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Abstract Let (R,m) be a Noetherian local ring which is a homomorphic image of a local
Gorenstein ring and let M be a finitely generated R-module of dimension d > 0. According
to Schenzel (2004) [Sc3], M is called a canonical Cohen-Macaulay module (CCM module for
short) if the canonical module K(M) of M is Cohen-Macaulay. We give another characteri-
zation of CCM modules. We describe the non-canonical Cohen-Macaulay locus nCCM(M)
of M . If d 6 4 then nCCM(M) is closed in Spec(R). For each d ≥ 5 there are reduced ge-
ometric local rings R of dimension d such that nCCM(R) is not stable under specialization
1.

1 Introduction

We first fix a few notations and recall a few notions.

Notation 1.1. Throughout this paper, (R,m) is a Noetherian local ring which is a quotient
of a n-dimensional local Gorenstein ring (R′,m′). Let M be a finitely generated R-module
with dimM = d. For each i ∈ N0, let Ki

R(M) = Ki(M) denote the i-th deficiency module
of M that is the finitely generated R-module Extn−iR′ (M,R′). Observe that the formation
of deficiency modules is base-ring independent in the following sense: if a ⊂ R is an ideal
such that aM = 0, then the R-modules Ki

R(M) and Ki
R/a(M) are equal for each i ∈ N0.

If E(R/m) denotes the injective envelope of R/m, the Local Duality Theorem gives an
isomorphism H i

m(M) ∼= HomR(Ki(M), E(R/m)) for all i ∈ N0. By K(M) we denote the
canonical module Kd(M) of M . Throughout our paper, we use the standard convention that
depthR(0) =∞ > 0.

In Section 2 we shall prove a lifting result for the CCM-property of M and deduce two new
characterizations of CCM modules. To make this more precise, let us recall, that Schenzel
[Sc3] did prove that for d > 0, the property of being a CCM module on M is inherited by
M/xM if x ∈ m is a so-called strict f-element with respect to M , (see Definition 2.2). Our
first main result proves that for d ≥ 4 the CCM-property also lifts from M/xM to M for
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such elements x, (see Theorem 2.5). For d = 3, this lifting property need not hold any more,
(see Remark 2.8). As a consequence of this we get that for d ≥ 3 and for each so-called strict
f-sequence x1, . . . , xd−3 with respect to M (see Definition 2.2) the module M is CCM if and

only if K2(M/
∑d−3

i=1 xiM) is of depth > 0 – which includes the case that the latter module
vanishes, (see Corollary 2.6). As a further consequence we get that a generalized Cohen-
Macaulay module of dimension ≥ 3 is CCM if and only if the local cohomology modules
H i

m(M) vanish for all i = 2, . . . , d− 1 or – equivalently – the m-transform Dm(M) of M is a
(finitely generated) Cohen-Macaulay module, (see Corollary 2.7).

In Section 3 we study the relation between the CCM-property and the polynomial type
p(M) of the module M (see Reminder 3.1). We first consider the case p(M) = 1 and prove
that in this situation M is CCM if and only if it satisfies the two equivalent conditions, in
which M[1] ⊆M denotes the largest submodule of dimension ≤ 1 (see Proposition 3.7):

(ii) H i
m(M) = 0 for all i = 3, . . . , d− 1 and K2(M) is 0 or Cohen-Macaulay of dimension 1.

(iii) The ideal transform Da(M
[1]) of M [1] := M/M[1] with respect to a := (0 :R H

2
m(M)) is

a (finitely generated) Cohen-Macaulay module.

In a second step, we also admit that p(M) > 1. This will lead us to another characterization
of CCM modules, which involves once more strict f-sequences, (see Theorem 3.10): namely,
if d ≥ 3, if the polynomial type p(M) =: k of M is positive and if x1, . . . , xk−1 is a strict
f-sequence with respect to M , then M is CCM if and only if either

(a) k 6 d − 2, Ki(M) = 0 for i = k + 2, . . . , d − 1 and K2(M/
∑k−1

j=1 xjM) is 0 or Cohen-
Macaulay of dimension 1; or

(b) k = d− 1 and K2(M/
∑d−3

j=1 xjM) is of dimension 2 and of depth > 0.

In Section 4 we finally study the non-CCM-locus of M , which is defined as the set of
primes nCCM(M) := {p ∈ Spec(R) | Mp is not CCM}. We show that under a certain “un-
mixedness” condition on the support SuppRM of M , the set nCCM(M) coincides with the
non-CM-locus nCM(K(M)) and hence with the union of all pseudo supports Psuppi(K(M))
of the canonical module K(M) of M , (see Proposition 4.4). It follows in particular that
nCCM(M) is a closed set if d 6 4. We also compare the locus nCCM(M) with the union of
all pseudo supports of the canonical modules of the components of the dimension filtration
of M , (see Proposition 4.6). Finally, on use of a construction found in Evans-Griffith [EG]
we show that for each d ≥ 5 and each field K there is a reduced local ring of (R,m) of
dimension d, essentially of finite type over K, satisfying R/m ∼= K and such that nCCM(R)
consists of single prime p which is in addition different from m, (see Proposition 4.9). Hence
nCCM(R) is not stable under specialization in this case, (see Corollary 4.10).

