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Abstract. We study projective surfaces of degree r + 1 in projective r-space, more
precisely (non-conic) irreducible non-degenerate surfaces X ⊂ Pr of degree r + 1. We
may divide up the class of these surfaces in surfaces whose affine cone satisfies the second
Serre property S2 and surfaces which occur as almost non-singular projections of either
a smooth rational sroll or else of a del Pezzo surfaces which is arithmetically Cohen
Macaulay. We focus on those surfaces which occur as almost non-singular projections
and study their geometric and cohomological properties.

1. Introduction

Let r ≥ 5 be an integer, let PrK denote the projective r-space over the algebraically
closed field K and let X ⊂ PrK be a non-degenerate irreducible projective variety. Then,
the invariant

∆′(X) := deg(X)− codim(X)− 1 = ∆(X) + h1(X,JX(1)),

where ∆(X) = deg(X) − h0(X,OX(1)) + dim(X) denotes the ∆-genus of the polarized
pair (X,OX(1)) in the sense of Fujita [F]. Note that ∆(X) is always non-negative. We
allow ourselves to call ∆′(X) the ∆′-genus of X.

If ∆′(X) = 0, the variety X is called a variety of minimal degree. It is classical that
these varieties are (cones over) smooth rational normal srolls or over the Veronese surface.
The structure of them is well understood.

If ∆′(X) = 1, we say that X is a variety of almost minimal degree. These varieties
may been understood up to isomorphic projections by Fujita’s classification of polarized
pairs of ∆-genus ≤ 1 (see [F]). In [BS4] we have shown that they are either arithmetically
normal or else simple linear exterior birational projections of a variety X̃ ⊂ Pr+1

K of

minimal degree. In the latter case the singular locus of the induced morphism f : X̃ � X
is of codimension > 1 if and only if X is normal.

An obvious next step is to study varieties satisfying ∆′(X) = 2. Again, these varieties
may be understood up to isomorphic projections by Fujita’s classification of varieties of
∆-genus ≤ 2 (see [F]). One might try to study these varieties by an approach similar
to what we did in our investigation of varieties of almost minimal degree, namely: to
distinguish varieties with “good arithmetic properties” and varieties which are birational
linear outer projections of “varieties which are already classified”. In the case of curves,
we did pursue this idea in [BS1]. In the present paper we consider the case of surfaces.
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So, from the mentioned point of view our aim is to study non-degenerate irreducible
projective surfaces X ⊂ Pr which satisfy the equality

deg(X) = r + 1.

In this situation, the above distinction of two types of varieties still takes a comparatively
simple form. We shall see in the current of this paper, that any surface X ⊂ Pr with
deg(X) = r + 1 belongs to one of the following two classes:

(A) Surfaces with “good arithmetic properties”, i.e. projective surfaces whose affine
cone satisfies the second Serre property S2.

(B) Surfaces which are almost non-singular projections – i.e. outer linear projections
with finitely many mapping singularities – of a surface of strictly lower ∆′-genus.

This allows to pursue the general approach mentioned above. In the spirit of what
we did in the case of varieties of almost minimal degree and in the case of curves of ∆′-
genus 2, we shall not focus on the “generic class” (A) any more and restrict ourselves
to study those surfaces of ∆′-genus 2, which belong to the class (B). We start from the
“classification by cohomological invariants” of surfaces of ∆′-genus 2 which is given in
[B2] and which leaves us with twelve different cases 1− 12, which might occur.

In the cases 1 and 2 we have surfaces which belong to the above class (A), hence surfaces
which are arithmetically S2. In the 9 cases 3, 4, . . . , 11 we have surfaces which belong to
the class (B). We also shall see, that the case 12 does not occur at all.

As the structure of curves of ∆′-genus 2 is known by [BS1], it suffices to consider only
non-conic surfaces X ⊂ Pr of degree r + 1. In this situation we shall get the following
detailed subdivision of the classes (A) and (B):

• Case 1: The surface X is arithmetically Cohen-Macaulay (CM).
• Case 2: The surface X is arithmetically S2 but not arithmetically CM.
• Cases 3 and 4: The surface X is an almost non-singular projection from a point

of a maximal del Pezzo surface, i.e. of a surface X̃ ⊂ Pr+1 of degree r+1 which is
arithmetically CM. The distinction of the two cases is given according to whether
the projection map X ′ � X is an isomorphism or not.
• Cases 5− 11: The surface X is an almost non-singular projection from a line of a

rational normal surface scroll X̃ ⊂ Pr+2.

Our aim is to establish this subdivision and to discuss in detail the cases 3–11. We also
shall characterize these cases in terms of simple almost non-singular projections of certain
surfaces of almost minimal degree and in terms of double projections of smooth rational
normal surface scrolls.

In Section 2 Theorem 2.7 we prove the basic fact, that our surfaces always posses
(arithmetic) S2-covers. That is, they are almost non-singular outer projections from
varieties which are arithmetically S2 (see Theorem 2.7). We approach this result in a
purely algebraic way and consider S2-covers of homogeneous coordinate rings. As a first
consequence we may identify the surfaces which belong to the class (A), exclude the case
12 of [B2] and get some restriction results for embedding dimensions and Hartshorne-Rao
numbers (see Theorem 2.8). In Section 2, we shall make heavy use of the classification
results of [B2] and so we list these in a number of tables.
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In Section 3 we first give results on the second Hartshorne-Rao number h1(PrK ,JX(2))
of our surfaces X. This leads to a much simpler procedure to distinguish the cases
3 – 11 than the one used in [B2] (see Corollary 3.1). Namely, one does not have to
know the sectional regularity (i.e. the lowest possible Castelnuovo-Mumford regularity
of a hyperplane section) of X any more. From the computational point of view, this is
a considerable advantage, as in general the sectional regularity can be calculated only
by a generic hyperplane section. In a concrete situation it will be difficult to describe
”genericity” of a hyperplane. We illustrate the suggested method at some particular types
of surfaces (see Remark 3.3 and Examples 3.4, 3.5). In this section we also determine the
structure of the second deficiency module K2(A) of the homogeneous coordinate ring A
of our surfaces X in all 11 cases (see Theorem 3.6).

In Section 4 we show that the (non-conic) surfaces X which fall under case 3 or 4 are
precisely the almost non-singular projections of a (non-conic) maximal del Pezzo surface X̃
from a point. In this situation, the surface X̃ is uniquely determined by X up to projective
equivalence (see Theorem 4.7). In particular we shall see that the projecting maximal del
Pezzo surface X̃ is non-normal if and only if X has infinitely many singularities or –
equivalently – more than one non-normal point (see Corollary 4.8).

In Section 5 we show that the (non-conic) surfaces which fall under the cases 5 – 11 are
precisely the almost non-singular projections of a smooth rational surface scroll X̃ from a
line and that the type of the projecting scroll X̃ is uniquely determined by X in this case
(see Theorem 5.7). As a consequence we get that these (non-conic) surfaces are precisely
the almost non-singular projections of a non-linearly normal surface X̃ of almost minimal
degree from a point (see Corollary 5.8 (b)). In this situation, the projective equivalence
class of the projecting surface X̃ is not determined by X. We also characterize those of
our surfaces X which are outer linear projections of smooth rational surface scrolls X̃
from lines not contained in the secant locus of X̃ (see Corollaries 5.10, 5.11).

2. S2-Covers

We first fix a few notations which we keep for the rest of our paper. By N0 and N we
denote the set of non-negative respectively of positive integers.

2.1. Notation. (A) Let K be an algebraically closed field, let r ≥ 5 be an integer,
consider the polynomial ring S := K[x0, . . . , xr] and let X ⊂ PrK = Proj(S) be a reduced,
irreducible and non-degenerate projective surface. Let J = JX ⊂ OPr

K
denote the sheaf

of vanishing ideals of X, let I = IX = ⊕n∈ZH0(PrK ,J (n)) ⊂ S be the homogeneous
vanishing ideal of X and let A = AX = S/I denote the coordinate ring of X.
(B) If M is a finitely generated graded S-module we write H i(M) = H i

S+
(M) and D(M) =

DS+(M) for the i-th local cohomology module of M with respect to S+ := ⊕n∈NSn and
the S+-transform lim−→Hom((S+)n,M) of M . We also write

hiM(n) := dimK H
i(M)n,

where H i(M)n denotes the n-th graded component of H i(M). Keep in mind that

H i(A)n = H i(PrK ,J (n)) for all i < r and all n ∈ Z.
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(C) By σ(X) we shall denote the sectional genus of X, so that σ(X) = pa(Proj(A/fA)) =
h2
A/fA(0) for a generic linear form f ∈ S1. We also introduce the invariant

e(X) :=
∑

x∈X,closed
length (H1

mX,x
(OX,x))

which counts the non-Cohen-Macaulay points of X in a weighted way (see also 3.7 for the
relation to local duality). Keep in mind that

e(X) = h2
A(n) = h1(X,OX(n)) for all n� 0.

