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Abstract Let (R,m) be a Noetherian local ring which is a homomorphic image of a local
Gorenstein ring and let M be a finitely generated R-module of dimension d > 0. According
to Schenzel (2004) [Sc3], M is called a canonical Cohen-Macaulay module (CCM module for
short) if the canonical module K (M) of M is Cohen-Macaulay. We give another characteri-
zation of CCM modules. We describe the non-canonical Cohen-Macaulay locus nCCM (M)
of M. If d < 4 then nCCM(M) is closed in Spec(R). For each d > 5 there are reduced ge-

ometric local rings R of dimension d such that nCCM(R) is not stable under specialization
1

1 Introduction

We first fix a few notations and recall a few notions.

Notation 1.1. Throughout this paper, (R, m) is a Noetherian local ring which is a quotient
of a n-dimensional local Gorenstein ring (R, m’). Let M be a finitely generated R-module
with dim M = d. For each i € Ny, let K4(M) = K'(M) denote the i-th deficiency module
of M that is the finitely generated R-module Ext, *(M, R’). Observe that the formation
of deficiency modules is base-ring independent in the following sense: if a C R is an ideal
such that aM = 0, then the R-modules K% (M) and KE/Q(M) are equal for each i € N.
If E(R/m) denotes the injective envelope of R/m, the Local Duality Theorem gives an
isomorphism H{ (M) = Homg(K'(M), E(R/m)) for all i € Ny. By K(M) we denote the
canonical module K%(M) of M. Throughout our paper, we use the standard convention that
depth(0) = o0 > 0.

In Section 2 we shall prove a lifting result for the CCM-property of M and deduce two new
characterizations of CCM modules. To make this more precise, let us recall, that Schenzel
[Sc3] did prove that for d > 0, the property of being a CCM module on M is inherited by
M/xM if x € m is a so-called strict f-element with respect to M, (see Definition 2.2). Our
first main result proves that for d > 4 the CCM-property also lifts from M/xM to M for
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such elements x, (see Theorem 2.5). For d = 3, this lifting property need not hold any more,
(see Remark 2.8). As a consequence of this we get that for d > 3 and for each so-called strict
f-sequence 1, ..., x4_3 with respect to M (see Definition 2.2) the module M is CCM if and
only if K2(M/ Y%= ;M) is of depth > 0 — which includes the case that the latter module
vanishes, (see Corollary 2.6). As a further consequence we get that a generalized Cohen-
Macaulay module of dimension > 3 is CCM if and only if the local cohomology modules
Hi (M) vanish for all i = 2,...,d — 1 or — equivalently — the m-transform Dy, (M) of M is a
(finitely generated) Cohen-Macaulay module, (see Corollary 2.7).

In Section 3 we study the relation between the CCM-property and the polynomial type
p(M) of the module M (see Reminder 3.1). We first consider the case p(M) = 1 and prove
that in this situation M is CCM if and only if it satisfies the two equivalent conditions, in
which Mp;; € M denotes the largest submodule of dimension < 1 (see Proposition 3.7):

(ii) Hi(M)=0foralli=3,...,d—1and K*(M) is 0 or Cohen-Macaulay of dimension 1.

111 e 1deal transtorm D, 0 = 11 with respect to a := ‘R 18
iii) The ideal form Do(MU) of MM := M/Mpy with 0:5 HZ(M)) i
a (finitely generated) Cohen-Macaulay module.

In a second step, we also admit that p(M) > 1. This will lead us to another characterization
of CCM modules, which involves once more strict f-sequences, (see Theorem 3.10): namely,
if d > 3, if the polynomial type p(M) =: k of M is positive and if z1,..., x5 is a strict
f-sequence with respect to M, then M is CCM if and only if either

(a) k<d—2 Ki(M)=0fori=k+2,...,d—1and K*(M/Y %"} ;M) is 0 or Cohen-
Macaulay of dimension 1; or

(b) k=d—1 and K*(M/ Zj;f x;M) is of dimension 2 and of depth > 0.

In Section 4 we finally study the non-CCM-locus of M, which is defined as the set of
primes nCCM(M) := {p € Spec(R) | M, is not CCM}. We show that under a certain “un-
mixedness” condition on the support Suppy M of M, the set nCCM(M) coincides with the
non-CM-locus nCM(K (M)) and hence with the union of all pseudo supports Psupp’ (K (M))
of the canonical module K (M) of M, (see Proposition 4.4). It follows in particular that
nCCM(M) is a closed set if d < 4. We also compare the locus nCCM (M) with the union of
all pseudo supports of the canonical modules of the components of the dimension filtration
of M, (see Proposition 4.6). Finally, on use of a construction found in Evans-Griffith [EG]
we show that for each d > 5 and each field K there is a reduced local ring of (R, m) of
dimension d, essentially of finite type over K, satisfying R/ m = K and such that nCCM(R)
consists of single prime p which is in addition different from m, (see Proposition 4.9). Hence
nCCM(R) is not stable under specialization in this case, (see Corollary 4.10).

