ON CANONICAL COHEN-MACAULAY MODULES

MARKUS BRODMANN
Institute of Mathematics, University of Zürich
Zürich, Switzerland
e-mail: brodmann@math.uzh.ch
LE THANH NHAN
College of Sciences, Thai Nguyen University
Thai Nguyen, Vietnam
e-mail: trtrnhan@yahoo.com

Abstract

Let (R, \mathfrak{m}) be a Noetherian local ring which is a homomorphic image of a local Gorenstein ring and let M be a finitely generated R-module of dimension $d>0$. According to Schenzel (2004) [Sc3], M is called a canonical Cohen-Macaulay module (CCM module for short) if the canonical module $K(M)$ of M is Cohen-Macaulay. We give another characterization of CCM modules. We describe the non-canonical Cohen-Macaulay locus $\mathrm{nCCM}(M)$ of M. If $d \leqslant 4$ then $\operatorname{nCCM}(M)$ is closed in $\operatorname{Spec}(R)$. For each $d \geq 5$ there are reduced geometric local rings R of dimension d such that $\operatorname{nCCM}(R)$ is not stable under specialization 1 .

1 Introduction

We first fix a few notations and recall a few notions.
Notation 1.1. Throughout this paper, (R, \mathfrak{m}) is a Noetherian local ring which is a quotient of a n-dimensional local Gorenstein ring $\left(R^{\prime}, \mathfrak{m}^{\prime}\right)$. Let M be a finitely generated R-module with $\operatorname{dim} M=d$. For each $i \in \mathbb{N}_{0}$, let $K_{R}^{i}(M)=K^{i}(M)$ denote the i-th deficiency module of M that is the finitely generated R-module $\operatorname{Ext}_{R^{\prime}}^{n-i}\left(M, R^{\prime}\right)$. Observe that the formation of deficiency modules is base-ring independent in the following sense: if $\mathfrak{a} \subset R$ is an ideal such that $\mathfrak{a} M=0$, then the R-modules $K_{R}^{i}(M)$ and $K_{R / \mathfrak{a}}^{i}(M)$ are equal for each $i \in \mathbb{N}_{0}$. If $E(R / \mathfrak{m})$ denotes the injective envelope of R / \mathfrak{m}, the Local Duality Theorem gives an isomorphism $H_{\mathfrak{m}}^{i}(M) \cong \operatorname{Hom}_{R}\left(K^{i}(M), E(R / \mathfrak{m})\right)$ for all $i \in \mathbb{N}_{0}$. By $K(M)$ we denote the canonical module $K^{d}(M)$ of M. Throughout our paper, we use the standard convention that $\operatorname{depth}_{R}(0)=\infty>0$.

In Section 2 we shall prove a lifting result for the CCM-property of M and deduce two new characterizations of CCM modules. To make this more precise, let us recall, that Schenzel [Sc3] did prove that for $d>0$, the property of being a CCM module on M is inherited by $M / x M$ if $x \in \mathfrak{m}$ is a so-called strict f -element with respect to M, (see Definition 2.2). Our first main result proves that for $d \geq 4$ the CCM-property also lifts from $M / x M$ to M for

[^0]such elements x, (see Theorem 2.5). For $d=3$, this lifting property need not hold any more, (see Remark 2.8). As a consequence of this we get that for $d \geq 3$ and for each so-called strict f-sequence x_{1}, \ldots, x_{d-3} with respect to M (see Definition 2.2) the module M is CCM if and only if $K^{2}\left(M / \sum_{i=1}^{d-3} x_{i} M\right)$ is of depth >0 - which includes the case that the latter module vanishes, (see Corollary 2.6). As a further consequence we get that a generalized CohenMacaulay module of dimension ≥ 3 is CCM if and only if the local cohomology modules $H_{\mathfrak{m}}^{i}(M)$ vanish for all $i=2, \ldots, d-1$ or - equivalently - the \mathfrak{m}-transform $D_{\mathfrak{m}}(M)$ of M is a (finitely generated) Cohen-Macaulay module, (see Corollary 2.7).

In Section 3 we study the relation between the CCM-property and the polynomial type $p(M)$ of the module M (see Reminder 3.1). We first consider the case $p(M)=1$ and prove that in this situation M is CCM if and only if it satisfies the two equivalent conditions, in which $M_{[1]} \subseteq M$ denotes the largest submodule of dimension ≤ 1 (see Proposition 3.7):
(ii) $H_{\mathfrak{m}}^{i}(M)=0$ for all $i=3, \ldots, d-1$ and $K^{2}(M)$ is 0 or Cohen-Macaulay of dimension 1 .
(iii) The ideal transform $D_{\mathfrak{a}}\left(M^{[1]}\right)$ of $M^{[1]}:=M / M_{[1]}$ with respect to $\mathfrak{a}:=\left(0:_{R} H_{\mathfrak{m}}^{2}(M)\right)$ is a (finitely generated) Cohen-Macaulay module.

In a second step, we also admit that $p(M)>1$. This will lead us to another characterization of CCM modules, which involves once more strict f-sequences, (see Theorem 3.10): namely, if $d \geq 3$, if the polynomial type $p(M)=: k$ of M is positive and if x_{1}, \ldots, x_{k-1} is a strict f-sequence with respect to M, then M is CCM if and only if either
(a) $k \leqslant d-2, K^{i}(M)=0$ for $i=k+2, \ldots, d-1$ and $K^{2}\left(M / \sum_{j=1}^{k-1} x_{j} M\right)$ is 0 or CohenMacaulay of dimension 1 ; or
(b) $k=d-1$ and $K^{2}\left(M / \sum_{j=1}^{d-3} x_{j} M\right)$ is of dimension 2 and of depth >0.

In Section 4 we finally study the non-CCM-locus of M, which is defined as the set of primes $\operatorname{nCCM}(M):=\left\{\mathfrak{p} \in \operatorname{Spec}(R) \mid M_{\mathfrak{p}}\right.$ is not CCM $\}$. We show that under a certain "unmixedness" condition on the support $\operatorname{Supp}_{R} M$ of M, the set $\mathrm{nCCM}(M)$ coincides with the non-CM-locus $\mathrm{nCM}(K(M))$ and hence with the union of all pseudo supports $\operatorname{Psupp}^{i}(K(M))$ of the canonical module $K(M)$ of M, (see Proposition 4.4). It follows in particular that $\operatorname{nCCM}(M)$ is a closed set if $d \leqslant 4$. We also compare the locus $\operatorname{nCCM}(M)$ with the union of all pseudo supports of the canonical modules of the components of the dimension filtration of M, (see Proposition 4.6). Finally, on use of a construction found in Evans-Griffith [EG] we show that for each $d \geq 5$ and each field K there is a reduced local ring of (R, \mathfrak{m}) of dimension d, essentially of finite type over K, satisfying $R / \mathfrak{m} \cong K$ and such that $\mathrm{nCCM}(R)$ consists of single prime \mathfrak{p} which is in addition different from \mathfrak{m}, (see Proposition 4.9). Hence $\mathrm{nCCM}(R)$ is not stable under specialization in this case, (see Corollary 4.10).

2 Strict f-Sequences and Canonical Cohen-Macaulay Modules

Definition 2.1. (See [Sc3, Definition 3.1]). The finitely generated R-module M is called canonical Cohen-Macaulay (CCM for short) if the canonical module $K(M)$ of M is CohenMacaulay (CM for short).

In view of the previously mentioned base-ring independence of deficiency modules, the property of being CCM is also base-ring independent. More precisely, if $\mathfrak{a} \subset R$ is an ideal such that $\mathfrak{a} M=0$, then M is CCM as an R-module if and only if it is as an R / \mathfrak{a}-module.

There is a number of sufficient conditions for a module M to be CCM. If $\operatorname{dim} M \leqslant 2$ then M is CCM. It is clear that any CM module is CCM. The concept of sequentially Cohen-Macaulay module (sequentially CM module for short) was introduced by Stanley [St, p. 87] for graded modules. This notion was studied in the local case starting with the work of Schenzel [Sc2]. It is easy to see that any sequentially CM module is CCM. The notion of pseudo Cohen-Macaulay module (pseudo CM module for short) was introduced in [CN]. By [CN, Theorem 3.1] the module M is pseudo CM if and only if M / N is CM, where $N \subset M$ is the largest submodule of dimension less than d. As $K(M) \cong K(M / N)$, any pseudo CM module is CCM.