The arithmetic depth of X shall be denoted by depth X.
(D) For a closed subscheme X ⊂ PrK let Reg(X),Nor(X),CM(X) denote respectively the
locus of smooth, normal and Cohen-Macaulay points x ∈ X.

2.2. Reminder. (A) Keep the above notations and hypotheses. In particular let r ≥ 5.
If deg(X) = r+1 and f ∈ S1 is a generic linear form we have h1

A/fA(n) = 0 for all n 6= 1, 2
and

sct X :=
(
h1
A/fA(1), h1

A/fA(2)
)
∈ {(0, 0), (1, 0), (2, 0), (2, 1)}

(see [B2, Remark 4.1], [BS1, (3.9)]). We call the pair

sct X =
(
h1
A/fA(1), h1

A/fA(2)
)
∈ N0 × N0

the sectional cohomology type of X.
(B) If r ≥ 5 and deg(X) = r + 1, then at most the following 12 cases can be expected to
occur (see [B2, Propositions (4.2), (4.11), (5.5), (5.6)])

Case sct X depth X σ(X) e(X) h1
A(1)

1 I (0, 0) 3 2 0 0
2 IIA (1, 0) 2 1 0 0
3 IIA’ (1, 0) 2 1 1 0
4 IIB (1, 0) 1 1 0 1
5 IIIA (2, 0) 2 0 2 0
6 IIIB (2, 0) 1 0 1 1
7 IIIC (2, 0) 1 0 0 2
8 IVAI (2, 1) 2 0 3 0
9 IVC (2, 1) 1 0 0 2

10 IVBO (2, 1) 1 0 1 1
11 IVAO (2, 1) 1 0 2 0
12 IVB1 (2, 1) 1 0 2 1

Column 2 shows that the labeling of cases as given in [B2]. Here we shall use mostly the
simpler labeling given in column 1.
(C) In each of the above cases much more can be said about the numerical invariants of
X (cf [B2]). We first remind a useful fact concerning the Hartshorne-Rao module

H1(A) = ⊕n∈ZH1(PrK ,J (n))

of X, which is proved in the previously quoted results of [B2]: In all cases except the case
11, the S-module H1(A) is generated by homogeneous elements of degree 1. In particular
D := D(A) = A + SD1 = K[D1] with dimK(D1) = r + 1 + h1

A(1). Here D1 denotes
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the degree one component of the global transform D. Concerning the Hartshorne-Rao
function

h1
A : Z→ N0, n 7→ h1

A(n)

of X we have the following table, in which a1(n) := sup{n
h1

A(n) 6= 0}.
Case n < 0 n = 1 n = 2 3 ≤ n a1(A)
1 h1

A(n) = 0 0 0 0 −∞
2 h1

A(n) = 0 0 0 0 −∞
3 h1

A(n) = 0 0 0 0 −∞
4 h1

A(n) = 0 1 0 0 1
5 h1

A(n) = 0 0 0 0 −∞
6 h1

A(n) = 0 1 ≤ 1 0 ≤ 2
7 h1

A(n) = 0 2 ≤ 2 ≤ max{h1
A(n− 1)− 1, 0} ≤ 3

8 h1
A(n) = 0 0 0 0 −∞

9 h1
A(n) = 0 2 ≤ 3 ≤ max{h1

A(n− 1)− 1, 0} ≤ 4
10 h1

A(n) = 0 1 ≤ 2 ≤ max{h1
A(n− 1)− 1, 0} ≤ 3

11 h1
A(n) = 0 0 1 0 2

12 h1
A(n) = 0 1 1 ≤ max{n− 2, 0} ≤ 3

(D) Finally in the situation where r ≥ 5 and deg(X) = r + 1 we list the values of the
second cohomological Hilbert function

h2
A : Z→ N0, n 7→ h2

A(n) = h2(PrK ,J (n)) = h1(X,OX(n))

as they are found in the previously quoted results of [B2].

Case n ≤ −1 n = 0 n = 1 2 ≤ n
1 h2

A(n) = 0 0 0 0
2 h2

A(n) = 0 1 0 0
3 h2

A(n) = 1 1 0 0
4 h2

A(n) = 0 0 0 0
5 h2

A(n) = 2 2 0 0
6 h2

A(n) = 1 1 0 0
7 h2

A(n) = 0 0 0 0
8 h2

A(n) = 3 3 1 0
9 h2

A(n) = 0 0 0 0
10 h2

A(n) = 1 1 0 0
11 h2

A(n) = 2 2 0 0
12 h2

A(n) = 2 1 1 0

2.3. Remark and Definition. (A) Let a ⊆ A+ be the graded radical ideal which defines
the non-Cohen-Macaulay locus X \ CM(X) of X. Note that a = A+ if and only if
X = CM(X). Observe that height a ≥ 2, so that the ideal transform

B(A) := Da(A) = lim−→HomA(an, A) = ⊕n∈ZΓ(CM(X),OX(n))

of A with respect to a is a positively graded finite birational integral extension domain of
A. Moreover B(A) has the second Serre-property S2 (see e.g. [BS4, Proposition 5.2]). As
Proj(B(A)) is of dimension 2, it thus is a CM-scheme. We call B(A) the S2-cover of A.
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We can also describeB(A) as the endomorphism ring End(K(A), K(A)) of the canonical
module K(A) = K3(A) = Extr−2

S (A, S(−r − 1)) of A (cf [BS4, Proposition 5.2]).
(B) As a ⊆ A+ we have D(A) = DA+(A) ⊆ Da(A) = B(A). As X ' Proj(D(A)) we
have equality if and only if a = A+, hence if and only if X = CM(X). Finally, if B′ is an
S2-ring with A ⊆ B′ ⊆ B(A), then B′ = B(A).

(C) Let the natations be as above and let ν : X̃ = Proj(B)→ X = Proj(A) be the finite
birational morphism induced by the inclucion map A→ B and let C := B/D. Then, the
short exact sequence of graded S-modules

0→ D → B → C → 0

induces the short exact sequence

0→ OX → ν∗OX̃ → ν∗OX̃/OX → 0.

In particular we have

Supp(B̃/A) = Supp(B̃/D) = Supp(ν∗OX̃/OX) = X \ CM(X).

2.4. Lemma. With the previous notation let D := D(A) and B = B(A). Then

(a) e(X) = 0 if and only if B = D.
(b) Suppose that e(X) > 0. Then

(i) h2
B(n) ≤ h2

A(n) and dimK(Bn/Dn) = e(X)− h2
A(n) + h2

B(n) for all n ∈ Z.
(ii) a(X) := sup{n ∈ Z|h2

B(n) 6= h2
A(n)} ≥ 0.

(iii) For a generic linear form f ∈ S1, the multiplication map

f : Bn/Dn → Bn+1/Dn+1

is an injection for all n ∈ N0 and an isomorphism for all n > a(X).
(vi) The graded A-module B/D is generated in degrees ≤ a(X) + 1.

Proof. Let C := B/D. We shall repeatedly use the short exact sequence of graded S-
modules 0→ D → B → C → 0 of Remark and Definition 2.3 (C).
(a) As e(X) = 0 is equivalent to the fact that X is Cohen-Macaulay, we conclude by
Remark and Definition 2.3 (B).
(b) Let let f ∈ S1 be a generic linear form. The short exact sequence 0 → D → B →
C → 0 together with the isomorphism H2(A) ' H2(D) gives rise to exact sequences of
K-vector spaces

(∗) 0→ H1(C)n → H2(A)n → H2(B)n → 0

for all n ∈ Z. In particular we have h2
A(n) ≥ h2

B(n) for all n ∈ Z.
As the A-module B is S2, we have h2(B)n = 0 for all n � 0. As H1(C)n ' D(C)n

and h2
A(n) = e(X) for all n � 0 it follows that dimK D(C)n = e(X) for all n � 0. As

dimA(C) ≤ 1 and by the genericity of f ∈ S1 the multiplication map

f : D(C)n → D(C)n+1

is an isomorphism for all n ∈ Z. Therefore dimK D(C)n = e(X) for all n ∈ Z.
As H1(D) = 0, the sequence 0 → D → B → C → 0 yields that H0(C) = 0. In

particular we have

dimK Cn = dimK D(C)n − h1
C(n) = e(X)− h1

C(n) for all n ∈ Z.
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Now, the sequences (∗) imply that dimK Cn = e(X)− h2
A(n) + h2

B(n) for all n ∈ Z and so
statement (i) is proved completely.

