directly. But then and now, teachers should get
a chance to revisit strict formal arguments which are behind what is taught by
heuristic considerations at High School. We hope, that we have done this with
the proofs of Proposition 4.3 and 4.6. Most mathematicians believe, that what
you keep in the back of your mind also influences the way you teach, may be
even inconcuousely. The author shares this view, and this was his motivation
to add the mentioned propositions and there proofs.
But beside of this rather abstract matters, who likely will have an indirect
impact to your teaching, there are a number of concrete things treated in this
chapter, which you could use as an immediate source of inspiration for your
teaching. We give some hints to this in the conclusive didactic comments of
this chapter.

4.8 Didactic Comments (A) (The Pace of Polygonists) The comments made
under Remarks 4.1 (A),(B),(C) might throughout find their way to your class-
room. It is a valuable approach, to introduce deep mathematical problems
by academic anecdotes. Even, if pupils miss to see the depth of the whole
question (which is likely the case for their majority) they hear what “kind of
strange questions mathematicians are caring about”. This need not have a
negative effect to their judgement of Mathematics at all. And for the teacher,
such an approach could be an opportunity to develop his individual views on
presenting mathematical features.

(B) (Admitting Irregular Polygons) We also believe, that our considerations on
irregular polygons, suggested in Remarks 4.2 (A) and (B) are not completely
beyond the comprehension of Secondary School Students at A-Level. Clearly,
in our presentation, we are a bit formal, as we address ourselves to you, that
is to the teachers. But could it not be worth to investigate say 30 minutes
to in a try to understand the meaning of the reconciliation statement (R2)
of part (B) of the mentioned remarks? For those of your students, who aim
to do University studies in Mathematics, this would be very nice preview to
the kind of thinking, they will be faced with when doing basic Analysis. Do
not forget, that it may be worth to do this for the real profit of one or of
two students. You might also suggest to prepare a short presentation of the
material as a cooperate home work to a selected group of students. Then, you
also should say, that the reconciliation property (R2) holds, and that this can
be proved by means of tools coming from calculus. What you actually need
from calculus, is very little, namely:

(1) the fact that limx→0
sin(x)
x

= 1, and
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(2) the precise definition of limit for a sequence of real numbers.

But the main reason, why one has to give a strict formal proof for a statement
like (R2), which – at a first glance – seems quite easy from the heuristic point
of view, can be explained as follows: If all edges of a polygon with vertices on
the circle C become shorter, clearly, the differences between the length of each
edge and the length of the corresponding arc on C over this edge, becomes
smaller. So, for each single edge there is a smaller and smaller error, if we
replace the arc length over this edge (thus the quantity we are interested in)
by the length of the edge. But, on the other hand, if all edges become shorter
and shorter, there must be more and more of them. So, we have a larger and
larger number of smaller and smaller errors, if we replace the arc lengths by
the edge length. But, finally, who wins? The “smallness“ of the of errors or
the ”higher and higher number“ of the small errors. This kind of competing
problem between ”smaller and smaller but more and more errors“ is in fact a
basic issue of Analysis. In a certain sense, this kind of question became even
one of the driving forces for the development of Analysis at all.

(B) (Rectification of Curves) Our comments on the rectification of curves, as we
made them under Remark, Reminder, Definition and Exercise 4.5 (A) – (E) are
mostly subjects you could treat in your class, provided students dispose on the
basic notions of Integral Calculus. Indeed, the integral formula of Exercise (b)
of part (C) occurs in most standard Calculus textbooks for High Schools. The
heuristic justification of this formula is usually given as suggested in Exercise
(c) of part (C). The very important (!) Physical interpretation of the integral
formula for λ(ϕ), as suggested in Exercise (d) of part (C) is also presented in
many of Textbooks for High Schools.

(C) (Path Length of Sets) Part (C) of Remark, Definition and Exercise 4.7
could also find their way to the class room. Obviously, if you want to set this
to practice, you must introduce the path length λ(S) of a set S ⊆ E = R2

in completely elementary way – just by means of examples. So, you could
give yourself finitely many points P0, P1, . . . , Pn in the plane and ask for the
shortest path passing through all of them. Clearly if doing so, you should
begin with the case n = 1, and then try to do the case n = 2 and – may be –
even the case n = 3 in detail. In this case, you will have

λ(S) = λ({P0, P1, . . . , Pn}) = λ(P0, P1, . . . , Pn).

