# TAME LOCI OF CERTAIN LOCAL COHOMOLOGY MODULES 

MARKUS BRODMANN AND MARYAM JAHANGIRI


#### Abstract

Let $M$ be a finitely generated graded module over a Noetherian homogeneous ring $R=\bigoplus_{n \in \mathbb{N}_{0}} R_{n}$. For each $i \in \mathbb{N}_{0}$ let $H_{R_{+}}^{i}(M)$ denote the $i$-th local cohomology module of $M$ with respect to the irrelevant ideal $R_{+}=\bigoplus_{n>0} R_{n}$ of $R$, furnished with its natural grading. We study the tame loci $\mathfrak{T}^{i}(M) \leq 3$ at level $i \in \mathbb{N}_{0}$ in codimension $\leq 3$ of $M$, that is the sets of all primes $\mathfrak{p}_{0} \subset R_{0}$ of height $\leq 3$ such that the graded $R_{\mathfrak{p}_{0}}$-modules $H_{R_{+}}^{i}(M)_{\mathfrak{p}_{0}}$ are tame.


## 1. Introduction

Throughout this note let $R=\bigoplus_{n \geq 0} R_{n}$ be a homogeneous Noetherian ring. So, $R$ is an $\mathbb{N}_{0}$-graded $R_{0}$-algebra and $R=R_{0}\left[l_{1}, \ldots, l_{r}\right]$ with finitely many elements $l_{1}, \ldots, l_{r} \in R_{1}$. Moreover, let $R_{+}:=\bigoplus_{n>0} R_{n}$ denote the irrelevant ideal of $R$ and let $M$ be a finitely generated graded $R$-module. For each $i \in \mathbb{N}_{0}$ let $H_{R_{+}}^{i}(M)$ denote the $i$-th local cohomology module of $M$ with respect to $R_{+}$. It is well known, that the $R$-module $H_{R_{+}}^{i}(M)$ carries a natural grading and that the graded components $H_{R_{+}}^{i}(M)_{n}$ are finitely generated $R_{0^{-}}$ modules which vanish for all $n \gg 0$ (s. [11], $\S 15$ for example). So, the $R_{0}$-modules $H_{R_{+}}^{i}(M)_{n}$ are asymptotically trivial if $n \rightarrow+\infty$.

On the other hand a rich variety of phenomena occurs for the modules $H_{R_{+}}^{i}(M)_{n}$ if $i \in \mathbb{N}_{0}$ is fixed and $n \rightarrow-\infty$. So, it is quite natural to investigate the asymptotic behaviour of cohomology, e.g.the mentioned phenomena (s. [3]).

One basic question in this respect is to ask for the asymptotic stability of associated primes, more precisely the question, whether for given $i \in \mathbb{N}_{0}$ the set $\operatorname{Ass}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{n}\right)$ (or some of its specified subsets) ultimately becomes independent of $n$, if $n \rightarrow-\infty$. In many particular cases this is indeed the case (s. [2], [5], [6], [7]), partly even in a more general setting (s. [16]). On the other hand it is known for quite a while, that the asymptotic stability of associated primes also may fail in many even surprisingly "nice" cases by various examples (s. [6], [8] and also [3]), which rely on the constructions given in [20] and [21].

Another related question is, whether for fixed $i \in \mathbb{N}_{0}$ certain numerical invariants of the $R_{0}$-modules $H_{R_{+}}^{i}(M)_{n}$ ultimately become constant if $n \rightarrow-\infty$. A number of such asymptotic stability results for numerical invariants are indeed known (s. [4], [9], [10] and also [14]).

[^0]The oldest - and most challenging - question around the asymptotic behaviour of cohomology was the so-called tameness problem, that is the question, whether for fixed $i \in \mathbb{N}_{0}$ the $R_{0}$-modules $H_{R_{+}}^{i}(M)_{n}$ are either always vanishing for all $n \ll 0$ or always non-vanishing for all $n \ll 0$. This question seems to have raised already in relation with Marley's paper [18]. In a number of cases, this tameness problem was shown to have an affirmative answer (s. [3], [7], [17], [19]).

Nevertheless by means of a duality result for bigraded modules given in [15], Cutkosky and Herzog [12] constructed an example which shows that the tameness-problem can have a negative answer also. In [13] an even more striking counter-example is given: a Reesring $R$ of a three-dimensional local domain $R_{0}$ of dimension 4, which is essentially of finite type over a field such that the graded $R$-module $H_{R_{+}}^{2}(R)$ is not tame.

The present paper is devoted to the study of the tame loci $\mathfrak{T}^{i}(M)$ of $M$, that is the sets of all primes $\mathfrak{p}_{0} \in \operatorname{Spec}\left(R_{0}\right)$ for which the graded $R_{\mathfrak{p}_{0}}$-module $H_{R_{+}}^{i}(M)_{\mathfrak{p}_{0}} \cong H_{\left(R_{\mathfrak{p}_{0}}\right)_{+}}^{i}\left(M_{\mathfrak{p}_{0}}\right)$ is tame. These loci have been studied already in [19]. We restrict ourselves to the case in which the base ring $R_{0}$ is essentially of finite type over a field, as in this situation asymptotic stability of associated primes holds in codimension $\leq 2$. As shown by ChardinJouanolou, this latter asymptotic stability result holds under the weaker assumption that $R_{0}$ is a homomorphic image of a Noetherian ring which is locally Gorenstein (oral communication by M. Chardin). So all results of our paper remain valid if $R_{0}$ is subject to this weaker condition.
One expects, that in such a specific situation the tame loci $\mathfrak{T}^{i}(M)$ show some "usual" well-behaviour, like being open for example. But as we shall see in Example 2.5 this is wrong in general. Namely, using the counter-example given in [13] we construct an example of graded $R$-module $M$ of dimension 4 whose 2-nd tame locus $\mathfrak{T}^{2}(M)$ is not even stable under generalization. This shows in particular, that the tame loci $\mathfrak{T}^{i}(M)$ need not be open in codimension $\leq 4$. The example of [13] also shows, that the tame loci $\mathfrak{T}^{i}(M)$ need not contain all primes $\mathfrak{p}_{0} \in \operatorname{Spec}\left(R_{0}\right)$ of height 3 . Therefore we shall focus to the "border line case" and investigate the sets $\mathfrak{T}^{i}(M)^{\leq 3}$ of all primes $\mathfrak{p}_{0} \in \mathfrak{T}^{i}(M)$ of height $\leq 3$.

In Section 2 of this paper we recall a few basic facts on the asymptotic stability of associated primes which shall be used constantly in our arguments. In this section we also introduce the so called critical sets $C^{i}(M) \subset \operatorname{Spec}\left(R_{0}\right)$ which consist of primes of height 3 and have the property that all primes $\mathfrak{p}_{0} \notin C^{i}(M)$ of height $\leq 3$ belong to the tame locus $\mathfrak{T}^{i}(M)$ (s. Proposition $2.8(\mathrm{~b})$ ). Moreover the finiteness of the set $C^{i}(M)$ has the particularly nice consequence that $M$ is uniformly tame at level $i$ in codimension $\leq 3$, e.g. there is an integer $n_{0}$ such that for each $\mathfrak{p}_{0} \in \mathfrak{T}^{i}(M) \leq 3$ the $\left(R_{0}\right)_{\mathfrak{p}_{0}}$-module $\left(H_{R_{+}}^{i}(M)_{n}\right)_{\mathfrak{p}_{0}}$ is either vanishing for all $n \leq n_{0}$ or non-vanishing for all $n \leq n_{0}$ (s. Proposition 2.8 (c)).

In Section 3 we give some finiteness criteria for the critical sets $C^{i}(M)$. Here, we assume in addition that the base ring $R_{0}$ is a domain, so that the intersection $\mathfrak{a}^{i}(M)$ of all non-zero primes $\mathfrak{p}_{0} \subset R_{0}$ which are associated to $H_{R_{+}}^{i}(M)$ is a non-zero ideal by a result of [5]. Our main result says, that the critical set $C^{i}(M)$ is finite, if $\mathfrak{a}^{i}(M)$ contains a quasi-non-zero divisor with respect to $M$ (s. Theorem 3.4). This obviously
applies in particular to the case in which $M$ is torsion-free as an $R_{0}$-module in all large degrees or at all (s. Corollary 3.5 resp. Corollary 3.7). In order to force a situation as required in Theorem 3.4 one is tempted to replace $M$ by $M / \Gamma_{(x)}(M)$ for some non-zero element $x \in R_{0}$. We therefore give a comparison result for the critical sets $C^{i}(M)$ and $C^{i}\left(M / \Gamma_{(x)}(M)\right)$ (s. Proposition 3.7). As an application we prove that the critical sets $C^{i}(M)$ are finite if $R_{0}$ is a domain and the $R_{0}$-module $M$ asymptotically satisfies some weak "unmixedness condition" (s. Corollary 3.8).

In our final Section 4 we give a few conditions for the tameness at level $i$ in codimension $\leq 3$ in terms of the "asymptotic smallness" of the graded $R$-modules $H_{R_{+}}^{i-1}(M)$ and $H_{R_{+}}^{i-2}(M)$. We first prove that all primes $\mathfrak{p}_{0} \subset R_{0}$ of height $\leq 3$ belong to the tame locus $\mathfrak{T}^{i}(M)$, provided that $\operatorname{dim}_{R_{0}}\left(H_{R_{+}}^{i-1}(M)_{n}\right) \leq 1$ and $\operatorname{dim}_{R_{0}}\left(H_{R_{+}}^{i-2}(M)_{n}\right) \leq 2$ for all $n \ll 0$ (s. Theorem 4.2). In addition we show that $M$ is tame at almost all primes $\mathfrak{p}_{0} \subset R_{0}$ of height $\leq 3$ provided that $R_{0}$ is a domain and $\operatorname{dim}_{R_{0}}\left(H_{R_{+}}^{i-1}(M)_{n}\right) \leq 0$ for all $n \ll 0$ (s. Theorem 4.4). We actually prove in both cases slightly sharper statements namely: the corresponding graded $R_{\mathfrak{p}_{0}}$-modules $H_{R_{+}}^{i}(M)_{\mathfrak{p}_{0}}$ are not only tame, but even what we call almost Artinian. Using this terminology we get in particular the following conclusion. If $R_{0}$ is a domain and the graded $R$-module $H_{R_{+}}^{i-1}(M)$ is almost Artinian, then for almost all primes $\mathfrak{p}_{0} \in \operatorname{Spec}\left(R_{0}\right)$ of height $\leq 3$ either the $\left(R_{0}\right)_{\mathfrak{p}_{0}}$-module $\left(H_{R_{+}}^{i}(M)_{n}\right)_{\mathfrak{p}_{0}}$ is of dimension $>0$ for all $n \ll 0$ or else the graded $R_{\mathfrak{p}_{0}}$-module $H_{R_{+}}^{i}(M)_{\mathfrak{p}_{0}}$ is almost Artinian (s. Corollary 4.5).