Our first main result shows that for certain elements $x \in R$ (under an obvious restriction on the dimension), the R-module M is CCM if and only if $M / x M$ is. That the CCM-property of M implies the CCM-property of $M / x M$ was actually proved already by Schenzel [Sc3, 3.3 (b)].

Definition 2.2. (See [CMN1]). Following I. G. Macdonald [Mac], we denote the set of attached primes of an Artinian R-module A by $\operatorname{Att}_{R} A$. An element $x \in \mathfrak{m}$ is called a strict filter regular element (strict \mathfrak{f}-element for short) with respect to M if $x \notin \mathfrak{p}$ for all

$$
\mathfrak{p} \in \bigcup_{i=1}^{d} \operatorname{Att}_{R} H_{\mathfrak{m}}^{i}(M) \backslash\{\mathfrak{m}\} .
$$

A sequence x_{1}, \ldots, x_{t} of elements in \mathfrak{m} is called a strict filter regular sequence (strict \mathfrak{f} sequence for short) with respect to M if x_{j+1} is a strict f -element with respect to the R module $M /\left(x_{1}, \ldots, x_{j}\right) M$ for all $j=0, \ldots, t-1$.

Note that for each integer $t>0$, by Prime Avoidance, there always exists a strict fsequence of length t with respect to M.

Remark 2.3. (a) By [BS, 11.3.3] we have $\operatorname{Ass}_{R} M \subseteq \bigcup_{i=0}^{d} \operatorname{Att}_{R} H_{\mathfrak{m}}^{i}(M)$. Therefore, if x is a strict f-element with respect to M, it is a filter regular element (f-element for short) with respect to M, i.e. $x \notin \mathfrak{p}$ for all $\mathfrak{p} \in \operatorname{Ass}_{R} M \backslash\{\mathfrak{m}\}$. Hence each strict f-sequence with respect to M is a filter regular sequence (f -sequence for short) with respect to M in sense of Cuong-Schenzel-Trung [CST].
(b) By [S, Theorem 2.3] we have $\operatorname{Ass}_{R} K^{i}(M)=\operatorname{Att}_{R} H_{\mathfrak{m}}^{i}(M)$ for all i. Therefore x is a strict f-element with respect to M if and only if x is an f -element with respect to $K^{i}(M)$ for all $i \geq 0$, thus if and only if $\ell\left(0:_{K^{i}(M)} x\right)<\infty$ for all $i \geq 0$. In particular, if $d>0$ and x is a strict f-element with respect to M then x is $K(M)$-regular.

We begin with the following auxiliary result. The sequence occurring in statement (a) may be found already in [Sc3].

Lemma 2.4. Let $x \in \mathfrak{m}$ and let $i \in \mathbb{N}_{0}$.
(a) If x is a strict f -element with respect to M, there is an exact sequence

$$
0 \rightarrow K^{i+1}(M) / x K^{i+1}(M) \rightarrow K^{i}(M / x M) \rightarrow\left(0:_{K^{i}(M)} x\right) \rightarrow 0
$$

(b) If x is a strict f -element with respect to M, then $K^{i}(M / x M)=0$ if and only if $K^{i+1}(M)=0$ and x is $K^{i}(M)$-regular.
(c) If x is an f -element with respect to M such that $\operatorname{depth}(M / x M)>0$, then x is M-regular.
(d) If x is a strict f -element with respect to M such that $\operatorname{depth}\left(K^{i}(M / x M)\right)>0$, then $\operatorname{depth}\left(K^{i+1}(M)\right)>1$.
(e) If x is a strict f -element with respect to M such that either $\operatorname{dim} K^{i+1}(M)>0$ or $\operatorname{dim} K^{i}(M / x M)>0$, then $\operatorname{dim} K^{i}(M / x M)=\operatorname{dim} K^{i+1}(M)-1$.

Proof. (a): We form the $K^{*}(\bullet)=\operatorname{Ext}_{R^{\prime}}^{n-*}\left(\bullet, R^{\prime}\right)$-sequence associated to the exact sequence $0 \rightarrow M /\left(0:_{M} x\right) \xrightarrow{\iota} M \rightarrow M / x M \rightarrow 0$, where ι is induced by $x \operatorname{Id}_{M}$. This gives an exact sequence $0 \rightarrow \operatorname{Coker}\left(K^{i+1}(\iota)\right) \rightarrow K^{i}(M / x M) \rightarrow \operatorname{Ker}\left(K^{i}(\iota)\right) \rightarrow 0$. Consider the short exact sequence $0 \rightarrow\left(0:_{M} x\right) \rightarrow M \xrightarrow{\varrho} M /\left(0:_{M} x\right) \rightarrow 0$, in which ϱ is the canonical map. As x is an f-element with respect to M, the module $\left(0:_{M} x\right)$ is of finite length, so that $K^{j}\left(0:_{M} x\right)=0$ for all $j>0$. This shows that $K^{j}(\varrho): K^{j}\left(M /\left(0:_{M} x\right)\right) \rightarrow K^{j}(M)$ is an isomorphism for $j>0$ and a monomorphism for $j=0$. As $\iota \circ \varrho=x \operatorname{Id}_{M}$ our claim follows.
(b): This follows immediate from statement (a) on use of Nakayama.
(c): As x is an f-element with respect to M we have $x M \cap H_{\mathfrak{m}}^{0}(M)=x\left(H_{\mathfrak{m}}^{0}(M):_{M} x\right)=$ $x H_{\mathfrak{m}}^{0}(M)$. So, by Nakayama, $H_{\mathfrak{m}}^{0}(M) \subseteq x M$ implies that $H_{\mathfrak{m}}^{0}(M)=0$. This proves our claim as depth $(M / x M)>0$ implies that $H_{\mathfrak{m}}^{0}(M) \subseteq x M$.
(d): By statement (a) we get depth $\left(K^{i+1}(M) / x K^{i+1}(M)\right)>0$. As x is an f-element with respect to $K^{i+1}(M)$, our claim follows on use of statement (c).
(e): This is clear by statement (a) as $\left(0:_{K^{i}(M)} x\right)$ is of finite length.

Now, we can give the announced first main result.
Theorem 2.5. Assume that $\operatorname{dim} M=d \geq 4$ and let $x \in \mathfrak{m}$ be a strict f -element with respect to M. Then M is CCM if and only if $M / x M$ is.

Proof. By [Sc3, 3.3(b)] we know that $M_{1}:=M / x M$ is CCM if M is CCM.
Conversely, assume that M_{1} is CCM. As x is an f-element with respect to M we have $\operatorname{dim}\left(M_{1}\right)=d-1$. Let $y \in \mathfrak{m}$ be a strict f-element with respect to M_{1}. Since M_{1} is CCM, the module $K^{d-1}\left(M_{1}\right)=K\left(M_{1}\right)$ is CM of dimension $d-1$. As y is a strict f -element with respect to M_{1}, it is $K\left(M_{1}\right)$-regular and so $K^{d-1}\left(M_{1}\right) / y K_{d-1}\left(M_{1}\right)$ is CM of dimension $d-2 \geq 2$. As $\operatorname{dim}\left(M_{1} / y M_{1}\right)=d-2 \geq 2$ we have depth $\left(K^{d-2}\left(M_{1} / y M_{1}\right)\right)=\operatorname{depth}\left(K\left(M_{1} / y M_{1}\right)\right) \geq 2$. So, by the exact sequence of Lemma 2.4 (a), applied with M_{1}, y and $d-2$ instead of M, x and i respectively, the module $\left(0:_{K^{d-2}\left(M_{1}\right)} y\right)$ has depth >0 and hence vanishes. It follows that y is $K^{d-2}\left(M_{1}\right)$-regular and thus $K^{d-2}\left(M_{1}\right)$ is of positive depth.
Our next claim is that x is $K^{d-1}(M)$-regular. If $K^{d-2}(M / x M)=K^{d-2}\left(M_{1}\right)=0$, this is immediate by 2.4 (b). So, let $K^{d-2}\left(M_{1}\right) \neq 0$. As $K^{d-2}\left(M_{1}\right)$ is of positive depth, the sequence of 2.4 (a), applied with $i=d-2$, shows that $K^{d-1}(M) / x K^{d-1}(M)$ is of positive depth, too. On application of 2.4 (c) with $K^{d-1}(M)$ instead of M it follows that x is indeed $K^{d-1}(M)$ regular.

Now, if we apply the exact sequence of 2.4 (a) with $i=d-1$ we get an isomorphism $K\left(M_{1}\right) \cong K(M) / x K(M)$. Since $K\left(M_{1}\right)$ is CM and x is $K(M)$-regular, $K(M)$ is CM, and hence M is CCM.