Clearly, you need not write this down in your class. Discuss just the examples.
Let your students find by experiment some (shortest) path lengths in the sug-
gested cases with say 4 or even 5 points. . .
This could help to explain our notion of path length λ(S) for a finite set
S ⊆ E.
In a next step, you could be more daring and admit sets S which contain
finitely many (single points and) line sections. You could do this by discussing
exercises (g) and (g) in part (D) of Remark, Definition and Exercise 4.7. Fi-
nally, you could even give a short hint to the case, in which S contains even
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finitely many curve segments (see Remark, Definition and Exercise 4.7 (C)(i)).
The whole subject should approach to your class the idea, that we are – once
more – asking for a number of great practical significance:

The length of a shortest journey which comes across a sample of given places!
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5. Squaring the Circle
Compasses and Straightedge versus π. A classical problem of Geometry
– already discussed in ancient times – is the following question:

(Q1) Given a circle of radius r and center Z. Is there a construction by
compasses and straightedge of a square which has the same area as the
circular disk D := Dr(Z)?

As the area of the disk D is given by A = r2π (see also Exercises and Remark
3.5 (D)), question (Q1) can be reformulated as follows:

(Q2) Given a line segment of length r. Is there a construction by compasses
and straightedge of a line segment of length r

√
π?

It is easy to see, that it suffices to solve his problem in the case r = 1. So
question (Q2) is actually equivalent to the following question, in which we use
the notion of unit line segment for a line segment of length 1:

(Q3) Is it possible, to construct by compasses and straightedge a line segment
of length

√
π out of a unit line segment?

Some of you may remember, that for any line segment of length a one can
construct by compasses and straightedge a line segment of length

√
a (provided

a unit line segment is given). Those among you, who cannot remember this
fact at the moment, get another chance to brush up their memory later on. If
we accept the stated fact for the moment, we finally can reduce our question
(Q3) to the following problem

(Cπ) (Constructibility of π) Is it possible to construct by compasses and
straightedge a line segment of length π out of a unit line segment?

Between Arithmetics and Geometry. The present chapter is devoted to
this constructibility question. It turns out, that the general constructibility
question, whether a line segment of given length a can be constructed by com-
passes and straightedge from a unit line segment is not a geometric question.
This constructibility question is in fact an algebraic question on the nature
of the number a. The first to discover the algebraic nature of this general
constructibility question and to realize the great importance of this fact, was
the great German Mathematician C.F.Gauss (1777 - 1855). He made this dis-
covery and did put his findings to practice – at the age of 18 – when he gave
a construction for the regular 17-gon in the year 1795.
We shall start our investigation by a number of basic facts on constructions
with compasses and straightedge, facts you are familiar with from what you
teach at school. Nevertheless we prefer to recall some of these basic features
in order to introduce the subject in a self-contained way. Also, we hope that
our discussions shed some light to things you are already familiar with.

5.1 Remark, Reminders, Exercises and Definition (A) (Basic Construc-
tions by Compasses and Straightedge) We first recall some basic constructions
which can be performed on use of compasses and straightedge. We list these
constructions below in the form of exercise, in order to encourage you to think
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a moment on them. Then we shall proceed to slightly more advanced construc-
tions. At first place, we suggest that you perform – only on use of compasses
and straightedge – the following basic constructions.

(a) (Transport of a Line Segment) Let g ⊆ E be a line, let P ∈ g be
a point, let A,B ∈ E two distinct points. Construct the two points
Q,Q′ ∈ g with dist(P,Q) = dist(P,Q′) = dist(A,B). This allows you
to transport any line segment to a line segment contained in g and
having P as an extremal point.

(b) (Bisection of Line Segments) Let P,Q ∈ E be two distinct points.
Construct the midpoint of the line segment |PQ|, hence the unique
point M ∈ |PQ| with dist(P,M) = dist(M,Q). This allows you to
bisect a line segment in two equally long pieces.

(c) (Drawing Parallel Lines) Let g ⊆ E be a line and let P ∈ E \ g be a
point. Construct a line h ⊆ E which is parallel to g and contains the
point P , hence the unique line h ⊆ E with

h‖g and P ∈ h.

Remember, that by definition, the parallelity relation h‖g of two lines
g, h ⊆ E is defined by the condition that either h = g or else h∩ g = ∅.

(d) (Constructing Right Angles) Let g ⊆ E be a line and let P ∈ E be a
point. Construct the unique line h ⊆ E which is perpendicular on the
line g and contains P . This allows you to construct a line h, which
intersects a given line g under a right angle in a given point P of g.