## 2. Tame Loci in Codimension $\leq 3$

We keep the previously introduced notations.
Convention and Notation 2.1. (A) Throughout this section we convene that the base ring $R_{0}$ of our Noetherian homogeneous ring $R=R_{0} \bigoplus R_{1} \bigoplus \ldots$ is essentially of finite type over some field. So, $R_{0}=S^{-1} A$, where $A=K\left[a_{1}, \ldots, a_{s}\right]$ is a finitely generated algebra over some field $K, S \subseteq A$ is multiplicatively closed and there are finitely many elements $l_{1}, \ldots, l_{r} \in R_{1}$ such that $R=R_{0}\left[l_{1}, \ldots, l_{r}\right]$.
(B) If $n \in \mathbb{N}_{0}$ and $\mathfrak{P} \subseteq \operatorname{Spec}\left(R_{0}\right)$ we write

$$
\begin{aligned}
\mathfrak{P}^{=n} & :=\left\{\mathfrak{p}_{0} \in \mathfrak{P} \mid \operatorname{height}\left(\mathfrak{p}_{0}\right)=n\right\} \\
\mathfrak{P}^{\leq n} & :=\left\{\mathfrak{p}_{0} \in \mathfrak{P} \mid \operatorname{height}\left(\mathfrak{p}_{0}\right) \leq n\right\} .
\end{aligned}
$$

Reminder and Remark 2.2. (A) According to [1] for all $n \ll 0$ the set $\operatorname{Ass}_{R_{0}}\left(M_{n}\right)$ is equal to the set $\left\{\mathfrak{p} \cap R_{0} \mid \mathfrak{p} \in \operatorname{Ass}_{R} \cap \operatorname{Proj}(R)\right\}$ and hence asymptotically stable for $n \rightarrow \infty$, thus:

There is a least integer $m(M) \geq 0$ and a finite set $\operatorname{Ass}_{R_{0}}^{*}(M) \subseteq \operatorname{Spec}\left(R_{0}\right)$ such that $\operatorname{Ass}_{R_{0}}\left(M_{n}\right)=\operatorname{Ass}_{R_{0}}^{*}(M)$ for all $n>m(M)$.
(B) Let $f(M)$ denote the finiteness dimension of $M$ with respect to $R_{+}$, that is "the least integer" for which the $R$-module $H_{R_{+}}^{i}(M)$ is not finitely generated. Clearly we may write

$$
f(M)=\inf \left\{i \in \mathbb{N}_{0} \mid \sharp\left\{n \in \mathbb{Z} \mid H_{R_{+}}^{i}(M)_{n} \neq 0\right\}=\infty\right\} .
$$

(C) Keep in mind that $f(M)>0$. According to [BH, Theorem 5.6] we know that the set $\operatorname{Ass}_{R_{0}}\left(H_{R_{+}}^{f(M)}(M)_{n}\right)$ is asymptotically stable for $n \rightarrow-\infty$ :

There is a largest integer $n(M) \leq 0$ and a finite set $\mathfrak{U}(M) \subseteq \operatorname{Spec}\left(R_{0}\right)$ such that $\operatorname{Ass}_{R_{0}}\left(H_{R_{+}}^{f(M)}(M)_{n}\right)=\mathfrak{U}(M)$ for all $n \leq n(M)$.
In particular

$$
\operatorname{Supp}_{R_{0}}\left(H_{R_{+}}^{f(M)}(M)_{n}\right)=\overline{\mathfrak{U}(M)}, \quad \forall n \leq n(M)
$$

where - denotes the formation of the topological closure in $\operatorname{Spec}\left(R_{0}\right)$.
(D) According to [B1, Theorem 4.1] we know that for each $i \in \mathbb{N}_{0}$ the set $\operatorname{Ass}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{n}\right)$ is asymptotically stable in codimension $\leq 2$ for $n \rightarrow-\infty$ :

For each $i \in \mathbb{N}_{0}$ there is a largest integer $n^{i}(M) \leq 0$ and a finite set $\mathfrak{P}^{i}(M) \subseteq \operatorname{Spec}\left(R_{0}\right)^{\leq 2}$ such that $\operatorname{Ass}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{n}\right)^{\leq 2}=\mathfrak{P}^{i}(M)$ for all $n \leq$ $n^{i}(M)$.
Now, combining this with the observations made in parts (B) and (C) we obtain:

$$
\begin{aligned}
& (i) i<f(M) \Rightarrow \forall n \leq n^{i}(M): H_{R_{+}}^{i}(M)_{n}=0 \\
& (i i) \forall n \leq n(M): \operatorname{Supp}_{R_{0}}\left(H_{R_{+}}^{f(M)}(M)_{n}\right)=\overline{\mathfrak{U}(M)} ; \\
& (i i i) i>f(M) \Rightarrow \forall n \leq n^{i}(M): \operatorname{Supp}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{n}\right)^{\leq 2}=\overline{\mathfrak{P}^{i}(M)}
\end{aligned}
$$

Definition and Remark 2.3. (A) Let $i \in \mathbb{N}_{0}$. We say that the finitely generated graded $R$-module $M$ is (cohomologically) tame at level $i$ if the graded $R$-module $H_{R_{+}}^{i}(M)$ is tame, e.g.

$$
\exists n_{0} \in \mathbb{Z}:\left(\forall n \leq n_{0}: H_{R_{+}}^{i}(M)_{n}=0\right) \vee\left(\forall n \leq n_{0}: H_{R_{+}}^{i}(M)_{n} \neq 0\right)
$$

(B) Let $\mathfrak{p}_{0} \in \operatorname{Spec}\left(R_{0}\right)$. We say that $M$ is (cohomologically) tame at level $i$ in $\mathfrak{p}_{0}$ if the graded $R_{\mathfrak{p}_{0}}$-module $M_{\mathfrak{p}_{0}}$ is cohomologically tame at level $i$. In view of the graded flat base change property of local cohomology it is equivalent to say that the graded $R_{\mathfrak{p}_{0}}$-module $H_{R_{+}}^{i}(M)_{\mathfrak{p}_{0}}$ is tame.
(C) We define the $i$-th (cohomological) tame locus of $M$ as the set $\mathfrak{T}^{i}(M)$ of all primes $\mathfrak{p}_{0} \in \operatorname{Spec}\left(R_{0}\right)$ such that $M$ is (cohomologically) tame at level $i$ in $\mathfrak{p}_{0}$. So, if $\mathfrak{p}_{0} \in \operatorname{Spec}\left(R_{0}\right)$ we have

$$
\mathfrak{p}_{0} \in \mathfrak{T}^{i}(M) \Leftrightarrow \exists n_{0} \in \mathbb{Z}:\left\{\begin{array}{l}
\forall n \leq n_{0}: \mathfrak{p}_{0} \in \operatorname{Supp}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{n}\right) \\
\text { or } \\
\forall n \leq n_{0}: \mathfrak{p}_{0} \notin \operatorname{Supp}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{n}\right)
\end{array}\right.
$$

If $k \in \mathbb{N}_{0}$, the set $\mathfrak{T}^{i}(M)^{\leq k}$ is called the $i$-th (cohomological) tame locus of $M$ in codimension $\leq k$.
(D) Let $\mathfrak{U} \subseteq \operatorname{Spec}\left(R_{0}\right)$. We say that $M$ is (cohomologically) tame at level $i$ along $\mathfrak{U}$, if $\mathfrak{U} \subseteq \mathfrak{T}^{i}(M)$. We say that $M$ is uniformly (cohomologically) tame at level $i$ along $\mathfrak{U}$ if there is an integer $n_{0}$ such that for all $\mathfrak{p}_{0} \in \mathfrak{U}$

$$
\left(\forall n \leq n_{0}: \mathfrak{p}_{0} \in \operatorname{Supp}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{n}\right) \vee\left(\forall n \leq n_{0}: \mathfrak{p}_{0} \notin \operatorname{Supp}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{n}\right)\right.\right.
$$

(E) If $M$ is uniformly tame at level $i$ along the set $\mathfrak{U} \subseteq \operatorname{Spec}\left(R_{0}\right)$, then it is tame along $\mathfrak{U}$ at level $i$.

Remark 2.4. (A) According to Reminder and Remark 2.2 (D) (i) and (ii) we have $M$ is uniformly tame along $\operatorname{Spec}\left(R_{0}\right)$ at all levels $i \leq f(M)$.
(B) Using the notation of Reminder and Remark 2.2 (A) we write $\operatorname{Supp}_{R_{0}}^{*}(M):=$ $\overline{\operatorname{Ass}_{R_{0}}^{*}(M)}$ so that $\operatorname{Supp}_{R_{0}}\left(M_{n}\right)=\operatorname{Supp}_{R_{0}}^{*}(M)$ for all $n \geq m(M)$. Now, on use of Reminder and Remark 2.2 (D) it follows easily:
for all $i>f(M)$, the module $M$ is uniformly tame at level $i$ along the set $W^{i}(M):=\left(\operatorname{Spec}\left(R_{0}\right) \backslash \operatorname{Supp}_{R_{0}}^{*}(M)\right) \cup \overline{\mathfrak{P}^{i}(M)} \cup \operatorname{Spec}\left(R_{0}\right)^{\leq 2}$.
It follows in particular that $W^{i}(M) \subseteq \mathfrak{T}^{i}(M)$, and moreover, for all $i \in \mathbb{N}_{0}$ :
(i) $M$ is uniformly tame at level $i$ along the set $\operatorname{Spec}\left(R_{0}\right)^{\leq 2}$.
(ii) $\mathfrak{T}^{i}(M)^{\leq 3}$ is stable under generalization.