Corollary 2.6. Suppose that $d \geq 3$ and let x_{1}, \ldots, x_{d-3} is a strict f -sequence with respect to M. Then M is CCM if and only if depth $\left(K^{2}\left(M / \sum_{i=1}^{d-3} x_{i} M\right)\right)>0$.

Proof. We proceed by induction on d. First, let $d=3$. Let D^{\bullet} be a dualizing complex of R and let $C^{\bullet}(M)$ be the corresponding complex of deficiency of M, as defined by Schenzel (see [Sc3, Definition 4.1]). Then by [Sc3, Proposition 4.2], the 3-dimensional module M is CCM if and only if the cohomology module $H^{2}\left(\operatorname{Hom}\left(C^{\bullet}(M), D^{\bullet}\right)\right)$ vanishes. As in the the proof of [Sc3, Proposition 4.2, pg. 760], we get an isomorphism

$$
K^{0}\left(K^{2}(M)\right) \cong H^{0}\left(\operatorname{Hom}\left(K^{2}(M), D^{\bullet}\right)\right) \cong H^{2}\left(\operatorname{Hom}\left(C^{\bullet}(M), D^{\bullet}\right)\right),
$$

so that M is CCM if and only if depth $K^{2}(M)>0$.
Now let $d>3$. By Theorem 2.5, M is CCM if and only if $M_{1}:=M / x_{1} M$ is. Observe that x_{2}, \ldots, x_{d-3} is a strict f-sequence with respect to M_{1}. So, by induction M_{1} is CCM if and only if $K^{2}\left(M_{1} / \sum_{i=2}^{d-3} x_{i} M_{1}\right)=K^{2}\left(M / \sum_{i=1}^{d-3} x_{i} M\right)$ is of depth >0. Altogether, this completes our proof.

Recall that according to [CST] the R-module M is said to be generalized Cohen-Macaulay (generalized CM for short) if $H_{\mathfrak{m}}^{i}(M)$ is of finite length for all $i<\operatorname{dim} M$. For each ideal $\mathfrak{a} \subseteq R$ we use $D_{\mathfrak{a}}(M)$ to denote the \mathfrak{a}-transform $\lim _{\vec{n}} \operatorname{Hom}_{R}\left(\mathfrak{a}^{n}, M\right)$ of M. As a further application of Theorem 2.5 we get the following criterion for the CCM-property of generalized CM modules.

Corollary 2.7. Suppose that $d \geq 3$ and M is generalized CM. Then the following statements are equivalent.
(i) M is CCM.
(ii) $H_{\mathfrak{m}}^{i}(M)=0$ for all $i=2, \ldots, d-1$.
(iii) $D_{\mathfrak{m}}(M)$ is a (finitely generated) CM module.

Proof. (i) \Leftrightarrow (ii): As M is generalized CM, the modules $K^{i}(M)$ are of finite length for $0 \leq i<d$. Now Schenzel's result [Sc1, Korollar 1.4] - which holds also if the ring R is replaced by the R-module M - yields isomorphisms

$$
H_{\mathfrak{m}}^{i}(K(M)) \cong K^{0}\left(K^{d-i+1}(M)\right), \text { for all } i=2, \ldots, d-1
$$

As $H_{\mathrm{m}}^{i}(K(M))=0$ for $i=1,2$ and by local duality it follows, that $K(M)$ is CM if and only if $H_{\mathfrak{m}}^{i}(M)=0$ for all $i=2, \ldots, d-1$. This proves the stated equivalence.
(ii) \Leftrightarrow (iii): This is clear by the short exact sequence

$$
0 \rightarrow H_{\mathfrak{m}}^{0}(M) \rightarrow M \rightarrow D_{\mathfrak{m}}(M) \rightarrow H_{\mathfrak{m}}^{1}(M) \rightarrow 0
$$

and the relations $H_{\mathfrak{m}}^{i}\left(D_{\mathfrak{m}}(M)\right)=0$ for $i=0,1$ and $H_{\mathfrak{m}}^{j}\left(D_{\mathfrak{m}}(M)\right) \cong H_{\mathfrak{m}}^{j}(M)$ for all $j>1$ (see [BS, Chapter 2]).

Remark 2.8. Note that the conclusion of Theorem 2.5 is not true for $d=3$. In fact, let M be a generalized CM module with $\operatorname{dim} M=3$ and $H_{\mathfrak{m}}^{2}(M) \neq 0$. (For example take $M=R:=A_{A_{+}}$, where K is a field, $B:=K[x, y, z] /\left(x^{3}+y^{3}+z^{3}\right)$ and A is the Segre product ring $B \times B=\bigoplus_{n \in \mathbb{N}_{0}} B_{n} \otimes_{K} B_{n}$.) Then M is not CCM by Corollary 2.6. However, since $\operatorname{dim}(M / x M)=2$ for any strict f-element x with respect to M, it follows that $M / x M$ is CCM.

3 Polynomial Type and Canonical Cohen-Macaulay Modules

Reminder 3.1. The concept of polynomial type was introduced by N.T. Cuong [C]. Let $\underline{x}=\left(x_{1}, \ldots, x_{d}\right)$ be a system of parameters for M and $\underline{n}=\left(n_{1}, \ldots, n_{d}\right)$ a family of positive integers. Set

$$
I_{M, \underline{x}}(\underline{n}):=\ell\left(M /\left(x_{1}^{n_{1}}, \ldots, x_{d}^{n_{d}}\right) M\right)-n_{1} \ldots n_{d} e(\underline{x} ; M),
$$

where $e(\underline{x} ; M)$ is the multiplicity of M with respect to \underline{x}. Consider $I_{M, \underline{x}}(\underline{n})$ as a function in \underline{n}. In general this function is not a polynomial for $n_{1}, \ldots, n_{d} \gg 0$, but it always takes nonnegative values for $n_{1}, \ldots, n_{d} \gg 0$ and is bounded from above by polynomials. Especially, the least degree of all polynomials in \underline{n} which bound from above the function $I_{M, \underline{x}}(\underline{n})$ is independent of the choice of \underline{x}, (see [C, Theorem 2.3]). This least degree is called the polynomial type of M and denoted by $p(M)$.
Remark 3.2. If we stipulate that the degree of the zero polynomial is $-\infty$, then M is CM if and only if $p(M)=-\infty$. Moreover M is generalized CM if and only if $p(M) \leqslant 0$. In general

$$
p(M)=\max _{0 \leqslant i \leqslant d-1} \operatorname{dim}\left(R / \operatorname{Ann}_{R} H_{\mathfrak{m}}^{i}(M)\right)=\max _{0 \leqslant i \leqslant d-1} \operatorname{dim} K^{i}(M) \leqslant d-1
$$

(see $\left[\mathrm{C}\right.$, Theorem 3.1(i)] and observe that by Local Duality $\operatorname{Ann}_{R} H_{\mathfrak{m}}^{i}(M)=\operatorname{Ann}_{R} K^{i}(M)$). If M is equidimensional then $p(M)=\operatorname{dim} n C M(M)$, where $\mathrm{nCM}(M)$ is the non-CM-locus of M, (see [C, Theorem 3.1(ii)]).
Lemma 3.3. ([CMN, Lemma 3.1]). Let $x \in \mathfrak{m}$ be a strict f -element with respect to M. If $p(M)>0$ then $p(M / x M)=p(M)-1$.

In this section, we give a characterization of CCM modules which depends on the polynomial type. First we consider the case where $p(M)=1$. In this case, a certain ideal transform will play a crucial role, and so we first prove the two following auxiliary results.

Lemma 3.4. Set $\mathfrak{a}:=\left(0:_{R} H_{\mathfrak{m}}^{2}(M)\right)$. Assume that $\ell\left(H_{\mathfrak{m}}^{1}(M)\right)<\infty$ and $\operatorname{dim}(R / \mathfrak{a}) \leqslant 1$. Then $D_{\mathfrak{a}}(M)$ is a finitely generated R-module such that $H_{\mathfrak{m}}^{i}\left(D_{\mathfrak{a}}(M)\right)=0$ for $i=0,1$ and the R-module $H_{\mathfrak{m}}^{2}\left(D_{\mathfrak{a}}(M)\right)$) is of finite length. Moreover, $H_{\mathfrak{m}}^{i}\left(D_{\mathfrak{a}}(M)\right) \cong H_{\mathfrak{m}}^{i}(M)$ for all $i \geq 3$.