(B) (Arithmetics by Compasses and Straightedge) We now always assume that
a unit line segments and two line segments of length a, b ∈ R>0 are given. For
the sake of simplicity, we always assume that a ≥ b. Below, we suggest con-
structions which can be performed by compasses and straightedge and which
respectively furnish line segments of the following lengths:

a+ b, a− b, ab,
a

b
and
√
a.

This means, that the four basic arithmetic operations of addition, subtraction,
multiplication and division, but also the operation of taking square roots, may
be performed on use of compasses and straightedge. Below, we hint in sketches
how these geometric realizations of arithmetic operations are put to practice,
and we suggest it as exercises for you to prove our claims. You also must
make sure, that the suggested constructions can be performed only on use of
compasses and straightedge. For this you will need what you already did in
part (A).
Here you also find reconciliation for the fact already used in the introductory
comment to this chapter: If we can construct π by means of compasses and
straightedge, so we can construct

√
π in this way. This means, our reduction

of the problem of squaring the circle to the constructability question for π will
now have found full justification.
You also might have met some of the geometric constructions below performed
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in a different way. If this is the case you should also make clear, that ”your“
construction gives indeed the result of the underlying elementary arithmetic
operation.

(a) (Taking Sums: The Addition)

Figure 5.1: Construction of a+ b

This construction clearly is self-evident. A particular case of it is the construc-
tion of 2a. More generally one can get the construction of na for any n ∈ N
on repeated application of the suggested construction.

(b) (Taking Differences: The Subtraction)

Figure 5.2: Construction of a− b

Also here, we meet a self-evident construction. make clear here also how you
proceed in the case where b ≥ a. Also, discuss the occurring practical difficulty
if one aims to construct n(a− b) in the case where

a� 0, a ≈ b and n ∈ N with n� 0.
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Do not forget, that even a carefully working designer barely can perform con-
structions by compasses and straihtedge with a precision below 0.5mm. Per-
form the construction of 20(a− b) with a = 10cm and b = 9.7cm.

(c) (Taking Products: The Multiplication)

Figure 5.3: Construction of ab

This construction is not at all self-evident, and its explanation needs basic
knowledge on right-angular triangles. Observe, that the explanation of the
construction first must use another right-angular triangle, which is not drawn
in our figure. But the upper semicircle shown in the figure should hint, where
the ”invisible right-angular triangle“ can be found. The semicircle in question
just must be understood as half of the Thales circle over its diameter. What
you need here to complete the explanation of the construction is the Height
Theorem for right-angular triangles (”h2 = pq”), which your students clearly
know. So the construction in question and its explanation perfectly fit to
what you do in class. If you usually treat this construction in your classes,
we encourage you to go on with doing so. If you do not treat and discuss the
construction in your classes, we encourage you to do so in future.
Similarly as in the construction of the difference, there is also a precision
problem in the construction of the product: If a+ b is large (compared to 1),
the construction cannot be performed precisely – as you may explain easily by
looking at the geometric situation. Here again, in the class-room you could
construct ab for different values of a and b – in the range of 1, 2, . . . , 5[cm] and
make students compare the constructed value of ab with its actual value.
A way to gain some precision would be – for example – to construct 1

n
ab for

n ∈ Z>1 (by replacing the unite line segment in the construction by a line
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segment of length n ∈ {2, 3, . . .}) and then to add up n-times the result by the
construction given in (a).
Finally keep in mind, that the two right angles occurring in the suggested
construction, can be obtained by a straightedge and compasses construction.
So, what we suggest is indeed a construction of the requested type. However,
in practice one would prefer to use a right angle ruler instead of our previously
suggested construction by straightedge and compasses.

(d) (Taking Quotients: The Division)

Figure 5.4: Construction of
a

b

Clearly, this construction relies on Geometric Similarity. Generally, if b is

small (with respect to 1) and a is large (with respect to 1), the suggested
construction will tend to be in-precise. Also here, we recommend you to think
on this problem of precision and to discuss it. Again, in the class rooms a
performance of a practical test with simple values of a and b can be quite
illustrative.
Observe also that for a < b, the figure looks slightly different. Finally, there is
a nice direct and simple construction for the value of a

n
, where n ∈ N, which

you likely will know.
Observe that in our construction, one has to draw a line passing through a
given point and being parallel to a given line. As we did recall earlier, this is
a task which can be performed merely on use of straightedge and compasses.
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However, also here, in practice, one likewise will prefer the well known method
of parallel transport of a given line.