If the graded $R$-module $T=\bigoplus_{n \in \mathbb{Z}} T_{n}$ is tame, and $\mathfrak{p}_{0} \in \operatorname{Spec}\left(R_{0}\right)$, then the graded $R_{\mathfrak{p}_{0}-\text {-module }} T_{\mathfrak{p}_{0}}$ need not to be tame any more. This hints that in general the loci $\mathfrak{T}^{i}(M)$ could be non-stable under generalization. We now present such an example.

Example 2.5. Let $K$ be algebraically closed. Then according to [CCHS], there exists a normal homogeneous Noetherian domain $R^{\prime}=\bigoplus_{n \geq 0} R_{n}^{\prime}$ of dimension 4 such that ( $R_{0}^{\prime}, \mathfrak{m}_{0}^{\prime}$ ) is local, of dimension 3 with $R_{0}^{\prime} / \mathfrak{m}_{0}^{\prime}=K$ and such that for all negative integers $n$ we have $H_{R_{+}^{\prime}}^{2}\left(R^{\prime}\right)_{n}=K^{2}$ if $n$ is even and $H_{R_{+}^{\prime}}^{2}\left(R^{\prime}\right)_{n}=0$ if $n$ is odd.

Now, let $l_{1}, \ldots, l_{r} \in R_{1}^{\prime}$ be such that $R_{1}^{\prime}=\sum_{i=1}^{r} R_{0}^{\prime} l_{i}$. Let $x, x_{1}, \ldots, x_{r}$ be indeterminates, let $R_{0}$ denote the 4-dimensional local domain $R_{0}^{\prime}[x]_{\left(\mathfrak{m}_{0}^{\prime}, x\right)}$ with maximal ideal $\mathfrak{m}_{0}:=$ $\left(\mathfrak{m}_{0}^{\prime}, x\right) R_{0}^{\prime}$, consider the homogeneous $R_{0}$-algebras $R:=R_{0}\left[x_{1}, \ldots, x_{r}\right]$ and $\bar{R}:=R_{0} \otimes_{R_{0}^{\prime}} R^{\prime}$ together with the surjective graded homomorphism of $R_{0}$-algebras

$$
\Phi: R=R_{0}\left[x_{1}, \ldots, x_{r}\right] \rightarrow \bar{R} ; \quad x_{i} \mapsto 1_{R_{0}} \otimes l_{i} .
$$

Now, let $\alpha \in \mathfrak{m}_{0}^{\prime} \backslash\{0\}$, let $t$ be a further indeterminate, consider the Rees algebra

$$
S=R_{0}[x t,(x+\alpha) t]=\bigoplus_{n \geq 0}\left((x, x+\alpha) R_{0}\right)^{n}
$$

and the surjective graded homomorphism of $R_{0}$-algebras

$$
\Psi: R \rightarrow S, \quad x_{1} \mapsto x t, \quad x_{2} \mapsto(x+\alpha) t, \quad x_{i} \mapsto 0 \text { if } i \geq 3
$$

We consider $\bar{R}$ and $S$ as graded $R$-modules by means of $\Phi$ and $\Psi$ respectively. Then $M:=\bar{R} \oplus S$ is a finitely generated graded $R$-module which is, in addition, torsion-free over $R_{0}$.

By the graded base ring independence and flat base change properties of local cohomology we get isomorphisms of graded $R$-modules

$$
H_{R_{+}}^{2}(\bar{R}) \cong R_{0} \otimes_{R_{0}^{\prime}} H_{R_{+}^{\prime}}^{2}\left(R^{\prime}\right), \quad H_{R_{+}}^{2}(S) \cong H_{S_{+}}^{2}(S) .
$$

As $\operatorname{cd}_{S_{+}}(S)=\operatorname{dim}\left(S / \mathfrak{m}_{0} S\right)=2$ we have $H_{S_{+}}^{2}(S)_{n} \neq 0$ for all $n \ll 0$. It follows that $H_{R_{+}}^{2}(M)_{n} \cong H_{R_{+}}^{2}(\bar{R})_{n} \oplus H_{S_{+}}^{2}(S)_{n} \neq 0$ for all $n \ll 0$ and so $M$ is tame at level 2 . In particular we have $\mathfrak{m}_{0} \in \mathfrak{T}^{2}(M)$.

Now, consider the prime $\mathfrak{p}_{0}:=\mathfrak{m}_{0}^{\prime} R_{0} \in \operatorname{Spec}\left(R_{0}\right)^{=3}$. Then, for each $n<0$ we have

$$
\left(H_{R_{+}}^{2}(\bar{R})_{n}\right)_{\mathfrak{p}_{0}} \cong\left(R_{0}\right)_{\mathfrak{m}_{0}^{\prime} R_{0}} \otimes_{R_{0}^{\prime}} H_{R_{+}^{\prime}}^{2}\left(R^{\prime}\right)_{n} \cong\left\{\begin{array}{cl}
K(x)^{2}, & \text { if } n \text { is even; } \\
0, & \text { if } n \text { is odd }
\end{array}\right.
$$

Moreover $S_{\mathfrak{p}_{0}}=\left(R_{0}\right)_{\mathfrak{p}_{0}}\left[(x, x+\alpha)\left(R_{0}\right)_{\mathfrak{p}_{0}} t\right]=\left(R_{0}\right)_{\mathfrak{p}_{0}}[t]$ shows that $H_{S_{+}}^{2}(S)_{\mathfrak{p}_{0}} \cong H_{\left(S_{\left.\mathfrak{p}_{0}\right)_{+}}\right.}^{2}\left(S_{\mathfrak{p}_{0}}\right)=$ 0. It follows that $\left(H_{R_{+}}^{2}(M)_{n}\right)_{\mathfrak{p}_{0}}$ vanishes precisely for all odd negative integers $n$. So $H_{R_{+}}^{2}(M)_{\mathfrak{p}_{0}}$ is not tame and hence $\mathfrak{p}_{0} \notin \mathfrak{T}^{2}(M)$.

Observe in particular that here $\mathfrak{T}^{2}(M)=\mathfrak{T}^{2}(M)^{\leq 4}$ is not stable under generalization, and that $R_{0}$ is a domain and the graded $R$-module $M$ is torsion-free over $R_{0}$. On the other hand $\mathfrak{T}^{i}(M)^{\leq 3}$ is always stable under generalization, (cf. Remark 2.4 (B) (ii)).

One of our aims is to show that quite a lot can be said about the sets $\mathfrak{T}^{i}(M)^{\leq 3}$ if the base ring $R_{0}$ is a domain and $M$ is torsion-free over $R_{0}$. Indeed, we shall attack the problem in a more general context, beginning with the following result, in which $\mathfrak{P}^{i}(M)$ is defined according to Definition and Remark 2.2 (D).

Lemma 2.6. Let $i \in \mathbb{N}_{0}$ and let $n^{i}(M)$ be defined as in Reminder and Remark 2.2 (D). Then for all $n \leq n^{i}(M)$ we have

$$
C_{n}^{i}(M):=\left(\operatorname{Supp}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{n}\right) \backslash \overline{\mathfrak{P}^{i}(M)}\right)^{\leq 3}=\left(\operatorname{Ass}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{n}\right) \backslash \overline{\mathfrak{P}^{i}(M)}\right)^{=3}
$$

Proof. Let $n \leq n^{i}(M)$ and $\mathfrak{p}_{0} \in\left(\left(\operatorname{Supp}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{n}\right) \backslash \overline{\mathfrak{P}^{i}(M)}\right)^{\leq 3}\right.$. Then, there is some $\mathfrak{q}_{0} \in \operatorname{Ass}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{n}\right)$ with $\mathfrak{q}_{0} \subseteq \mathfrak{p}_{0}$. As $\mathfrak{p}_{0} \notin \overline{\mathfrak{P}^{i}(M)}$ we have $\mathfrak{q}_{0} \notin \mathfrak{P}^{i}(M)=$ $\operatorname{Ass}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{n}\right)^{\leq 2}$. It follows that height $\left(\mathfrak{q}_{0}\right) \geq 3$, hence $\mathfrak{q}_{0}=\mathfrak{p}_{0}$ and therefore

$$
\mathfrak{p}_{0} \in \operatorname{Ass}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{n}\right)^{=3} .
$$

This proves the inclusion " $\subseteq$ ". The converse inclusion is obvious.
Definition 2.7. Let $i \in \mathbb{N}_{0}$ and let $n^{i}(M)$ and $C_{n}^{i}(M)$ be as in Lemma 2.6. Then the set

$$
C^{i}(M):=\bigcup_{n \leq n^{i}(M)} C_{n}^{i}(M)
$$

is called the $i$ th critical set of $M$.
Proposition 2.8. Let $i \in \mathbb{N}_{0}$. Then
(a) $M$ is uniformly tame at level $i$ along the set

$$
\left[\left(\operatorname{Spec}\left(R_{0}\right) \backslash \operatorname{Supp}_{R_{0}}^{*}(M)\right) \cup \overline{\mathfrak{P}^{i}(M)} \cup \operatorname{Spec}\left(R_{0}\right)^{\leq 3}\right] \backslash C^{i}(M)
$$

(b) $\left.\mathfrak{T}^{i}(M)\right)^{\leq 3} \supseteq \operatorname{Spec}\left(R_{0}\right)^{\leq 3} \backslash C^{i}(M)$.
(c) The following statements are equivalent:
(i) $C^{i}(M)$ is a finite set;
(ii) $\mathfrak{T}^{i}(M)^{\leq 3}$ is open in $\operatorname{Spec}\left(R_{0}\right)^{\leq 3}$ and $M$ is uniformly tame at level $i$ along $\mathfrak{T}^{i}(M)^{\leq 3}$.
(iii) $\operatorname{Spec}\left(R_{0}\right)^{\leq 3} \backslash \mathfrak{T}^{i}(M)$ is finite and $M$ is uniformly tame at level $i$ along $\mathfrak{T}^{i}(M)^{\leq 3}$.