Proof. According to our hypothesis we have

$$
f_{\mathfrak{m}}^{\mathfrak{a}}(M):=\inf \left\{i \in \mathbb{N}_{0} \mid \mathfrak{a} \nsubseteq \operatorname{rad}\left(0:_{R} H_{\mathfrak{m}}^{i}(M)\right)\right\} \geq 3
$$

As $\operatorname{ht}((\mathfrak{p}+\mathfrak{m}) / \mathfrak{p})=\operatorname{dim}(R / \mathfrak{p})$ for each $\mathfrak{p} \in \operatorname{Spec}(R)$, it follows by [BS, (9.3.5)] that

$$
3 \leqslant \lambda_{\mathfrak{m}}^{\mathfrak{a}}(M):=\inf \left\{\operatorname{depth}_{R_{\mathfrak{p}}}\left(M_{\mathfrak{p}}\right)+\operatorname{dim}(R / \mathfrak{p}) \mid \mathfrak{p} \in \operatorname{Spec}(R) \backslash \operatorname{Var}(\mathfrak{a})\right\}
$$

As R is catenary, each $\mathfrak{p} \in \operatorname{Spec}(R) \backslash \operatorname{Var}(\mathfrak{a})$ satisfies $\operatorname{ht}((\mathfrak{a}+\mathfrak{p}) / \mathfrak{p}) \geq \operatorname{dim}(R / \mathfrak{p})-\operatorname{dim}(R / \mathfrak{a}) \geq$ $\operatorname{dim}(R / \mathfrak{p})-1$ and it follows that for each such \mathfrak{p} it holds $\operatorname{depth}_{R_{\mathfrak{p}}}\left(M_{\mathfrak{p}}\right)+\operatorname{ht}((\mathfrak{a}+\mathfrak{p}) / \mathfrak{p}) \geq$ $\operatorname{depth}_{R_{\mathfrak{p}}}\left(M_{\mathfrak{p}}\right)+\operatorname{dim}(R / \mathfrak{p})-1 \geq \lambda_{\mathfrak{m}}^{\mathfrak{a}}(M)-1 \geq 3-1=2$.
Therefore $\lambda_{\mathfrak{a}}(M):=\min \left\{\operatorname{depth}_{R_{\mathfrak{p}}}\left(M_{\mathfrak{p}}\right)+\operatorname{ht}((\mathfrak{a}+\mathfrak{p}) / \mathfrak{p}) \mid \mathfrak{p} \in \operatorname{Spec}(R) \backslash \operatorname{Var}(\mathfrak{a})\right\} \geq 2$. As R is a homomorphic image of a local Gorenstein ring it is universally catenary and all its formal fibers are CM. Hence, by [BS, (9.6.7)] we get

$$
f_{\mathfrak{a}}(M):=\inf \left\{i \in \mathbb{N}_{0} \mid H_{\mathfrak{a}}^{i}(M) \text { is not finitely generated }\right\}=\lambda_{\mathfrak{a}}(M) \geq 2
$$

In particular, $H_{\mathfrak{a}}^{1}(M)$ is finitely generated. So the four-term exact sequence (cf. [BS, (2.2.4)(i)])

$$
0 \rightarrow H_{\mathfrak{a}}^{0}(M) \rightarrow M \rightarrow D_{\mathfrak{a}}(M) \rightarrow H_{\mathfrak{a}}^{1}(M) \rightarrow 0
$$

shows that $N:=D_{\mathfrak{a}}(M)$ is finitely generated.
Moreover, $H_{\mathfrak{a}}^{i}(N)=0$ for $i=0,1$ (cf. [BS, (2.2.8)(iv)]). Therefore $\operatorname{grade}_{N}(\mathfrak{a}) \geq 2$. As $\mathfrak{a} \subseteq \mathfrak{m}$, it follows that $H_{\mathfrak{m}}^{i}(N)=0$ for $i=0,1$.

Our next aim is to show that $H_{\mathfrak{m}}^{2}(N)=H_{\mathfrak{m}}^{2}\left(D_{\mathfrak{a}}(M)\right)$ is of finite length. To this end let $\mathfrak{p} \in \operatorname{Spec}(R) \backslash\{\mathfrak{m}\}$. If $\mathfrak{p} \in \operatorname{Var}(\mathfrak{a})$ then $\operatorname{dim}(R / \mathfrak{p})=1$ and $\operatorname{depth}_{R_{\mathfrak{p}}}\left(N_{\mathfrak{p}}\right) \geq \operatorname{grade}_{N}(\mathfrak{a}) \geq 2$ and hence $\operatorname{depth}_{R_{\mathfrak{p}}}\left(N_{\mathfrak{p}}\right)+\operatorname{dim}(R / \mathfrak{p}) \geq 3$.
If $\mathfrak{p} \notin \operatorname{Var}(\mathfrak{a})$, then $H_{\mathfrak{a}}^{0}(M)_{\mathfrak{p}}=H_{\mathfrak{a}}^{1}(M)_{\mathfrak{p}}=0$ and hence the above four-term exact sequence yields $N_{\mathfrak{p}} \cong M_{\mathfrak{p}}$, so that $\operatorname{depth}_{R_{\mathfrak{p}}}\left(N_{\mathfrak{p}}\right)+\operatorname{dim}(R / \mathfrak{p})=\operatorname{depth}_{R_{\mathfrak{p}}}\left(M_{\mathfrak{p}}\right)+\operatorname{dim}(R / \mathfrak{p}) \geq \lambda_{\mathfrak{p}}^{\mathfrak{q}}(M) \geq 3$. Altogether we obtain $\lambda_{\mathfrak{m}}(N):=\inf \left\{\operatorname{depth}_{R_{\mathfrak{p}}}\left(N_{\mathfrak{p}}\right)+\operatorname{dim}(R / \mathfrak{p}) \mid \mathfrak{p} \in \operatorname{Spec}(R) \backslash\{\mathfrak{m}\}\right\} \geq 3$. So, by $[\mathrm{BS},(9.6 .7)]$ we get $f_{\mathfrak{m}}(N):=\inf \left\{i \in \mathbb{N} \mid H_{\mathfrak{m}}^{i}(N)\right.$ is not finitely generated $\}=\lambda_{\mathfrak{m}}(M) \geq 3$. Therefore $H_{\mathfrak{m}}^{2}(N)$ is finitely generated and thus of finite length.

By our hypothesis the finitely generated R-modules $H_{\mathfrak{a}}^{0}(M)$ and $H_{\mathfrak{a}}^{1}(M)$ are both of dimension $\leqslant 1$. Another use of the above four-term exact sequence now yields that $H_{\mathfrak{m}}^{i}(N) \cong$ $H_{\mathfrak{m}}^{i}(M)$ for all $i \geq 3$.

Lemma 3.5. Let the notations and the assumptions be as in Lemma 3.4. Then $H_{\mathfrak{m}}^{2}\left(D_{\mathfrak{a}}(M)\right)=$ 0 if and only if $\mathfrak{m} \notin \operatorname{Att}_{R}\left(H_{\mathfrak{m}}^{2}(M)\right)$.

Proof. Set $N:=D_{\mathfrak{a}}(M)$ and let $\bar{M}:=M / H_{\mathfrak{a}}^{0}(M)$. As $\operatorname{dim}\left(H_{\mathfrak{a}}^{0}(M)\right) \leqslant \operatorname{dim}(R / \mathfrak{a}) \leqslant 1$, we have $H_{\mathfrak{m}}^{2}(M) \cong H_{\mathfrak{m}}^{2}(\bar{M})$.
Assume first that $\mathfrak{m} \notin \operatorname{Att}_{R}\left(H_{\mathfrak{m}}^{2}(M)\right)$. Then there is some $x \in \mathfrak{m}$ which avoids all members of $\operatorname{Att}_{R}\left(H_{\mathfrak{m}}^{2}(M)\right)$ and hence multiplication by x on $H_{\mathfrak{m}}^{2}(\bar{M})$ is surjective. Since $\operatorname{dim}\left(H_{\mathfrak{a}}^{1}(M)\right) \leqslant$ $\operatorname{dim}(R / \mathfrak{a}) \leqslant 1$, it holds $H_{\mathfrak{m}}^{2}\left(H_{\mathfrak{a}}^{1}(M)\right)=0$. Therefore, the short exact sequence (cf. [BS, (2.2.4)(i)])

$$
0 \rightarrow \bar{M} \rightarrow N \rightarrow H_{\mathfrak{a}}^{1}(M) \rightarrow 0
$$

gives rise to an epimorphism $H_{\mathfrak{m}}^{2}(\bar{M}) \rightarrow H_{\mathfrak{m}}^{2}(N)$. Hence, multiplication by x on $H_{\mathfrak{m}}^{2}(N)$ is surjective. As $H_{\mathfrak{m}}^{2}(N)$ is finitely generated, Nakayama yields $H_{\mathfrak{m}}^{2}(N)=0$.