(e) (Taking Square Roots)

Figure 5.5: Construction of
√
a

This construction relies again directly on the Height Theorem for right-angular
triangles already used in (c). Observe, that if you replace the unit line segment

by a line segment of length b, the result of the construction is
√
ab. So, our

construction is a special case of the well known classical construction of (the
edge of) a square whose area equals the area of a given rectangle.

(C) (Basic Arithmetic Constructions by Compasses and Straightedge) We call
the five constructions presented in (a) – (e) the basic arithmetic constructions.

Constructible Numbers. As already said above, the originally geometric
constructibility question is rather an arithmetic question concerning a certain
type of numbers. So, we now will introduce and study these numbers, and
hence move from Geometry to Arithmetics and in fact even get a flavour of
Abstract Algebra.

5.2 Remark, Definition and Exercises (A) (Constructibly Closed Fields of
Numbers) Inspired by what we leaned in Remark, Reminder and Exercises 5.1
we now aim to look at subsets S ⊆ R which satisfy the following properties:

(a) (Unitarity) 1 ∈ S.
(b) (Closedness under Addition) If a, b ∈ S, then a+ b ∈ S.
(c) (Closedness under Subtraction) If a, b ∈ S, then a− b ∈ S.
(d) (Closedness under Multiplication) If a, b ∈ S, then ab ∈ S.
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(e) (Closedness under Division) If a, b ∈ S with b 6= 0, then a
b
∈ S

(f) (Closedness under Formation of Square Roots) If a ∈ S with a ≥ 0,
then

√
a ∈ S.

First observe, that the properties (a)–(e) imposed on the set S ⊆ R imply
that S is a subfield of (the field) R (of real numbers). The notions of field and
subfield you know from Linear Algebra or from Abstract Algebra. Property (f)
is sometimes spoken by saying that the field S is quadratically closed.
Prove the following fact, which justifies to call a set S which satisfies the above
relations (a)–(f) constructibly closed.

(g) (Closedness under Construction by Compass and Straightedge) Let S ⊆
R be a constructibly closed subfield and let

a1, a2, . . . , an ∈ S
be lengths of line sections. Assume that s is the length of a line section
which is obtained from the given n line sections by repeated appli-
cation of the five basic arithmetic constructions presented in Remark
Reminder and Exercises 5.1 (B). Then

s ∈ S.
So, we can say: If we perform in S those arithmetic operations, which can be
realized by arithmetic constructions, we cannot get out of S. Finally, show the
following:

(h) R is a constructibly closed subfield of R.
(i) Q is not a constructibly closed subfield of R.
(k) If S is a constructibly closed subfield of R, then Q ⊆ S.
(l) If S is a constructibly closed subfield of R and q ∈ S with q > 0, then

q
1
2n ∈ S for all n ∈ N.

(B) (The Field of Constructible Numbers) We start introducing the announced
notion by some exercises, which invite you to prove the following claims:

(a) Let S be a set of all constructibly closed subfields S ⊆ R. Show that
the intersection of all members of S, hence the set⋂

S∈S

S is a constructibly closed subfield of R.

(b) The intersection

K :=
⋂

{S⊆R|S is a constructibly closed subfield }

S

of all constructibly closed sub-fields of R is a constructibly closed sub-
field of R.

(c) If S ⊆ R is a constructibly closed subfield and if K is defined as in
statement (b), then K ⊆ S. So, K is the least constructibly closed
subfield of R.
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(d) The constructibly closed sub-field K ⊆ R defined in statement (b)
consists of all numbers which ore obtained from 1 by performing finitely
many of the 5 arithmetic operations mentioned in part (A)(b)–(f).

(e) The constructibly closed subfield K ⊆ R defined in statement (b) con-
sists of all numbers which are obtained from rational numbers by per-
forming finitely many of the five operations mentioned in part (A)(a)–
(f).

(f) If a ∈ K is the length of a line section, then this line section can
be constructed from the unit line section on use of compasses and
straightedge.

The field K defined in statement (b) and characterized in statements (c), (d)
and (e) is called the subfield of constructible numbers. The numbers a ∈ K
are called constructible numbers. The justification for these names is given by
statement (f). Observe that constructible numbers may consist of fairly com-
plicated terms, build up from rational numbers, square roots and combining
these by the four basic operation. An example is the number

c =

√√√√1 +
√

2 +

√
1+
√
7

5+
√
11√

3− 1

Observe, that a number a ∈ R is constructible if and only if a line segment of
length |a| can be constructed by compasses and straightedge out of a unit line
segment. If we perform the construction of such a line segment, we just say,
that we construct the number a.