2 Strict f-Sequences and Canonical Cohen-Macaulay Modules

Definition 2.1. (See [Sc3, Definition 3.1]). The finitely generated R-module M is called
canonical Cohen-Macaulay (CCM for short) if the canonical module K (M) of M is Cohen-
Macaulay (CM for short).



In view of the previously mentioned base-ring independence of deficiency modules, the
property of being CCM is also base-ring independent. More precisely, if a C R is an ideal
such that aM = 0, then M is CCM as an R-module if and only if it is as an R/a-module.

There is a number of sufficient conditions for a module M to be CCM. If dimM < 2
then M is CCM. It is clear that any CM module is CCM. The concept of sequentially
Cohen-Macaulay module (sequentially CM module for short) was introduced by Stanley [St,
p. 87] for graded modules. This notion was studied in the local case starting with the work
of Schenzel [Sc2]. Tt is easy to see that any sequentially CM module is CCM. The notion of
pseudo Cohen-Macaulay module (pseudo CM module for short) was introduced in [CN]. By
[CN, Theorem 3.1] the module M is pseudo CM if and only if M/N is CM, where N C M
is the largest submodule of dimension less than d. As K (M) = K(M/N), any pseudo CM
module is CCM.

Our first main result shows that for certain elements € R (under an obvious restriction
on the dimension), the R-module M is CCM if and only if M /xM is. That the CCM-property
of M implies the CCM-property of M/xM was actually proved already by Schenzel [Sc3,
3.3 (b)].

Definition 2.2. (See [CMN1]). Following I. G. Macdonald [Mac], we denote the set of
attached primes of an Artinian R-module A by Attgz A. An element z € m is called a strict
filter reqular element (strict f-element for short) with respect to M if x ¢ p for all

p e | JAttg Hy(M) \ {m}.

i=1

A sequence xy,...,x; of elements in m is called a strict filter regular sequence (strict f-
sequence for short) with respect to M if x;1; is a strict f-element with respect to the R-
module M/(z1,...,xz;)M for all j =0,...,t—1.

Note that for each integer ¢ > 0, by Prime Avoidance, there always exists a strict f-
sequence of length ¢ with respect to M.

d

Remark 2.3. (a) By [BS, 11.3.3] we have Assg M C UAttR H!(M). Therefore, if x is a
i=0

strict f-element with respect to M, it is a filter regular element (f-element for short) with

respect to M, i.e. x ¢ p for all p € Assg M \ {m}. Hence each strict f-sequence with

respect to M is a filter regular sequence (f-sequence for short) with respect to M in sense of

Cuong-Schenzel-Trung [CST].

(b) By [S, Theorem 2.3] we have Assg K'(M) = Attg H. (M) for all i. Therefore z is a
strict f-element with respect to M if and only if z is an f-element with respect to K*(M) for
all i > 0, thus if and only if £(0 :i(a) ) < oo for all i > 0. In particular, if d > 0 and z is
a strict f-element with respect to M then x is K (M )-regular.

We begin with the following auxiliary result. The sequence occurring in statement (a)
may be found already in [Sc3].

Lemma 2.4. Let x € m and let © € Nj.



(a) If x is a strict f-element with respect to M, there is an exact sequence
0— K™™' (M)/zK" (M) — K'(M/xM) — (0 5 x) — 0.

(b) If = 1is a strict f-element with respect to M, then K'(M/xM) = 0 if and only if
K™Y M) =0 and x is K'(M)-regular.

(¢) If z is an f-element with respect to M such that depth(M /xM) > 0, then x is M -regular.

(d) If x is a strict f-element with respect to M such that depth(K*(M/xM)) > 0, then
depth(K*™(M)) > 1.

(e) If = is a strict f-element with respect to M such that either dim K*™'(M) > 0 or
dim K*(M/aM) > 0, then dim K*(M/aM) = dim K+ (M) — 1.

Proof. (a): We form the K*(e) = Ext}, *(e, R’)-sequence associated to the exact sequence

0— M/ 2) = M — M/xzM — 0, where ¢ is induced by zId,;. This gives an exact
sequence 0 — Coker(K"™(1)) — K*(M/xM) — Ker(K*(+)) — 0. Consider the short exact
sequence 0 — (0 1y ) — M 2 M/(0 :3; ) — 0, in which  is the canonical map. As x is an
f-element with respect to M, the module (0 :p; ) is of finite length, so that K7(0 :p; ) =0
for all 5 > 0. This shows that K7(p) : K/(M/(0 :p; x)) — K’(M) is an isomorphism for
j >0 and a monomorphism for 5 = 0. As ¢t o p = zIdj; our claim follows.