2 Strict f-Sequences and Canonical Cohen-Macaulay Modules

Definition 2.1. (See [Sc3, Definition 3.1]). The finitely generated R-module M is called
canonical Cohen-Macaulay (CCM for short) if the canonical module K(M) of M is Cohen-
Macaulay (CM for short).
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In view of the previously mentioned base-ring independence of deficiency modules, the
property of being CCM is also base-ring independent. More precisely, if a ⊂ R is an ideal
such that aM = 0, then M is CCM as an R-module if and only if it is as an R/a-module.

There is a number of sufficient conditions for a module M to be CCM. If dimM 6 2
then M is CCM. It is clear that any CM module is CCM. The concept of sequentially
Cohen-Macaulay module (sequentially CM module for short) was introduced by Stanley [St,
p. 87] for graded modules. This notion was studied in the local case starting with the work
of Schenzel [Sc2]. It is easy to see that any sequentially CM module is CCM. The notion of
pseudo Cohen-Macaulay module (pseudo CM module for short) was introduced in [CN]. By
[CN, Theorem 3.1] the module M is pseudo CM if and only if M/N is CM, where N ⊂ M
is the largest submodule of dimension less than d. As K(M) ∼= K(M/N), any pseudo CM
module is CCM.

Our first main result shows that for certain elements x ∈ R (under an obvious restriction
on the dimension), the R-module M is CCM if and only if M/xM is. That the CCM-property
of M implies the CCM-property of M/xM was actually proved already by Schenzel [Sc3,
3.3 (b)].

Definition 2.2. (See [CMN1]). Following I. G. Macdonald [Mac], we denote the set of
attached primes of an Artinian R-module A by AttRA. An element x ∈ m is called a strict
filter regular element (strict f-element for short) with respect to M if x /∈ p for all

p ∈
d⋃
i=1

AttRH
i
m(M) \ {m}.

A sequence x1, . . . , xt of elements in m is called a strict filter regular sequence (strict f-
sequence for short) with respect to M if xj+1 is a strict f-element with respect to the R-
module M/(x1, . . . , xj)M for all j = 0, . . . , t− 1.

Note that for each integer t > 0, by Prime Avoidance, there always exists a strict f-
sequence of length t with respect to M .

Remark 2.3. (a) By [BS, 11.3.3] we have AssRM ⊆
d⋃
i=0

AttRH
i
m(M). Therefore, if x is a

strict f-element with respect to M , it is a filter regular element (f-element for short) with
respect to M , i.e. x /∈ p for all p ∈ AssRM \ {m}. Hence each strict f-sequence with
respect to M is a filter regular sequence (f-sequence for short) with respect to M in sense of
Cuong-Schenzel-Trung [CST].

(b) By [S, Theorem 2.3] we have AssRK
i(M) = AttRH

i
m(M) for all i. Therefore x is a

strict f-element with respect to M if and only if x is an f-element with respect to Ki(M) for
all i ≥ 0, thus if and only if `(0 :Ki(M) x) <∞ for all i ≥ 0. In particular, if d > 0 and x is
a strict f-element with respect to M then x is K(M)-regular.

We begin with the following auxiliary result. The sequence occurring in statement (a)
may be found already in [Sc3].

Lemma 2.4. Let x ∈ m and let i ∈ N0.

3



(a) If x is a strict f-element with respect to M , there is an exact sequence

0→ Ki+1(M)/xKi+1(M)→ Ki(M/xM)→ (0 :Ki(M) x)→ 0.

(b) If x is a strict f-element with respect to M , then Ki(M/xM) = 0 if and only if
Ki+1(M) = 0 and x is Ki(M)-regular.

(c) If x is an f-element with respect to M such that depth(M/xM) > 0, then x is M-regular.

(d) If x is a strict f-element with respect to M such that depth(Ki(M/xM)) > 0, then
depth(Ki+1(M)) > 1.

(e) If x is a strict f-element with respect to M such that either dimKi+1(M) > 0 or
dimKi(M/xM) > 0, then dimKi(M/xM) = dimKi+1(M)− 1.

Proof. (a): We form the K∗(•) = Extn−∗R′ (•, R′)-sequence associated to the exact sequence

0 → M/(0 :M x)
ι→ M → M/xM → 0, where ι is induced by xIdM . This gives an exact

sequence 0 → Coker(Ki+1(ι)) → Ki(M/xM) → Ker(Ki(ι)) → 0. Consider the short exact

sequence 0→ (0 :M x)→M
%→M/(0 :M x)→ 0, in which % is the canonical map. As x is an

f-element with respect to M , the module (0 :M x) is of finite length, so that Kj(0 :M x) = 0
for all j > 0. This shows that Kj(%) : Kj(M/(0 :M x)) → Kj(M) is an isomorphism for
j > 0 and a monomorphism for j = 0. As ι ◦ % = xIdM our claim follows.
(b): This follows immediate from statement (a) on use of Nakayama.
(c): As x is an f-element with respect to M we have xM ∩ H0

m(M) = x(H0
m(M) :M x) =

xH0
m(M). So, by Nakayama, H0

m(M) ⊆ xM implies that H0
m(M) = 0. This proves our claim

as depth(M/xM) > 0 implies that H0
m(M) ⊆ xM .