Conversely, assume that $H_{\mathfrak{m}}^{2}(N)=0$. Then, the above exact sequence gives rise to an epimorphism $H_{\mathfrak{m}}^{1}\left(H_{\mathfrak{a}}^{1}(M)\right) \rightarrow H_{\mathfrak{m}}^{2}(\bar{M})$. Let $x \in \mathfrak{m}$ be such that $\operatorname{rad}(\mathfrak{a}+x R)=\mathfrak{m}$. Then $H_{\mathfrak{m}}^{1}\left(H_{\mathfrak{a}}^{1}(M)\right) \cong H_{x R}^{1}\left(H_{\mathfrak{a}}^{1}(M)\right)$, so that multiplication by x on $H_{\mathfrak{m}}^{1}\left(H_{\mathfrak{a}}^{1}(M)\right)$ is an epimorphism. Hence multiplication by x on $H_{\mathrm{m}}^{2}(\bar{M}) \cong H_{\mathrm{m}}^{2}(M)$ is an epimorphism, so that $\mathfrak{m} \notin \operatorname{Att}_{R}\left(H_{\mathfrak{m}}^{2}(M)\right)$.

For each $j \in\{0, \ldots, d\}$ let $M^{[j]}:=M / M_{[j]}$, where $M_{[j]} \subset M$ is the largest submodule of M whose dimension is $\leqslant j$. Keep in mind that we can write $M_{[j]}$ as the torsion submodule $\Gamma_{\mathfrak{B}}(M):=\{m \in M \mid \exists \mathfrak{b} \in \mathfrak{B}$ such that $\mathfrak{b} m=0\}$ of M with respect to the multiplicatively closed set of ideals $\mathfrak{B}:=\{\mathfrak{b}=$ ideal in $R \mid \operatorname{dim}(R / \mathfrak{b}) \leqslant j\}$.
Lemma 3.6. Suppose that $d \geq 3$ and let $p(M)=1$. Let $\mathfrak{a}:=\left(0:_{R} H_{\mathfrak{m}}^{2}(M)\right)$. Then the following statements are equivalent:
(i) $H_{\mathfrak{m}}^{i}(M)=0$ for all $i=3, \ldots, d-1$ and $K^{2}(M)$ is 0 or CM of dimension 1 .
(ii) $D_{\mathfrak{a}}\left(M^{[1]}\right)$ is a (finitely generated) CM module.

Proof. As $\operatorname{dim}\left(M_{[1]}\right) \leqslant 1$, it is clear that $H_{\mathfrak{m}}^{i}(M) \cong H_{\mathfrak{m}}^{i}\left(M^{[1]}\right)$ for all $i \geq 2$ and that $K^{2}(M) \cong$ $K^{2}\left(M^{[1]}\right)$. Observe that by our hypotheses and by Remark 3.2 we have $\operatorname{dim}(R / \mathfrak{a}) \leqslant 1$ and hence also $\operatorname{dim}\left(K^{2}(M)\right) \leqslant 1$.
Our next claim is that $\ell\left(H_{\mathfrak{m}}^{1}\left(M^{[1]}\right)\right)<\infty$. Suppose that this is not the case. Then $\operatorname{dim} H_{\mathfrak{m}}^{1}\left(M^{[1]}\right)=1$. Hence $\operatorname{dim}(R / \mathfrak{p})=1$ for some $\mathfrak{p} \in \operatorname{Att}_{R} H_{\mathfrak{m}}^{1}\left(M^{[1]}\right)$. So, $\mathfrak{p} \in \operatorname{Ass}_{R}\left(M^{[1]}\right)$ by [BS, 11.3.3], this is a contradiction as $\operatorname{Ass}_{R} M^{[1]}=\left\{\mathfrak{q} \in \operatorname{Ass}_{R} M \mid \operatorname{dim}(R / \mathfrak{q})>1\right\}$.
So, by Lemma 3.4 the module $N:=D_{\mathfrak{a}}\left(M^{[1]}\right)$ is finitely generated and $H_{\mathfrak{m}}^{i}(N) \cong H_{\mathfrak{m}}^{i}\left(M^{[1]}\right) \cong$ $H_{\mathrm{m}}^{i}(M)$ for all $i \geq 3$.
Therefore N is CM if and only if $H_{\mathrm{m}}^{i}(M)=0$ for all $i \in\{3, \ldots, d-1\}$ and $K^{2}(N)=0$. It thus remains to show that $K^{2}(N)=0$ if and only if $K^{2}(M)$ is of depth >0 or equivalently, if and only if $\mathfrak{m} \notin \operatorname{Att}_{R}\left(H_{\mathfrak{m}}^{2}(M)\right)$. But this is clear by Lemma 3.5.
Proposition 3.7. Suppose that $d \geq 3$ and let $p(M)=1$. Let $\mathfrak{a}:=\left(0:_{R} H_{\mathfrak{m}}^{2}(M)\right)$. Then the following statements are equivalent:
(i) M is CCM.
(ii) $H_{\mathfrak{m}}^{i}(M)=0$ for all $i=3, \ldots, d-1$ and $K^{2}(M)$ is either 0 or CM of dimension 1 .
(iii) $D_{\mathfrak{a}}\left(M^{[1]}\right)$ is a (finitely generated) CM module.

Proof. (i) \Rightarrow (ii): Let $x \in \mathfrak{m}$ be a strict f -element with respect to M. Since M is CCM so is $M_{1}:=M / x M$ by Theorem 2.5. As $p(M)=1$, we get by Lemma 3.3 that M_{1} is generalized CM. By Corollary 2.7, we have $K^{i}\left(M_{1}\right)=0$ for all $i=2, \ldots, d-2$. By Lemma 2.4 (b) we thus see that $K^{i}(M)=0$ for all $i=3, \ldots, d-1$ and that $x \in \mathfrak{m}$ is $K^{2}(M)$-regular. Since $p(M)=1$, we have $\operatorname{dim} K^{2}(M) \leqslant 1$ by Remark 3.2. Therefore $K^{2}(M)$ is 0 or CM of dimension 1.
(ii) \Rightarrow (i): Let $x \in \mathfrak{m}$ and M_{1} be as above. Assume first that $d=3$. Since depth $\left(K^{2}(M)\right)>0$ we have $\left(0:_{K^{2}(M)} x\right)=0$. If we apply the sequence of Lemma 2.4 (a) with $i=2$ we obtain $K(M) / x K(M) \cong K\left(M_{1}\right)$. As $\operatorname{dim} M_{1}=2$, the module $K\left(M_{1}\right)$ is CM. As x is $K(M)$-regular it follows that $K(M)$ is CM.
Now, let $d>3$. Since $K^{i}(M)=0$ for all $i=3, \ldots, d-1$, it follows by the exact sequences of Lemma 2.4 (a) that $K^{i}\left(M_{1}\right)=0$ for all $i=3, \ldots, d-2$. As $K^{2}(M)$ is 0 or CM of dimension 1 , we have $\left(0:_{K^{2}(M)} x\right)=0$. Since $d>3$, we have $K^{3}(M)=0$. Therefore another use of the mentioned exact sequences for $i=2$ gives that $K^{2}\left(M_{1}\right)=0$. Note that M_{1} is generalized CM of dimension $d-1$ by Lemma 3.3. Hence M_{1} is CCM by Corollary 2.7, and so M is CCM by Theorem 2.5.
(ii) \Leftrightarrow (iii): This is clear by Lemma 3.6.

The main result of this section is the extension of the equivalence (i) \Leftrightarrow (ii) of Proposition 3.7 which applies for all possible values of $p(M)$ and which again involves strict f -sequences. To pave the way to this, we first prove two auxiliary results.

Lemma 3.8. Let $p(M)=: k>0$ and let x_{1}, \ldots, x_{k-1} be a strict f -sequence with respect to M. Set $M_{i}=M / \sum_{j=1}^{i} x_{j} M$ for all $i=0, \ldots, k-1$. Then, the following statements are equivalent:
(i) M is CCM with $k \leqslant d-2$.
(ii) $K^{i}(M)=0$ for all $i=k+2, \ldots, d-1$ and $K^{2}\left(M_{k-1}\right)$ is 0 or CM of dimension 1 .