(C) (Examples by Exercise) Construct the following numbers a:

(a) a = 3
(b) a = 2

3

(c) a =
√

5

(d) a =
√

1 +
√

3

(e) a =
√
2√

1+
√
5

and . . .

(f) a = c, where c is the example of constructible number given previously
in part (B).

Sometimes, the construction of a number from two given numbers may be
performed in fewer steps, if you try a direct geometric (or algebraic approach)
instead of using consecutive basic arithmetic constructions. Moreover trans-
formation of terms may help to simplify matters, too. Put this to practice in
the following examples, in which 0 < a < b:

(g)
√
a2 + b2

(h)
√
b2 − a2

(i)
√
ab

(k) a+ a
2

+ a
4

+ a
8

+ a
16

+ · · · .
(l) a+ a2

2
+ a3

4
+ a4

8
+ a5

16
+ · · · (0 < a < 2).
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(m) asin(π
8
).

(D) (Rephrasing the Constructability Problem for π) In view of the previous
development we now reformulate the mentioned constructability problem (Cπ)
in the foillowing form:

(Kπ) Is it true that π ∈ K?

We now shall prepare the answer to this question, although the proof of this
answer exceeds by far what we can achieve in this series of lectures.

Algebraic Numbers. We now shall introduce a new class of numbers, namely
the so called algebraic numbers. We shall see, that these form a constructibly
closed subfield of R, so that all constructible numbers are algebraic. We begin
with the following elementary result from (Abstract) Algebra.

5.3 Proposition Let n ∈ N and let a ∈ R. Then the following statements are
equivalent:

(i) There is an equation

zna
n + zn−1a

n−1 + · · ·+ z1a+ z0 = 0 with z0, z1, . . . , zn−1 ∈ Z and zn ∈ N.

(ii) There is an equation

zna
n + zn−1a

n−1 + · · ·+ z1a+ z0 = 0 with z0, z1, . . . , zn ∈ Z and zn 6= 0.

(iii) There is an equation

qna
n + qn−1a

n−1 + · · ·+ q1a+ q0 = 0 with q0, q1, . . . , qn ∈ Q and qn 6= 0.

(iv) There is an equation

an + qn−1a
n−1 + · · ·+ q1a+ q0 = 0 with q0, q1, . . . , qn−1 ∈ Q.

(v) The elements 1, a, . . . , an−1 generate the Q vector-space

Q[a] :=
∑
i∈N0

Qai = {
m∑
j=0

qja
j | m ∈ N0 and q0, q1, . . . , qm ∈ Q} ⊆ R

(vi) The dimension of the Q-vector space Q[a] of statement (v) satisfies the
inequality

dimQ
(
Q[a]

)
≤ n.

Proof. : The equivalences

(i)⇔ (ii)⇔ (iii)⇔ (iv)

are easy to verify, and we leave it as an exercise to prove them.
(iv) ⇒ (v): Assume that there is an equation

an + qn−1a
n−1 + · · ·+ q1a+ q0 = 0 with q0, q1, . . . , qn−1 ∈ Q.
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Let

w :=
m∑
j=0

sia
j ∈ Q[a], (m ∈ N0, and s0, s1, . . . , sm ∈ Q).

We have to show that

(@) There are b0, b1, . . . , bn−1 ∈ Q such that w =
∑n−1

i=0 bia
i.

To do so, we consider the two polynomials

f(X) := Xn + qn−1X
n−1 + . . .+ q1X + q0, g(X) :=

m∑
j=0

sjX
j ∈ Q[X].

By Euclid’s Remainder Theorem for Polynomials, we find polynomials h(X), r(X) ∈
Q[X] such that

g(X) = f(X)h(X) + r(X) and the degree of r satisfies deg(r(X)) ≤ n− 1.

We write

r(X) =
n−1∑
i=0

biX
i, with b0, b1, . . . , bn−1 ∈ Q.

As f(a) = an + qn−1a
n−1 + · · ·+ q1a+ q0 = 0 it follows that

w =
m∑
j=0

sia
j = g(a) = f(a)h(a) + r(a) = r(a) =

n−1∑
i=0

bia
i.

But this proves our claim (@).
(v) ⇒ (vi): This is clear by the definition of dimension.
(vi) ⇒ (iii): Assume that dimQ

(
Q[a]

)
≤ n. As 1, a, a2, . . . ∈ Q[a] it follows

that the n + 1 elements 1, a, a, a2, . . . , an are linearly dependent over Q. So,
we find some m ∈ {1, 2, . . . , n− 1} and elements t0, t1, . . . , tm ∈ Q such that

tma
m + tm−1a

m−1 + . . . , t1a+ t0 = 0 and tm 6= 0.