(d): By statement (a) we get depth
(
Ki+1(M)/xKi+1(M)

)
> 0. As x is an f-element with

respect to Ki+1(M), our claim follows on use of statement (c).
(e): This is clear by statement (a) as (0 :Ki(M) x) is of finite length.

Now, we can give the announced first main result.

Theorem 2.5. Assume that dimM = d ≥ 4 and let x ∈ m be a strict f-element with respect
to M . Then M is CCM if and only if M/xM is.

Proof. By [Sc3, 3.3(b)] we know that M1 := M/xM is CCM if M is CCM.
Conversely, assume that M1 is CCM. As x is an f-element with respect to M we have
dim(M1) = d−1. Let y ∈ m be a strict f-element with respect to M1. Since M1 is CCM, the
module Kd−1(M1) = K(M1) is CM of dimension d−1. As y is a strict f-element with respect
to M1, it is K(M1)-regular and so Kd−1(M1)/yKd−1(M1) is CM of dimension d− 2 ≥ 2. As
dim(M1/yM1) = d− 2 ≥ 2 we have depth(Kd−2(M1/yM1)) = depth(K(M1/yM1)) ≥ 2. So,
by the exact sequence of Lemma 2.4 (a), applied with M1, y and d− 2 instead of M , x and
i respectively, the module (0 :Kd−2(M1) y) has depth > 0 and hence vanishes. It follows that

y is Kd−2(M1)-regular and thus Kd−2(M1) is of positive depth.
Our next claim is that x is Kd−1(M)-regular. If Kd−2(M/xM) = Kd−2(M1) = 0, this is
immediate by 2.4 (b). So, let Kd−2(M1) 6= 0. As Kd−2(M1) is of positive depth, the sequence
of 2.4 (a), applied with i = d− 2, shows that Kd−1(M)/xKd−1(M) is of positive depth, too.
On application of 2.4 (c) with Kd−1(M) instead of M it follows that x is indeed Kd−1(M)-
regular.
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Now, if we apply the exact sequence of 2.4 (a) with i = d − 1 we get an isomorphism
K(M1) ∼= K(M)/xK(M). Since K(M1) is CM and x is K(M)-regular, K(M) is CM, and
hence M is CCM.

Corollary 2.6. Suppose that d ≥ 3 and let x1, . . . , xd−3 is a strict f-sequence with respect to

M . Then M is CCM if and only if depth
(
K2(M/

∑d−3
i=1 xiM)

)
> 0.

Proof. We proceed by induction on d. First, let d = 3. Let D• be a dualizing complex of R
and let C•(M) be the corresponding complex of deficiency of M , as defined by Schenzel (see
[Sc3, Definition 4.1]). Then by [Sc3, Proposition 4.2], the 3-dimensional module M is CCM
if and only if the cohomology module H2(Hom

(
C•(M), D•)

)
vanishes. As in the the proof

of [Sc3, Proposition 4.2, pg. 760], we get an isomorphism

K0(K2(M)) ∼= H0(Hom
(
K2(M), D•)

) ∼= H2
(
Hom(C•(M), D•)

)
,

so that M is CCM if and only if depthK2(M) > 0.
Now let d > 3. By Theorem 2.5, M is CCM if and only if M1 := M/x1M is. Observe
that x2, . . . , xd−3 is a strict f-sequence with respect to M1. So, by induction M1 is CCM

if and only if K2(M1/
∑d−3

i=2 xiM1) = K2(M/
∑d−3

i=1 xiM) is of depth > 0. Altogether, this
completes our proof.

Recall that according to [CST] the R-module M is said to be generalized Cohen-Macaulay
(generalized CM for short) ifH i

m(M) is of finite length for all i < dimM . For each ideal a ⊆ R
we use Da(M) to denote the a-transform lim

→
n

HomR(an,M) of M . As a further application of

Theorem 2.5 we get the following criterion for the CCM-property of generalized CM modules.

Corollary 2.7. Suppose that d ≥ 3 and M is generalized CM. Then the following statements
are equivalent.

(i) M is CCM.

(ii) H i
m(M) = 0 for all i = 2, . . . , d− 1.

(iii) Dm(M) is a (finitely generated) CM module.

Proof. (i) ⇔ (ii): As M is generalized CM, the modules Ki(M) are of finite length for
0 ≤ i < d. Now Schenzel’s result [Sc1, Korollar 1.4] – which holds also if the ring R is
replaced by the R-module M – yields isomorphisms

H i
m(K(M)) ∼= K0(Kd−i+1(M)), for all i = 2, . . . , d− 1.

As H i
m(K(M)) = 0 for i = 1, 2 and by local duality it follows, that K(M) is CM if and only

if H i
m(M) = 0 for all i = 2, . . . , d− 1. This proves the stated equivalence.