Proof. (a): This follows from Remark 2.4 (B) and the fact that

$$
\left[\bigcup_{n \leq n^{i}(M)} \operatorname{Supp}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{n}\right)\right]^{=3} \backslash \overline{\mathfrak{P}^{i}(M)}=C^{i}(M)
$$

(b): This is immediate by statement (a).
(c): "(i) $\Rightarrow$ (ii)": This follows easily by statements (a) and (b) and the fact that $M$ is uniformly tame at level $i$ along each finite subset $V \subseteq \mathfrak{P}^{i}(M)$.
"(ii) $\Rightarrow$ (iii)": Assume that statement (ii) holds. As $\operatorname{Spec}\left(R_{0}\right)^{\leq 2} \subseteq \mathfrak{T}^{i}(M)^{\leq 3}$ (s. Remark 2.4 (B) (i)) and as $\mathfrak{T}^{i}(M)^{\leq 3}$ is open in $\operatorname{Spec}\left(R_{0}\right)^{\leq 3}$ it follows that $\operatorname{Spec}\left(R_{0}\right)^{\leq 3} \backslash$ $\mathfrak{T}^{i}(M)^{\leq 3}$ is a finite set, and this proves statement (iii).
$"($ iii $) \Rightarrow$ (i)": Assume that statement (iii) holds so that $\operatorname{Spec}\left(R_{0}\right)^{\leq 3} \backslash \mathfrak{T}^{i}(M)$ is finite and $M$ is uniformly tame along $\mathfrak{T}^{i}(M)^{\leq 3}$. By statement (b) we have $\operatorname{Spec}\left(R_{0}\right)^{\leq 3} \backslash \mathfrak{T}^{i}(M)^{\leq 3} \subseteq$ $C^{i}(M) \subseteq \operatorname{Spec}\left(R_{0}\right)^{=3}$. It thus suffices to show that the set $F:=C^{i}(M) \cap \mathfrak{T}^{i}(M)$ is finite.

By uniform tameness there is some integer $n_{0} \leq n^{i}(M)$ such that for each $\mathfrak{p}_{0} \in F$ either

$$
\begin{aligned}
& (I) \mathfrak{p}_{0} \in \operatorname{Supp}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{n}\right) \text { for all } n \leq n_{0} ; \text { or } \\
& (I I) \mathfrak{p}_{0} \notin \operatorname{Supp}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{n}\right) \text { for all } n \leq n_{0} .
\end{aligned}
$$

Let $F_{I}:=\left\{\mathfrak{p}_{0} \in F \mid \mathfrak{p}_{0}\right.$ satisfies $\left.(I)\right\}$ and $F_{I I}:=\left\{\mathfrak{p}_{0} \in F \mid \mathfrak{p}_{0}\right.$ satisfies (II) \}. As $F=F_{I} \cup F_{I I}$ it suffices to show that $F_{I}$ and $F_{I I}$ are finite.
If $\mathfrak{p}_{0} \in F_{I}$, we have $\mathfrak{p}_{0} \in\left(\operatorname{Supp}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{n_{0}}\right) \backslash \overline{\mathfrak{P}^{i}(M)}\right)^{\leq 3}$. As $n_{0} \leq n^{i}(M)$ statement (a) implies $\mathfrak{p}_{0} \in \operatorname{Ass}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{n_{0}}\right)$. This proves that $F_{I} \subseteq \operatorname{Ass}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{n_{0}}\right)$ and thus $F_{I}$ is finite.

Clearly $F_{I I} \subseteq\left(\bigcup_{n_{0} \leq n \leq n^{i}(M)} \operatorname{Supp}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{n} \backslash \overline{\mathfrak{P}^{i}(M)}\right)^{\leq 3}\right.$. So, by statement (a) we see that $F_{I I}$ is contained in the finite set $\bigcup_{n_{0} \leq n \leq n^{i}(M)} \operatorname{Ass}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{n}\right)$.

## 3. Finiteness of Critical sets

We keep all notations and hypotheses of the previous section. So $R=\bigoplus_{n \in \mathbb{N}_{0}} R_{n}$ is a Noetherian homogeneous ring whose base ring $R_{0}$ is essentially of finite type over some field and $M$ is a finitely generated graded $R$-module. By statement (c) of Proposition 2.8 it seems quite appealing to look for criteria which ensure that the critical sets $C^{i}(M)$ are finite. This is precisely the aim of the present section.
Reminder 3.1. (A) Assume that $R_{0}$ is a domain. Then, according to [BFL, Theorem 2.5] there is an element $s \in R_{0} \backslash\{0\}$ such that the $\left(R_{0}\right)_{s}$-module $\left(H_{R_{+}}^{i}(M)\right)_{s}$ is torsionfree or 0 for all $i \in \mathbb{N}_{0}$. From this we conclude that (with the standard convention that $\left.\bigcap_{\mathfrak{p}_{0} \in \emptyset} \mathfrak{p}_{0}:=R_{0}\right):$

If $R_{0}$ is a domain, the ideal

$$
\mathfrak{a}^{i}(M):=\bigcap_{\mathfrak{p}_{0} \in \operatorname{Ass}_{R_{0}}\left(H_{R_{+}}^{i}(M)\right) \backslash\{0\}} \mathfrak{p}_{0}
$$

is $\neq 0$ for all $i \in \mathbb{N}_{0}$.
(B) Keep the notations and hypotheses of part (A). Then:

If $x \in \mathfrak{a}^{i}(M)$ and if $N$ is a second finitely generated graded $R$-module such that the graded $R_{x}$-modules $M_{x}$ and $N_{x}$ are isomorphic, then $x \in \mathfrak{a}^{i}(N)$.
This follows immediately from the fact, that for all $n \in \mathbb{Z}$ there is an isomorphism of $\left(R_{0}\right)_{x^{-}}$ modules $\left(H_{R_{+}}^{i}(M)_{n}\right)_{x} \cong\left(H_{R_{+}}^{i}(N)_{n}\right)_{x}$. For our purposes the most significant application of this observation is:

$$
\text { If } x \in \mathfrak{a}^{i}(M) \text { then } x \in \mathfrak{a}^{i}\left(M / \Gamma_{(x)}(M)\right)
$$

Notation 3.2. An element $x \in R_{0}$ is called a quasi-non-zero divisor with respect to (the finitely generated graded $R$-module) $M$ if $x$ is a non-zero divisor on $M_{n}$ for all $n \gg 0$. We denote the set of these quasi-non-zero divisors by $\mathrm{NZD}_{R_{0}}^{*}(M)$. Thus in the notation of Reminder and Remark 2.2 (A) we may write

$$
\mathrm{NZD}_{R_{0}}^{*}(M)=R_{0} \backslash \bigcup_{\mathfrak{p}_{0} \in \operatorname{Ass}_{R_{0}}^{*}(M)} \mathfrak{p}_{0} .
$$

Lemma 3.3. Let $i, k \in \mathbb{N}_{0}$ and assume that height $\left(\mathfrak{p}_{0}\right) \geq k$ for all $\mathfrak{p}_{0} \in \operatorname{Ass}{ }_{R_{0}}^{*}(M)$. Then, the set $\operatorname{Ass}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{n}\right)^{\leq k+2}$ is asymptotically stable for $n \rightarrow-\infty$. In particular, if $k>0$, then $C^{i}(M)$ is finite.
Proof. There is some integer $n_{0} \in \mathbb{Z}$ such that $\left(0:_{R_{0}} M_{\geq n_{0}}\right) \subseteq R_{0}$ is of height $\geq k$, where we use the notation $M_{\geq n_{0}}:=\bigoplus_{n \geq n_{0}} M_{n}$. As $H_{R+}^{i}(M)$ and $H_{R_{+}}^{i}\left(M_{\geq n_{0}}\right)$ differ only in finitely many degrees we may replace $M$ by $M_{\geq n_{0}}$ and hence assume that $\mathfrak{a}_{0} M=0$ for some ideal $\mathfrak{a}_{0} \subseteq R_{0}$ with height $\left(\mathfrak{a}_{0}\right) \geq k$. As height $\left(\mathfrak{p}_{0} / \mathfrak{a}_{0}\right) \leq \operatorname{height}\left(\mathfrak{p}_{0}\right)-k$ for all $\mathfrak{p}_{0} \in \operatorname{Var}\left(\mathfrak{a}_{0}\right)$ and in view of the natural isomorphisms of $R_{0}$-modules $H_{R_{+}}^{i}(M)_{n} \cong H_{\left(R / \mathrm{a}_{0} R\right)_{+}}^{i}(M)_{n}$ we now get a canonical bijection

$$
\operatorname{Ass}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{n}\right)^{\leq k+2} \leftrightarrow \operatorname{Ass}_{R_{0} / \mathrm{a}_{0}}\left(H_{R_{+}}^{i}(M)_{n}\right)^{\leq 2}
$$

for all $n \in \mathbb{Z}$. So, by Reminder and Remark 2.2 (D) the left hand side set is asymptotically stable for $n \rightarrow-\infty$. If $k>0$ the finiteness of $C^{i}(M)$ now follows easily from statement (a) of Lemma 2.6.