Finally observe that C0 = 0, so that

h1
C(0) = dimK D(C)0 = e(X) > 0.

If we apply the sequence (∗) with n = 0, we thus get h2
B(0) 6= h2

A(0), whence a(X) ≥ 0.
This proves statement (ii).

Now, statement (ii) implies hat dimK Cn = e(X) for all n > a(X). As H0(C) = 0, the
genericity of f yields that the multiplication map f : Cn → Cn+1 is injective for all n ∈ Z
and hence bijective for all n > a(X). This proves statement (iii). But now statement (vi)
follows immediately. �

2.5. Proposition. Let r ≥ 5 and let X ⊂ PrK be of degree r + 1 such that X is not CM.
Then the ring B = B(A) is CM and satisfies B = K[B1] with

dimK B1 = r + 1 + e(X) + h1
A(1)− h2

A(1).

Proof. Set r′ := dimK B1−1, so that W := Proj(K[B1]) ⊂ Pr′K is a non-degenerate surface
of degree deg(X) = r+1. In the table given in Reminder 2.2 (B) the surface X falls under
one of the following 7 cases: 3, 5, 6, 8, 10, 11, 12. Consulting the two tables of Reminder 2.2
(B) and (D), we see that

e(X) + h1
A(1)− h2

A(1) = 2

in the cases 5− 12. So, Lemma 2.4 (b)(i) implies

r′ + 1 = dimK B1 = dimK D1 + e(X)− h2
A(1) + h2

B(1) ≥
dimK A1 + h1

A(1) + e(X)− h2
A(1) = r + 1 + e(X) + h1

A(1)− h2
A(1) = r + 3.

It follows that ∆′(W ) = 0, so that W ⊂ Pr′K is of minimal degree and hence arithmetically
CM. Therefore K[B1] = B and h2

B(1) = 0 and hence dimK B1 = dimK D1 + e(X)− h2
A(1)

in the 6 dases 5, 6, 8, 10, 11, 12.
It remains to prove our claim, if X falls under the case 3. In this situation h1

A(1) = 1
and h2

A(n) = e(X) = 1 for all n ≤ 0. As Bn/Dn = 0 for all n ≤ 0, it follows by Lemma 2.4
(b)(i) that h2

B(n) = 0 for all n ≤ 0. Moreover, by the table given in Reminder 2.2 (D),
we see that h2

A(n) = 0 for all n ≥ 1. So, another use of Lemma 2.4 (b) (i) shows that
H2(B) = 0 and a(X) = 0. Therefore B is a CM-Ring, dimK(B1/D1) = e(X) = 1 and the
A-module B/D is generated in degree 1. In particular the D-module B/D is generated
in degree 1, so that we can write B = D[B1]. According to the quoted results of [B2], the
K-algebra D is generated in degree one, so that B = K[D1][B1] = K[B1]. As h2

A(1) = 0,
dimK(B1/D1) = e(X) = 1 and dimK(D1) = r + 1 + h1

A(1) = r + 1 the stated equality
follows immediately. So our claim is true if X falls under the case 3. �

2.6. Proposition. Let r ≥ 5 and let X ⊂ PrK be of degree r+ 1 such that X is CM. Then

B := B(A) = D(A) = K[B1] with dimK B1 = r + 1 + h1
A(1).

Moreover B is CM, except in the case 2, where A = B is of depth 2.

Proof. This follows immediately from Reminder 2.2 (B), (C) and (D). �
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Now we may summarize the previous results, in order to get an algebraically disguised
form of the fact that our surfaces always admit arithmetic S2-covers, and to describe these
in all 12 cases.

2.7. Theorem. Let r ≥ 5, let X ⊂ PrK be of degree r+ 1, let B := B(A) and D := D(A).
Then B = K[B1]. In all cases except case 11 we have D = K[D1], and A,D and B are
presented below

Case Inclusions dimK D1 dimK B1 depth D depth B
1 A = D = B r + 1 r + 1 3 3
2 A = D = B r + 1 r + 1 2 2
3 A = D ⊂ B r + 1 r + 2 2 3
4 A ⊂ D = B r + 2 r + 2 3 3
5 A = D ⊂ B r + 1 r + 3 2 3
6 A ⊂ D ⊂ B r + 2 r + 3 2 3
7 A ⊂ D = B r + 3 r + 3 3 3
8 A = D ⊂ B r + 1 r + 3 2 3
9 A ⊂ D = B r + 3 r + 3 3 3
10 A ⊂ D ⊂ B r + 2 r + 3 2 3
11 A ⊂ D ⊂ B r + 1 r + 3 2 3
12 A ⊂ D ⊂ B r + 2 r + 3 2 3

Proof. We may conclude by Propositions 2.5 and 2.6 and Reminder 2.2 (B), (C), (D). �

We now may formulate and prove the conclusive result of this section.

2.8. Theorem. Let r ≥ 5 and let X ⊂ PrK be of degree r + 1. Then:

(a) The surface X falls under the case 1 if and only if it is arithmetically CM.
(b) The surface X falls under the case 2 if and only if it is arithmetically S2 but not

arithmetically CM.
(c) The cases 9, 10 and 11 cannot occur if r ≥ 6.
(d) In the case 9 we have h1

A(2) = 3 and in the case 10 we have h1
A(2) = 2.

(e) The case 12 cannot occur at all.

Proof. (a), (b): This is easily read off from the table presented in Theorem 2.7.
(c): In the cases 9, 10, 11 and 12 we have sct(X) = (2, 1). This implies that the

generic hyperplane section curve C of X has Castelnuovo-Mumford regularity 4 = deg(C)−
codim(C) + 1. So, X is of maximal sectional regularity in the sense of [BS5, Definition
5.1].

Moreover, according to Reminder 2.2 (C) we respectively have h1
A(n) = 0 for all n > 2

in the cases 9 and 12 and h1
A(n) ≤ max{h1

A(n − 1) − 1, 0} for all n > 2 in the cases 10
and 11. This means that the invariant

δ(X) := inf{m ∈ Z
h1

A(n) ≤ max{h1
A(n− 1)− 1, 0} for all n > m}

of [BS5, Notation and Remark 4.4] takes a value ≤ 2 = deg(X)−r+1 in the cases 9, 10, 11
and 12. So, by [BS5, Theorem 5.10] we have r + 1 = deg(X) > 2r − 5 and hence r ≤ 5
in the four cases 9, 10, 11 and 12 and hence in particular in the three cases 9, 10 and 11.
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(d), (e): Let f ∈ S1 be a generic linear form and consider the hyperplane section curve
Y = Proj(A/fA) ⊂ Pr−1

K = Proj(S/fS). In the four cases 9, 10, 11 and 12 the surface X
is of sectional cohomology type (2, 1) so that H1(A/fA)2 ' K (see Reminder 2.2 (B)).
Consider the short exact sequence of graded S-modules

0→ U → H1(A)(−1)
f→ H1(A)→ H1(A/fA)→ H2(A)(−1).

as r = 5 we have deg(X) = 6 = 2r− 4, and so by [BS5, Proposition 5.9] the module U is
generated by homogeneous elements of degrees 3 and 4. Moreover by Reminder 2.2 (D)
we have H2(A)1 = 0. So, we end up with a short exact sequence

0→ H1(A)1 → H1(A)2 → K → 0.