(ii) ⇔ (iii): This is clear by the short exact sequence

0→ H0
m(M)→M → Dm(M)→ H1

m(M)→ 0

and the relations H i
m(Dm(M)) = 0 for i = 0, 1 and Hj

m(Dm(M)) ∼= Hj
m(M) for all j > 1 (see

[BS, Chapter 2]).
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Remark 2.8. Note that the conclusion of Theorem 2.5 is not true for d = 3. In fact, let
M be a generalized CM module with dimM = 3 and H2

m(M) 6= 0. (For example take
M = R := AA+ , where K is a field, B := K[x, y, z]/(x3 +y3 +z3) and A is the Segre product
ring B × B =

⊕
n∈N0

Bn ⊗K Bn.) Then M is not CCM by Corollary 2.6. However, since
dim(M/xM) = 2 for any strict f-element x with respect to M , it follows that M/xM is
CCM.

3 Polynomial Type and Canonical Cohen-Macaulay Modules

Reminder 3.1. The concept of polynomial type was introduced by N.T. Cuong [C]. Let
x = (x1, . . . , xd) be a system of parameters for M and n = (n1, . . . , nd) a family of positive
integers. Set

IM,x(n) := `
(
M/(xn1

1 , . . . , x
nd
d )M

)
− n1 . . . nde(x;M),

where e(x;M) is the multiplicity of M with respect to x. Consider IM,x(n) as a function in
n. In general this function is not a polynomial for n1, . . . , nd � 0, but it always takes non-
negative values for n1, . . . , nd � 0 and is bounded from above by polynomials. Especially,
the least degree of all polynomials in n which bound from above the function IM,x(n) is
independent of the choice of x, (see [C, Theorem 2.3]). This least degree is called the
polynomial type of M and denoted by p(M).

Remark 3.2. If we stipulate that the degree of the zero polynomial is −∞, then M is CM
if and only if p(M) = −∞. Moreover M is generalized CM if and only if p(M) 6 0. In
general

p(M) = max
06i6d−1

dim
(
R/AnnRH

i
m(M)

)
= max

06i6d−1
dimKi(M) 6 d− 1

(see [C, Theorem 3.1(i)] and observe that by Local Duality AnnRH
i
m(M) = AnnRK

i(M)).
If M is equidimensional then p(M) = dim nCM(M), where nCM(M) is the non-CM-locus
of M , (see [C, Theorem 3.1(ii)]).

Lemma 3.3. ([CMN, Lemma 3.1]). Let x ∈ m be a strict f-element with respect to M . If
p(M) > 0 then p(M/xM) = p(M)− 1.

In this section, we give a characterization of CCM modules which depends on the polyno-
mial type. First we consider the case where p(M) = 1. In this case, a certain ideal transform
will play a crucial role, and so we first prove the two following auxiliary results.

Lemma 3.4. Set a := (0 :R H2
m(M)). Assume that `(H1

m(M)) < ∞ and dim(R/a) 6 1.
Then Da(M) is a finitely generated R-module such that H i

m(Da(M)) = 0 for i = 0, 1 and the
R-module H2

m(Da(M))) is of finite length. Moreover, H i
m(Da(M)) ∼= H i

m(M) for all i ≥ 3.

Proof. According to our hypothesis we have

f a
m(M) := inf{i ∈ N0 | a 6⊆ rad(0 :R H

i
m(M))} ≥ 3.

As ht((p+m)/ p) = dim(R/ p) for each p ∈ Spec(R), it follows by [BS, (9.3.5)] that

3 6 λam(M) := inf{depthRp
(Mp) + dim(R/ p) | p ∈ Spec(R) \ Var(a)}.
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As R is catenary, each p ∈ Spec(R)\Var(a) satisfies ht((a+p)/ p) ≥ dim(R/ p)−dim(R/a) ≥
dim(R/ p) − 1 and it follows that for each such p it holds depthRp

(Mp) + ht((a + p)/ p) ≥
depthRp

(Mp) + dim(R/ p)− 1 ≥ λam(M)− 1 ≥ 3− 1 = 2.
Therefore λa(M) := min{depthRp

(Mp) + ht((a + p)/ p) | p ∈ Spec(R) \Var(a)} ≥ 2. As R is
a homomorphic image of a local Gorenstein ring it is universally catenary and all its formal
fibers are CM. Hence, by [BS, (9.6.7)] we get

fa(M) := inf{i ∈ N0 | H i
a(M) is not finitely generated} = λa(M) ≥ 2.

In particular, H1
a (M) is finitely generated. So the four-term exact sequence (cf. [BS,

(2.2.4)(i)])
0→ H0

a (M)→M → Da(M)→ H1
a (M)→ 0

shows that N := Da(M) is finitely generated.
Moreover, H i

a(N) = 0 for i = 0, 1 (cf. [BS, (2.2.8)(iv)]). Therefore gradeN(a) ≥ 2. As a ⊆ m,
it follows that H i

m(N) = 0 for i = 0, 1.

Our next aim is to show that H2
m(N) = H2

m(Da(M)) is of finite length. To this end let
p ∈ Spec(R) \ {m}. If p ∈ Var(a) then dim(R/ p) = 1 and depthRp

(Np) ≥ gradeN(a) ≥ 2
and hence depthRp

(Np) + dim(R/ p) ≥ 3.

