
ON LINEAR PROJECTIONS OF QUADRATIC VARIETIES

MARKUS BRODMANN AND EUISUNG PARK

Abstract. We study simple outer linear projections of projective varieties whose ho-
mogeneous vanishing is defined by quadrics which satisfy the condition K2. We extend
results on simple outer linear projections of rational normal scrolls.

1. Introduction

Throughout this paper, we work over an algebraically closed field k of arbitrary charac-
teristic. We denote by Pr the projective r-space over k.

For a nondegenerate irreducible projective variety X ⊂ Pr and a closed point q ∈ Pr

outside of X, let πq : X → Pr−1 be the linear projection of X from q and consider the
subvariety Xq = πq(X) ⊂ Pr−1. One can naturally expect that algebraic and geometric
properties ofXq may be described precisely in terms of those ofX and the relative location
of q with respect to X. For example, let fq : X → Xq be the map induced from πq and
consider the coherent sheaf F := (fq)∗OX/OXq on Xq. Then the support of F is exactly
the singular locus

Sing(fq) := {x ∈ Xq | length
(
f−1
q (x)

)
≥ 2}

of the morphism fq : X → Xq. Classically, the set Join
(
Sing(fq), q

)
with the reduced

scheme structure is called the secant cone of X at q and is denoted by Secq(X). Also
Σq(X), the scheme-theoretic intersection of X and Secq(X), is called the secant locus (or
entry locus) of X at q. These notions are related in an elementary way to the morphism
fq : X → Xq as follows:

(i) fq : X → Xq is an isomorphism if and only if Σq(X) is empty.
(ii) fq : X → Xq is birational if and only if Σq(X) is a proper subset of X.

In this paper we study the projected variety Xq ⊂ Pr−1 in the case where X satisfies
condition K2, that is, it is scheme-theoretically cut out by some quadratic equations
and the trivial syzygies among them are generated by linear syzygies (cf. Definition
and Remark 3.1). Our main result in the present paper shows that various important
properties of Xq are governed by the integer s(q) defined as

s(q) := h0(Pr, IX(2))− h0(Pr−1, IXq(2))− 1.

Thus we can say that s(q) reflects the relative location of q with respect to X.

1.1. Theorem. Let X ⊂ Pr be a non-degenerate irreducible projective variety satisfying
condition K2, and let q ∈ Pr be a closed point outside of X. Then
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(a) s(q) > 0 and the morphism fq : X → Xq is birational.
(b) The secant cone Secq(X) ⊂ Pr and the singular locus Λ := Sing(fq) ⊂ Pr−1 are

linear subspaces of dimension (r − s(q)) and (r − s(q)− 1), respectively.
(c) The secant locus Σq(X) is a quadratic hypersurface in Secq(X) .
(d) Let AX , AXq and AΛ be respectively the homogeneous coordinate ring of X ⊂ Pr,

Xq ⊂ Pr−1 and Λ ⊂ Pr−1. Then there is an exact sequence of graded AXq-modules

(1.1) 0 −→ AXq −→ AX −→ AΛ(−1) −→ 0.

(e) The sheaf (fq)∗OX/OXq is isomorphic to OΛ(−1).

We also illustrate this theorem by means of various simple exterior projections the
rational normal 3-fold scroll in S(1, 1, 4) ⊂ P8.

1.2. Remark. (A) The statements of Theorem 1.1 is proved in [3] when X is a variety
of minimal degree, in [5] when X is a projective normal variety satisfying condition N2,2