It follows that h1
A(2) = h1

A(1) + 1 in all the four cases 9, 10, 11 and 12. So in view of the
table given in Reminder 2.2 (C) we have h1

A(2) = 3 in the case 9, h1
A(2) = 2 in the case

10, which proves statement (b). By the same table we get a contradiction in the case 12,
so that this case cannot occur. �

3. 2nd Hartshorne-Rao Numbers and 2nd Deficiency Modules

Keep all notations and hypotheses of the previous section. Observe first, that in state-
ment (d) of Theorem 2.8 we have improved on the values of the second Hartshorne-Rao
numbers h1

A(2) of X as they were originally given in the table in Reminder 2.2 (C) for the
cases 9 and 10. This improvement now allows to distinguish the two cases 7 and 9 only
by means of the values of the first and second Hartshorne-Rao numbers h1

A(1) and h1
A(2)

of X. More precisely, we can say:

3.1. Corollary. Let r ≥ 5 and let X ⊂ PrK be of degree r + 1. Then, the cases 1, 2 and
3− 11 may be distinguished only by the three invariants h1

A(1), h2
A(2) and e(X) according

to the following table

Case 1, 2 3 4 5 6 7 8 9 10 11
h1
A(1) 0 0 1 0 1 2 0 2 1 0
h1
A(2) 0 0 0 0 ≤ 1 ≤ 2 0 3 2 1
e(X) 0 1 0 2 1 0 3 0 1 2

Proof. Immediate by Reminder 2.2 (C), Corollary 2.7 and Theorem 2.8 (b). �

3.2. Remark. (A) The statements given in 3.1 present an essential gain in effectiveness,
in particular concerning the distinction of the two cases 7 and 9. Without the distinction
of these two cases by means of h1

A(2) only a direct calculation of the sectional cohomology
type would be available. A direct calculation of this latter invariant, for example on use of
the program Singular (see [GrP]) is indeed much more demanding than the calculation
of h1

A(2). We shall illustrate the emphasized use of the Hartshorne-Rao number h1
A(2) in

3.4.
(B) In the cases 7 and 9 we have D = B and B is the homogeneous coordinate ring of a
surface X̃ ⊂ Pr+2

K of minimal degree (see Corollary 2.7). Moreover, if y ∈ B1 \A1, the A-
algebra A[y1] is the homogeneous coordinate ring of a surface Y ⊂ Pr+1

K of almost minimal

degree and arithmetic depth 1. The fact that D = B yields isomorphisms X̃ ' Y ' X
induced by simple outer linear projections. In particular X̃ must be smooth (see [BS1,
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Proposition 3.4]) and so X is smooth in these cases. So, if Char(K) = 0, the surface
X ⊂ PrK satisfies the Eisenbud-Goto inequality (see [P]) and hence reg(X) ≤ 4, so that
h1
A(n) = 0 for all n ≥ 3.

It seems natural to ask whether in the cases 6 and 7 the inequalities h1
A(2) ≤ 1 resp.

h1
A(2) ≤ 2 may be strict. We now present a few examples showing that in the case 7 the

invariant h1
A(2) may take all possible values 0, 1, 2. With the same construction we also

shall give an example which falls under the case 9, in order to illustrate what we said in
Remark 3.2 (A). We begin with the following remark, which is aimed to pave the way for
the construction we wish to perform.

3.3. Remark. (A) Let a, b be integers with 1 < a ≤ b and a + b + 1 = r + 2, let
X̃ = S(a, b) ⊂ Pr+2

K be the smooth rational normal scroll of type (a, b) with homogeneous
coordinate ring B = K[y0, y1, . . . , yr+2] ⊂ K[s, t, u, v] with yi = ubtisa−i for 0 ≤ i ≤ a and
yi = vati−a−1sa+b+1−i for a + 1 ≤ i ≤ r + 2, where s, t, u, v are indeterminates. Keep in
mind the obvious relations

yiyj = yi−1yj+1 if

{
either 0 < i ≤ j < a and a+ 1 < i ≤ j < r + 2

or 0 ≤ i ≤ a < j < r + 2.

Now, let

I := {(0, j)
0 ≤ j ≤ r + 2} ∪ {(i, r + 2)

1 ≤ i ≤ r + 2}
∪{(i, a)

1 ≤ i ≤ a} ∪ {(a+ 1, j)
a+ 1 ≤ j ≤ r + 1}.

Then, the family {yiyj}(i,j)∈I is a K-basis of B2 as easily seen.
(B) Now fix two integers k, ` ∈ {1, . . . , r + 1} \ {a, a + 1} with k < ` and consider the
K-algebra

A = A[k,`] := K[yi
i ∈ {0, . . . , r + 2} \ {k, `}] ⊂ B.

Observe that B = A[yk, y`]. Furthermore, observe that the only pairs (i, j) ∈ I for which
yiyj does not obviously belong to A2 are

(0, k), (0, `), (k, r + 2), (`, r + 2), and (k, a), (`, a) if ` < a,

(k, a), (a+ 1, `) if k < a+ 1 < `, (a+ 1, k), (a+ 1, `) if a+ 1 < k.

3.4. Examples. (A) Keep the notations and hypotheses of Remark 3.3 and fix k and `
such that ` 6= k + 1, k 6= 1, a − 1, a + 2 and ` 6= a − 1, a + 2, r + 1. Then, the relations
of Remark 3.3 (A) show that yiyj ∈ A2 also for the ”missing pairs” (i, j) listed at the
end of Remark 3.3 (B). So yiyj ∈ A2 for all pairs (i, j) ∈ I and as these pairs span B2

it follows that A2 = B2 and hence At = Bt for all t > 1. As B is CM we thus get
B = D, h1

A(1) = dimK(B1/A1) = 2, h1
A(2) = dimK(B2/A2) = 0 and H2(A) = H2(B) = 0.

So, according to Corollary 3.1, the surface

X = X [k,`] := Proj(A) ⊂ PrK
falls under the case 7 with h1

A(2) = 0. Observe that this applies particularly if 1 < k < a−1
and a+ 2 < ` < r + 1 = a+ b.
(B) Next let 1 < a < r − 4 and choose k = a + 3, ` = a + 4. Then, it follows as above
that yiyj ∈ A2 for all pairs (i, j) ∈ I different from (a + 1, `), so that dimK(B2/A2) = 1.
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Another use of the relations of Remark 3.3 (A) now yields that yiyjym ∈ At = Bt for all
i, j,m ∈ {0, . . . , r+ 2}, so that At = Bt for all t > 2. As dimK(B1/A1) = 2 it now follows
as in part (A) that the surface X := Proj(A) ⊂ PrK falls under the case 7 with h1

A(2) = 1.
(C) Now, let 1 < a = r − 4, k := a + 3 and ` = a + 4 = r. Then, the relations of
Remark 3.3 (A) show that the only missing pairs (i, j) ∈ I of Remark 3.3 (B) for which
yiyj /∈ A2 are precisely the pairs (k, r+ 2) and (a+ 1, `), so that dimK(B2/A2) = 2, Now,
it follows along the lines of the previous examples that the surface X := Proj(A) ⊂ PrK
falls under the case 7 with h1

A(2) = 2.
(D) Finally, let r = 5, a = 1, k = 4 and ` = 5. Then the relations of Remark 3.3
(A) show that precisely the three pairs (0, 5), (4, 7), (2, 5) ∈ I have the property that
yiyj /∈ A2, whereas yiyjym ∈ A3 for all i, j,m ∈ {0, . . . , 7}. Now, as above it follows that
D = B, h1

A(1) = 2, h1
A(2) = 3, so that by Corollary 3.1 the surface X := Proj(A) ⊂ P5

K

falls under the type 9 this time.

Our next aim is to show by an example that in the case 6 the second Hartshorne-Rao
number h1

A(2) of X may indeed take the value 0.

3.5. Example. We keep the notations and hypotheses of Remark 3.3 and choose k =
1, 4 ≤ ` < a − 1. Then clearly ys0y1 /∈ A[1,`] = A for all s ∈ N0. Moreover the relations
of Remark 3.3 (A) show immediately that yiy1 ∈ A2 for all i 6= 0 and yiy` ∈ A2 for all
i ∈ {0, . . . , r + 2}. From this it follows that A[y`] ⊆ D and Bt = A[y`]t ⊕Kyt−1

0 y1 for all
t > 0, A[y`]t = At for all t > 1 and y1 6= D. From this it follows that D = A[y`] with
Dt = At for all t > 1 so that h1

A(1) = 1 and h1
A(n) = 0 for all n > 1. As Bt/Dt ' K for

all t > 0 Lemma 2.4 (b) yields e(X) = 1. So according to Corollary 3.1 we are in the case
6 with h1

A(2) = 0.

Our next aim is to get deeper information concerning the invariant e(X). Observe that
by duality the cohomological invariant e(X) is precisely the multiplicity of the second
deficiency module

K2(A) = Extr−1
S (A, S(−r − 2)) ' HomK(H2(A), K)

where A is the homogeneous coordinate ring of our surface X ⊂ PrK , whereas the function
n 7→ h2

A(−n) is the Hilbert function of K2(A). So, to improve on the table of Reminder 2.2
(D) we now make explicit the structure of K2(A).