If p /∈ Var(a), then H0
a (M)p = H1

a (M)p = 0 and hence the above four-term exact sequence
yields Np

∼= Mp, so that depthRp
(Np)+dim(R/ p) = depthRp

(Mp)+dim(R/ p) ≥ λam(M) ≥ 3.
Altogether we obtain λm(N) := inf{depthRp

(Np) + dim(R/ p) | p ∈ Spec(R) \ {m}} ≥ 3. So,

by [BS, (9.6.7)] we get fm(N) := inf{i ∈ N | H i
m(N) is not finitely generated} = λm(M) ≥ 3.

Therefore H2
m(N) is finitely generated and thus of finite length.

By our hypothesis the finitely generated R-modules H0
a (M) and H1

a (M) are both of
dimension 6 1. Another use of the above four-term exact sequence now yields that H i

m(N) ∼=
H i

m(M) for all i ≥ 3.

Lemma 3.5. Let the notations and the assumptions be as in Lemma 3.4. Then H2
m(Da(M)) =

0 if and only if m /∈ AttR(H2
m(M)).

Proof. Set N := Da(M) and let M := M/H0
a (M). As dim(H0

a (M)) 6 dim(R/a) 6 1, we
have H2

m(M) ∼= H2
m(M).

Assume first that m /∈ AttR(H2
m(M)). Then there is some x ∈ m which avoids all members of

AttR(H2
m(M)) and hence multiplication by x on H2

m(M) is surjective. Since dim(H1
a (M)) 6

dim(R/a) 6 1, it holds H2
m(H1

a (M)) = 0. Therefore, the short exact sequence (cf. [BS,
(2.2.4)(i)])

0→M → N → H1
a (M)→ 0

gives rise to an epimorphism H2
m(M) � H2

m(N). Hence, multiplication by x on H2
m(N) is

surjective. As H2
m(N) is finitely generated, Nakayama yields H2

m(N) = 0.

Conversely, assume that H2
m(N) = 0. Then, the above exact sequence gives rise to

an epimorphism H1
m(H1

a (M)) � H2
m(M). Let x ∈ m be such that rad(a + xR) = m.

Then H1
m(H1

a (M)) ∼= H1
xR(H1

a (M)), so that multiplication by x on H1
m(H1

a (M)) is an epi-
morphism. Hence multiplication by x on H2

m(M) ∼= H2
m(M) is an epimorphism, so that

m /∈ AttR(H2
m(M)).
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For each j ∈ {0, . . . , d} let M [j] := M/M[j], where M[j] ⊂ M is the largest submodule of
M whose dimension is 6 j. Keep in mind that we can write M[j] as the torsion submodule
ΓB(M) := {m ∈ M | ∃b ∈ B such that bm = 0} of M with respect to the multiplicatively
closed set of ideals B := {b = ideal in R | dim(R/b) 6 j}.
Lemma 3.6. Suppose that d ≥ 3 and let p(M) = 1. Let a := (0 :R H2

m(M)). Then the
following statements are equivalent:

(i) H i
m(M) = 0 for all i = 3, . . . , d− 1 and K2(M) is 0 or CM of dimension 1.

(ii) Da(M
[1]) is a (finitely generated) CM module.

Proof. As dim(M[1]) 6 1, it is clear that H i
m(M) ∼= H i

m(M [1]) for all i ≥ 2 and that K2(M) ∼=
K2(M [1]). Observe that by our hypotheses and by Remark 3.2 we have dim(R/a) 6 1 and
hence also dim(K2(M)) 6 1.
Our next claim is that `(H1

m(M [1])) < ∞. Suppose that this is not the case. Then
dimH1

m(M [1]) = 1. Hence dim(R/ p) = 1 for some p ∈ AttRH
1
m(M [1]). So, p ∈ AssR(M [1])

by [BS, 11.3.3], this is a contradiction as AssRM
[1] = {q ∈ AssRM | dim(R/ q) > 1}.

So, by Lemma 3.4 the module N := Da(M
[1]) is finitely generated and H i

m(N) ∼= H i
m(M [1]) ∼=

H i
m(M) for all i ≥ 3.

Therefore N is CM if and only if H i
m(M) = 0 for all i ∈ {3, . . . , d − 1} and K2(N) = 0. It

thus remains to show that K2(N) = 0 if and only if K2(M) is of depth > 0 or equivalently,
if and only if m /∈ AttR(H2

m(M)). But this is clear by Lemma 3.5.

Proposition 3.7. Suppose that d ≥ 3 and let p(M) = 1. Let a := (0 :R H
2
m(M)). Then the

following statements are equivalent:

(i) M is CCM.

(ii) H i
m(M) = 0 for all i = 3, . . . , d− 1 and K2(M) is either 0 or CM of dimension 1.

(iii) Da(M
[1]) is a (finitely generated) CM module.

Proof. (i) ⇒ (ii): Let x ∈ m be a strict f-element with respect to M . Since M is CCM so is
M1 := M/xM by Theorem 2.5. As p(M) = 1, we get by Lemma 3.3 that M1 is generalized
CM. By Corollary 2.7, we have Ki(M1) = 0 for all i = 2, . . . , d − 2. By Lemma 2.4 (b)
we thus see that Ki(M) = 0 for all i = 3, . . . , d − 1 and that x ∈ m is K2(M)-regular.
Since p(M) = 1, we have dimK2(M) 6 1 by Remark 3.2. Therefore K2(M) is 0 or CM of
dimension 1.