(b): This follows immediate from statement (a) on use of Nakayama.

(c): As z is an f-element with respect to M we have M N HX(M) = x(HX(M) :p z) =
xHY(M). So, by Nakayama, HY (M) C M implies that H. (M) = 0. This proves our claim
as depth(M/xM) > 0 implies that HY (M) C zM.

(d): By statement (a) we get depth (K™ (M)/zK*(M)) > 0. As z is an f-element with
respect to K**1(M), our claim follows on use of statement (c).

(e): This is clear by statement (a) as (0 :xi(a @) is of finite length. O

Now, we can give the announced first main result.

Theorem 2.5. Assume that dim M = d > 4 and let x € m be a strict f-element with respect
to M. Then M is CCM if and only if M /xM is.

Proof. By [Sc3, 3.3(b)] we know that M; := M/xzM is CCM if M is CCM.

Conversely, assume that M; is CCM. As z is an f-element with respect to M we have
dim(M;) = d—1. Let y € m be a strict f-element with respect to M;. Since M; is CCM, the
module K9 1(M;) = K(M,) is CM of dimension d—1. As y is a strict f-element with respect
to My, it is K (M;)-regular and so K% 1(M;)/yKq_1(M,) is CM of dimension d —2 > 2. As
dim (M, /yM;) = d — 2 > 2 we have depth(K?2(M,/yM,)) = depth(K (M, /yM,)) > 2. So,
by the exact sequence of Lemma 2.4 (a), applied with M, y and d — 2 instead of M, = and
i respectively, the module (0 :xa-2(ps,) %) has depth > 0 and hence vanishes. It follows that
y is K972(M,)-regular and thus K?2(M,) is of positive depth.

Our next claim is that x is K47 1(M)-regular. If K¢ 2(M/xzM) = K4 2(M,) = 0, this is
immediate by 2.4 (b). So, let K472(M;) # 0. As K92(M,) is of positive depth, the sequence
of 2.4 (a), applied with i = d — 2, shows that K¢ Y(M)/x K9 1(M) is of positive depth, too.
On application of 2.4 (c¢) with K9 1(M) instead of M it follows that z is indeed K41 (M)-
regular.



Now, if we apply the exact sequence of 2.4 (a) with i = d — 1 we get an isomorphism
K(M;) =2 K(M)/xK(M). Since K(M,) is CM and z is K(M)-regular, K(M) is CM, and
hence M is CCM. O

Corollary 2.6. Suppose that d > 3 and let x1,...,xq_3 15 a strict f-sequence with respect to
M. Then M is CCM if and only if depth (K?(M/ S z;M)) > 0.

Proof. We proceed by induction on d. First, let d = 3. Let D® be a dualizing complex of R
and let C*(M) be the corresponding complex of deficiency of M, as defined by Schenzel (see
[Sc3, Definition 4.1]). Then by [Sc3, Proposition 4.2], the 3-dimensional module M is CCM
if and only if the cohomology module H*(Hom(C*®(M), D*)) vanishes. As in the the proof
of [Se3, Proposition 4.2, pg. 760], we get an isomorphism

K (K*(M)) = HO(Hom(KQ(M),D')) = Hz(Hom(C'(M)7D')),

so that M is CCM if and only if depth K*(M) > 0.

Now let d > 3. By Theorem 2.5, M is CCM if and only if M; := M/z1M is. Observe
that xo,...,24_3 is a strict f-sequence with respect to M;. So, by induction M; is CCM
if and only if K2(M,/ 2 2;My) = K2(M/ Y2 ;M) is of depth > 0. Altogether, this
completes our proof. O

Recall that according to [CST] the R-module M is said to be generalized Cohen-Macaulay
(generalized CM for short) if H: (M) is of finite length for all i < dim M. For each ideal a C R
we use Dy(M) to denote the a-transform lim Homp(a™, M) of M. As a further application of

Theorem 2.5 we get the following criterion for the CCM-property of generalized CM modules.

Corollary 2.7. Suppose that d > 3 and M is generalized CM. Then the following statements
are equivalent.

(i) M is CCM.
(i) HL(M) =0 foralli=2,...,d—1.
(i) Dn(M) is a (finitely generated) CM module.
Proof. (i) < (ii): As M is generalized CM, the modules K'(M) are of finite length for

0 < i < d. Now Schenzel’s result [Scl, Korollar 1.4] — which holds also if the ring R is
replaced by the R-module M — yields isomorphisms

H(K(M)) =2 KY(K“™F(M)), foralli =2,...,d— 1.