and in [1] when X satisfies condition N2,2. See Definition and Remark 3.1 for the notions
condition K2 and condition N2,2.
(B) The sequence (1.1) allows to compare algebraic properties of Xq and X. For example,
the local properties of X and Xq are compared on use of this sequence. See Corollary 3.4.
(C) To the authors’ best knowledge, there is no example of a variety X ⊂ Pr which
satisfies condition K2 but does not satisfy condition N2,2. Nevertheless, the proof of
Theorem 1.1 itself is interesting because it uses directly the definition of condition K2.
So, the rich structure ofXq stated in Theorem 1.1 and Corollary 3.4 is a direct consequence
of condition K2 of X.
(D) It seems natural to ask about the sets Φt := {q ∈ Pr | s(q) = t}. Theorem 1.1(b) says
that s(q) ≤ r− 1 if and only if the map fq : X → Xq is singular. Thus Φt is contained in
the secant variety of X whenever t ≤ r− 1. This means that the Φt’s for t ≤ r− 1 consist
of a stratification of the secant variety of X. When X is a smooth rational normal scroll,
this stratification is understood very well (cf. [2]).

2. Quadratic Varieties

2.1. Convention. (A) We write S := k[x0, x1, · · · , xr] for the homogeneous coordinate
ring of Pr. If a ⊆ S is a graded ideal and F1, . . . , Fn ∈ S are homogeneous polynomials,
we write

V(a) := Proj(S/a) and V(F1, . . . , Fn) := V(
n∑

i=1

SFi).

(B) Let X ⊂ Pr be a non-degenerate irreducible projective variety whose homogeneous
vanishing ideal is IX ⊂ S. Assume that the point q = [0, 0, . . . , 0, 1] ∈ Pn is outside of X.
Then the linear projection map πq : Pr \{q} → Pr−1 corresponds to the obvious inclusion
of the homogeneous coordinate ring S ′ := k[x0, x1, . . . , xr−1] of Pr−1 into S. Moreover, we
always write

Xq := Proj(S ′/IX ∩ S ′) and IXq := IX ∩ S ′

where IXq is the homogeneous vanishing ideal of Xq. In addition, we consider the induced
finite projection morphism

fq : X → Xq, [x0, x2, . . . , xr] 7→ [x0, x1, . . . , xr−1].
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(C) Let V be a k-vector subspace of
(
IX

)
2
whose common zero locus does not contain q.

Let Vq := V ∩ S ′ ⊆
(
IXq

)
2
and write dimk V = t + 1 and dimk Vq = t − s. Then we can

choose a basis {Q0, Q1, . . . , Qt} of V such that

(†)


1. Q0 = G0 +H0xr + x2

r,

2. Qi = Gi + xixr for 1 ≤ i ≤ s, and

3. Qi = Gi for s+ 1 ≤ i ≤ t

where H0 ∈ S ′ and G0, G1, . . . , Gt ∈ S ′ are forms of degree 1 and 2.

2.2. Lemma. Let the notations and hypotheses be as in Convention 2.1 (A), (B) and (C).
Suppose that V cuts out X scheme-theoretically. Then

(a) For each closed point p ∈ Xq it holds

length
(
f−1
q (p)

)
=

{
1, if p /∈ V(x1, . . . , xs) and

2, if p ∈ V(x1, · · · xs).

(b) Sing(fq) = Xq ∩ V′(x1, . . . , xs) and Σq(X) = X ∩ V(x1, . . . , xs).

(c) Assume that IX is generated by V and s = 0. Then IXq =
∑t

i=1 S
′Qi.

Proof. For any point p ∈ Xq, consider the line ⟨p, q⟩ = {λp+ µq | [λ, µ] ∈ P1}. Note that
q /∈ X ∩ ⟨p, q⟩ and so X ∩ ⟨p, q⟩ is an affine subscheme of A1 = ⟨p, q⟩ \ {q} = Spec(k[µ]).
Moreover, X ∩ ⟨p, q⟩ in A1 is defined by the s+ 1 polynomials

µ2 +H0(p)µ+G0(p), x1(p)µ+G1(p), . . . , xs(p)µ+Gs(p) ∈ k[µ]
since V cuts out X scheme-theoretically and the quadratic forms Qs+1, · · · , Qt vanish on
the line ⟨p, q⟩. Therefore it holds that

length
(
f−1
q (p)

)
= length

(
X ∩ ⟨p, q⟩

)
=

{
1, if xi(p) ̸= 0 for some i ≥ 1, and

2, if x1(p) = · · · = xs(p) = 0.