We set

qi :=

{
0, for i = 0, 1, . . . , n−m− 1;

ti−n+m, for i = n−m,n−m+ 1, . . . , n
.

Then, it holds qn = tm 6= 0 and

qna
n + qn−1a

n−1 + · · ·+ q1a+ q0 =

= qna
n + qn−1a

n−1 + · · ·+ qn−ma
n−m + qn−m−1a

n−m−1 + q1a+ q0 =

= qna
n + qn−1a

n−1 + · · ·+ qn−ma
n−m =

= tma
n + tm−1a

n−1 + . . .+ t1a
n−n+1 + t0a

n−m =

=
(
tma

m + tm−1a
m−1 + . . . , t1a+ t0

)
an−m = 0an−m = 0.

This shows, that condition (iii) holds. �
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5.4 Definition, Examples and Exercises. (A) (Algebraic Numbers and
their Degree) A number a ∈ R is called an algebraic number if there is some
n ∈ N such that the equivalent conditions (i)–(vi) of Proposition 5.3 hold. The
least n ∈ N for which tis happens, is called the degree of a and denoted by
deg(a). We denote the set of algebraic numbers by A, thus:

A := {a ∈ R | a is an algebraic number }.

(B) (Examples by Exercises) Show the following statements.

(a) Q = {a ∈ A | deg(a) = 1}.
(b) For all q ∈ Q≥0 and all r ∈ N it holds

q
1
r ∈ A and deg

(
q

1
r

)
≤ r.

(c) If a ∈ A≥0 and r ∈ N, then a
1
r ∈ A.

(d) If a ∈ A \ {0} with deg(a) = n, then a satisfies an algebraic equation
of the form

qna
n + qn−1a

n−1 + . . .+ q1a+ 1 = 0 with q1, q2, . . . , qn ∈ Q.
(e) If a ∈ A \ {0}, then 1

a
∈ A.

(f) If z ∈ N is not a square number, then deg(
√
z) = 2.

(h) 2
1
3 ∈ A with deg

(
2

1
3

)
= 3.

Constructible Numbers are Algebraic. We now aim to give the second
but last ingredient which is needed to show that our constructibility question
for π cannot hava an affirmative answer. We begin with the following result,
whose proof makes again allusion to things you like have heard in your Uni-
versity Lectures in Abstract Algebra.

5.5 Proposition. The set A of algebraic numbers is a constructively closed
subfield of R.
Proof. We first show that A is closed under addition, subtraction and multi-
plication. So, let

a, b ∈ A with deg(a) = m and deg(b) = n.

We consider the Q-vector space

Q[a, b] :=
∑
i,j∈N0

Qaibj =

= {
∑

i,j∈N0:i+j≤p

qi,ja
ibj | p ∈ N0 and qi,j ∈ Q for all i, j ∈ N0 with i+ j ≤ p}.

Our first aim is to show that

(@) dimQ
(
Q[a, b]

)
≤ mn.

To do so, we show that

(@@) The Q-vector space Q[a, b] is generated by the elements

aibj with 0 ≤ i < m and 0 ≤ j < n.
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As the Q-vector space Q[a, b] is generated by the elements akbl with k, l ∈ N0,
it suffices to show that each of these elements is a Q-linear combination of the
elements mentioned under (@@).
So, let k, l ∈ N0. Then, by Proposition 5.3 we have

ak ∈ Q[a] =
m−1∑
i=0

Qai and bl ∈ Q[b] =
n−1∑
j=0

Qbj.

Therefore, we find elements u0, u1, . . . , um−1, v0, v1, . . . , vn−1 ∈ Q such that

ak =
m−1∑
i=0

uia
i and bl =

n−1∑
j=0

vjb
j.

As qi,j := uivj ∈ Q for all i = 0, 1, . . . ,m− 1 and all j = 0, 1, . . . , n− 1, we get

akbl =
(m−1∑
i=0

uia
i
)( n−1∑

j=0

vjb
j
)

=

=
∑

i∈{0,1,...,m−1};j∈{0,1,...,n−1}

uivja
ibj =

=
∑

i∈{0,1,...,m−1};j∈{0,1,...,n−1}

qi,ja
ibj.