3.6. Theorem. Let r ≥ 5 and let X ⊂ PrK be of degree r + 1. Then:

(a) In the cases 1, 4, 7 and 9 we have K2(A) = 0.
(b) In the case 2 we have K2(A) = S/S+.
(c) In the cases 3, 6 and 10 we have K2(A) ' S/L, where L ⊂ S is an ideal generated

by r independent linear forms.
(d) In the cases 5 and 11 we have K2(A) ' S/L ⊕ S/L′, where L,L′ ⊂ S are ideals

generated by r independent linear forms.
(e) In the case 8 we have K2(A) ' (S/J)(1), where J ⊆ S is an ideal minimally

generated by r − 2 linear forms and 3 quadrics, and Proj(S/J) is a scheme of
length 3.
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Proof. Statement (a) and (b) follow immediately by Reminder 2.2 (D) on use of local
duality. In the remaining cases 3, 5, 6, 8, 10, 11 the ring B := B(A) is CM (see Proposi-
tions 2.5 and 2.6), so that H2(B) = 0. We write D = D(A) and C = B/A. It follows
H2(A) ' H1(C). In particular we get an epimorphism of graded S-modules

(∗) D(C) � H2(A).

Moreover, as H1(C)n = D(C)n for all n� 0,

(∗∗) dimK D(C)n = e(X) for all n ∈ Z.
In view of Reminder 2.2 (D) we have h2

A(n) = e(X) = 1 for all n ≤ 0 and h2
A(n) = 0 for

all n ≥ 1 in the three cases 3, 6 and 10. As f : D(C) → D(C)(1) is an isomorphism for
a generic linear form f ∈ S1, the homomorphism f : H2(A)n−1 → H2(A)n becomes an
isomorphism for all n ≥ 0. By duality it follows that K2(A)n = 0 for all n < 0, K2(A)0 '
K and f : K2(A)n → K2(A)n+1 is an isomorphism for all n ≥ 0 and for a generic linear
form f ∈ S1 in the cases 3, 6 and 10. So, in these cases we must indeed have K2(A) ' S/L,
where L ⊂ S is an ideal minimally generated by r linear forms. This proves statement
(c).

In the cases 5 and 11 we have h2
A(n) = e(X) = 2 for all n ≤ 0 and h2

A(n) = 0 for all n > 0
by Reminder 2.2 (D). In particular f : H2(A)n−1 → H2(A)n is again an isomorphism for
all n ≤ 0 in the cases 5 and 11. So K2(A)n = 0 for all n < 0, K2(A)0 ' K2 and
f : K2(A)n → K2(A)n+1 is an isomorphism for all n ≥ 0 for a generic linear form f ∈ S1

in these two cases. This proves statement (d).
Finally by Reminder 2.2 (D) we have h2

A(n) = e(X) = 3 for all n ≤ 0, h2
A(1) = 1

and h2
A(n) = 0 for all n > 1. For a generic linear form f ∈ S1, the hyperplane section

curve Y = Proj(A/fA) ⊂ Pr−1
K = Proj(S/fS) is of degree r + 1 and of regularity 4.

So the socle of the Harthshorne-Rao module H1(A/fA) of Y satisfies soc(H1(A/fA)) =
H1(A/fA)2 ' K (see [BS1, Theorem 3.9]). Hence, by the exact sequence

0→ H1(A/fA)(1)
δ→ H2(A)

f→ H2(A)(1)

it follows that soc H2(A) = Im(f) = H2(A)1 ' K. So, by duality K2(A) is generated by
one homogeneous element of degree −1. Moreover dimK(K2(A)n) = h2

A(−n) = 3 for all
n ≥ 0. Therefore K2(A) ' S/J , where J is as in statement (e). �

Later, we shall reconsider the deficiency modulesK2(A) in the geometric context. Then,
it shall be useful to bear in mind the following observation.

3.7. Remark. Let the notations be as in Notation 2.1 and let

K2
X := K̃2(A)

be the coherent sheaf of OX-modules induced by the second deficiency module of the
homogeneous coordinate ring of the surface X ⊂ PrK . Let x ∈ X be a closed point. Then
the stalk of K2

X at x coincides with the first deficiency module of the local ring of X at
x, thus

K2
X,x ' Extr−1

OPr,x
(OX,x,OPr,x) = K1(OX,x).

By Local Duality and the fact that taking Matlis duals preserves lengths we thus obtain
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length(K2
X,x) = length(H1

mX,x
(OX,x)).

In particular we can say

length(K2
X) = e(X), Supp(K2

X) = X \ CM(X).

4. Almost Non-singular Projections of Maximal Del Pezzo Surfaces

4.1. Definition. (A) A surjective morphism f : X̃ � X between non-degenerate irre-
ducible projective varieties X ⊂ PrK and X̃ ⊂ Pr+tK is called a projection of X̃ onto X from

the linear subspace Λ = Pt−1
K ⊂ Pr+tK if Λ∩ X̃ = ∅ and f is induced by a linear projection

Pr+tK \ Λ � PrK with center Λ.

(B) By Sing(f) we denote the singular locus of a morphism f : X̃ → X of algebraic
varieties, that is the least closed set Z ⊆ X such that the induced morphism

f �: X̃ \ f−1(Z)→ X \ Z
is an isomorphism. If Sing(f) = ∅, the morphism f : X̃ → X is an isomorphism and said
to be non-singular. If the set Sing(f) is finite (including the case of Sing(f) = ∅), we say
that f is almost non-singular.

4.2. Remark. Assume that f : X̃ � X is a finite dominant morphism of irreducible
algebraic varieties. Then the singular locus of f is the support of the cokernel of the
induced monomorphism of sheaves 0→ OX → f∗OX̃ , thus

Sing(f) = Supp(f∗OX̃/OX).

4.3. Reminder. According to [BS4] a maximal del Pezzo variety is a variety of almost
minimal degree which is arithmetically CM.

The aim of this section is to characterize those surfaces X ⊂ Pr, which admit an almost
non-singular projection X̃ � X from a closed point p ∈ Pr+1 \ X̃, where X̃ ⊂ Pr+1 is
a maximal del Pezzo surface. We begin with a few preparations on almost non-singular
projections.

4.4. Lemma. Let A be the homogeneous coordinate ring of the non-degenerate irreducible
surface X ⊂ PrK, let X̃ ⊂ Pr+tK be a non-degenerate irreducible surface with coordinate

ring B′ ⊃ A such that the inclusion A ↪→ B′ yields a projection f : X̃ � X of X onto
X̃ from some linear subspace Λ = Pt−1

K ⊂ Pr+tK disjoint to X̃. Then, in the notation of
Remark and Definition 2.3 the following statements are equivalent:

(i) The projection f : X̃ → X is almost non-singular and B′ has the property S2.
(ii) B′ = B(A).

Proof. “(i) ⇒ (ii)”: Assume that f is almost non-singular and B′ has the second Serre
property S2. Let b ⊆ A+ be the reduced graded ideal which defines the finite set Sing(f) ⊆
X and let a ⊆ A+ be the reduced graded ideal which defines the finite set X \ CM(X).
Then, in the notation of Remark and Definition 2.3 we have A ⊆ B′ ⊆ Db(A).

As X̃ = Proj(B′) is CM, we also have X \ CM(X) ⊆ Sing(f), so that a ⊇ b, whence
B(A) = Da(A) ⊆ Db(A). As B(A) is a finitely generated A-module which satisfies
the property S2 (see Remark and Definition 2.3 (A)) and as height (b) = 2 we have
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Db(B(A)) = B(A), whence Db(A) ⊆ Db(B(A)) = B(A). Therefore B(A) = Db(A). As
B′ is an S2-ring, it follows B′ = B(A) (see Remark and Definition 2.3 (B)).

“(ii)⇒ (i)”: If B′ = B(A), then B′ is S2. By Remark 4.2 and Remark and Definition 2.3
(C) it follows that Sing(f) = Supp(f∗OX̃/OX) = X \ CM(X), a finite set. �

In the next lemma we use the notations introduced in Notation 2.1 (D).