Proof. (i) \Rightarrow (ii): We proceed by induction on k. The case $k=1$ follows by Proposition 3.7. So, let $k \geq 2$ and note that M_{1} is CCM by Theorem 2.5. By Lemma 3.3 we have $p\left(M_{1}\right)=k-1 \leqslant \operatorname{dim} M_{1}-2$. As x_{2}, \ldots, x_{k-1} is a strict f -sequence with respect to M_{1}, we get by induction that $K^{2}\left(M_{k-1}\right)=K^{2}\left(M_{1} / \sum_{j=2}^{k-1} x_{j} M_{1}\right)$ is 0 or CM of dimension 1 and that $K^{i}\left(M_{1}\right)=0$ for all $i=k+1, \ldots, d-2$. By Lemma 2.4 (b) the latter implies that $K^{i}(M)=0$ for all $i=k+2, \ldots, d-1$.
$($ ii $) \Rightarrow(\mathrm{i})$: We proceed again by induction on k. The case $k=1$ is immediately clear by Proposition 3.7. So, let $k \geq 2$. Observe that $\left(x_{2}, \ldots, x_{k-1}\right)$ is a strict f -sequence with respect to M_{1}. By Lemma 3.3 we also have $p\left(M_{1}\right)=k-1$. As $K^{i}(M)=0$ for all $i=k+2, \ldots, d-1$, the exact sequences of Lemma 2.4 (a), applied with $x:=x_{1}$, imply that $K^{i}\left(M_{1}\right)=0$ for all $i=k+2, \ldots, d-2$.
Our next aim is to show that $K^{k+1}\left(M_{1}\right)=0$. Keep in mind that x_{i} is a strict f-element with respect to M_{i-1} and that $M_{i-1} / x_{i} M_{i-1} \cong M_{i}$, for each $i=1, \ldots, k-1$. Observe also that $K^{2}\left(M_{k-1}\right)$ is 0 or CM of dimension 1 by assumption (ii).
Assume first that $K^{2}\left(M_{k-1}\right)=0$. Then, applying Lemma $2.4(\mathrm{~b})$ with $j+2$ instead of i, with M_{k-j} instead of M and with x_{k-j} instead of x for $j=1, \ldots k-1$ we inductively get that $K^{2+j}\left(M_{k-j-1}\right)=0$ so that finally $K^{k+1}(M)=0$. By the hypothesis (ii) we also have $K^{k+2}(M)=0$. So, the sequence of Lemma 2.4 (a), applied with $i=k+1$ and $x=x_{1}$ gives indeed $K^{k+1}\left(M_{1}\right)=0$ in this case, as requested.
Now, we consider the case where $K^{2}\left(M_{k-1}\right)$ is CM of dimension 1. In this situation we have $\operatorname{depth}\left(K^{2}\left(M_{k-1}\right)\right)>0$. Applying 2.4 (d) for $i=2, \ldots, k$ to M_{k-i} instead of M and x_{k-i+1} instead of x, we inductively get that that depth $\left(K^{i+1}\left(M_{k-i}\right)\right)>0$ and hence in particular that depth $\left(K^{k+1}(M)\right)>0$. Since x_{1} is an f-element with respect to $K^{k+1}(M)$, this implies that $0:_{K^{k+1}(M)} x_{1}=0$. By (ii) we have $K^{k+2}(M)=0$ and hence on use of the exact sequence of Lemma 2.4 (a) with $i=k+1$ and $x=x_{1}$ it follows that again $K^{k+1}\left(M_{1}\right)=0$ in this second case.
Moreover, by (ii) the module $K^{2}\left(M_{1} / \sum_{j-2}^{k-1} x_{j} M_{1}\right)=K^{2}\left(M_{k-1}\right)$ is 0 or CM of dimension 1 . So, M_{1} satisfies the hypothesis of induction. Therefore M_{1} is CCM and $k-1=p(M)-1=$ $p\left(M_{1}\right) \leqslant d-3$, so that $p(M)=k \leqslant d-2$. Since $k \geq 2$, we have $d \geq 4$ and thus M is CCM by Theorem 2.5.
Lemma 3.9. Let $d \geq 3$ and let x_{1}, \ldots, x_{d-3} be a strict f -sequence with respect to M. Then, the following statements are equivalent:
(i) M is CCM with $p(M)=d-1$.
(ii) $K^{2}\left(M / \sum_{j=1}^{d-3} x_{j} M\right)$ is of dimension 2 and of positive depth.

Proof. Set $M_{i}:=M / \sum_{j=1}^{i} x_{j} M$ for all $i=1, \ldots, d-3$.
$($ i $) \Rightarrow$ (ii): By Corollary 2.6 we have $\operatorname{depth}\left(K^{2}\left(M_{d-3}\right)\right)>0$. Note that $\operatorname{dim} K^{i}(M) \leqslant i$ for all i, (see $[S c 3$, Proposition $2.3(\mathrm{a})]$). Since $p(M)=d-1$, Remark 3.2 implies that $\operatorname{dim}\left(K^{d-1}(M)\right)=d-1$. Assume first that $d=3$. Then $\operatorname{dim}\left(K^{2}(M)\right)=2$ and the result follows.
So, let $d>3$. Then $\operatorname{dim}\left(K^{d-1}(M)\right)=d-1$. On use of Lemma 2.4 (e) with $i=d-j, M_{j-1}$ instead of M, x_{j} instead of x for $j=2, \ldots d-2$, we inductively get that $\operatorname{dim} K^{d-j}\left(M_{j-1}\right)=$ $d-j$. Hence in particular $\operatorname{dim} K^{2}\left(M_{d-3}\right)=2$.
(ii) \Rightarrow (i): By Corollary 2.6, the module M is CCM. By (ii) we have $\operatorname{dim} K^{2}\left(M_{d-3}\right)=2$. By Lemma 2.4 (e) applied with M_{d-i-1} instead of M and x_{d-i} instead of x for $i=1, \ldots d-2$ we inductively get that $\operatorname{dim} K^{i+1}\left(M_{d-i-2}\right)=i+1$, so that $\operatorname{dim}\left(K^{d-1}(M)\right)=d-1$. Therefore by Remark 3.2 we have $p(M)=d-1$.

Now, we are ready to give the announced main result of the present section.
Theorem 3.10. Assume that $\operatorname{dim} M=d \geq 3, p(M)=k>0$ and that x_{1}, \ldots, x_{k-1} is a strict f -sequence with respect to M. For all $i=1, \ldots, k-1$ set $M_{i}:=M / \sum_{j=1}^{i} x_{j} M$.
(a) If $k \leqslant d-2$, then M is CCM if and only if $K^{i}(M)=0$ for all $i=k+2, \ldots, d-1$ and $K^{2}\left(M_{k-1}\right)$ is 0 or CM of dimension 1 .
(b) If $k=d-1$ then M is CCM if and only if $K^{2}\left(M_{d-3}\right)$ is of dimension 2 and of positive depth.

Proof. The proof is immediate by Lemma 3.8 and Lemma 3.9.