As H: (K(M)) =0 for i = 1,2 and by local duality it follows, that K (M) is CM if and only
if H.(M)=0forall i=2,...,d— 1. This proves the stated equivalence.

(ii) < (ili): This is clear by the short exact sequence
0— HY(M) — M — Dy(M) — HL(M) — 0

and the relations H (Dy(M)) = 0 for i = 0,1 and HI(Dy(M)) = HI (M) for all j > 1 (see
[BS, Chapter 2]). O



Remark 2.8. Note that the conclusion of Theorem 2.5 is not true for d = 3. In fact, let
M be a generalized CM module with dim M = 3 and H2(M) # 0. (For example take
M = R:= A4, where K is a field, B := K[z,y, z]/(2* +y*+2%) and A is the Segre product
ring B X B = @,,cy, Bn ®x Bn.) Then M is not CCM by Corollary 2.6. However, since
dim(M/xM) = 2 for any strict f-element x with respect to M, it follows that M/zM is
CCM.

3 Polynomial Type and Canonical Cohen-Macaulay Modules

Reminder 3.1. The concept of polynomial type was introduced by N.T. Cuong [C]. Let
z = (x1,...,x4) be a system of parameters for M and n = (nq,...,ny) a family of positive
integers. Set

Iyg(n) = (M), ...,z )M) — ny ... nge(z; M),

where e(z; M) is the multiplicity of M with respect to x. Consider Ijs,(n) as a function in
n. In general this function is not a polynomial for nq,...,ng > 0, but it always takes non-
negative values for ny,...,ngy > 0 and is bounded from above by polynomials. Especially,
the least degree of all polynomials in n which bound from above the function I, (n) is
independent of the choice of z, (see [C, Theorem 2.3]). This least degree is called the
polynomial type of M and denoted by p(M).

Remark 3.2. If we stipulate that the degree of the zero polynomial is —oo, then M is CM
if and only if p(M) = —oo. Moreover M is generalized CM if and only if p(M) < 0. In
general

p(M) = max dim(R/AnmnpH,(M)) = max dimK'(M)<d-1

0<i<d—1 0<i<d—1

(see [C, Theorem 3.1(i)] and observe that by Local Duality Anng H: (M) = Anng K'(M)).
If M is equidimensional then p(M) = dimnCM(M), where nCM(M) is the non-CM-locus
of M, (see [C, Theorem 3.1(ii)]).

Lemma 3.3. ([CMN, Lemma 3.1]). Let € m be a strict f-element with respect to M. If
p(M) > 0 then p(M/xM) = p(M) — 1.

In this section, we give a characterization of CCM modules which depends on the polyno-
mial type. First we consider the case where p(M) = 1. In this case, a certain ideal transform
will play a crucial role, and so we first prove the two following auxiliary results.

Lemma 3.4. Set a := (0 :p H2(M)). Assume that ((H\(M)) < oo and dim(R/a) < 1.
Then Do(M) is a finitely generated R-module such that H:(Dy(M)) =0 fori=0,1 and the
R-module H2(Dy(M))) is of finite length. Moreover, H:(Dy(M)) = H: (M) for all i > 3.

Proof. According to our hypothesis we have
fo(M) :=inf{i € Ng | a  rad(0 :p HL(M))} > 3.
As ht((p+m)/p) = dim(R/ p) for each p € Spec(R), it follows by [BS, (9.3.5)] that
3 < Au(M) = inf{depthp (M,) + dim(R/p) | p € Spec(R) \ Var(a)}.



As R is catenary, each p € Spec(R)\ Var(a) satisfies ht((a+p)/p) > dim(R/p)—dim(R/a)
dim(R/p) — 1 and it follows that for each such p it holds depthp (M,) + ht((a +p)/ p)
depthy, (M,) + dim(R/p) =1 > Ay(M) —1>3 -1 =2,

Therefore A\y(M) := min{depthy (M,) +ht((a+p)/p) | p € Spec(R) \ Var(a)} > 2. As R is
a homomorphic image of a local Gorenstein ring it is universally catenary and all its formal
fibers are CM. Hence, by [BS, (9.6.7)] we get

>
>

fa(M) :=inf{i € Ny | H.(M) is not finitely generated} = \,(M) > 2.

In particular, H)(M) is finitely generated. So the four-term exact sequence (cf. [BS,

(2.2.4)(1)))
0— HY (M) — M — Do(M) — HX(M) — 0

shows that N := D,(M) is finitely generated.
Moreover, H:(N) = 0 for i = 0,1 (cf. [BS, (2.2.8)(iv)]). Therefore gradey(a) > 2. Asa C m,
it follows that HE (N) =0 for i =0, 1.