This proves our claim (@@) and hence also claim (@).
Now, observe that for all r ∈ N0 we have

(ab)r = arbr ∈ Q[a, b],

(a+ b)r =
r∑
i=0

(
r

i

)
aibr−i ∈ Q[a, b] and

(a− b)r =
r∑
i=0

(−1)r−i
(
r

i

)
aibr−i ∈ Q[a, b].

It follows that

Q[ab], Q[a+ b], Q[a− b] ⊆ Q[a, b].

So, by statement (@), we obtain that:

dimQ
(
Q[ab]

)
, dimQ

(
Q[a+ b]

)
, dimQ

(
Q[a− b]

)
≤ mn.

Therefore, by Proposition 5.3 we obtain indeed

a+ b, a− b, ab ∈ A,

and hence A is closed under addition, subtraction and multiplication.
Now, it follows immediately by Definition, Examples and Exercises 5.4 (B)(e)
that

a

b
∈ A for all a ∈ A and all b ∈ A \ {0}.
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So, A is closed under division, too.
Finally, by Definition, Examples and Exercises 5.4 (B)(c) we have

√
a ∈ A for all a ∈ A≥0,

so that A is closed under the formation of square roots, too. �

5.6 Corollary. Constructible numbers are algebraic, thus

K ⊆ A.

Proof. This follows immediately from Proposition 5.5 by Remark, Definition
and Exercises 5.2 (B)(c). �

5.7 Exercises. (A) (Behavior of Degrees) Prove the following claims:

(a) If a, b ∈ A, then a+ b, a− b, ab ∈ A and

deg(a+ b), deg(a− b), deg(ab) ≤ deg(a)deg(b).

(Hint: Follow the track of the proof of Proposition 5.5.)
(b) If a, d ∈ A with b 6= 0, then a

b
∈ A and

deg
(a
b

)
≤ deg(a)deg(b).

(c) If a ∈ A with a > 0, then
√
a ∈ A and

deg
(√

a
)
≤ 2deg(a).

(B) (Countability of Algebraic Numbers) Let n ∈ N. We say that a ∈ R is an
n-bounded (algebraic) number, if there are integers

m ∈ N and z0, z1, . . . zm ∈ Z such that m ≤ n, |zi| ≤ n for all i = 0, 1, . . . ,m,

zm 6= 0 and, finally zma
m + zm−1a

m−1 + · · ·+ z1a+ z0 = 0.

We write
An := {a ∈ R | a is n-bounded }.

Prove the following statements:

(a) If m ∈ N and z0, z1, . . . , zm ∈ Z with zm 6= 0, then

#{a ∈ R | zmam + zm−1am−1 + · · ·+ z1a+ z0 = 0} ≤ m

(Hint: Use the Theorem of Vieta).
(b) #An ≤

∑n
m=1m2mnm+1 (Hint: Use statement (a)).

(c) A =
⋃
n∈NAn.

(d) The set A of algebraic numbers is countable.

Transcendence of π. Non-algebraic numbers, hence numbers which belong
to the set R \ A are called transcendent numbers. The main result of this
Chapter says that π belongs to these transcendent numbers. Unfortunately,
any try to prove this result would by far exceed what we could achieve in these
lectures. So, we content ourselves with stating the result.
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5.8 Theorem. (F. Lindemann, 1882) The number π is transzendent, thus

π ∈ R \ A.

5.9 Corollary. The number π is not constructible, hence π ∈ R \K. So, the
constructability problem Kπ of Remark, Definition and Exercises 5.2 (D) has
a negative answer.

Proof. This is clear by Theorem 5.8 and Corollary 5.6. �

5.10 Exercises and Remark. (A) (In-Countability of Transcendent Num-
bers) We begin with the following exercises:

(a) Use Cantor’s In-Countability Theorem for the set R of real numbers
and Exercise 5.7 (B)(d) to show that the set R \ A of transcendent
numbers is in-countable.

(b) Look at the internet for examples of other specified transcendent num-
bers and note when and by whom the transcendence of these numbers
has been proved.

(B) (A Paradox Situation) If you consider what you have learned so far, you
likely will come to draw the following philosophical conclusions:

(a) “Almost all real numbers are transcendent” (see statement (a) of part
(A)). So, you should find them on“random choice”.

(b) To prove that a specified real number is transcendent is usually “very
demanding” (see what we said on the Proof of Theorem 5.8 and bear
in mind your findings made under point (b) of part (A)). So, transcen-
dence numbers are “hard to find”

We leave it to the readers, to make themselves their own thoughts on these
apparently controversal points of view.