Let $i \in \mathbb{N}_{0}$. According to Remark 2.4 (B) we know that $M$ is uniformly tame at level $i$ in codimension $\leq 2$. we also know that $M$ need not be tame at level $i$ in codimension 3 . It is natural to ask, whether there are only finitely many primes $\mathfrak{p}_{0}$ of height 3 in $R_{0}$ such that $M$ is not tame at level $i$ in $\mathfrak{p}_{0}$ and whether outside of these "bad" primes the module $M$ is uniformly tame at level $i$ in codimension $\leq 3$. We aim to give a few sufficient criteria for this behaviour. The following theorem plays a crucial rôle in this respect.
Theorem 3.4. Let $i \in \mathbb{N}_{0}$. Assume that $R_{0}$ is a domain and that $\mathrm{NZD}_{R_{0}}^{*}(M) \cap \mathfrak{a}^{i}(M) \neq \emptyset$. Then $C^{i}(M)$ is a finite set. In particular the set $\operatorname{Spec}\left(R_{0}\right)^{\leq 3} \backslash \mathfrak{T}^{i}(M)$ consists of finitely many primes of height 3 and $M$ is uniformly tame at level $i$ along $\mathfrak{T}^{i}(M)^{\leq 3}$.
Proof. If $i \leq f(M)$ our claim is clear by Remark 2.4 (A) and Proposition 2.8 (c). So, let $i>f(M)$. Then in particular $i>1$.

Now, let $m(M) \in \mathbb{Z}$ be as in Reminder and Remark 2.2 (A) and set $N:=M_{\geq m(M)}:=$ $\bigoplus_{n \geq m(M)} M_{n}$. Then $\mathrm{NZD}_{R_{0}}^{*}(M)$ equals the set $\mathrm{NZD}_{R_{0}}(N)$ of non-zero divisors in $R_{0}$ on
$N$. As $i>1$ we have $H_{R_{+}}^{i}(N)=H_{R_{+}}^{i}(M)$ and hence $\mathfrak{a}^{i}(M)=\mathfrak{a}^{i}(N)$ and $C^{i}(M)=C^{i}(N)$. So, we may replace $M$ by $N$ and hence assume that $\operatorname{NZD}_{R_{0}}(M) \cap \mathfrak{a}^{i}(M) \neq \emptyset$.

Let $x \in \mathrm{NZD}_{R_{0}}(M) \cap \mathfrak{a}^{i}(M)$. Then, the short exact sequence $0 \longrightarrow M \xrightarrow{x} M \longrightarrow$ $M / x M \longrightarrow 0$ implies exact sequences

$$
H_{R_{+}}^{i}(M)_{n} \xrightarrow{x} H_{R_{+}}^{i}(M)_{n} \longrightarrow H_{R_{+}}^{i}(M / x M)_{n}
$$

for all $n \in \mathbb{Z}$. Now, let $\mathfrak{p}_{0} \in C^{i}(M)$ so that height $\left(\mathfrak{p}_{0}\right)=3$ (s. Lemma 2.6). Then, there is an integer $n \leq n^{i}(M)$ such that $\mathfrak{p}_{0}$ is a minimal associated prime of $H_{R_{+}}^{i}(M)_{n}$. We thus get an exact sequence of $\left(R_{0}\right)_{\mathfrak{p}_{0}}$-modules

$$
\left(H_{R_{+}}^{i}(M)_{n}\right)_{\mathfrak{p}_{0}} \xrightarrow{\frac{x}{1}}\left(H_{R_{+}}^{i}(M)_{n}\right)_{\mathfrak{p}_{0}} \xrightarrow{\varrho}\left(H_{R_{+}}^{i}(M / x M)_{n}\right)_{\mathfrak{p}_{0}}
$$

in which the middle module is of finite length $\neq 0$. As $x \in \mathfrak{a}^{i}(M) \subseteq \mathfrak{p}_{0}$ it follows by Nakayama that $\varrho$ is not the zero map. Therefore $\left(H_{R_{+}}^{i}(M / x M)_{n}\right)_{\mathfrak{p}_{0}}$ contains a non-zero $\left(R_{0}\right)_{\mathfrak{p}_{0}}$-module of finite length. It follows that $\mathfrak{p}_{0} \in \operatorname{Ass}_{R_{0}}\left(H_{R_{+}}^{i}(M / x M)_{n}\right)=3$. This shows that $C^{i}(M) \subseteq \operatorname{Ass}_{R_{0}}\left(H_{R_{+}}^{i}(M / x M)_{n}\right)=3$. So, by Lemma 3.3 the set $C^{i}(M)$ is finite.

Corollary 3.5. Let $i \in \mathbb{N}_{0}$. Assume that $R_{0}$ is a domain and that $M_{n}$ is a torsion-free $R_{0}$-module for all $n \gg 0$. Then the set $C^{i}(M)$ is finite. In particular, $M$ is uniformly tame at level $i$ along $\mathfrak{T}^{i}(M)^{\leq 3}$ and the set $\operatorname{Spec}\left(\mathrm{R}_{0}\right)^{\leq 3} \backslash \mathfrak{T}^{\mathrm{i}}(\mathrm{M})$ is finite.

Proof. By our hypotheses we have $\mathrm{NZD}_{R_{0}}^{*}(M)=R_{0} \backslash\{0\}$. By Reminder 3.1 (A) we have $\mathfrak{a}^{i}(M) \neq 0$. Now we conclude by Theorem 3.4.

Corollary 3.6. Let $i \in \mathbb{N}_{0}$ and assume that $R_{0}$ is a domain and $M$ is torsion-free over $R_{0}$. Then $M$ is uniformly tame at level $i$ along a set which is obtained by removing finitely many primes of height 3 from $\operatorname{Spec}\left(R_{0}\right) \leq 3$.
Proof. This is clear by Corollary 3.5.
Our next aim is to replace the requirement that $M_{n}$ is $R_{0}$ torsion-free for all $n \gg 0$, which was used in Corollary 3.5 by a weaker condition. We begin with the following finiteness result for certain subsets of critical sets:
Proposition 3.7. Let $R_{0}$ be a domain, let $i \in \mathbb{N}$ and let $x \in R_{0} \backslash\{0\}$ be such that $x \Gamma_{(x)}(M)=0$. Then
(a) $\left[C^{i}(M) \backslash\left[C^{i}\left(M / \Gamma_{(x)}(M)\right) \cup\left[\overline{\mathfrak{P}^{i-1}(M / x M)} \cap \overline{\mathfrak{P}^{i+1}\left(\Gamma_{(x)}(M)\right)}\right]=3\right]\right.$ is a finite set.
(b) If $x \in \mathfrak{a}^{i}(M)$, then the set $C^{i}\left(M / \Gamma_{(x)}(M)\right)$ and hence also the set

$$
\left.C^{i}(M) \backslash\left[\overline{\mathfrak{P}^{i-1}(M / x M)} \cap \overline{\mathfrak{P}^{i+1}\left(\Gamma_{(x)}(M)\right)}\right]^{3} \backslash C^{i}\left(M / \Gamma_{(x)}(M)\right)\right]
$$

is finite.
Proof. (a): Fix an integer $n_{0} \leq n^{i}(M / x M), n^{i}\left(\Gamma_{(x)}(M)\right), n^{i}(M), n^{i}\left(M / \Gamma_{(x)}(M)\right)$ and let $\mathfrak{p}_{0} \in C^{i}(M)$. Then $\mathfrak{p}_{0} \in \min \operatorname{Ass}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{n}\right)$ for some $n \leq n^{i}(M)$. If $n_{0} \leq n$, $\mathfrak{p}_{0}$ thus belongs to the finite set $\bigcup_{m \geq n_{0}} \operatorname{Ass}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{m}\right)$. So, let $n<n_{0}$. The graded short exact sequences

$$
0 \longrightarrow M / \Gamma_{(x)}(M) \longrightarrow M \longrightarrow M / x M \longrightarrow 0
$$

and

$$
0 \longrightarrow \Gamma_{(x)}(M) \longrightarrow M \longrightarrow M / \Gamma_{(x)}(M) \longrightarrow 0
$$

imply exact sequences

$$
\left(H_{R_{+}}^{i-1}(M / x M)_{n}\right)_{\mathfrak{p}_{0}} \longrightarrow\left(H_{R_{+}}^{i}\left(M / \Gamma_{(x)}(M)\right)_{n}\right)_{\mathfrak{p}_{0}} \longrightarrow\left(H_{R_{+}}^{i}(M)_{n}\right)_{\mathfrak{p}_{0}} \longrightarrow\left(H_{R_{+}}^{i}(M / x M)_{n}\right)_{\mathfrak{p}_{0}}
$$

and

$$
\left(H_{R_{+}}^{i}(M)_{n}\right)_{\mathfrak{p}_{0}} \longrightarrow\left(H_{R_{+}}^{i}\left(M / \Gamma_{(x)}(M)\right)_{n}\right)_{\mathfrak{p}_{o}} \longrightarrow\left(H_{R_{+}}^{i+1}\left(\Gamma_{(x)}(M)\right)_{n}\right)_{\mathfrak{p}_{o}} .
$$

Assume that $\mathfrak{p}_{0} \notin C^{i}\left(M / \Gamma_{(x)}(M)\right)$. Then $\left(H_{R_{+}}^{i}\left(M / \Gamma_{(x)}(M)\right)_{n}\right)_{\mathfrak{p}_{0}}$ either vanishes or is an $\left(R_{0}\right)_{\mathfrak{p}_{0}}$-module of infinite length. In the first case we have $\left(H_{R_{+}}^{i}(M)_{n}\right)_{\mathfrak{p}_{0}} \subseteq$ $\left(H_{R_{+}}^{i}(M / x M)_{n}\right)_{\mathfrak{p}_{0}}$. As $\left(H_{R_{+}}^{i}(M)_{n}\right)_{\mathfrak{p}_{0}}$ is a non-zero $\left(R_{0}\right)_{\mathfrak{p}_{0}}$-module of finite length it follows $\mathfrak{p}_{0} \in \operatorname{Ass}_{R_{0}}\left(H_{R_{+}}^{i}(M / x M)_{n}\right)$. So $\mathfrak{p}_{0}$ belongs to the finite set $\operatorname{Ass}_{R_{0}}\left(H_{R_{+}}^{i}(M / x M)\right)^{\leq 3}$ (s. Remark 3.3).