This proves statement (a). The first part of (b) now follows by the definition of the singular
locus Sing(fq) of fq. Then we can see that Secq(X) is equal to Join(X, q)∩V(x1, . . . , xs).
Therefore Σq(X) is the scheme-theoretical intersection X ∩ Secq(X) = X ∩V(x1, . . . , xs).

In order to prove statement (d), we write I := IXq = IX ∩ S ′ and J :=
∑t

i=1 S
′Qi and

we show by induction, that Id = Jd for all integers d ≥ 2. For d = 2 this is clear by our
choice of Q0, Q1, . . . , Qt. Moreover Jd ⊆ Id for all d ≥ 3. So, let F ∈ I be a homogeneous
form of degree d ≥ 3. Since F ∈ IX , we have

F = Q0L0 +Q1L1 + · · ·+QtLt

For each form L = L(x0, . . . , xr−1, xr) ∈ Sd−2 we write L′ := L(x0, . . . , xr−1, 0) ∈ S ′
d−2.

Writing Q0 = G0 + H0xr + x2
r and observing that F,G0, Q1, . . . , Qt ∈ S ′ we thus get

F = G0L
′
0 +Q1L

′
1 + · · ·+QtL

′
t. It remains to show, that G0L

′
0 ∈ J . As F,Q1, . . . Q1 ∈ I,

we have G0L
′
0 ∈ Id. As I is a prime containing no linear form, we have H0xr + x2 /∈ I,

hence G0 /∈ I and therefore L′
0 ∈ I. As L′

0 ∈ S ′
d−2 it follows by induction that L′

0 ∈ J , so
that indeed G0L

′
0 ∈ J. �

As an immediate application of the previous lemma, we get the following result.
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2.3. Proposition. Let the notations and hypotheses be as in Lemma 2.2. Then

(a) The morphism fq : X → Xq is birational if and only if s > 0.
(b) Assume that IX is generated by V and s = 0. Then Xq is a quadratic variety

and X is the intersection of the cone Join(q,Xq) and a quadric. Furthermore, the
morphism fq : X → Xq is a double covering.

3. The Condition K2

3.1.Definition and Remark. (A) Let the notations and hypotheses as in Convention 2.1
and let Q := (Q0, Q1, · · · , Qt) ∈ St+1

2 be a family of k-linearly independent quadratic
equations. We consider the module of syzygies

Syz(Q) := {(F0, F2, . . . , Ft) ∈ St+1 |
∑
i=0

FiQi = 0}

of the family Q, furnished with its natural grading as a submodule of St+1. By a linear
syzygy of Q we mean a homogeneous element of degree 1 in Syz(Q), hence an element of
Syz(Q)1. We also introduce the graded submodule

Syzlin(Q) :=
∑

F∈Syz(Q)1

SF
(
⊆ Syz(Q)

)
generated by all linear syzygies of Q.
For each i ∈ {0, 1, . . . , t}, let ei := (0, . . . , 0, 1, 0, . . . 0) = (δi,j)

t
j=0 denote the i-th canonical

basis element of the S-module St+1. Whenever 0 ≤ i < j ≤ t we call the element

Ti,j := Qjei −Qiej = (0, . . . , 0, Qj, 0 . . . , 0,−Qi, 0, . . . 0) ∈ Syz(Q)2

a trivial syzygy and we introduce the graded submodule

Syztriv(Q) :=
∑

0≤i<j≤t

STi,j

(
⊆ Syz(Q)

)
generated by the trivial syzygies. Observe that Syz(Q) = 0 if t = 0.

