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Abstract. Let t ∈ N, let K be a field and let Vt
K denote the class of all algebraic vector

bundles over the projective space Pt
K .

The cohomology table of a bundle E ∈ Vt
K is defined as the family of non-negative integers

hE :=
(
hi(Pt

K , E(n))
)
(i,n)∈N0×Z

. A set S ⊆ {0, . . . , t}×Z is said to be a bounding pattern for

the cohomology of vector bundles over Pt
K , if for each family (h(i,n))(i,n)∈S of non-negative

integers, the set of cohomology tables

{hE | E ∈ Vt
K : hi

E(n) ≤ h(i,n) for all (i, n) ∈ S}
is finite. Our main result says that this is the case if and only if S contains a quasi-diagonal
of width t, that is a set of the form

{(i, ni)| i = 0, . . . , t} with integers n0 > n1 > · · · > nt.

1. Introduction

This note continues our investigation [BJL2], which was devoted to the the question ”What
bounds cohomology of a projective scheme X with coefficients in a coherent sheaf F ?” The
aim of the present paper – which is inspired by the “twin“ Master theses [C] and [K] – is
to study this question in the special case where X is a projective space over a field and the
coherent sheaf of coefficients F is locally free and hence an algebraic vector bundle.
Our aim is to show that the bounding patterns for the cohomology of vector bundles over
projective spaces are the same as the bounding patterns for the cohomology of coherent
sheaves over projective varieties. We namely shall prove that a set S ⊆ {0, . . . , t}×Z bounds
cohomology (in the sense of [BJL2]) in the class of all pairs (X,F) – where X is a projective
scheme over an Artinian ring and F is a coherent sheaf of OX-modules of dimension ≤ t – if
and only if it bounds cohomology in the class of all algebraic vector bundles over a projective
t-space over a given field K. To make this precise, we first introduce some notation and recall
some basic notions.

Notation 1.1. (A) By Z we denote the set of integers. If c ∈ Z we set Z≤c := {n ∈ Z | n ≤ c}
and Z≥c := {n ∈ Z | n ≥ c}. We write N := Z≥1 and N0 := Z≥0.
(B) Fix t ∈ N0 and let St be the class which consists of all pairs (X,F) in which X =
Proj(R) is a projective scheme induced by a Noetherian homogeneous ring R =

⊕
n≥0Rn =
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R0[x1, . . . , xr] (r ∈ N and x1, . . . , xr ∈ R1) over an Artinian base ring R0 and F is a coherent
sheaf of OX-modules with dim(F) ≤ t.
(C) For each pair (X,F) ∈ St, each non-negative integer i and each integer n let

hi
F(n) = hi(X,F(n)) := lengthR0

(H i(X,F(n))

denote the (finite) R0-length of the i-th cohomology group H i(X,F(n)) of X with coefficients
in the n-th twist F(n) of F .

Definition 1.2. (A) For (X,F) ∈ St we define the cohomology table of (X,F) as the family
of non-negative integers

hF := (hi
F(n))(i,n)∈N0×Z.

(B) We say that a subset S ⊆ {0, . . . , t}×Z bounds cohomology in the subclass C ⊆ St if for
each family (h(i,n))(i,n)∈S of non-negative integers h(i,n) ∈ N0 the set of cohomology tables

{hF | (X,F) ∈ C and ∀(i, n) ∈ S : hi
F(n) ≤ h(i,n)}

is finite. We express this also by saying that the set S ⊆ {0, . . . , t}×Z is a bounding pattern
for the cohomology in the class C.

Definition 1.3. (See [BJL2, Definition 4.2].) A subset T ⊂ N0×Z is called a quasi-diagonal
of width t, if there is a sequence of integers (ni)

t
i=0 with nt < nt−1 < · · · < n0 such that

T = {(i, ni) | i = 0, . . . , t}.

The main result of [BJL2] will allow us to say (see Theorem 2.3)

A subset S ⊆ {0, . . . , t} × Z bounds cohomology in St if and only if it contains a
quasi-diagonal of width t.

Clearly, if S ⊆ {0, . . . , t}×Z bounds cohomology in the class St, it does so in any subclass
C of St. Conversely, one also might ask for “natural small subclasses” C of St with the
property that a set S ⊆ {0, . . . , t} × Z which bounds cohomology in the subclass C does so
in the whole class St. The aim of this paper is to show that the algebraic vector bundles
over a projective space Pt

K form such natural small subclasses of St. To make this precise
we introduce the following notation.

Notation 1.4. For a field K we write

V t
K := {(X,F) ∈ St | X = Pt

K and F is locally free}

for the subclass of St which consists of all locally free sheaves of finite rank – hence of all
algebraic vector bundles – over the projective space Pt

K .