Assume now that $\left(H_{R_{+}}^{i}\left(M / \Gamma_{(x)}(M)\right)_{n}\right)_{\mathfrak{p}_{0}}$ is not of finite length. Then, by the above sequences $\left(H_{R_{+}}^{i-1}(M / x M)_{n}\right)_{\mathfrak{p}_{0}}$ and $\left(H_{R_{+}}^{i+1}\left(\Gamma_{(x)}(M)\right)_{n}\right)_{\mathfrak{p}_{0}}$ are both of infinite length, so that $\mathfrak{p}_{0} \in \overline{\mathfrak{P}^{i-1}(M / x M)}$ and $\mathfrak{p}_{0} \in \overline{\mathfrak{P}^{i+1}\left(\Gamma_{(x)}(M)\right)}$.
(b): According to Reminder 3.1 (B) we have $x \in \mathfrak{a}^{i}\left(M / \Gamma_{(x)}(M)\right)$. As moreover it holds $x \in \mathrm{NZD}_{R_{0}}\left(M / \Gamma_{(x)}(M)\right)$ our claim follows be Theorem 3.4.

Corollary 3.8. Let $i \in \mathbb{N}_{0}$, let $R_{0}$ be a domain and assume that height $\left(\mathfrak{p}_{0}\right) \geq 3$ for all $\mathfrak{p}_{0} \in \operatorname{Ass}_{R_{0}}^{*}(M) \backslash\left(\{0\} \cup \overline{\mathfrak{P}^{i}(M)}\right)$. Then $C^{i}(M)$ is a finite set. In particular the set $\operatorname{Spec}\left(R_{0}\right) \leq 3 \backslash \mathfrak{T}^{i}(M)$ is finite and $M$ is uniformly tame at level $i$ along the set $\mathfrak{T}^{i}(M)^{\leq 3}$.

Proof. Let $m(M) \in \mathbb{Z}$ be as in Reminder and Remark 2.2 (A) so that $\operatorname{Ass}_{R_{0}}\left(M_{n}\right)=$ $\operatorname{Ass}_{R_{0}}^{*}(M)$ for all $n \geq m(M)$. As $H_{R_{+}}^{i}(M)$ and $H_{R_{+}}^{i}\left(M_{\geq m(M)}\right)$ differ only in finitely many degrees we may replace $M$ by $M_{\geq m(M)}$ and hence assume that $\operatorname{Ass}_{R_{0}}^{*}(M)=\operatorname{Ass}_{R_{0}}(M)$. If $0 \notin \operatorname{Ass}_{R_{0}}(M)$ we get our claim by Lemma 3.3. So, let $0 \in \operatorname{Ass}_{R_{0}}(M)$ and consider the nonzero ideal $\mathfrak{b}_{0}:=\bigcap_{\mathfrak{p}_{0} \in \operatorname{Ass}_{R_{0}}(M) \backslash\{0\}} \mathfrak{p}_{0}$. Then $\operatorname{Ass}_{R_{0}}\left(M / \Gamma_{\mathfrak{b}_{0}}(M)\right)=\{0\}$ so that $M / \Gamma_{\mathfrak{b}_{0}}(M)$ is torsion-free over $R_{0}$. Let $x \in \mathfrak{b}_{0} \backslash\{0\}$ with $x \Gamma_{(x)}(M)=0$. Then it follows that $\Gamma_{\mathfrak{b}_{0}}(M)=\Gamma_{(x)}(M)$. By Corollary 3.5 we therefore obtain that $C^{i}\left(M / \Gamma_{(x)}(M)\right)$ is finite. According to Proposition 3.7 (a) it thus suffices to show that $C^{i}(M) \cap \overline{\mathfrak{P}}^{i+1}\left(\Gamma_{\mathfrak{b}_{0}}(M)\right)=3$ is finite. So, let $\mathfrak{q}_{0}$ be an element of this latter set. Then height $\left(\mathfrak{q}_{0}\right)=3$ and $\mathfrak{q}_{0} \notin \overline{\mathfrak{P}^{i}(M)}$. Moreover, there is a minimal prime $\mathfrak{p}_{0}$ of $\mathfrak{b}_{0}$ with $\mathfrak{p}_{0} \subseteq \mathfrak{q}_{0}$. In particular $\mathfrak{p}_{0} \in \operatorname{Ass}_{R_{0}}(M) \backslash\{0\}$ and $\mathfrak{p}_{0} \notin \overline{\mathfrak{P}^{i}(M)}$. So, by our hypothesis height $\left(\mathfrak{p}_{0}\right) \geq 3$, whence $\mathfrak{q}_{0}=\mathfrak{p}_{0} \in \operatorname{Ass}_{R_{0}}^{*}(M) \backslash\{0\}$. This shows that $\overline{C^{i}(M) \cap \mathfrak{P}^{i+1}\left(\Gamma_{\mathfrak{b}_{0}}(M)\right)}=3 \subseteq \operatorname{Ass}_{R_{0}}^{*}(M)$ and hence proves our claim.

Remark 3.9. Clearly Corollary 3.6 applies to the domain $R^{\prime}$ constructed in [13] (s. Example 2.5), taken as a module over itself. In this example we have in particular $\mathfrak{T}^{2}\left(R^{\prime}\right)^{\leq 3}=\operatorname{Spec}\left(R_{0}^{\prime}\right) \backslash\left\{\mathfrak{m}_{0}\right\}$. Moreover the uniform tameness of $R^{\prime}$ at level 2 along this set can be verified by a direct calculation.

## 4. Conditions on Neighbouring Cohomologies for Tameness in Codimensions $\leq 3$

We keep the hypotheses and notations of the previous sections. So $R=\bigoplus_{n \in \mathbb{N}_{0}} R_{n}$ is a homogeneous Noetherian ring whose base ring $R_{0}$ is essentially of finite type over a field and $M$ is a finitely generated graded $R$-module.

Our first result says that $M$ is tame in codimension $\leq 3$ at a given level $i \in \mathbb{N}$, if the two neigbouring local cohomology modules $H_{R_{+}}^{i-1}(M)$ and $H_{R_{+}}^{i-2}(M)$ are "asymptotically sufficiently small". (We set $H_{R_{+}}^{k}(\bullet):=0$ for $k<0$ ). We actually shall prove a more specific statement. To formulate it, we first introduce an appropriate notion.

Definition and Remark 4.1. (A) We say that a graded $R$-module $T=\bigoplus_{n \in \mathbb{Z}} T_{n}$ is almost Artinian if there is some graded submodule $N=\bigoplus_{n \in \mathbb{Z}} N_{n} \subseteq T$ such that $N_{n}=0$ for all $n \ll 0$ and such that the graded $R$-module $T / N$ is Artinian.
(B) A graded $R$-module $T$ which is the sum of an Artinian graded submodule and a Noetherian graded submodule clearly is almost Artinian. Moreover, the property of being almost Artinian passes over to graded subquotients.
(C) As $R_{0}$ is Noetherian and $R$ is homogeneous each graded almost Artinian $R$-module $T$ has the property that $\operatorname{dim}_{R_{0}}\left(T_{n}\right) \leq 0$ for all $n \ll 0$.
(D) Clearly an almost Artinian graded $R$-module is tame.

Now, we are ready to formulate and to prove the announced result.
Theorem 4.2. Let $i \in \mathbb{N}$ such that $\operatorname{dim}_{R_{0}}\left(H_{R_{+}}^{i-1}(M)_{n}\right) \leq 1$ and $\operatorname{dim}_{R_{0}}\left(H_{R_{+}}^{i-2}(M)_{n}\right) \leq 2$ for all $n \ll 0$. Then the following statements hold.
(a) The graded $R_{\mathfrak{p}_{0}}$-module $H_{R_{+}}^{i}(M)_{\mathfrak{p}_{0}}$ is almost Artinian for all $\mathfrak{p}_{0} \in \operatorname{Spec}\left(R_{0}\right)=3 \backslash \overline{\mathfrak{P}^{i}(M)}$.
(b) $\mathfrak{T}^{i}(M)^{\leq 3}=\operatorname{Spec}\left(R_{0}\right)^{\leq 3}$ and hence $M$ is tame at level $i$ in codimension $\leq 3$.

Proof. (a): Let $\mathfrak{p}_{0} \in \operatorname{Spec}\left(R_{0}\right)^{=3} \backslash \overline{\mathfrak{P}^{i}(M)}$. We consider the Grothendieck spectral sequence

$$
E_{2}^{p, q}=H_{\mathfrak{p}_{0}}^{p}\left(H_{R_{+}}^{q}(M)\right)_{\mathfrak{p}_{0}} \underset{p}{\Rightarrow} H_{\mathfrak{p}_{0}+R_{+}}^{p+q}(M)_{\mathfrak{p}_{0}} .
$$

By our assumption on the dimension of the $R_{0}$-modules $H_{R_{+}}^{i-1}(M)_{n}$ and $H_{R_{+}}^{i-2}(M)_{n}$, the $n$-th graded component $\left(E_{2}^{p, q}\right)_{n}$ of the graded $R_{\mathfrak{p}_{0}}$-module $E_{2}^{p, q}$ vanishes for all $n \ll 0$ if $(p, q)=(2, i-1)$ or $(p, q)=(3, i-2)$. Therefore

$$
\left(E_{2}^{0, i}\right)_{n} \cong\left(E_{\infty}^{0, i}\right)_{n}, \quad \forall n \ll 0
$$

As the graded $R_{\mathfrak{p}_{0}}$-module $E_{\infty}^{0, i}$ is a subquotient of the Artinian $R_{\mathfrak{p}_{0}}$-module $H_{\mathfrak{p}_{0}+R_{+}}^{i}(M)_{\mathfrak{p}_{0}}$, it follows by Definition and Remark 4.1 (B) that the graded $R_{\mathfrak{p}_{0}}$-module

$$
H_{\mathfrak{p}_{0} R_{\mathfrak{p}_{0}}}^{0}\left(H_{R_{+}}^{i}(M)_{\mathfrak{p}_{0}}\right) \cong H_{\mathfrak{p}_{0}}^{0}\left(H_{R_{+}}^{i}(M)\right)_{\mathfrak{p}_{0}}=E_{2}^{0, i}
$$

is almost Artinian. Now, since $\mathfrak{p}_{0} \notin \overline{\mathfrak{P}^{i}(M)}$ and $\mathfrak{p}_{0}$ is of height 3 we must have

$$
\operatorname{dim}_{R_{0_{\mathfrak{p}_{0}}}}\left(\left(H_{R_{+}}^{i}(M)_{\mathfrak{p}_{0}}\right)_{n}\right) \leq 0, \quad \forall n \ll 0 .
$$

and hence $H_{\mathfrak{p}_{0} R_{\mathfrak{p}_{0}}}^{0}\left(H_{R_{+}}^{i}(M)_{\mathfrak{p}_{0}}\right)$ and $H_{R_{+}}^{i}(M)_{\mathfrak{p}_{0}}$ coincide in all degrees $n \ll 0$. Therefore $H_{R_{+}}^{i}(M)_{\mathfrak{p}_{0}}$ is indeed almost Artinian.
(b): This follows immediately from statement (a), as $\overline{\mathfrak{P}^{i}(M)} \subseteq \mathfrak{T}^{i}(M)$ (s. Remark 2.4 (B)).