(B) Let V be the k-vector space spanned by {Q0, Q1, · · · , Qt}. If {Q′
0, Q

′
1, · · · , Q′

t} is a
basis for V , then there is a regular matrix A := [ai,j | 0 ≤ i, j ≤ t] ∈ k(t+1)×(t+1) for which

Qi =
∑t

j=0 αi,jQ
′
j for all i ∈ {0, . . . , t}. Then the family Q′ := (Q′

0, Q
′
1, · · · , Q′

t) ∈ St+1
2

and the automorphism ϕ : St+1
∼=→ St+1, ei 7→

∑t
j=0 αi,jej for all i ∈ {0, . . . , t}, induced

by A have the property that

ϕ
(
Syz(Q)

)
= Syz(Q′), ϕ

(
Syzlin(Q)

)
= Syzlin(Q

′) and ϕ
(
Syztriv(Q)

)
= Syztriv(Q

′).

As a consequence, the two conditions

(K2) : Syztriv(Q) ⊆ Syzlin(Q) and (N2,2) : Syzlin(Q) = Syz(Q)

do not depend on the choice of a basis for V and hence are intrinsic properties of V .
Obviously, both conditions are satisfied if t = 0.

(C) LetX ⊂ Pr be the closed subscheme defined by a homogeneous ideal I ⊆ S. Following
[6] we say that X satisfies condition K2 if it is scheme-theoretically cut out by a subspace
V ⊂ I2 which satisfies condition K2. Also, following [4] we say that X satisfies condition
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N2,2 if I2 generates I and satisfies condition N2,2. Observe X satisfies condition K2 if it
satisfies condition N2,2.

3.2. Lemma. Keep the notations and hypotheses in Convention 2.1 and Definition and
Remark 3.1. Then

(a) If (F0, F1, · · · , Ft) ∈ Syz(Q)1, then F0 ∈
∑s

i=1 kxi.
(b) Suppose that V cuts out X scheme-theoretically and satisfies the condition K2.

Then
(1) Q1, . . . , Qt ∈

∑s
i=1 S1xi;

(2) t > 0 =⇒ s > 0;
(3) Σq(X) = V(Q0, x1, . . . , xs), Secq(X) = V(x1, . . . , xs) and Sing(fq) = V′(x1, . . . , xs).

Proof. (a): Writing Fi =
∑r

j=0 ai,jxj with ai,j ∈ k for all 0 ≤ i ≤ t, we have

(3.1) F0Q0 + F1Q1 + · · ·+ FtQt = 0.

Also the left hand side of the equation (3.1) may be rewritten as

t∑
i=0

FiQi = a0,rx
3
r + (F0 + a0,rH0 + a1,rx1 + . . .+ as,rxs)x

2
r +Qxr + F

for some Q ∈ S ′
2 and some F ∈ S ′

3. Therefore the equation (3.1) implies that a0,r = 0 and
F0 + a1,rx1 + . . .+ as,rxs = 0, which completes the proof.
(b): Let i ∈ {1, . . . , t}. By condition K2 we find some n ∈ N, forms Lj ∈ S1 and linear

syzygies
∑t

k=1 Fj,kek ∈ Syz(Q)1, (j = 1, . . . , n) such that

T0,i = Qie0 −Q0ei =
n∑

j=1

Lj

t∑
k=1

Fj,kek =
t∑

k=1

( n∑
j=1

LjFj,k

)
ek, whence Qi =

n∑
j=1

LjFj,0.

According to (a), we have Fj,0 ∈
∑s

l=1 Sxl, so that Qi ∈
∑s

l=1 S1xl. This proves claim (1).
The remaining claims (2) and (3) now follow easily on use of Lemma 2.2 (b),(c). �
3.3. Notation and Remark. Let the notations and hypotheses be as in Convention 2.1.
We consider the homogeneous coordinate rings

AXq := S ′/IXq = S ′/(IX ∩ S ′) and AX = S/IX

of Xq and of X, as well as the canonical map

• : S → AX , given by F 7→ F := F + IX .

As S = S ′[xr], xr
2+H0xr+G0 = Q0 = 0, xixr = xixr = Qi −Gi = Gi for all i ∈ {1, . . . , s},

and H0, G0, . . . , Gs(q) ∈ AXq , we obtain:

(a) AX = AXq [xr] = AXq + xrAXq , with xr ∈
(
AX

)
1
\ AXq , and

(b) xiAX ⊆ AXq for all i ∈ {1, . . . , s}.