Our next aim is to show that H2(N) = H2(D,(M)) is of finite length. To this end let
p € Spec(R) \ {m}. If p € Var(a) then dim(22/p) = 1 and depthy (N,) > gradey(a) > 2
and hence depthy (N,) + dim(R/p) > 3.
If p ¢ Var(a), then HY(M), = H}(M), = 0 and hence the above four-term exact sequence
yields N, = M,, so that depthy (Ny)+dim(R/p) = depthp (M,)+dim(R/p) > AL (M) > 3.
Altogether we obtain Ay (V) := inf{depthp (N,) 4+ dim(R/p) | p € Spec(R) \ {m}} > 3. So,
by [BS, (9.6.7)] we get f(N) :=inf{i € N | H. (N) is not finitely generated} = A\ (M) > 3.
Therefore H2(N) is finitely generated and thus of finite length.

By our hypothesis the finitely generated R-modules H?(M) and H}(M) are both of

dimension < 1. Another use of the above four-term exact sequence now yields that H, (N) =
Hi (M) for all i > 3. O

Lemma 3.5. Let the notations and the assumptions be as in Lemma 3.4. Then H:(Dy(M)) =
0 if and only if m & Attp(HZ(M)).

Proof. Set N := Do(M) and let M := M/H?(M). As dim(H?(M)) < dim(R/a) < 1, we
have H(M) = H(M).
Assume first that m ¢ Attr(H2(M)). Then there is some x € m which avoids all members of
Attr(H2(M)) and hence multiplication by = on H2(M) is surjective. Since dim(H}(M)) <
dim(R/a) < 1, it holds HZ(H!(M)) = 0. Therefore, the short exact sequence (cf. [BS,
2:2.4)(0) -

0—+M—N— H(M)—0

gives rise to an epimorphism H2(M) — H2(N). Hence, multiplication by z on H2(N) is
surjective. As H2(N) is finitely generated, Nakayama yields H2(N) = 0.

Conversely, assume that H2(N) = 0. Then, the above exact sequence gives rise to
an epimorphism HL(H!(M)) — H2(M). Let # € m be such that rad(a + zR) = m.
Then HL(H)(M)) = Hl,(H}(M)), so that multiplication by z on Hx(H}(M)) is an epi-
morphism. Hence multiplication by z on H2(M) = H2(M) is an epimorphism, so that
m ¢ Attr(HZ(M)). O



For each j € {0,...,d} let MU := M/M;, where My; C M is the largest submodule of
M whose dimension is < j. Keep in mind that we can write Mj; as the torsion submodule
La(M) :={m € M | 3b € B such that brn = 0} of M with respect to the multiplicatively
closed set of ideals B := {b = ideal in R | dim(R/b) < j}.

Lemma 3.6. Suppose that d > 3 and let p(M) = 1. Let a := (0 :g H2(M)). Then the
following statements are equivalent:

(i) H. (M) =0 foralli=3,...,d—1 and K*(M) is 0 or CM of dimension 1.
(ii) Do(MWM) is a (finitely generated) CM module.

Proof. As dim(Mpy)) < 1, it is clear that HE (M) = Hi (M) for all i > 2 and that K?(M) =
K?(MW). Observe that by our hypotheses and by Remark 3.2 we have dim(R/a) < 1 and
hence also dim(K?(M)) < 1.

Our next claim is that ¢(HL(M!Y)) < oco. Suppose that this is not the case. Then
dim HL(MW) = 1. Hence dim(R/p) = 1 for some p € Attty HL(MM). So, p € Assp(MI)
by [BS, 11.3.3], this is a contradiction as Assg MY = {q € Assg M | dim(R/q) > 1}.

So, by Lemma 3.4 the module N := Dy (M) is finitely generated and H’ (N) = Hi (M) =
HL (M) for all i > 3.

Therefore N is CM if and only if H: (M) =0 for all i € {3,...,d — 1} and K*(N) = 0. Tt
thus remains to show that K2(N) = 0 if and only if K?(M) is of depth > 0 or equivalently,
if and only if m ¢ Attgr(HZ2(M)). But this is clear by Lemma 3.5. O

Proposition 3.7. Suppose that d > 3 and let p(M) = 1. Let a := (0 :p H:(M)). Then the
following statements are equivalent:

(i) M is CCM.
(i) H: (M) =0 for alli=3,...,d —1 and K*(M) is either 0 or CM of dimension 1.
(iii) Do(MW) is a (finitely generated) CM module.

Proof. (i) = (ii): Let x € m be a strict f-element with respect to M. Since M is CCM so is
My := M/xM by Theorem 2.5. As p(M) = 1, we get by Lemma 3.3 that M; is generalized
CM. By Corollary 2.7, we have K(M;) = 0 for all i = 2,...,d — 2. By Lemma 2.4 (b)
we thus see that K*(M) = 0 for all i = 3,...,d — 1 and that x € m is K?(M)-regular.
Since p(M) = 1, we have dim K?(M) < 1 by Remark 3.2. Therefore K?(M) is 0 or CM of
dimension 1.