Now, fix a field K. Then, our main result says (see Theorem 4.1)

A subset S ⊆ {0, . . . , t} × Z bounds cohomology in V t
K if and only if it contains a

quasi-diagonal of width t.
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This obviously shows that the set S ⊆ {0, . . . , t} × Z bounds cohomology in the class St

if and only it it does so in the subclass V t
K of C (see Corollary 4.3).

It is natural to ask, whether in this statement one can replace the class V t
K by its subclass

indV t
K of indecomposable algebraic vector bundles over Pt

K . In general this is not true (see
Example 5.2). But under some additional conditions on the set S one can indeed replace the
class V t

K by its subclass indV t
K in the above equivalence, as we show in Corollary 5.3.

2. Bounding Patterns for the Cohomology of Projective Schemes

Throughout this section let t ∈ N0. We recall a few basic facts which were proved in
[BJL2] and we conclude from these that a subset S ⊆ {0, . . . , t} × Z bounds cohomology
in the class St (see Notation 1.1 (B) and Definition 1.2 (B)) if and only if it contains a
quasi-diagonal of width t (see Definition 1.3).

Reminder 2.1. (A) (See [BJL1, Definition 5.2].) Let Dt+1 denote the class of all pairs
(R,M) in which R =

⊕
n∈N0

Rn = R0[x1, . . . , xr] (r ∈ N0 and x1, . . . , xr ∈ R1) is a Noether-
ian homogeneous ring with Artinian base ring R0 and M =

⊕
n∈ZMn is a finitely generated

graded R-module with dim(M) ≤ t + 1.
(B) (See [BS, 17.1.4] for example.) If R =

⊕
n∈N0

Rn is a Noetherian homogeneous ring we

write R+ for the irrelevant ideal
⊕

n∈N Rn of R. Moreover by Di
R+

(•) we denote the i-th
right derived functor of the R+-transform functor DR+(•) = lim−→

n

HomR((R+)n, •).

Now, let (R,M) ∈ Dt+1. Then, for each i ∈ N0 the R-module Di
R+

(M) carries a natural

grading and for all n ∈ Z the n-th graded component Di
R+

(M)n of Di
R+

(M) is an R0-module

of finite length. Moreover Di
R+

(M) = 0 for all i > t and Di
R+

(M)n = 0 for all i > 0 and all
n � 0. In particular, for each pair (i, n) ∈ N0 × Z we may define the non-negative integer
diM(n) := lengthR0

(Di
R+

(M)n). This finally allows to define the cohomology table of (R,M)
as the family of non-negative integers

(diM(n))(i,n)∈N0×Z.

(C) We say that a subset S ⊆ {0, . . . , t} × Z bounds cohomology in the subclass C ⊆ Dt+1, if
for each family (d(i,n))(i,n)∈S of non-negative integers d(i,n) ∈ N0 the set of cohomology tables

{dM | (R,M) ∈ C and ∀(i, n) ∈ S : diM(n) ≤ d(i,n)}

is finite. We express this also by saying that the set S ⊆ {0, . . . , t}×Z is a bounding pattern
for the cohomology in the class C.
(D) According to [BJL2, Corollary 4.10] a set S ⊆ {0, . . . , t} × Z bounds cohomology in the
class Dt+1 if and only if S contains a quasi-diagonal of width t (see 1.3).

Remark 2.2. (A) (See [H, Chapter II] for example.) Keep in mind that there is a surjection

Φ : Dt+1 � St, (R,M) 7→ (Proj(R), M̃),
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where M̃ is the sheaf of OProj(R)-modules induced by the graded R-module M .
(B) (See [BS, Chapter 20] for example.) For each pair (R,M) ∈ Dt+1 and each pair
(i, n) ∈ N0×Z, the Serre-Grothendieck Correspondence yields an isomorphism of R0-modules

H i(Proj(R), M̃(n)) ∼= Di
R+

(M)n, so that hM̃ = dM . Hence, in particular we see that the

set S ⊆ {0, . . . , t} × Z bounds cohomology in the class C ⊆ Dt+1 if and only if it bounds
cohomology in the class Φ(C) ⊆ St.

Theorem 2.3. Let S ⊆ {0, . . . , t} × Z. Then S bounds cohomology in the class St if and
only if it contains a quasi-diagonal of width t.

Proof. This is clear by Reminder 2.1 (D) and Remark 2.2 (B). �

Remark 2.4. (A) If S ⊆ {0, . . . , t} contains a quasi-diagonal of width t, then according to
Theorem 2.3 it bounds cohomology in any subclass C ⊆ St.
(B) Let K be a field. If the set S contains a quasi-diagonal of width t, then it bounds
cohomology in the class V t

K of algebraic vector bundles over Pt
K .

(C) Observe, that all pairs (X,F) ∈ S0 have constant cohomology table hF . So a set
S ⊆ {0} × Z bounds cohomology in the class S0 if and only if S 6= ∅.