Proof of Theorem 1.1. Statement (a) follows immediately from Lemma 3.2 (b)(2) and
Proposition 2.3 (a). Statement (b) is a consequence of Lemma 3.2 (b)(4),(5). Statement
(c) is immediate by Lemma 3.2 (b)(3). To prove statement (d), we set s := s(q) and write
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Λ := Sing(fq). We may assume that the notations and hypotheses are as in Convention 2.1
and Notation and Remark 3.3. Then, by Lemma 3.2 (b)(5) we have

Λ = V′(x1, . . . , xs) = Proj(k[x0, xs+1, . . . , xr]) = Pr−s−1 ⊂ Pr−1.

and the homogeneous vanishing ideal IΛ of Λ in S ′ and the homogeneous coordinate ring
AΛ of Λ satisfy

IXq ⊂ IΛ =
s∑

i=1

S ′ and AΛ = S ′/IΛ.

According to statement (a) of Notation and Remark 3.3 we have

AX/AXq
∼=

[
S ′/annS′(AX/AXq)

]
(−1).

So, it remains to show that annS′(AX/AXq) = IΛ. According to statement (b) of Notation
and Remark 3.3 it holds IΛ ⊆ annS′(AX/AXq). As

V′(IΛ) = Λ = Sing(fq) = SuppPr−1

(
(fq)∗OX/OXq

)
= SuppPr−1

(
ÃX/AXq

)
= V′(annS′(AX/AXq)

)
,

it holds √
annS′(AX/AXq) =

√
IΛ.

As IΛ is a prime ideal, it follows annS′(AX/AXq) ⊆ IΛ, and this proves our claim.

Now, (e) follows immediately from statement (d) as (fq)∗OX/OXq = ÃX/AXq . �

As an application of Theorem 1.1 we obtain the following result, in which

Nor(Z), CM(Z) and S2(Z)

respectively denote the locus of normal, Cohen-Macaulay and S2-points of a locally Noe-
therian scheme Z.

3.4. Corollary. Let X ⊂ Pr and Xq ⊂ Pr−1 be as in Theorem 1.1. Then

(a) Each closed point in Sing(fq) is a non-normal point of Xq. Therefore

Nor(Xq) = fq(Nor(X) \ Σq(X)) = fq(Nor(X)) \ Sing(fq).
In particular, if X is normal then fq : X → Xq is the normalization of Xq.

(b) Assume that X is locally Cohen-Macaulay and dim
(
Σq(X)

)
< dim(X)− 1. Then,

the generic point η ∈ Xq of Sing(fq) is a Goto point and

CM(Xq) = S2(Xq) = Xq \ Sing(fq).

Proof. (a): Let x ∈ Sing(fq). Then, the ring
(
(fq)∗OX

)
x
is a finite birational integral

extension of OXq ,x such that
(
(fq)∗OX

)
x
/OX,x

∼= OΛ,x ̸= 0 by (1.1). Therefore OX,x fails
to be normal.
(b): Recall that η ∈ Xq is said to be a Goto point if dim(OXq ,η) > 1 and

H i
mXq,η

(OXq ,η) =

{
0 if i ̸= 1, dim(OXq ,η), and

κ(η) if i = 1.
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In our case, we have dim(OXq ,η) > 1, since we assume that dim
(
Σq(X)

)
< dim(X) − 1.

Localizing the exact sequence (1.1) at η, we get the following exact sequence of OXq ,η-
modules:

0 → OXq ,η →
(
(fq)∗OX

)
η
→ K(η) → 0

Since X is locally Cohen-Macaulay, OX,y is a Cohen-Macaulay local ring for each y ∈
π−1
q (η). Therefore

(
(fq)∗OX

)
η
is a Cohen-Macaulay OXq ,η-module. So, the above exact

sequence shows that

H1
mXq,η

(OXq ,η)
∼= κ(η) and H i

mXq,η
(OXq ,η) = 0 for all i ̸= 1, dim(OXq ,η).