(ii)⇒ (i): Let x ∈ m and M1 be as above. Assume first that d = 3. Since depth(K2(M)) > 0
we have (0 :K2(M) x) = 0. If we apply the sequence of Lemma 2.4 (a) with i = 2 we obtain
K(M)/xK(M) ∼= K(M1). As dimM1 = 2, the module K(M1) is CM. As x is K(M)-regular
it follows that K(M) is CM.
Now, let d > 3. Since Ki(M) = 0 for all i = 3, . . . , d− 1, it follows by the exact sequences of
Lemma 2.4 (a) that Ki(M1) = 0 for all i = 3, . . . , d− 2. As K2(M) is 0 or CM of dimension
1, we have (0 :K2(M) x) = 0. Since d > 3, we have K3(M) = 0. Therefore another use of the
mentioned exact sequences for i = 2 gives that K2(M1) = 0. Note that M1 is generalized
CM of dimension d − 1 by Lemma 3.3. Hence M1 is CCM by Corollary 2.7, and so M is
CCM by Theorem 2.5.

(ii) ⇔ (iii): This is clear by Lemma 3.6.
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The main result of this section is the extension of the equivalence (i)⇔ (ii) of Proposition
3.7 which applies for all possible values of p(M) and which again involves strict f-sequences.
To pave the way to this, we first prove two auxiliary results.

Lemma 3.8. Let p(M) =: k > 0 and let x1, . . . , xk−1 be a strict f-sequence with respect to

M . Set Mi = M/
∑i

j=1 xjM for all i = 0, . . . , k − 1. Then, the following statements are
equivalent:

(i) M is CCM with k 6 d− 2.

(ii) Ki(M) = 0 for all i = k + 2, . . . , d− 1 and K2(Mk−1) is 0 or CM of dimension 1.

Proof. (i)⇒(ii): We proceed by induction on k. The case k = 1 follows by Proposition
3.7. So, let k ≥ 2 and note that M1 is CCM by Theorem 2.5. By Lemma 3.3 we have
p(M1) = k − 1 6 dimM1 − 2. As x2, . . . , xk−1 is a strict f-sequence with respect to M1, we

get by induction that K2(Mk−1) = K2(M1/
∑k−1

j=2 xjM1) is 0 or CM of dimension 1 and that

Ki(M1) = 0 for all i = k+1, . . . , d−2. By Lemma 2.4 (b) the latter implies that Ki(M) = 0
for all i = k + 2, . . . , d− 1.

(ii)⇒(i): We proceed again by induction on k. The case k = 1 is immediately clear by
Proposition 3.7. So, let k ≥ 2. Observe that (x2, . . . , xk−1) is a strict f-sequence with respect
to M1. By Lemma 3.3 we also have p(M1) = k−1. As Ki(M) = 0 for all i = k+2, . . . , d−1,
the exact sequences of Lemma 2.4 (a), applied with x := x1, imply that Ki(M1) = 0 for all
i = k + 2, . . . , d− 2.
Our next aim is to show that Kk+1(M1) = 0. Keep in mind that xi is a strict f-element with
respect to Mi−1 and that Mi−1/xiMi−1 ∼= Mi, for each i = 1, . . . , k − 1. Observe also that
K2(Mk−1) is 0 or CM of dimension 1 by assumption (ii).
Assume first that K2(Mk−1) = 0. Then, applying Lemma 2.4 (b) with j + 2 instead of i,
with Mk−j instead of M and with xk−j instead of x for j = 1, . . . k − 1 we inductively get
that K2+j(Mk−j−1) = 0 so that finally Kk+1(M) = 0. By the hypothesis (ii) we also have
Kk+2(M) = 0. So, the sequence of Lemma 2.4 (a), applied with i = k + 1 and x = x1 gives
indeed Kk+1(M1) = 0 in this case, as requested.
Now, we consider the case where K2(Mk−1) is CM of dimension 1. In this situation we have
depth(K2(Mk−1)) > 0. Applying 2.4 (d) for i = 2, . . . , k to Mk−i instead of M and xk−i+1

instead of x, we inductively get that that depth(Ki+1(Mk−i)) > 0 and hence in particular
that depth(Kk+1(M)) > 0. Since x1 is an f-element with respect to Kk+1(M), this implies
that 0 :Kk+1(M) x1 = 0. By (ii) we have Kk+2(M) = 0 and hence on use of the exact sequence

of Lemma 2.4 (a) with i = k + 1 and x = x1 it follows that again Kk+1(M1) = 0 in this
second case.
Moreover, by (ii) the module K2(M1/

∑k−1
j−2 xjM1) = K2(Mk−1) is 0 or CM of dimension 1.

So, M1 satisfies the hypothesis of induction. Therefore M1 is CCM and k− 1 = p(M)− 1 =
p(M1) 6 d− 3, so that p(M) = k 6 d− 2. Since k ≥ 2, we have d ≥ 4 and thus M is CCM
by Theorem 2.5.

Lemma 3.9. Let d ≥ 3 and let x1, . . . , xd−3 be a strict f-sequence with respect to M . Then,
the following statements are equivalent:

(i) M is CCM with p(M) = d− 1.