3. Combinatorial Patterns and Quasi-Diagonals

Notation 3.1. (A) Throughout this section, we fix a positive integer t ∈ N and a set
S ⊆ {0, . . . , t} × Z.
(B) We also consider the diagonal projection

% : {0, . . . , t} × Z −→ Z; (i, n) 7→ %(i, n) := i + n.

(C) If U ⊆ Z is a set of integers, we form inf U and supU within the set Z∪{−∞,∞}, with
the usual convention that inf ∅ :=∞ and sup ∅ := −∞.

Definition 3.2. (A) Let i ∈ {0, . . . , t}. We define the beginning and the end of the set S at
level i respectively by:

begi(S) := inf{n ∈ Z | (i, n) ∈ S};
endi(S) := sup{n ∈ Z | (i, n) ∈ S}.

(B) The height and the depth of S are defined respectively by:

height(S) := sup{i ∈ Z | ∃n ∈ Z : (i, n) ∈ S};
depth(S) := inf{i ∈ Z | ∃n ∈ Z : (i, n) ∈ S}.

The width of S is defined by

w(S) := height(S)− depth(S).

Reminder 3.3. (A) According to [BH, Definition 1.2], the set S is called a combinatorial
pattern, if:
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(a) depth(S) = 0;
(b) (i, n) ∈ S⇒ ∃j ≤ i : (j, n + i− j + 1) ∈ S;
(c) (i, n) ∈ S⇒ ∃k ≥ i : (k, n + i− k − 1) ∈ S;
(d) 0 < i ≤ t⇒ endi(S) <∞.

(B) The set S is called a minimal combinatorial pattern, if it is a combinatorial pattern and
if there is no combinatorial pattern S′ ( S strictly contained in S.
(C) Let S be a combinatorial pattern. Then, according to [BH, 2.1 and 2.2] the following
two statements hold:

(a) The induced projection map % : S→ Z (see Notation 3.1 (B)) is surjective.
(b) The map % : S→ Z is bijective if and only if the combinatorial pattern S is minimal.

(D) Let
Ft := {a := (aj)

p
j=1 | p ∈ N0 and 1 ≤ a1 ≤ a2 ≤ · · · ≤ ap ≤ t− 1}

be the set of all monotonically increasing sequences in {1, . . . , t − 1}. According to the
properties of cohomological patterns (a)–(d) of part (A) and statement (b) of part (C) there
is a bijection between the set Z × Ft and the set of all minimal combinatorial patterns of
width t. Indeed, for each b ∈ Z and each a = (a1, . . . , ap) ∈ Ft (p ∈ N0), the set

Mt
b,a :=

(
{0} × Z≥b

)
∪ {(aj, b− j − aj) | 1 ≤ j ≤ p} ∪

(
{t} × Z≤b−t−p−1

)
is a minimal combinatorial pattern of width t. Conversely, each minimal combinatorial
pattern of width t can be written as Mt

b,a with uniquely determined b ∈ Z and a ∈ Ft.

Our next result has been shown in [K].

Theorem 3.4. Assume that S contains no quasi-diagonal of width t, that begt(S) 6= −∞
and end0(S) 6= ∞. Then, there is a minimal combinatorial pattern M of width t such that
M ∩ S = ∅.

Proof. Assume that end0(S) = −∞, so that (0, n) /∈ S for all n ∈ Z. Chose an integer
c ≤ begt(S). Then, the minimal combinatorial pattern (see Reminder 3.3)

Mt
c+t,∅ =

(
{0} × Z≥c+t

)
∪
(
{t} × Z≤c−1

)
is disjoint to S.
Assume now that end0(S) 6= −∞, so that end0(S) ∈ Z. Set

b := end0(S) + 1 and c := begt(S).

First, assume that t = 1. As S contains no quasi-diagonal of width t, we then have c ≥ b− 1
so that M1

b,∅ =
(
{0} × Z≥b

)
∪
(
{1} × Z≤b−2

)
is disjoint to S.

So, assume from now on that t > 1. Our aim is to construct a sequence of integers
(a1, a2, . . . , ap) = a ∈ Ft with p ∈ N0 such that Mt

b,a ∩ S = ∅. To achieve this, we con-
struct a sequence of integers 0 =: a0 < a1 ≤ a2 ≤ · · · ≤ ai ≤ ai+1 ≤ · · · ≤ ap < t with the
following properties:

(1) (ai, b− i− ai) /∈ S for all i ∈ {0, . . . , p}.
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(2) If 0 ≤ i < p and ai < ai+1, then (j, b− i− j − 1) ∈ S for all j with ai ≤ j < ai+1.
(3) p ≥ b− c− t.