4 Non-Canonical Cohen-Macaulay Loci

Definition 4.1. The non-canonical Cohen-Macaulay locus (non-CCM locus for short) of M, denoted by $\mathrm{nCCM}(M)$, is defined by

$$
\operatorname{nCCM}(M):=\left\{\mathfrak{p} \in \operatorname{Spec}(R) \mid M_{\mathfrak{p}} \text { is not CCM }\right\} .
$$

Before describing the non-CCM locus of M, we recall the notion of pseudo support introduced in [BS1].
Definition 4.2. The i-th pseudo support of M, denoted by $\operatorname{Psupp}_{R}^{i}(M)$, is defined by

$$
\operatorname{Psupp}_{R}^{i}(M):=\left\{\mathfrak{p} \in \operatorname{Spec}(R) \mid H_{\mathfrak{p} R_{\mathfrak{p}}}^{i-\operatorname{dim}(R / \mathfrak{p})}\left(M_{\mathfrak{p}}\right) \neq 0\right\} .
$$

Remark 4.3. (a) Since R is a quotient of a Gorenstein ring

$$
\operatorname{Psupp}_{R}^{i}(M)=\operatorname{Var}\left(\operatorname{Ann}_{R} H_{\mathfrak{m}}^{i}(M)\right)=\operatorname{Supp}_{R} K^{i}(M)
$$

which is a closed subset of $\operatorname{Spec}(R)$, (see [BS1]).
(b) Keep in mind that

$$
\operatorname{Ass}_{R} K(M)=\operatorname{Att}_{R} H_{\mathfrak{m}}^{d}(M)=\left\{\mathfrak{q} \in \operatorname{Ass}_{R} M \mid \operatorname{dim}(R / \mathfrak{q})=d\right\}
$$

so that $K(M)$ is equidimensional. Therefore, by [CNN, Corollary 3.2] we have

$$
\operatorname{nCM}(K(M))=\bigcup_{i=0, \ldots, d-1} \operatorname{Psupp}^{i}(K(M))
$$

(c) Observe also that

$$
\operatorname{Supp}_{R} K(M)=\left\{\mathfrak{p} \in \operatorname{Supp}_{R} M \mid \operatorname{dim}(R / \mathfrak{p})+\operatorname{dim} M_{\mathfrak{p}}=d\right\} .
$$

In particular $K(M)_{\mathfrak{p}} \cong K\left(M_{\mathfrak{p}}\right)$ for all $\mathfrak{p} \in \operatorname{Supp}_{R} K(M)$.
Proposition 4.4. If $\operatorname{dim}(R / \mathfrak{q})=d$ or $\operatorname{dim}(R / \mathfrak{q}) \leqslant 3$ for all $\mathfrak{q} \in \min \operatorname{Ass}_{R} M$ then

$$
\operatorname{nCCM}(M)=\operatorname{nCM}(K(M))=\bigcup_{i=0, \ldots, d-1} \operatorname{Psupp}_{R}^{i}(K(M)),
$$

which is a closed subset of $\operatorname{Spec}(R)$. In particular, if $\operatorname{dim} M \leqslant 4$ then $\operatorname{nCCM}(M)$ is closed.
Proof. By Remark 4.3 (b) it suffices to show that $\mathrm{nCCM}(M)=\mathrm{nCM}(K(M))$. First, let $\mathfrak{p} \in \operatorname{Supp}_{R} K(M)$. It follows by Remark 4.3 (c) that $K\left(M_{\mathfrak{p}}\right) \cong(K(M))_{\mathfrak{p}}$. Therefore $\mathfrak{p} \in$ $\operatorname{nCCM}(M)$ if and only if $(K(M))_{\mathfrak{p}}$ is not CM, hence if and only if $\mathfrak{p} \in \mathrm{nCM}(K(M))$. This shows that $\operatorname{Supp}_{R} K(M) \cap \mathrm{nCCM}(M)=\mathrm{nCM}(K(M))$.
Next, assume that $\mathfrak{p} \in \operatorname{Spec}(R) \backslash \operatorname{Supp}_{R} K(M)$. Then $\operatorname{dim}(R / \mathfrak{q})<d$ for all $\mathfrak{q} \in$ Ass M with $\mathfrak{q} \subseteq \mathfrak{p}$. In particular $\mathfrak{p} \neq \mathfrak{m}$. So by our hypothesis we have $\operatorname{dim} M_{\mathfrak{p}} \leqslant 2$. Hence $K\left(M_{\mathfrak{p}}\right)$ is CM, so that $\mathfrak{p} \notin \mathrm{nCCM}(M)$.

Reminder 4.5. The notion of dimension filtration was introduced by P. Schenzel [Sc2]. A sequence of submodules $H_{\mathfrak{m}}^{0}(M)=M_{0} \subset M_{1} \subset \ldots \subset M_{t}=M$ is called a dimension filtration of M if M_{i} is the largest submodule $\left(M_{i+1}\right)_{\left[\operatorname{dim}\left(M_{i+1}\right)-1\right]}$ of M_{i+1} such that $\operatorname{dim} M_{i}<\operatorname{dim} M_{i+1}$ for all $i=0, \ldots, t-1$. Note that there exists precisely one dimension filtration of M.
Proposition 4.6. Let $H_{\mathfrak{m}}^{0}(M)=M_{0} \subset M_{1} \subset \ldots \subset M_{t}=M$ be the dimension filtration of M. Set $d_{k}=\operatorname{dim} M_{k}$. Then

$$
\operatorname{nCCM}(M) \subseteq \bigcup_{\substack{k=1, \ldots, t \\ i=0, \ldots, d_{k}-1}} \operatorname{Psupp}^{i}\left(K\left(M_{k}\right)\right)=\bigcup_{k=1, \ldots, t} \operatorname{nCM}\left(K\left(M_{k}\right)\right)
$$

Proof. We proceed by induction on t. If $t=0$ then $\operatorname{nCCM}(M)=\emptyset$ and the result is true. Let $t=1$. Then $\operatorname{dim}(R / \mathfrak{p})=d$ for all $\mathfrak{p} \in \operatorname{Ass}_{R} M \backslash\{\mathfrak{m}\}$. Therefore Proposition 4.4 yields $\operatorname{nCCM}(M)=\operatorname{nCM}(K(M))=\bigcup_{i=0, \ldots, d} \operatorname{Psupp}^{i}(K(M))$. Thus, the result is true for $t=1$.
Now, let $t>1$ and let $\mathfrak{p} \in \operatorname{nCCM}(M)$. Assume first that $\mathfrak{p} \in \operatorname{Supp}_{R} K(M)$. By Remark 4.3 (c) we have $K\left(M_{\mathfrak{p}}\right) \cong(K(M))_{\mathfrak{p}}$, and hence $\mathfrak{p} \in \operatorname{nCM}(K(M)) \subseteq \bigcup_{i=0, \ldots, d} \operatorname{Psupp}^{i}(K(M))$, by another use of Remark 4.3 (c).
Suppose now, that $\mathfrak{p} \notin \operatorname{Supp}_{R} K(M)$. Then $\mathfrak{q} \nsubseteq \mathfrak{p}$ for all $\mathfrak{q} \in \operatorname{Ass}_{R} M$ with $\operatorname{dim}(R / \mathfrak{q})=d$ by Remark 4.3 (c). Since

$$
\operatorname{Ass}_{R}\left(M / M_{t-1}\right)=\left\{\mathfrak{q} \in \operatorname{Ass}_{R} M \mid \operatorname{dim}(R / \mathfrak{q})=d\right\}
$$

we have $\mathfrak{p} \notin \operatorname{Supp}\left(M / M_{t-1}\right)$. So, from the exact sequence

$$
0 \rightarrow\left(M_{t-1}\right)_{\mathfrak{p}} \rightarrow M_{\mathfrak{p}} \rightarrow\left(M / M_{t-1}\right)_{\mathfrak{p}} \rightarrow 0
$$

we get $M_{\mathfrak{p}} \cong\left(M_{t-1}\right)_{\mathfrak{p}}$, Hence $\mathfrak{p} \in \operatorname{nCCM}\left(M_{t-1}\right)$. So by induction

$$
\mathfrak{p} \in \bigcup_{k=1, \ldots, t-1} \operatorname{nCM}\left(K\left(M_{k}\right)\right)=\bigcup_{\substack{k=1, \ldots, t-1 \\ i=0, \ldots, d_{k}-1}} \operatorname{Psupp}^{i}\left(K\left(M_{k}\right)\right)
$$

Finally, we give an example to show that for $d \geq 5$ the set $\mathrm{nCCM}(M)$ need not be closed, indeed even not stable under specialization. We first prove the following lemma.

Lemma 4.7. Let K be a field, let n be an integer such that $n \geq 3$. Consider the polynomial ring $U=K\left[x_{1}, \ldots, x_{n+2}\right]$, furnished with its standard grading. Then there is a graded prime ideal $\mathfrak{t} \subseteq U$ of height 2 such that $\mathfrak{t} \cap U_{1}=0$ and such that $A:=U / \mathfrak{t}$ is a normal domain (of dimension n) with homogeneous maximal ideal $A_{+}=U_{+} / \mathfrak{t}$ and

$$
H_{A_{+}}^{i}(A)= \begin{cases}0, & \text { if } i \neq n-1, n \\ A / A_{+}, & \text {if } i=n-1\end{cases}
$$

Proof. See [EG, Theorem 4.13] or [MNP, Theorem 2.3 and Remark 2.4(ii)].
Notation and Construction 4.8. Let n, U, \mathfrak{t} and A be as in Lemma 4.7. Consider the polynomial $\operatorname{ring} S:=U\left[x_{n+3}\right]=K\left[x_{1}, \ldots, x_{n+3}\right]$ and set $R:=\left(S / \mathfrak{t} S \cap x_{n+3} S\right)_{S_{+}}, \mathfrak{m}:=S_{+} R$, $\mathfrak{r}:=x_{n+3} R, \mathfrak{q}:=\mathfrak{t} R$ and $\mathfrak{p}:=U_{+} R$.