(ii) K2(M/
∑d−3

j=1 xjM) is of dimension 2 and of positive depth.
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Proof. Set Mi := M/
∑i

j=1 xjM for all i = 1, . . . , d− 3.

(i)⇒(ii): By Corollary 2.6 we have depth(K2(Md−3)) > 0. Note that dimKi(M) 6 i
for all i, (see [Sc3, Proposition 2.3 (a)]). Since p(M) = d − 1, Remark 3.2 implies that
dim(Kd−1(M)) = d − 1. Assume first that d = 3. Then dim(K2(M)) = 2 and the result
follows.
So, let d > 3. Then dim(Kd−1(M)) = d− 1. On use of Lemma 2.4 (e) with i = d− j, Mj−1
instead of M , xj instead of x for j = 2, . . . d− 2, we inductively get that dimKd−j(Mj−1) =
d− j. Hence in particular dimK2(Md−3) = 2.

(ii)⇒(i): By Corollary 2.6, the module M is CCM. By (ii) we have dimK2(Md−3) = 2. By
Lemma 2.4 (e) applied with Md−i−1 instead of M and xd−i instead of x for i = 1, . . . d−2 we
inductively get that dimKi+1(Md−i−2) = i + 1, so that dim(Kd−1(M)) = d − 1. Therefore
by Remark 3.2 we have p(M) = d− 1.

Now, we are ready to give the announced main result of the present section.

Theorem 3.10. Assume that dimM = d ≥ 3, p(M) = k > 0 and that x1, . . . , xk−1 is a

strict f-sequence with respect to M . For all i = 1, . . . , k − 1 set Mi := M/
∑i

j=1 xjM .

(a) If k 6 d− 2, then M is CCM if and only if Ki(M) = 0 for all i = k + 2, . . . , d− 1 and
K2(Mk−1) is 0 or CM of dimension 1.

(b) If k = d− 1 then M is CCM if and only if K2(Md−3) is of dimension 2 and of positive
depth.

Proof. The proof is immediate by Lemma 3.8 and Lemma 3.9.

4 Non-Canonical Cohen-Macaulay Loci

Definition 4.1. The non-canonical Cohen-Macaulay locus (non-CCM locus for short) of M ,
denoted by nCCM(M), is defined by

nCCM(M) := {p ∈ Spec(R) |Mp is not CCM}.

Before describing the non-CCM locus of M , we recall the notion of pseudo support intro-
duced in [BS1].

Definition 4.2. The i-th pseudo support of M , denoted by PsuppiR(M), is defined by

PsuppiR(M) := {p ∈ Spec(R) | H i−dim(R/ p)
pRp

(Mp) 6= 0}.

Remark 4.3. (a) Since R is a quotient of a Gorenstein ring

PsuppiR(M) = Var(AnnRH
i
m(M)) = SuppRK

i(M),

which is a closed subset of Spec(R), (see [BS1]).
(b) Keep in mind that

AssRK(M) = AttRH
d
m(M) = {q ∈ AssRM | dim(R/ q) = d},
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so that K(M) is equidimensional. Therefore, by [CNN, Corollary 3.2] we have

nCM(K(M)) =
⋃

i=0,...,d−1

Psuppi(K(M)).

(c) Observe also that

SuppRK(M) = {p ∈ SuppRM | dim(R/ p) + dimMp = d}.

In particular K(M)p ∼= K(Mp) for all p ∈ SuppRK(M).

Proposition 4.4. If dim(R/ q) = d or dim(R/ q) 6 3 for all q ∈ min AssRM then

nCCM(M) = nCM(K(M)) =
⋃

i=0,...,d−1

PsuppiR(K(M)),

which is a closed subset of Spec(R). In particular, if dimM 6 4 then nCCM(M) is closed.

Proof. By Remark 4.3 (b) it suffices to show that nCCM(M) = nCM(K(M)). First, let
p ∈ SuppRK(M). It follows by Remark 4.3 (c) that K(Mp) ∼= (K(M))p. Therefore p ∈
nCCM(M) if and only if (K(M))p is not CM, hence if and only if p ∈ nCM(K(M)). This
shows that SuppRK(M) ∩ nCCM(M) = nCM(K(M)).
Next, assume that p ∈ Spec(R) \ SuppRK(M). Then dim(R/ q) < d for all q ∈ AssM with
q ⊆ p. In particular p 6= m. So by our hypothesis we have dimMp 6 2. Hence K(Mp) is
CM, so that p /∈ nCCM(M).

Reminder 4.5. The notion of dimension filtration was introduced by P. Schenzel [Sc2]. A
sequence of submodules H0

m(M) = M0 ⊂M1 ⊂ . . . ⊂Mt = M is called a dimension filtration
of M if Mi is the largest submodule (Mi+1)[dim(Mi+1)−1] of Mi+1 such that dimMi < dimMi+1

for all i = 0, . . . , t− 1. Note that there exists precisely one dimension filtration of M .

Proposition 4.6. Let H0
m(M) = M0 ⊂ M1 ⊂ . . . ⊂ Mt = M be the dimension filtration of

M . Set dk = dimMk. Then

nCCM(M) ⊆
⋃

k=1,...,t

i=0,...,dk−1

Psuppi(K(Mk)) =
⋃

k=1,...,t

nCM(K(Mk)).