(ii) = (i): Let x € m and M, be as above. Assume first that d = 3. Since depth(K?(M)) > 0
we have (0 :x2(a) ) = 0. If we apply the sequence of Lemma 2.4 (a) with ¢ = 2 we obtain
K(M)/xK(M) = K(M). As dim M; = 2, the module K (M;) is CM. As z is K(M)-regular
it follows that K (M) is CM.

Now, let d > 3. Since K‘(M) =0 for all i = 3,...,d —1, it follows by the exact sequences of
Lemma 2.4 (a) that K*(M;) =0 for alli =3,...,d —2. As K?*(M) is 0 or CM of dimension
1, we have (0 :gx2(ar) ) = 0. Since d > 3, we have K*(M) = 0. Therefore another use of the
mentioned exact sequences for i = 2 gives that K?(M;) = 0. Note that M; is generalized
CM of dimension d — 1 by Lemma 3.3. Hence M; is CCM by Corollary 2.7, and so M is
CCM by Theorem 2.5.

(ii) < (iii): This is clear by Lemma 3.6. O



The main result of this section is the extension of the equivalence (i) < (ii) of Proposition
3.7 which applies for all possible values of p(M) and which again involves strict f-sequences.
To pave the way to this, we first prove two auxiliary results.

Lemma 3.8. Let p(M) =:k >0 and let x1,...,x,_1 be a strict f-sequence with respect to
M. Set M; = M/ Z;Zl xz;M for all i = 0,...,k — 1. Then, the following statements are
equivalent:

(i) M is CCM with k < d — 2.
(i) K(M) =0 foralli=Fk+2,...,d—1 and K*(My_1) is 0 or CM of dimension 1.

Proof. (i)=-(ii): We proceed by induction on k. The case k = 1 follows by Proposition
3.7. So, let k > 2 and note that M; is CCM by Theorem 2.5. By Lemma 3.3 we have
p(My) =k —1<dimM; — 2. As xo,..., 251 is a strict f-sequence with respect to M;, we
get by induction that K*(Mj_,) = K?*(M,/ 25;21 x; M) is 0 or CM of dimension 1 and that
K'(M;)=0foralli =k+1,...,d—2. By Lemma 2.4 (b) the latter implies that K*(M) =0
foralli=k+2,...,d— 1.

(ii)=-(i): We proceed again by induction on k. The case k = 1 is immediately clear by
Proposition 3.7. So, let k > 2. Observe that (z,,...,zx_1) is a strict f-sequence with respect
to M;. By Lemma 3.3 we also have p(M;) = k—1. As K‘(M) =0foralli=k+2,...,d—1,
the exact sequences of Lemma 2.4 (a), applied with z := 1, imply that K*(M;) = 0 for all
i=k+2,....d—2

Our next aim is to show that K**(M;) = 0. Keep in mind that z; is a strict f-element with
respect to M; ;1 and that M; 1/x;M; 1 = M;, for each i = 1,...,k — 1. Observe also that
K?(Mj_y) is 0 or CM of dimension 1 by assumption (ii).

Assume first that K?(Mjy_;1) = 0. Then, applying Lemma 2.4 (b) with j + 2 instead of i,
with Mj,_; instead of M and with z;_; instead of x for j = 1,...k — 1 we inductively get
that K*™(Mj_;_;) = 0 so that finally K*"'(M) = 0. By the hypothesis (ii) we also have
K*2(M) = 0. So, the sequence of Lemma 2.4 (a), applied with i = k + 1 and z = x; gives
indeed K**1(M;) = 0 in this case, as requested.

Now, we consider the case where K 2(]\/[k,l) is CM of dimension 1. In this situation we have
depth(K?(My_1)) > 0. Applying 2.4 (d) for i = 2,...,k to M_; instead of M and x;_; 4
instead of x, we inductively get that that depth(K**(Mj_;)) > 0 and hence in particular
that depth(K*™(M)) > 0. Since x; is an f-element with respect to K*™'(M), this implies
that 0 :e+1(ap) 1 = 0. By (il) we have K**2(M) = 0 and hence on use of the exact sequence
of Lemma 2.4 (a) with i = k+ 1 and x = z; it follows that again K**'(M;) = 0 in this
second case.