Proposition 4.9. (R, \mathfrak{m}) is a reduced local ring of dimension $n+2$, essentially of finite type over K with $R / \mathfrak{m} \cong K$ and $\operatorname{dim}_{K}\left(\mathfrak{m} / \mathfrak{m}^{2}\right)=n+3$. Moreover,
(a) $\min \operatorname{Ass} R=\{\mathfrak{r}, \mathfrak{q}\}$ and $\mathfrak{p} \in \operatorname{Var}(\mathfrak{q}) \backslash \operatorname{Var}(\mathfrak{r})$.
(b) R / \mathfrak{r} is regular local of dimension $n+2, R / \mathfrak{q}$ is normal of dimension $n+1$ and $R_{\mathfrak{p}}$ is normal of dimension n.
(c) $H_{\mathfrak{p}}^{i}\left(R_{\mathfrak{p}}\right)= \begin{cases}0, & \text { if } i \neq n-1, n \\ K(\mathfrak{p}), & \text { if } i=n-1 .\end{cases}$
(d) $\operatorname{nCCM}(R)=\{\mathfrak{p}\}$.

Proof. The claims in the preamble of our proposition follow immediately by the previous construction.
(a): This is also an easy consequence of our construction.
(b): Observe that according to our construction

$$
R / \mathfrak{r} \cong U_{U_{+}} \cong K\left[x_{1}, \ldots, x_{n+2}\right]_{\left(x_{1}, \ldots, x_{n+2}\right)} \quad \text { and } \quad R / \mathfrak{q} \cong A\left[x_{n+3}\right]_{\left(A_{+}, x_{n+3}\right)} .
$$

Since $\mathfrak{p} \in \operatorname{Var}(\mathfrak{q}) \backslash \operatorname{Var}(\mathfrak{r})$, we have

$$
R_{\mathfrak{p}} \cong(R / \mathfrak{q})_{\mathfrak{p}} \cong A\left[x_{n+3}\right]_{A_{+} \cdot A\left[x_{n+3}\right]} .
$$

From this, all claims in statement (b) are immediate.
(c): The last isomorphism in the previous paragraph and the A-flatness of $A\left[x_{n+3}\right]_{A_{+} . A\left[x_{n+3}\right]}$ yield

$$
\begin{aligned}
H_{\mathfrak{p} R_{\mathfrak{p}}}^{i}\left(R_{\mathfrak{p}}\right) & \cong H_{A_{+} \cdot A\left[x_{n+3}\right]_{A_{+}} \cdot A\left[x_{n+3}\right]}^{i}\left(A\left[x_{n+3}\right]_{A_{+} \cdot A\left[x_{n+3}\right]}\right) \\
& \cong H_{A_{+}}^{i}(A) \otimes_{A} A\left[x_{n+3}\right]_{A_{+} \cdot A\left[x_{n+3}\right]} \\
& \cong H_{A_{+}}^{i}(A) \otimes_{A} R_{\mathfrak{p}} .
\end{aligned}
$$

As $A_{+} R_{\mathfrak{p}}=\mathfrak{p} R_{\mathfrak{p}}$, this proves our claim.
(d): According to statement (c), the ring $R_{\mathfrak{p}}$ is generalized CM but not CCM. Therefore $\mathfrak{p} \in \operatorname{nCCM}(R)$. By statement (b), the unmixed part $U(R):=R^{[\operatorname{dim} R-1]}$ of R is given by $U(R)=R / \mathfrak{r}$ and as R / \mathfrak{r} is regular, it follows that $K(R)=K(U(R))=R / \mathfrak{r}$ and hence $\operatorname{Var}(\mathfrak{r}) \cap \mathrm{nCCM}(R)=\emptyset$.
It remains to show that $K\left(R_{\mathfrak{s}}\right)$ is $C M$ for all $\mathfrak{s} \in \operatorname{Spec}(R) \backslash(\operatorname{Var}(\mathfrak{r}) \cup\{\mathfrak{p}\})$. Fix such an \mathfrak{s} and consider the canonical map $A \rightarrow R$. As $\operatorname{Var}\left(A_{+} R\right)=\{\mathfrak{p}, \mathfrak{m}\}$, we must have that $\mathfrak{n}:=\mathfrak{s} \cap A \subset A_{+}$and $\mathfrak{n} \neq A_{+}$, so that $A_{\mathfrak{n}}$ is CM. In view of the last isomorphism in the proof of (b), the ring $R_{\mathfrak{5}}$ is isomorphic to a localization of $A_{\mathfrak{n}}\left[x_{n+3}\right]$ and hence is CM, so that $K\left(R_{\mathfrak{s}}\right)$ is CM.

Corollary 4.10. For each field K and each integer $d \geq 5$ there is a reduced local ring (R, \mathfrak{m}) of dimension d which is essentially of finite type over K, with $R / \mathfrak{m} \cong K$ and such that $\mathrm{nCCM}(R)$ is not stable under specialization.

Proof. Apply Proposition 4.9 with $n=d-2$.

References

[BS] M. Brodmann and R. Y. Sharp, "Local cohomology: an algebraic introduction with geometric applications", Cambridge University Press, 1998.
[BS1] M. Brodmann and R. Y. Sharp, On the dimension and multiplicity of local cohomology modules, Nagoya Math. J., 167 (2002), 217-233.
[C] N. T. Cuong, On the least degree of polynomials bounding above the differences between lengths and multiplicities of certain systems of parameters in local rings. Nagoya Math. J., 125 (1992), 105-114.
[CMN] N. T. Cuong, M. Morales and L. T. Nhan, On the length of generalized fractions, J. Algebra, 265 (2003), 100-113.
[CMN1] N. T. Cuong, M. Morales and L. T. Nhan, The finiteness of certain sets of attached prime ideals and the length of generalized fractions, J. Pure Appl. Algebra, (1-3) 189, (2004), 109-121.
[CN] N. T. Cuong and L. T. Nhan, On pseudo Cohen-Macaulay and pseudo generalized Cohen-Macaulay modules, J. Algebra, 267 (2003), 156-177.
[CNN] N. T. Cuong, L. T. Nhan, N. T. K. Nga, On pseudo supports and non CohenMacaulay locus of a finitely generated module, Journal of Algebra, 323 (2010), 3029-3038.
[CST] N. T. Cuong, P. Schenzel and N. V. Trung, Verallgemeinerte Cohen - Macaulay Moduln, Math. Nachr., 85 (1978), 57-75.
[EG] E. G. Evans and P. Griffith, "Syzygies", London mathematical Society Lecture Notes Series 106, Cambridge University Press, 1985.
[Mac] I. G. Macdonald, Secondary representation of modules over a commutative ring, Symposia Mathematica, 11 (1973), 23-43.
[MNP] J. Migliore, U. Nagel, C. Peterson, Constructing schemes with prescribed cohomology in arbitrary codimension, J. Pure and Applied Algebra, 152 (2000), 245-251.
[Sc1] P. Schenzel, Zur lokalen Kohomologie des kanonischen Moduls, Mathematische Zeitschrift, 165 (1979), no. 3, 223-230.
[Sc2] P. Schenzel, On the dimension filtration and Cohen-Macaulay filtered modules, In: Proc. of the Ferrara meeting in honour of Mario Fiorentini, University of Antwerp Wilrijk, Belgium, (1998), 245-264.
[Sc3] P. Schenzel, On birational Macaulayfications and Cohen-Macaulay canonical modules, J. Algebra, 275 (2004), 751-770.
[S] R. Y. Sharp, Some results on the vanishing of local cohomology modules, Proc. London Math. Soc., 30 (1975), 177-195.
[St] R. P. Stanley, "Combinatorics and Commutative algebra", Second edition, Birkhäuser Boston-Basel-Berlin, 1996.

[^0]: ${ }^{1}$ Date: 11.September 2012.
 Key words and phrases: Canonical Cohen-Macaulay modules, Non-canonical Cohen-Macaulay locus. 2000 Subject Classification: 13D45, 13H10.
 The second author was supported by the Viet Nam National Foundation for Science and Technology Development (Nafosted) under grant number 101.01-2011-20.