4.5. Lemma. Let the notations and hypotheses be as in Lemma 4.4 and assume that B′

has the property S2. Then:

(a) The following statements are equivalent:
(i) f : X̃ � X is almost non-singular;
(ii) Sing(f) = X \ CM(X);

(iii) Sing(f) ⊆ X \ CM(X).
(b) If f : X̃ � X is almost non-singular, then

(1) If X̃ is smooth, then Sing(f) = X \ Reg(X) = X \ Nor(X) = X \ CM(X).
(2) If x ∈ X is a closed point with f−1(x) ⊆ CM(X̃), then H1

mX,x
(OX,x) '(

f∗OX̃/OX̃
)
x
.

(3) If X̃ is normal, it is determined up to X-isomorphism.

Proof. (a): “(i)⇒ (ii)“: Assume that statement (i) holds. As the homogeneous coordinate
ring B′ of X̃ is S2, Lemma 4.4 implies that B′ = B(A). From this it follows as in the proof
of the implication ”(ii)⇒ (i)” of Lemma 4.4 that Sing(f) = X \CM(R). The implication
“(ii) ⇒ (iii)” is obvious and the implication “(iii) ⇒ (i)” is clear as the set X \ CM(X)
is finite.

(b): Assume that f : X̃ � X is almost non-singular.
(1): As X is a surface, we have Nor(X) ⊆ CM(X). In view of statement (a) it follows

X \ Reg(X) ⊇ X \ Nor(X) ⊇ X \ CM(X) ⊇ Sing(f). As X̃ is smooth we also have
X \ Reg(X) ⊆ Sing(f).

(2): By our assumption, the fiber f−1(x) consists of finitely many closed CM-points of
X̃ and so we have a short exact sequence of OX,x-modules

0→ OX,x →
(
f∗OX̃

)
x
→ C → 0

in which C is of finite length and
(
f∗OX̃

)
x

is CM. Applying local cohomology with respect
to mX,x we get our claim.

(3): If X̃ is normal, the finite birational morphism f : X̃ � X is a normalization of
X. �

4.6. Remark. Let r ≥ 5 and let X ⊂ PrK be our non-degenerate irreducible projective
surface of degree r + 1. If X is a cone, there is a hyperplane Pr−1

K ⊂ PrK and a non-
degenerate irreducible curve C ⊂ Pr−1

K of degree r+ 1 = (r− 1) + 2 such that X is a cone
over C. In this case X may be understood directly by means of the curve C. In [BS1]
we have studied the curves C ⊂ Pr−1

K of degree r + 1 for all r ≥ 5, and hence can well
understand the surfaces X ⊂ PrK of degree r + 1 which are cones. We therefore shall not
consider this case anymore.

4.7. Theorem. Let r ≥ 5 and let X ⊂ PrK be an irreducible non-degenerate surface.
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(a) The following statements are equivalent:
(i) X is of degree r + 1, not a cone and falls under one of the two cases 3 or 4.
(ii) There is an maximal del Pezzo surface X̃ ⊂ Pr+1

K which is not a cone and an

almost non-singular projection f : X̃ � X from a point p ∈ Pr+1
K \ X̃.

(b) If X is as in statement (a)(i) and X̃ and f are as in (a)(ii), then the maximal del
Pezzo surface X̃ ⊂ Pr+1

K is uniquely determined by X up to projective equivalence
and
(1) X falls under the case 4 if and only if f : X̃ � X is an isomorphism.
(2) If X falls under the case 3 and K2

X is defined as in Remark 2.7 , then Sing(f)
consist of a single closed point x ∈ X and H1

mX,x
(OX,x) ' (f∗OX̃/OX)x '

K2
X,x ' K.

Proof. (a): Let X be as in statement (i) and let A be the homogeneous coordinate ring
of X. Then, according to Theorem 2.7 the homogeneous integral K-algebra B = B(A)
is CM and satisfies dimK B1 = r + 2. So, B is the homogeneous coordinate ring of an
irreducible non-degenerate variety X̃ ⊂ Pr+1

K which is arithmetically CM and of degree
r + 1 and hence maximally del Pezzo. Moreover, the inclusion map A → B induces an
almost non-singular projection of X̃ from a point p ∈ Pr+1

K \ X̃. As X is not a cone X̃
cannot be a cone either. This proves the implication “(i) ⇒ (ii)”.

To prove the converse inclusion, let X, X̃ and p be as in statement (ii). Then, the
homogeneous coordinate ring B′ is CM and hence coincides with B = B(A) by Lemma 4.4.
In particular, we must have dimK B1 = dimK B

′
1 = r + 2. So according to Theorem 2.7,

the surface X falls under one of the two cases 3 or 4.
(b): Let X, X̃ and f be as in statement (a) and keep in mind that we just have seen that

B = B(A) is the homogeneous coordinate ring of X̃. This proves the stated uniqueness
of X̃.

Moreover in the notations of Theorem 2.7 the map f is an isomorphism if and only if
D = B, and according to this same theorem this equality holds in the case 4 but not in
the case 3. This proves sub-statement (1).

Substatement (2) now follows from statement (b)(2) of Lemma 4.5, Remark 3.7 and
the fact that e(X) = 1 (see Reminder 2.2 (B)).

�

4.8. Corollary. Let r ≥ 5 and X ⊂ PrK be an irreducible non-degenerate surface of degree
r + 1 which falls under case 3 or 4, so that X is an almost non-singular projection of an
essentially unique maximal del Pezzo surface X̃ ⊂ Pr+1

K . Then, the following statements
are equivalent:

(i) The del Pezzo surface X̃ is not normal.
(ii) X \ Nor(X) = L ∪ (X \ CM(X)), for some line L = P1

K ⊂ PrK.
(iii) The non-normal locus X \ Nor(X) is infinite.
(iv) The non normal locus X \ Nor(X) contains two distinct points.
(v) CM(X) 6= Nor(X).
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Proof. (i) ⇒ (ii): Assume that X̃ is not normal. Then, according to [BS4, Theorem 1.3]
the non-normal locus of X̃ is a line. Moreover by Theorem 4.7(b) and Lemma 4.5(a) we
have Sing(f) = X \ CM(X). This implies statement (ii).

The implications (ii) ⇒ (iii) ⇒ (iv) are obvious. The implication (iv) ⇒ (v) follows
from the fact that X contains at most one non-CM point. The implication (v) ⇒ (i)
follows easily from the inclusions Nor(X) ⊆ CM(X) and Sing(f) ⊆ X \ CM(X) (see
Lemma 4.5(a)). �

4.9. Remark. According to Theorem 1.2 of [BS4] a non-normal del Pezzo variety X̃ ⊂
Pr+1
K is obtained by projecting a variety W ⊂ Pr+1

K of minimal degree from a closed point
p ∈ Pr+2

K \W . So, if r ≥ 5 and the surface X ⊂ PrK falls under cases 3 or 4 and satisfies
the equivalent conditions (ii)-(v) of Corollary 4.8, the surface X is obtained by projecting
a (possibly singular) surface sroll W ⊂ Pr+2

K from a line Λ = P1
K ⊂ Pr+2

K \W . If X is not
a cone, then W is not a cone either and hence must be smooth.

5. Almost Non-singular Projections of Smooth Surface Scrolls

The aim of this section is to characterize those surfaces X ⊂ PrK which admit an almost

non-singular projection X̃ � X from a line L ⊂ Pr+2
K \ X̃, where X̃ ⊂ Pr+2

K is a smooth
rational normal surface scroll. We therefore recall a few facts on rational normal surface
scrolls.

5.1. Reminder. (A) Let a and b be two positive integers with a ≤ b, consider the
polynomial ring

R := K[x0, x1, . . . , xa+b+1]

and the smooth rational normal surface scroll (cf. [H])

S(a, b) ⊂ Pa+b+1
K = Proj(R)

of type (a, b). So S(a, b) is the non-degenerate irreducible surface of degree a + b whose
vanishing ideal

IS(a,b) = Ia,b ⊂ R

is generated by the 2× 2-minors of the 2× (a+ b)-matrix

Ma,b :=

(
x0 x1 · · · xa−1

... xa+1 xa+2 · · · xa+b

x1 x2 · · · xa
... xa+2 xa+3 · · · xa+b+1

)

(B) Keep the notations of part (A). Then, according to [C], the vanishing ideal ISec(X̃) ⊂ R
of the secant variety

Sec(X̃) :=
⋃
{L = P1

K ⊂ Pa+b+1
K

length(L ∩ X̃) > 1}

of the scroll X̃ := S(a, b) is generated by the 3× 3-minors of the 3× (a+ b− 2)-matrix

M ′
a,b :=

x0 x1 · · · xa−2
... xa+1 xa+2 · · · xa+b−1

x1 x2 · · · xa−1
... xa+2 xa+3 · · · xa+b

x2 x3 · · · xa
... xa+3 xa+4 · · · xa+b+1

 .
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If N = (fij)1≤i≤m,1≤j≤n is a matrix whose entries are linear forms in R and if p = (α0 :
α1 : · · · : αa+b+1) ∈ Pa+b+1

K we denote by rankN(p) the rank of the matrix

N(α0, α1, · · · , αa+b+1) = (fij(α0, α1, · · · , αa+b+1))1≤i≤m,1≤j≤n.