Moreover, by (ii) the module K?(M;/ 25:21 x; M) = K*(Mj—1) is 0 or CM of dimension 1.
So, M; satisfies the hypothesis of induction. Therefore M; is CCM and k—1 =p(M)—1=
p(My) < d—3, so that p(M) =k < d — 2. Since k > 2, we have d > 4 and thus M is CCM
by Theorem 2.5. O

Lemma 3.9. Let d > 3 and let x,...,xq_3 be a strict f-sequence with respect to M. Then,
the following statements are equivalent:

(i) M is CCM with p(M) =d — 1.
(i) K%(M/ Zj;i’ x; M) is of dimension 2 and of positive depth.
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Proof. Set M; := M/ 22:1 x;Mforalli=1,...,d—3.

(i)=-(ii): By Corollary 2.6 we have depth(K?(My_3)) > 0. Note that dim K*(M) < i
for all 4, (see [Sc3, Proposition 2.3 (a)]). Since p(M) = d — 1, Remark 3.2 implies that
dim(K%Y(M)) = d — 1. Assume first that d = 3. Then dim(K?*(M)) = 2 and the result
follows.

So, let d > 3. Then dim(K?'(M)) =d — 1. On use of Lemma 2.4 (e) with i = d — j, M; 4
instead of M, z; instead of x for j = 2,...d — 2, we inductively get that dim K% (M;_,) =
d — j. Hence in particular dim K?(My_3) = 2.

(i))=-(i): By Corollary 2.6, the module M is CCM. By (ii) we have dim K?(M,_3) = 2. By
Lemma 2.4 (e) applied with My_; ; instead of M and x4_; instead of x fori =1,...d —2 we
inductively get that dim K**'(My_;_) =i + 1, so that dim(K?}(M)) = d — 1. Therefore
by Remark 3.2 we have p(M) =d — 1. O

Now, we are ready to give the announced main result of the present section.

Theorem 3.10. Assume that dim M = d > 3, p(M) = k > 0 and that zy,..., 251 15 a
strict f-sequence with respect to M. For alli=1,... k—1 set M; := M/ 23:1 x;M

(a) If k < d—2, then M is CCM if and only if K‘(M) =0 for alli=k+2,...,d—1 and
K?(My_1) is 0 or CM of dimension 1.

(b) If k =d —1 then M is CCM if and only if K*(My_3) is of dimension 2 and of positive
depth.

Proof. The proof is immediate by Lemma 3.8 and Lemma 3.9. O]

4 Non-Canonical Cohen-Macaulay Loci
Definition 4.1. The non-canonical Cohen-Macaulay locus (non-CCM locus for short) of M,
denoted by nCCM (M), is defined by

nCCM (M) := {p € Spec(R) | M, is not CCM}.

Before describing the non-CCM locus of M, we recall the notion of pseudo support intro-
duced in [BS1].

Definition 4.2. The i-th pseudo support of M, denoted by Psupp’ (M), is defined by

Psuppi(M) := {p € Spec(R) | Hy """ (M,) # 0}.
Remark 4.3. (a) Since R is a quotient of a Gorenstein ring
Psupp’ (M) = Var(Anng H. (M)) = Suppy K*(M),

which is a closed subset of Spec(R), (see [BS1]).
(b) Keep in mind that

Assp K(M) = Attg HA(M) = {q € Assg M | dim(R/ q) = d},
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so that K (M) is equidimensional. Therefore, by [CNN, Corollary 3.2] we have

nCM(K (M)) = ) Psupp’(K(M)).

(c) Observe also that
Suppy, K (M) = {p € Suppy, M | dim(R/ p) + dim M, = d}.
In particular K(M), = K(M,) for all p € Suppp K(M).
Proposition 4.4. If dim(R/q) = d or dim(R/q) < 3 for all ¢ € min Assg M then

nCCM(M) = nCM(K (M) = J  Psupph(K (M),

which is a closed subset of Spec(R). In particular, if dim M < 4 then nCCM(M) is closed.

Proof. By Remark 4.3 (b) it suffices to show that nCCM(M) = nCM(K(M)). First, let
p € Suppp K(M). It follows by Remark 4.3 (c¢) that K(M,) = (K(M)),. Therefore p €
nCCM(M) if and only if (K(M)), is not CM, hence if and only if p € nCM(K (M)). This
shows that Suppp K (M) N nCCM(M) = nCM(K(M)).

Next, assume that p € Spec(R) \ Suppy K(M). Then dim(R/q) < d for all q € Ass M with
g € p. In particular p # m. So by our hypothesis we have dim M, < 2. Hence K(M,) is
CM, so that p ¢ nCCM(M). O

Reminder 4.5. The notion of dimension filtration was introduced by P. Schenzel [Sc2]. A
sequence of submodules H)(M) = My C My C ... C M; = M is called a dimension filtration
of M if M is the largest submodule (M;41)dim(a,.1)—1) of Mi1q such that dim M; < dim M;
forall : = 0,...,t — 1. Note that there exists precisely one dimension filtration of M.