Proof. We proceed by induction on t. If t = 0 then nCCM(M) = ∅ and the result is true.
Let t = 1. Then dim(R/ p) = d for all p ∈ AssRM \ {m}. Therefore Proposition 4.4 yields

nCCM(M) = nCM(K(M)) =
⋃

i=0,...,d

Psuppi(K(M)). Thus, the result is true for t = 1.

Now, let t > 1 and let p ∈ nCCM(M). Assume first that p ∈ SuppRK(M). By Remark 4.3
(c) we have K(Mp) ∼= (K(M))p, and hence p ∈ nCM(K(M)) ⊆

⋃
i=0,...,d Psuppi(K(M)), by

another use of Remark 4.3 (c).
Suppose now, that p /∈ SuppRK(M). Then q 6⊆ p for all q ∈ AssRM with dim(R/ q) = d
by Remark 4.3 (c). Since

AssR(M/Mt−1) = {q ∈ AssRM | dim(R/ q) = d},

we have p /∈ Supp(M/Mt−1). So, from the exact sequence

0→ (Mt−1)p →Mp → (M/Mt−1)p → 0
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we get Mp
∼= (Mt−1)p, Hence p ∈ nCCM(Mt−1). So by induction

p ∈
⋃

k=1,...,t−1

nCM(K(Mk)) =
⋃

k=1,...,t−1
i=0,...,dk−1

Psuppi(K(Mk)).

Finally, we give an example to show that for d ≥ 5 the set nCCM(M) need not be closed,
indeed even not stable under specialization. We first prove the following lemma.

Lemma 4.7. Let K be a field, let n be an integer such that n ≥ 3. Consider the polynomial
ring U = K[x1, . . . , xn+2], furnished with its standard grading. Then there is a graded prime
ideal t ⊆ U of height 2 such that t ∩ U1 = 0 and such that A := U/t is a normal domain (of
dimension n) with homogeneous maximal ideal A+ = U+/t and

H i
A+

(A) =

{
0, if i 6= n− 1, n

A/A+, if i = n− 1.

Proof. See [EG, Theorem 4.13] or [MNP, Theorem 2.3 and Remark 2.4(ii)].

Notation and Construction 4.8. Let n, U, t and A be as in Lemma 4.7. Consider the

polynomial ring S := U [xn+3] = K[x1, . . . , xn+3] and set R :=
(
S/tS∩xn+3S

)
S+

, m := S+R,

r := xn+3R, q := tR and p := U+R.

Proposition 4.9. (R,m) is a reduced local ring of dimension n+ 2, essentially of finite type
over K with R/m ∼= K and dimK(m /m2) = n+ 3. Moreover,

(a) min AssR = {r, q} and p ∈ Var(q) \ Var(r).

(b) R/r is regular local of dimension n + 2, R/ q is normal of dimension n + 1 and Rp is
normal of dimension n.

(c) H i
pRp

(Rp) =

{
0, if i 6= n− 1, n

K(p), if i = n− 1.

(d) nCCM(R) = {p}.

Proof. The claims in the preamble of our proposition follow immediately by the previous
construction.

(a): This is also an easy consequence of our construction.

(b): Observe that according to our construction

R/r ∼= UU+
∼= K[x1, . . . , xn+2](x1,...,xn+2) and R/ q ∼= A[xn+3](A+,xn+3).

Since p ∈ Var(q) \ Var(r), we have

Rp
∼= (R/ q)p ∼= A[xn+3]A+.A[xn+3].

From this, all claims in statement (b) are immediate.
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(c): The last isomorphism in the previous paragraph and the A-flatness of A[xn+3]A+.A[xn+3]

yield

H i
pRp

(Rp) ∼= H i
A+.A[xn+3]A+.A[xn+3]

(
A[xn+3]A+.A[xn+3]

)
∼= H i

A+
(A)⊗A A[xn+3]A+.A[xn+3]

∼= H i
A+

(A)⊗A Rp.

As A+Rp = pRp, this proves our claim.

(d): According to statement (c), the ring Rp is generalized CM but not CCM. Therefore
p ∈ nCCM(R). By statement (b), the unmixed part U(R) := R[dimR−1] of R is given by
U(R) = R/r and as R/r is regular, it follows that K(R) = K(U(R)) = R/r and hence
Var(r) ∩ nCCM(R) = ∅.
It remains to show that K(Rs) is CM for all s ∈ Spec(R) \

(
Var(r) ∪ {p}

)
. Fix such an

s and consider the canonical map A → R. As Var(A+R) = {p,m}, we must have that
n := s ∩ A ⊂ A+ and n 6= A+, so that An is CM. In view of the last isomorphism in the
proof of (b), the ring Rs is isomorphic to a localization of An[xn+3] and hence is CM, so that
K(Rs) is CM.

Corollary 4.10. For each field K and each integer d ≥ 5 there is a reduced local ring (R,m)
of dimension d which is essentially of finite type over K, with R/m ∼= K and such that
nCCM(R) is not stable under specialization.

Proof. Apply Proposition 4.9 with n = d− 2.
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Birkhäuser Boston-Basel-Berlin, 1996.

14