Remark 4.3. The domain $R^{\prime}$ constructed in [13] (s. Example 2.5), taken as a module over itself, clearly cannot satisfy the hypotheses of Theorem 4.1 with $i=2$ as it does not fulfill the corresponding conclusion of this theorem. Indeed a direct calculation shows that $\operatorname{dim}_{R_{0}^{\prime}}\left(H_{R_{+}^{\prime}}^{1}\left(R^{\prime}\right)_{n}\right)=3$ for all $n<0$.

Our next result says that the module $M$ is tame at level $i$ almost everywhere in codimension $\leq 3$ provided that $R_{0}$ is a domain and the local cohomology module $H_{R_{+}}^{i-1}(M)$ is "asymptotically very small". Again, we aim to prove a more specific result.
Theorem 4.4. Let $R_{0}$ be a domain and $i \in \mathbb{N}$ such that $\operatorname{dim}_{R_{0}}\left(H_{R_{+}}^{i-1}(M)\right) \leq 0$ for all $n \ll 0$. Then the following statements hold.
(a) There is a finite set $Z \subset \operatorname{Spec}\left(R_{0}\right)^{=3}$ such that the graded $R_{\mathfrak{p}_{0}}$-module $H_{R_{+}}^{i}(M)_{\mathfrak{p}_{0}}$ is almost Artinian for all $\mathfrak{p}_{0} \in \operatorname{Spec}\left(R_{0}\right)^{=3} \backslash\left(Z \cup \overline{\mathfrak{P}^{i}(M)}\right)$.
(b) $\operatorname{Spec}\left(R_{0}\right)^{\leq 3} \backslash \mathfrak{T}^{i}(M)$ is a finite subset of $\operatorname{Spec}\left(R_{0}\right)^{=3}$.

Proof. (a): According to Reminder 3.1 (A) there is an element $x \in \mathfrak{a}^{i}(M) \backslash\{0\}$ such that $x \Gamma_{(x)}(M)=0$. If we apply Lemma 3.3 with $k=1$ to the the $R$-module $M / x M$ (also with $i-1$ instead of $i$ ) and to the $R$-module $\Gamma_{(x)}(M)$ (with $i+1$ instead of $i$ ) we see that the three sets

$$
\operatorname{Ass}_{R_{0}}\left(H_{R_{+}}^{i-1}(M / x M)_{n}\right)^{\leq 3}, \quad \operatorname{Ass}_{R_{0}}\left(H_{R_{+}}^{i}(M / x M)_{n}\right)^{\leq 3}, \quad \operatorname{Ass}_{R_{0}}\left(H_{R_{+}}^{i}\left(\Gamma_{(x)}(M)_{n}\right)^{\leq 3}\right.
$$

are asymptotically stable for $n \rightarrow-\infty$. So, there is a finite set $Z \subset \operatorname{Spec}\left(R_{0}\right)^{=3}$ such that

$$
\operatorname{Ass}_{R_{0}}\left(H_{R_{+}}^{i-1}(M / x M)_{n}\right)=3 \cup \operatorname{Ass}_{R_{0}}\left(H_{R_{+}}^{i}(M / x M)_{n}\right)=3 \cup \operatorname{Ass}_{R_{0}}\left(H^{i+1}\left(\Gamma_{(x)}(M)_{n}\right)=3=Z\right.
$$

for all $n \ll 0$. Let

$$
\mathfrak{p}_{0} \in \operatorname{Spec}\left(R_{0}\right)^{=3} \backslash\left(Z \cup \overline{\mathfrak{P}^{i}(M)}\right) .
$$

We aim to show that the graded $R_{\mathfrak{p}_{0}}$-module $H_{R_{+}}^{i}(M)_{\mathfrak{p}_{0}}$ is almost Artinian. As $\mathfrak{p}_{0} \notin \overline{\mathfrak{P}^{i}(M)}$ and height $\left(\mathfrak{p}_{0}\right)=3$ it follows

$$
\left.\operatorname{lenght}_{\left(R_{0}\right)_{\mathfrak{p}_{0}}}\left(H_{R_{+}}^{i}(M)_{n}\right)_{\mathfrak{p}_{0}}\right)<\infty
$$

for all $n \ll 0$. As $\operatorname{dim}_{R_{0}}\left(H_{R_{+}}^{i-1}(M)_{n}\right) \leq 0$ for all $n \ll 0$ we also have

$$
\operatorname{length}_{\left(R_{0}\right)_{\mathfrak{p}_{0}}}\left(H_{R_{+}}^{i-1}(M)_{n}\right)_{\mathfrak{p}_{0}}<\infty
$$

for all $n \ll 0$. As $\mathfrak{p}_{0} \notin Z$ and $\operatorname{height}\left(\mathfrak{p}_{0}\right)=3$, we also can say

$$
\begin{gathered}
\Gamma_{\left.\mathfrak{p}_{0}\left(R_{0}\right)\right)_{\mathfrak{p}_{0}}}\left(\left(H_{R_{+}}^{i-1}(M / x M)_{n}\right)_{\mathfrak{p}_{0}}\right)=\Gamma_{\mathfrak{p}_{0}\left(R_{0}\right)_{\mathfrak{p}_{0}}}\left(\left(H_{R_{+}}^{i}(M / x M)_{n}\right)_{\mathfrak{p}_{0}}\right)= \\
\left.=\Gamma_{\mathfrak{p}_{0}\left(R_{0}\right)_{\mathfrak{p}_{0}}}\left(H_{R_{+}}^{i+1}\left(\Gamma_{(x)}(M)\right)_{n}\right)_{\mathfrak{p}_{0}}\right)=0, \quad \forall n \ll 0 .
\end{gathered}
$$

Now, as in the proof of Proposition 3.8 (a), the canonical graded short exact sequences

$$
0 \longrightarrow M / \Gamma(x)(M) \xrightarrow{\phi} M \longrightarrow M / x M \longrightarrow 0
$$

and

$$
0 \longrightarrow \Gamma_{(x)}(M) \longrightarrow M \xrightarrow{\pi} M / \Gamma_{(x)}(M) \longrightarrow 0
$$

respectively imply exact sequences of $\left(R_{0}\right)_{\mathfrak{p}_{0}}$-modules

$$
\begin{aligned}
&\left(H_{R_{+}}^{i-1}(M)_{n}\right)_{\mathfrak{p}_{0}} \longrightarrow\left(H_{R_{+}}^{i-1}(M / x M)_{n}\right)_{\mathfrak{p}_{0}} \longrightarrow \\
& \longrightarrow\left(H_{R_{+}}^{i}\left(M / \Gamma_{(x)}(M)\right)_{n}\right)_{\mathfrak{p}_{0}} \xrightarrow{\left(H_{R_{+}}^{i}(\phi)_{n}\right)_{\mathfrak{p}_{0}}}\left(H_{R_{+}}^{i}(M)_{n}\right)_{\mathfrak{p}_{0}} \longrightarrow\left(H_{R_{+}}^{i}(M / x M)_{n}\right)_{\mathfrak{p}_{0}}
\end{aligned}
$$

and

$$
\left(H_{R_{+}}^{i}(M)_{n}\right)_{\mathfrak{p}_{0}} \xrightarrow{\left(H_{R_{+}}^{i}(\pi)_{n}\right)_{\mathfrak{p}_{0}}}\left(H_{R_{+}}^{i}\left(M / \Gamma_{(x)}(M)\right)_{n}\right)_{\mathfrak{p}_{0}} \longrightarrow\left(H_{R_{+}}^{i+1}\left(\Gamma_{(x)}(M)\right)_{n}\right)_{\mathfrak{p}_{0}}
$$

for all $n \ll 0$. Keep in mind, that in the first of these sequences the first and the second but last module are of finite length for all $n \ll 0$, whereas the second and the last module are $\mathfrak{p}_{0}\left(R_{0}\right)_{\mathfrak{p}_{0}}$-torsion-free for all $n \ll 0$. Observe further, that in the second sequence the first module is of finite length and the last module is $\mathfrak{p}_{0}\left(R_{0}\right)_{\mathfrak{p}_{0}}$-torsion-free for all $n \ll 0$. So there is an integer $n(x)$ such that for each $n \leq n(x)$ we have the exact sequence

$$
0 \longrightarrow\left(H_{R_{+}}^{i-1}(M / x M)_{n}\right)_{\mathfrak{p}_{0}} \longrightarrow\left(H_{R_{+}}^{i}\left(M / \Gamma_{(x)}(M)\right)_{n}\right)_{\mathfrak{p}_{0}} \xrightarrow{\left(H_{R_{+}}^{i}(\phi)_{n}\right)_{\mathfrak{p}_{0}}}\left(H_{R_{+}}^{i}(M)_{n}\right)_{\mathfrak{p}_{0}} \longrightarrow 0
$$

and the relation

$$
\left.\left.\operatorname{Im}\left(H_{R_{+}}^{i}(\pi)_{n}\right)_{\mathfrak{p}_{0}}\right)=\Gamma_{\mathfrak{p}_{0}\left(R_{0}\right)_{\mathfrak{p}_{0}}}\left(H_{R_{+}}^{i}\left(M / \Gamma_{(x)}(M)\right)_{n}\right)_{\mathfrak{p}_{0}}\right)
$$