Proposition 4.6. Let H)(M) = My C My C ... C M, = M be the dimension filtration of
M. Set d;, = dim My. Then

nCCM(M) € ) Psupp’(K(My)) = | nCM(K (M),

.....

Proof. We proceed by induction on ¢. If t = 0 then nCCM(M) = () and the result is true.
Let t = 1. Then dim(R/p) = d for all p € Assg M \ {m}. Therefore Proposition 4.4 yields

nCCM(M) = nCM(K(M)) = U Psupp’(K(M)). Thus, the result is true for ¢t = 1.
i=0

=0,...,d

(c) we have K (M,) = (K(M)),, and hence p € nCM(K (M)) € U,—y__, Psupp’(K(M)), by
another use of Remark 4.3 (c).

Suppose now, that p ¢ Suppy K(M). Then q € p for all q € Assg M with dim(R/q) = d
by Remark 4.3 (c). Since

Assp(M/M;—1) = {q € Assg M | dim(R/ q) = d},
we have p ¢ Supp(M/M;_1). So, from the exact sequence
0— (My—1)p = My, — (M/M;_1), = 0
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we get M, = (M;_1),, Hence p € nCCM(M;_1). So by induction

pe |J nOME(M) = ) Psupp’(K(My)).

]

Finally, we give an example to show that for d > 5 the set nCCM (M) need not be closed,
indeed even not stable under specialization. We first prove the following lemma.

Lemma 4.7. Let K be a field, let n be an integer such that n > 3. Consider the polynomaial
ring U = K|xy, ..., Tyya|, furnished with its standard grading. Then there is a graded prime
ideal t C U of height 2 such that t N Uy = 0 and such that A :== U/t is a normal domain (of
dimension n) with homogeneous mazimal ideal Ay = U, /t and

; 0, ifiEn—1,n
HA+ (A) = o
AJAy,  ifi=n-—1.
Proof. See [EG, Theorem 4.13] or [MNP, Theorem 2.3 and Remark 2.4(ii)]. O

Notation and Construction 4.8. Let n,U,t and A be as in Lemma 4.7. Consider the
polynomial ring S := Uz, 3] = K|x1,...,T,3] and set R := (S/tSﬂxn+3S>S ,m:= S, R,
t:=x,.3R, g:=tR and p:=U,R. .

Proposition 4.9. (R, m) is a reduced local ring of dimension n+ 2, essentially of finite type
over K with R/m = K and dimg(m /m?) = n + 3. Moreover,
(a) min Ass R = {v,q} and p € Var(q) \ Var(t).

(b) R/t is reqular local of dimension n+ 2, R/ q is normal of dimension n+ 1 and R, is
normal of dimension n.

, 0, ifi#n—1,n
H (R, =
(C) pRp( P) {K(p), Zf’l:n—l
(d) nCCM(R) = {p}.
Proof. The claims in the preamble of our proposition follow immediately by the previous
construction.

(a): This is also an easy consequence of our construction.

(b): Observe that according to our construction

Rie=Uy, = Klx1,...,Tni2) (@1, anse) and R/q = Az,

(At zn43)"

Since p € Var(q) \ Var(t), we have

Ry = (R/q)y = Alznys]a, Alwnys)-

From this, all claims in statement (b) are immediate.
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(c): The last isomorphism in the previous paragraph and the A-flatness of A[z,13]4, 4]
yield

xn+3]

H; Ry (Rp> = sz‘1+-A[In+3]A+,A[%+3] (A[x”+3]A+-A[$n+3])

= 0}y (A) @4 Alznis]a, Al
= Hjl+(A) ®a Ry.

As AL R, = p R,, this proves our claim.

(d): According to statement (c), the ring R, is generalized CM but not CCM. Therefore
p € nCCM(R). By statement (b), the unmixed part U(R) := RI4™E=1 of R is given by
U(R) = R/v and as R/t is regular, it follows that K(R) = K(U(R)) = R/t and hence
Var(r) NnCCM(R) = (.

It remains to show that K(R,) is CM for all s € Spec(R) \ (Var(r) U {p}). Fix such an
s and consider the canonical map A — R. As Var(A;R) = {p,m}, we must have that
n:=sNACA; and n # A, so that A, is CM. In view of the last isomorphism in the
proof of (b), the ring R, is isomorphic to a localization of A,[x, 3] and hence is CM, so that
K(R;) is CM. O

Corollary 4.10. For each field K and each integer d > 5 there is a reduced local ring (R, m)
of dimension d which is essentially of finite type over K, with R/m = K and such that
nCCM(R) is not stable under specialization.

Proof. Apply Proposition 4.9 with n = d — 2. O
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