Using this notation we have

S(a, b) = {p ∈ Pa+b+1
K

rank(Ma,b(p)) ≤ 1},
SecS(a, b) = {p ∈ Pa+b+1

K

rank(M ′
a,b(p)) ≤ 2}.

(C) Keep the above notations and consider the subspaces

PaK := Proj(R/(xa+1, · · · , xa+b+1)R) ⊂ Pa+b+1
K

PbK := Proj(R/(x0, · · · , xa)R) ⊂ Pa+b+1
K

and the corresponding subscrolls

S(a) := S(a, b) ∩ PaK ⊂ PaK = 〈S(a)〉,
S(b) := S(a, b) ∩ PbK ⊂ PbK = 〈S(b)〉,

which are rational normal curves. In addition, we consider the Veronese embeddings

νa : P1
K → PaK , (s : t) 7→ (sa : sa−1t : · · · : sta−1 : ta)

νb : P1
K → PbK , (s : t) 7→ (sb : sb−1t : · · · : stb−1 : tb)

and the generating lines

L(x) := 〈νa(x), νb(x)〉, x ∈ P1
K .

Then S(a, b) =
⋃̇
x∈P1L(x) and there is a canonical projection ϕ : S(a, b) � P1

K such that
ϕ−1(x) = L(x) for all x ∈ P1

K .

5.2. Remark. (A) Keep the above notations and consider the secant cone

Secp(X̃) := {p} ∪
⋃
{L = P1

K ⊂ Pa+b+1
K

p ∈ L, length(L ∩ X̃) > 1}

and the secant locus

Σp(X̃) := Secp(X̃) ∩ X̃ = {x̃ ∈ X̃
length(〈p, x̃〉 ∩ X̃) > 1}

of the scroll X̃ := S(a, b) with respect to the point p ∈ Pa+b+1
K \ X̃. Observe that

Secp(X̃) = {p} and Σp(X̃) = ∅ if and only if p /∈ Sec(X̃).

Moreover, by the rank formula of [BPS] we have

dim Σp(X̃) = dim(Secp(X̃))− 1 = 4− rank(M ′
a,b(p))

for all points p ∈ Pa+b+1
K \ X̃.

(B) If a+ b ≥ 5 and p ∈ Sec(X̃) \ X̃, by [BP, Theorem 4.2] we can say the following:

(1) If a = 1 and p ∈ Join(S(1), X̃), then Secp(X̃) = P2
K and Σp(X̃) = S(1) ∪ L(x) for

some x ∈ P1
K .

(2) If a = 2 and p ∈ 〈S(2)〉, then Secp(X̃) = P2
K and Σp(X̃) ⊂ P2

K is a smooth conic.

(3) In all other cases Secp(X̃) = P1
K and Σp(X̃) ⊂ P1

K is a subscheme of length 2.
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5.3. Lemma. Let the notations and hypotheses be as in Reminder 5.1. Let a+ b > r, let
Λ = Pa+b+1−r

K ⊂ Pa+b+1
K be a linear subspace disjoint to X̃ := S(a, b) and let f : X̃ � X

be a projection of X̃ from Λ onto the surface X ⊂ PrK. Then

f−1(Sing(f)) =
⋃
p∈Λ

Σp(X̃).

Proof. We may assume that PrK ⊂ Pa+b+1
K is a subspace disjoint to Λ and f is induced by

the canonical projection πΛ : Pa+b+1
K \ Λ � PrK . A closed point x ∈ X belongs to Sing(f)

if and only if f−1(x) = 〈Λ, x〉 ∩ X̃ is of length > 1. This latter condition is equivalent to
the fact that 〈Λ, x〉 contains a secant or tangent line L to X̃. As each such line intersects
Λ in precisely one point p, we get our claim. �

5.4. Lemma. Let the notations and hypotheses as in Lemma 5.3 and assume that r ≥ 4.
Then, the following statements are equivalent:

(i) f is almost non-singular.
(ii) For all p ∈ Λ we have rank(M ′

a,b(p)) ≥ 2 with equality for only finitely many p.
(iii) ](Λ ∩ Sec(S(a, b))) <∞ and either

(1) a > 2;
(2) a = 2 and Λ ∩ 〈S(2)〉 = ∅;
(3) a = 1 and Λ ∩ Join(S(1), S(1, b)) = ∅.

Proof. This is immediate by Lemma 5.3 and Remark 5.2(B). �

5.5. Lemma. Let the notations and hypotheses be as in Lemma 5.4. Assume that the
projection f : X̃ = S(a, b) � X is almost non-singular, with 0 < a ≤ b. Then, the
numbers a and b are uniquely determined by X.

Proof. As f is a birational projection, we have a+ b = deg(X̃) = deg(X). It thus remains
to show that b−a is uniquely determined by X. To do so, let X̃ ′ = S(a′, b′) ⊂ Pa+b+1

K (with

a ≤ a′ ≤ b′ = a+ b− a′) be another smooth rational surface scroll and let f ′ : X̃ ′ � X be
an almost non-singular projection of X̃ ′ onto X from a linear subspace Λ′ = Pa+b+1−r

K ⊂
Pa+b+1
K disjoint to X̃ ′. If a′ = 1, our claim is clear. So, let a′ > 1.
Writing Z := f−1(Sing(f) ∪ Sing(f ′)) and Z ′ := (f ′)−1(Sing(f) ∪ Sing(f ′)) we thus get

a commutative diagram

X̃ \ Z
g

'
//

� _

��

X̃ ′ \ Z ′
� _

��

X̃
f // // X X̃ ′

f ′oooo

.

Now, let L ⊆ X̃ be a ruling disjoint to the finite set Z. Then as f and f ′ are linear
projections, the set L′ := g(L) is a line contained in X̃ ′ which avoids the finite set Z ′. As
a′ > 1, the line L′ is a ruling of X̃ ′. Therefore U := X̃ \ L and U ′ := X̃ ′ \ L′ are smooth
open neighborhoods of the finite sets Z and Z ′ respectively and hence the isomorphism

U \Z '−→ U ′\Z ′ given by g may be extended to an isomorphism U
'−→ U ′. This means that

g may be extended to an isomorphism h : X̃
'−→ X̃ ′. Now, as f and f ′ are projections, h
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maps each ruling L of X̃ onto a line contained in X̃ ′ and hence to a ruling of X̃. This

means that after a linear automorphism in the base P1
K of X̃ ′, the map h : X̃

'−→ X̃ ′

becomes an isomorphism of ruled surfaces, so that b′−a′ = b−a (see [Ha, V. Proposition
2.2]). �

5.6. Remark. Let r ≥ 5 and let X ⊂ PrK be our non-degenerate irreducible projective
surface of degree r + 1. If X is a cone, we understand its structure by what we said in
Remark 4.6. We therefore shall not consider this case anymore.

Now, we are ready to formulate and to prove the main result of this section.

5.7. Theorem. Let r ≥ 5 and let X ⊂ PrK be an irreducible non-degenerate surface.

(a) The following statements are equivalent:
(i) X is of degree r + 1, not a cone and falls under one of the seven cases 5-11.
(ii) There is a positive integer a ≤ r+1

2
and an almost non-singular projection

f : S(a, r + 1− a) � X from a line P1
K = L disjoint to S(a, r + 1− a).

(b) If X is as in statement (a)(i) and a, f and L are as in statement (a)(ii), then the
number a ∈ N is uniquely determined by X and
(1) L = Λ satisfies the equivalent conditions (ii) and (iii) of Lemma 5.4.
(2) If x ∈ X is a closed point and K2

X is defined as in Remark 3.7, the OX,x-
modules H1

mX,x
(OX,x) and

(
f∗OX̃/OX

)
x

are isomorphic and of the same length

as the OX,x-module K2
X,x.