Thus, for all $n \leq n(x)$ the image of the composite map

$$
\left(H_{R_{+}}^{i}(\pi)_{n}\right)_{\mathfrak{p}_{0}} \circ\left(H_{R_{+}}^{i}(\phi)_{n}\right)_{\mathfrak{p}_{0}}:\left(H_{R_{+}}^{i}\left(M / \Gamma_{(x)}(M)\right)_{n}\right)_{\mathfrak{p}_{0}} \longrightarrow\left(H_{R_{+}}^{i}\left(M / \Gamma_{(x)}(M)\right)_{n}\right)_{\mathfrak{p}_{0}}
$$

is the torsion module $\Gamma_{\mathfrak{p}_{0}\left(R_{0}\right)_{\mathfrak{p}_{0}}}\left(\left(H_{R_{+}}^{i}\left(M / \Gamma_{(x)}(M)\right)_{n}\right)_{\mathfrak{p}_{0}}\right)$. As the composite map $\pi \circ \phi$ : $\left.M / \Gamma_{(x)}(M) \longrightarrow M / \Gamma_{(x)}(M)\right)$ coincides with the multiplication map $x=x \operatorname{Id}_{M / \Gamma_{(x)}(M)}$ on $M / \Gamma_{(x)}(M)$ we end up with

$$
\Gamma_{\mathfrak{p}_{0}\left(R_{0}\right)_{\mathfrak{p}_{0}}}\left(\left(H_{R_{+}}^{i}\left(M / \Gamma_{(x)}(M)\right)_{n}\right)_{\mathfrak{p}_{0}}\right)=x\left(H_{R_{+}}^{i}\left(M / \Gamma_{(x)}(M)\right)_{n}\right)_{\mathfrak{p}_{0}}, \quad \forall n \leq n(x) .
$$

Now, without affecting $\Gamma_{(x)}(M)$ we may replace $x$ by $x^{2}$ and thus get the equalities

$$
x\left(H_{R_{+}}^{i}\left(M / \Gamma_{(x)}(M)_{n}\right)_{\mathfrak{p}_{0}}=x^{2}\left(H_{R_{+}}^{i}\left(M / \Gamma_{(x)}(M)\right)_{n}\right)_{\mathfrak{p}_{0}}\right.
$$

for all $n \leq m(x):=\min \left\{n(x), n\left(x^{2}\right)\right\}$. Consequently, as $x \in \mathfrak{p}_{0}$ and as the $\left(R_{0}\right)_{\mathfrak{p}_{0}}$-modules $\left(H_{R_{+}}^{i}\left(M / \Gamma_{(x)}(M)\right)_{n}\right)_{\mathfrak{p}_{0}}$ are finitely generated, it follows by Nakayama that

$$
\Gamma_{\mathfrak{p}_{0}\left(R_{0}\right) \mathfrak{p}_{0}}\left(\left(H_{R_{+}}^{i}\left(M / \Gamma_{(x)}(M)\right)_{n}\right)_{\mathfrak{p}_{0}}\right)=0, \quad \forall n \ll 0 .
$$

Applying the functor $\Gamma_{\mathfrak{p}_{0}\left(R_{0}\right) \mathfrak{p}_{0}}(\bullet)$ to the above short exact sequences and keeping in mind that the right hand side module in these sequences is of finite length, we get the natural monomorphisms

$$
0 \longrightarrow\left(H_{R_{+}}^{i}(M)_{n}\right)_{\mathfrak{p}_{0}} \longrightarrow H_{\mathfrak{p}_{0}\left(R_{0}\right)_{\mathfrak{p}_{0}}}^{1}\left(H_{R_{+}}^{i-1}(M / x M)_{n}\right)_{\mathfrak{p}_{0}}, \quad \forall n \leq m(x)
$$

It is easy to see, that these monomorphisms are the graded parts of a homomorphism of graded $R_{\mathfrak{p}_{0}}$-modules. Moreover, as $\operatorname{dim}\left(\left(R_{0} / x R_{0}\right)_{\mathfrak{p}_{0}}\right) \leq 2$ the graded $R_{\mathfrak{p}_{0}}$-module

$$
H_{\mathfrak{p}\left(R_{0}\right)_{\mathfrak{p}_{0}}}^{1}\left(H_{R_{+}}^{i-1}(M / x M)_{\mathfrak{p}_{0}}\right) \cong H_{\mathfrak{p}_{0}\left(R_{0} / x R_{0}\right)_{\mathfrak{p}_{0}}}^{1}\left(H_{(R / x R)_{\mathfrak{p}_{++}}}^{i-1}\left((M / x M)_{\mathfrak{p}_{0}}\right)\right)
$$

is Artinian (s. [10] Theorem 5.10). In view of the observed monomorphisms and by Definition and Remark 4.1 (B), this implies immediately, that the graded $R_{\mathfrak{p}_{0}}$-module $\left(H_{R_{+}}^{i}(M)\right)_{\mathfrak{p}_{0}}$ is almost Artinian.
(b): This follows immediately from statement (a), Reminder and Remark 4.1 (D) and Remark 2.4 (B).

This leads us immediately to the following observation.
Corollary 4.5. If $R_{0}$ is a domain and $i \in \mathbb{N}$ is such that the $R$-module $H_{R_{+}}^{i-1}(M)$ is almost Artinian, then the set of all primes $\mathfrak{p}_{0} \in \operatorname{Spec}\left(R_{0}\right)^{\leq 3} \backslash \overline{\mathfrak{P}^{i}(M)}$ for which the graded $R_{\mathfrak{p}_{0}}$ module $H_{R_{+}}^{i}(M)_{\mathfrak{p}_{0}}$ is not almost almost Artinian as well as the set $\operatorname{Spec}\left(R_{0}\right)^{\leq 3} \backslash \mathfrak{T}^{i}(M)$ are both finite subsets of $\operatorname{Spec}\left(R_{0}\right)=3$.

Proof. This is immediate by Theorem 4.4 and Definition and Remark 4.1 (C).

## References

1. BRODMANN, M.: Asymptotic depth and connectedness in projective schemes, Proc. AMS 108 (1990) 573-581.
2. BRODMANN, M.: A cohomological stability result for projective schemes over surfaces, J. reine angew. Math. 606 (2007) 179-192.
3. BRODMANN, M.: Asymptotic behaviour of cohomology : Tameness, supports and associated primes, in: S. Ghorpade, H. Srinivasan, J. Verma (Eds), "Commutative Algebra and Algebraic Geometry", Contemp. Math. 390 (2005) 31-61.
4. BÄR, R. and BRODMANN, M.: Asymptotic depth of twisted higher direct image sheaves, Proc. AMS 137 (2009) 1945-1950.
5. BRODMANN, M., FUMASOLI, S. and LIM, C.S.: Low codimensional associated primes of graded components of local cohomology modules, J. Alg., 275 (2004) 867-882.
6. BRODMANN, M., FUMASOLI, S., TAJAROD R.: Local cohomology over homogeneous rings with one-dimensional local base ring, Proc. AMS 131 (2003) 2977-2985.
7. BRODMANN, M. HELLUS, M.: Cohomological patterns of coherent sheaves over projective schemes, J.Pure Appl. Algebra 172 (2002) 165-182.
8. BRODMANN, M., KATZMAN, M. and SHARP, R.Y.: Associated primes of graded components of local cohomology modules, Trans. AMS 354 (2002) 4261-4283.
9. BRODMANN, M., ROHRER, F.: Hilbert-Samuel coefficients and postulation numbers of graded components of certain local cohomology modules, Proc. AMS 193 (2005) 987-993.
10. BRODMANN, M., ROHRER, F., SAZEEDEH, R.: Multiplicities of graded components of local cohomology modules, J.Pure Applied Algebra 197 (2005) 249-278.
11. BRODMANN, M., SHARP, R.Y.: Local cohomology : an algebraic introduction with geometric application, Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge, (1998).
12. CUTKOSKY, S.D., HERZOG. J.: Failure of tameness of local cohomology, J.Pure Applied Algebra 211 (2007) 428-432.
13. CHARDIN, M., CUTKOSKY, S.D., HERZOG, J., SRINIVASAN, H.: Duality and tameness, Michigan Math. J. 57 (in honour of Mel Hochster) (2008) 137-156.
14. HASSANZADEH, S.H., JAHANGIRI, M., ZAKERI, H.: Asymptotic behaviour and Artinian property of graded local cohomology modules, Comm. Algebra 37 (2009) 4097-4102.
15. HERZOG. J., RAHIMI, A.: Local duality for bigraded modules, Illinois J. Math. 51(1) (2007) 137 150.
16. JAHANGIRI, M. ZAKERI, H.: Local cohomology modules with respect to an ideal containing the irrelevant ideal, J.Pure Applied Algebra 213 (2009) 573-581.
17. LIM, C.S.: Tameness of graded local cohomology modules for dimension $R_{0}=2$ : the Cohen-Macaulay case, Menemui Mat. 26 (2004) 11-21.
18. MARLEY, T.: Finitely graded local cohomology and the depth of graded algebras, Proc. AMS 123 (1995) 3601-3607.
19. ROTTHAUS, C. and SEGA, L.M.: Some properties of graded local cohomology modules, J. Algebra 283 (2005) 232-247.
20. SINGH, A.K. : p-torsion elements in local cohomology modules, Math. Res. Letters 7, no. 2-3 (2000) 105-176.
21. SINGH, A.K. and SWANSON, I.: Associated primes of local cohomology modules and Frobenius powers, Intern. Math. Res. Notices No. 33 (2004) 1703-1733.

University of Zürich, Mathematics Institute, Winterthurerstrasse 190, 8057 Zürich.
E-mail address: brodmann@math.uzh.ch
Faculty of Mathematical Sciences and Computer, Tarbiat Moallem University, Tehran, Iran and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.Box 19395-5746, Tehran, Iran.

E-mail address: jahangiri.maryam@gmail.com


[^0]:    April 12, 2012.
    The second author was in part supported by a grant from IPM (No. 89130115).