What Survives for Teaching at High School? Clearly, our algebraic ar-
guments to approach the set K of constructible numbers exceeds what you
may teach in class. Observe nevertheless for your own purpose, that the argu-
ments in our proofs where all quite elementary, and did only rely on Euclid’s
Remainder Theorem and on basic facts of Linear Algebra. Only the proof of
Lindemann’s result needs a good portion of Advanced Analysis, so that we
had to skip it. But in spite of these abstract features, this chapter also offers
a number of aspects, which could enrich your teaching when speaking on the
number π or on constructions with compasses and straightedge.
5.10. Didactic Comments. (A) (Transfer to the Class Room) The geomet-
ric constructions mentioned in Remark, Reminders and Exercises 5.1 (A) are
part of High School Geometry. The basic arithmetic constructions presented in
part (B) of this same exercise are a very nice subject for being taught at High
School. These two themes can be introduced and treated without referring to
the number π or even without referring to any constructability question. The
subject seems didactically of great value, as it ties a link between Geometry
and Algebra. To practice on concrete objects, you could treat the exercises
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suggested in Remark, Definition and Exercises 5.2 (C),
If you have treated the subject so far, you eventually might ask the question,
whether “all (real) numbers can be constructed on repeated (finitely many)
applications of basic arithmetic constructions”. You could just give the an-
swer by saying that for example π is a non-constructible number, and you
could then mention the fact that this implies that the problem of squaring the
circle has a negative answer. You also could mention the Euler number e as
another example of non-constructible number, (a number which is indeed also
transcendent, like π).

Another non-constructible number is 2
1
3 - the third root of 2. This number

is algebraic, but non constructible (things, you likewise will not speak about
in your class). The fact, that the third root of 2 is not constructible, gives
a negative answer to another classical constructability problem, namely the
question:

• Is it possible to construct by compasses and straightedge (the edge of)
a cube which has precisely half the volume of a given cube?

If you mention the third root of 2, you should make your class think on the
relation between this number and the problem of constructing a cube of half
volume.

(B) (Thinking on the Nature of Numbers) What we suggested under point
(A) could furnish a good opportunity to speak to your class on the “building-
up of the system of numbers”: How to get the set R of all real numbers
via a step-wise extension of the set N of natural numbers. You likely would
just repeat, what you already have treated. But it turns out in practice, that
students tend to forget very quickly these matters, which results in wrong ideas
about the nature of numbers. Then you could speak on rational and irrational
numbers, furnishing examples for both. Finally you could come back to the
set K of constructible numbers and say, that there are further classes of real
numbers, which usually are not treated in school (like the algebraic numbers,
for example).
Whenever you treat the subject, do not miss to speak out the general idea,
that the subject of constructible numbers ties a very important link between
Geometry and Algebra, a fact, which we have already emphasized in part (A).
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Biographical Hints

Euclid of Alexandria: 300 B.C.: Greek Mathematician, leaving in the Province
of Alexandria, recent Northern Egypt. Wrote the earliest textbook on Ge-
ometry, called by him the “Elements”. The Elements attempt to approach
(Plane) Geometry by deducing all results by logical deduction from a small set
of axioms. Euclid wrote further work on Geometry, Arithmetics, Logics and
Philosophy.

René Descartes (Cartesius): 1596-1650. French Philosopher and Mathemati-
cian; mostly lived in the Netherlands. Considered as “Father of Cartesian
Geometry” – thus Geometry based on the use of normal coordinates.

Carl Friedrich Gauss: 1777-1855. German Mathematician, Professor at the
University of Göttingen, Germany. Considered at his time as the Greatest
Mathematician since Antiquity. Contributed fundamentally to all fields of
Mathematics of his time, notably: Number Theory, Geometry, Analysis, Dif-
ferential Geometry, Theory of Magnetism, Statistics and Astronomy.

David Hilbert: 1863-1943. German Mathematician, Professor in Göttingen,
Germany. Contributed fundamental and seminal work to all fields of Mathe-
matics of his time, notably: Logic and Foundations of Mathematics, Geometry,
Analysis, Number Theory, Algebra. Presented the first completely axiomatic
build-up of Geometry.

Suggestion. Consult the Vitae of the mentioned (and further) Mathemati-
cians at Wikipedia. Record some details out of it, which impress you most.
Make use of your records to report in the class room. Mathematics does not
exist on its own. It is developed and performed by human beings usually called
Mathematicians. Knowing concrete instances of this, may turn Mathematics
more attractive for your students.