(3) If K2
X is as in statement (2), then length(K2

X) = length(f∗OX̃/OX) = e(X)
and X \ CM(X) = X \ Nor(X) = X \ Reg(X) = Sing(f).

Proof. (a): Let X be as in statement (i) and let A be the homogeneous coordinate ring
of X. Then, according to Theorem 2.7 the homogeneous integral K-algebra B = B(A)
satisfies dimK B1 = r + 3. So B is the homogeneous coordinate ring of an irreducible
non-degenerate surface X̃ ⊂ Pr+2

K and the inclusion A ↪→ B yields an almost non-singular

projection f : X̃ � X of X̃ onto X from a line L disjoint to X̃. In particular, f is
birational, so that deg(X̃) = deg(X) = r + 1 = codim(X̃) + 1. So X̃ ⊂ Pr+2

K is a surface

of minimal degree. As X is not a cone, X̃ cannot be a cone either. So X̃ is a smooth
surface of minimal degree. As r + 1 > 5 clearly X̃ cannot not be the Veronese surface
and hence must be some smooth surface scroll. After a linear coordinate transformation
we thus can write X̃ = S(a, r + 1 − a) where a ≤ r+1

2
is a positive integer. This proves

the implication “(i)⇒ (ii)”. The converse implication follows immediately by Lemma 4.4
and the fact that S(a, r + 1− a) is arithmetically Cohen-Macaulay.

(b): The uniqueness of the number a follows from Lemma 5.4. Statement (1) follows
from Lemma 5.4. Statement (2) is immediate by Lemma 4.5(b)(2) and Remark 3.7.
Statement (3) now is immediate by statement (2), Lemma 4.5 and by Remark 3.7. �

Now we may characterize all non-conic surfaces of ∆-genus 2 which fall under the cases
3 – 11 as almost non-singular projections from surfaces X̃ of almost minimal degree, which
are either non-conic and maximally del Pezzo or non-linearly normal.

5.8. Corollary. Let r ≥ 5 and let X ⊂ PrK be an irreducible non-degenerate surface which
is not a cone. Then
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(a) The following statements are equivalent
(i) X is of degree r + 1 and falls under the cases 3 or 4.
(ii) X is an almost non-singular projection of a non-conic maximal del Pezzo

surface X̃ ⊂ Pr+1
K from a point p ∈ Pr+1

K \ X̃.
(b) The following statements are equivalent

(i) X is of degree r + 1 and falls under one of the cases 5 – 11.
(ii) X is an almost non-singular projection of a non-linearly normal (and hence

smooth) surface X̃ ⊂ Pr+1
K of almost minimal degree from a point p ∈ Pr+1

K \X̃.

Proof. (a): This equivalence is clear by Theorem 4.7
(b): “(i) ⇒ (ii)”: Let X be as in statement (b)(i). Then, according to Theorem 5.7

There is a smooth rational normal scroll S(a, r+1−a) ⊂ Pr+2 and an almost non-singular
morphism f : S(a, r+1−a) � X induced by a projection π : Pr+1

K \Λ � PrK for a line Λ ⊂
Pr+2
K disjoint to S(a, r+a−1) and such that the intersection W := Sec(S(a, r+1−a))∩Λ

is finite. Chose a closed point q ∈ Λ\W , a projection ρ : Pr+2
K \{q}� Pr+1

K from q, and a
second projection σ : Pr+1

K \ {p}� PrK from a point p ∈ ρ(Λ \ {q}) so that π = σ ◦ ρ. Let

X̃ := ρ(S(a, r + 1 − a). Let g : S(a, r + 1 − a) � X̃ and h : X̃ � X be the morphisms
induced by ρ and σ respectively. Then f = h ◦ g and by our choice of q the map g is
an isomorphism. Therefore X̃ ⊂ Pr+1

K is a surface of almost minimal degree which is not

linearly normal and hence not a cone. In particular X̃ is a non-singular projection of a
surface W ⊂ Pr+2

K of minimal degree (see Theorem 1.2 and Theorem 1.3 (c) of [BS4]),

which is not a cone either. So W is smooth and hence X̃ is smooth. Moreover the
morphism h is almost non-singular.

“(ii) ⇒ (i)”: Let X, p and X̃ ⊂ Pr+1
K be as in statement (b)(ii). Let X̃ � X the

corresponding almost non-singular projection from a point p. As X̃ is not linearly normal,

there is an isomorphic projection g : S(a, r+ 1−a)
'−→ X̃ of smooth rational surface scroll

S(a, r+ 1−a) ⊂ Pr+2
K from a pont q. Now, clearly the composition f := h◦g is an almost

non-singular projection of S(a, r + 1 − a) from a line Λ ⊂ Pr+2
K \ S(a, r + 1 − a). So, by

Theorem 5.7(a) the surface X is of degree r+1 and falls under one of the cases 5 – 11. �

5.9. Remark. According to Theorem 4.7 the maximal del Pezzo surface X̃ ⊂ Pr+1
K of

Corollary 5.8(a)(ii) is uniquely determined by X up to projective equivalence. On the
other hand, the non-linearly normal surface X̃ ⊂ Pr+1

K of almost-minimal degree of Corol-
lary 5.8(b)(ii) is not uniquely determined by X up to projective equivalence. So, Corol-
lary 5.8 is not of immediate use for a classification of surfaces of ∆-genus 2.

Now, we may precisely characterize those non-conic surfaces of ∆-genus 2 which are
obtained as projected images of smooth rational normal scrolls from a line.

5.10. Corollary. Let r ≥ 5 let a ≤ r+1
2

be a positive integer, consider the smooth rational

normal scroll X̃ := S(a, r + 1 − a) ⊂ Pr+2
K and let Λ ⊂ Pr+2

K \ X̃ be a line not contained

in the secant variety Sec(X̃). Let X ⊂ PrK be the image of X̃ under a projection from the
line Λ.

(a) The following statements are equivalent
(i) X falls under one of the cases 3 or 4 and satisfies the equivalent conditions

(i)–(v) of Corollary 4.8.
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(ii) The line Λ and the number a satisfy either
(1) a = 1 and Λ ∩ Join(S(1), X̃) 6= ∅;
(2) a = 2 and Λ ∩ 〈S(2)〉 6= ∅.

(b) The following statements are equivalent
(i) X falls under one of the cases 5–11.
(ii) The line Λ and the number a satisfy either

(1) a = 1 and Λ ∩ Join(S(1), X̃) = ∅;
(2) a = 2 and Λ ∩ 〈S(2)〉 = ∅;
(3) a > 2.

Proof. Statement (b) is clear by Theorem 5.7.
(a): “(i) ⇒ (ii)”: This is clear from the implication “(ii) ⇒ (i)” of statement (b) and

the fact that our cases exclude each other pairwise.
“(ii) ⇒ (i)”: Assume that statement (a)(ii) holds. If condition (1) holds let Z :=

Join(S(1), X̃), while Z = 〈S(2)〉 if condition (2) holds. Chose q ∈ Λ ∩ Z. Let Y ⊂ Pr+1
K

be a projected image of X̃ from q. Then, according to [BP, Theorem 4.2] the surface Y is
a non-conic, non-normal maximal del Pezzo surface. Moreover the morphism f : X̃ � X
induced by the projection from Λ factorizes through a unique projection h : Y � X of Y
from the point p ∈ Pr+1

K \ Y which is the projected image of Λ \ {p} from p. according to
Corollary 4.8 it remains to show that the projection morphism h is almost non-singular.

To show this, we have only to prove, that there are only finitely many planes E = P2
K ⊂

Pr+1
K which contain Λ and a secant or tangent line to X̃. On use of Remark 5.2(B) we

see that each point s ∈ Λ \Z is contained in at most one secant or tangent line to X̃. As
Λ ∩ Sec(X̃) is a finite set and contains Z, our claim follows. �

5.11. Corollary. Let r ≥ 5 and let X ⊂ PrK be an irreducible non-degenerate surface
which is not a cone. Then, the following statements are equivalent

(i) X is a surface of degree r + 1 and either
(1) X falls under one of the two cases 3 or 4 and satisfies the equivalent conditions

(i)–(v) of Corollary 4.8.
(2) X falls under one of the cases the 5–11.

(ii) X is obtained by projecting a smooth rational normal sroll X̃ ⊂ Pr+2
K from a line

Λ which avoids X̃ and is not contained in Sec(X̃).

Proof. This is clear by Corollary 5.10 and Remark 4.9. �
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