As η ∈ Xq is not an S2-point, each y ∈ Λ fails to be an S2-point and a Cohen-Macaulay
point of Xq. �

4. Examples

4.1. Example. Let X ⊂ P8 be the standard rational normal scroll S(1, 1, 4) defined by
the vanishing of the 2× 2-minors of the matrix

M =

(
x0 x2 x4 x5 x6 x7

x1 x3 x5 x6 x7 x8

)
Thus X is a quadratic variety and its homogeneous vanishing ideal is generated by the
following set of 15 K-linearly independent quadrics:

{Qi,j | 1 ≤ i < j ≤ 6}
where Qi,j is the determinant of the 2 × 2 matrix consisting of the ith and jth columns
of M . We consider the following four points qi ∈ P8 \X, (i = 1, . . . , 4) :

q1 = [0, 0, 0, 0, 0, 0, 1, 0, 0], q2 = [0, 0, 0, 0, 0, 1, 0, 0, 0],

q3 = [0, 0, 0, 1, 1, 0, 0, 0, 0], q4 = [0, 1, 1, 0, 0, 0, 0, 0, 0].

Let Xqi ⊂ P7 denote the image of X ⊂ P8 under the linear projection πqi : P8 \{qi} → P7.

(A) When i = 1, the homogeneous vanishing ideal of q1 is generated by all homogeneous
coordinates of P8 except x6. Also, among the above 15 quadrics, exactly the following 9
quadrics contain x6:

Q1,4, Q1,5, Q2,4, Q2,5, Q3,4, Q3,5, Q4,5, Q4,6, Q5,6

This shows that h0(P7, IXq1
(2)) = 15− 9 = 6 and Secq1(X) is empty since

Secq1(X) = VP8(x0, x1, x2, x3, x4, x5, x7, x8, Q4,5).

(B) When i = 2, the homogeneous vanishing ideal of q2 is generated by all homogeneous
coordinates of P8 except x5. Also, among the above 15 quadrics, exactly the following 8
quadrics contain x5:

Q1,3, Q1,4, Q2,3, Q2,4, Q3,4, Q3,5, Q3,6, Q4,6

This shows that h0(P7, IXq2
(2)) = 15− 8 = 7 and Secq2(X) is a double point in P1 since

Secq2(X) = VPr(x0, x1, x2, x3, x6, x7, x8, Q3,4).
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(C) When i = 3, let 2y = x3 − x4 and 2z = x3 + x4. Then the homogeneous vanishing
ideal of p3 is generated by {x0, x1, x2, y, x5, x6, x7, x8}. Also, among the above 15 quadrics,
essentially the following 7 quadrics contain z since Q2,5 + Q3,4 and Q2,6 + Q3,5 are free
with respect to z:

Q2,3, Q1,2, Q1,3, Q2,4, Q2,5, Q2,6, Q3,6

This shows that h0(P7, IXq3
(2)) = 15− 7 = 8 and Secq3(X) is the union of two lines in P2

since
Secq3(X) = VP8(x0, x1, x5, x6, x7, x8, Q2,3).

(D) When i = 4, let 2y = x1 − x2 and 2z = x1 + x2. Then the homogeneous vanishing
ideal of p4 is generated by {x0, y, x3, x4, x5, x6, x7, x8}. Also, among the above 15 quadrics
equations, essentially the following 6 quadrics contain z since Q1,4+Q2,3, Q1,5+Q2,4, and
Q1,6 +Q2,5 are free with respect to z:

Q1,2, Q1,3, Q1,4, Q1,5, Q1,6, Q2,6

This shows that h0(P7, IXq4
(2)) = 15 − 6 = 9 and Secq4(X) is a smooth quadric in P3

since
Secq4(X) = VPr(x4, x5, x6, x7, x8, Q1,2).
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