By our choice of b and a0, condition (1) is satisfied with 0 instead of p. If b− c− t ≤ 0 we
can set p = 0 and the requested sequence is constructed.
Thus, assume from now on that b− c− t > 0, so that c < b− t . As (0, b− 1), (t, c) ∈ S and
S contains no quasi-diagonal of width t, we have

1 ≤ a1 := inf{k ∈ N0 | (k, b− k − 1) /∈ S} ≤ t− 1.

For this choice of a1, condition (2) is satisfied with 1 instead of p.
Assume now, that the integers a0 < a1 ≤ . . . ≤ as < t (s ∈ N) are already constructed such
that conditions (1) and (2) are satisfied with s instead of p.
If s ≥ b − c − t, we set p := s and condition (3) is satisfied. So the requested sequence is
constructed in this case. Therefore, it remains to define as+1 if s < b − c − t. To do so, we
distinguish two cases.
If (as, b − s − as − 1) /∈ S, we set as+1 := as. Then, clearly, the sequence a0, a1, . . . , as+1

satisfies the requirements (1) and (2) with s + 1 instead of p and we have extended our
sequence in the requested way.
So, finally assume that (as, b− s− as − 1) ∈ S. We find integers 0 = i0 < i1 < . . . < ir < p
(r ∈ N0) such that

{i0, . . . , ir} = {i | 0 ≤ i < s and ai < ai+1}.
Set

T1 :=
r⋃

k=0

{(j, b− ik − j − 1) | aik ≤ j < aik+1} and

T2 := {(j, b− s− j − 1) | as ≤ j < t} ∪ {(t, c)}.
As s < b− c− t it follows that T1 ∪T2 is a quasi-diagonal of width t. Keep in mind that by
condition (1) we have T1 ⊆ S. As S does not contain a quasi-diagonal of width t, the set T2

cannot be contained in S. As (as, b−s−as−1), (t, c) ∈ T2∩S it follows that (k, b−k−1) /∈ S
for some k with as < k < t. Choose k minimal with this property and set as+1 := k. Then
the sequence a0, . . . , as, as+1 satisfies the properties (1) and (2) with s + 1 instead of p and
again we have extended our sequence in the requested way.
So altogether, the requested sequence is constructed. Setting a = (a1, . . . , ap) we easily see
by conditions (1) and (3) that indeed Mt

b,a ∩ S = ∅. �

4. Bounding Patterns for the Cohomology of Vector Bundles

Throughout this section, let t ∈ N0. We now are ready to prove the announced main
result.

Theorem 4.1. Assume that S contains no quasi-diagonal of width t and let K be a field.
Then, S does not bound cohomology in the class V t

K of algebraic vector bundles over Pt
K.
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Proof. The case t = 0 is obvious by Remark 2.4 (C). So, let t > 0. Assume first, that
begt(S) > −∞ and end0(S) < ∞. Then, by Theorem 3.4 there is a minimal combinatorial
pattern M of width t such that M ∩ S = ∅. According to [BH, Proposition 4.5] there is a
non-zero locally free indecomposable sheaf E ∈ V t

K such that

P(E) := {(i, n) ∈ N0 × Z | hi
E(n) 6= 0} = M.

As E⊕r ∈ V t
K and hi

E⊕r (n) = rhi
E(n) for all r ∈ N and all (i, n) ∈ N0 × Z it follows that the

set of cohomology tables {hE⊕r | r ∈ N} is an infinite subset of

{hF | F ∈ V t
K : hi

F(n) = 0 for all (i, n) ∈ S}.
Therefore S does not bound cohomology in the class V t

K in this case.
Assume now, that begt(S) = −∞ or end0(S) =∞. For each r ∈ N0, set

S[r] := S ∩
(
{0, . . . , t} × {−r,−r + 1, . . . , r − 1, r}

)
.

Observe that
S =

⋃
r∈N0

S[r].

Clearly, for each r ∈ N0 the set S[r] contains no quasi-diagonal of width t and moreover

satisfies begt(S[r]) ≥ −r and end0(S[r]) ≤ r. So, according to Theorem 3.4 for each r ∈ N0

there is a minimal combinatorial pattern M[r] of width t such that

M[r] ∩ S[r] = ∅.
According to [BH, Proposition 4.5], for each r ∈ N0 we find a locally free sheaf E[r] ∈ V t

K

such that
P(E[r]) := {(i, n) ∈ N0 × Z | hi

E[r](n) 6= 0} = M[r].

Now, fix a pair (i, n) ∈ S. Then, there is an integer s(i, n) ∈ N0 such that (i, n) ∈ S[r] for all
r ≥ s(i, n). Consequently hi

E[r](n) = 0 for all r ≥ s(i, n). Therefore

h(i,n) := sup{hi
E[r](n) | r ∈ N0} ∈ N0

and hence
hi
E[r](n) ≤ h(i,n), for all (i, n) ∈ S and all r ∈ N0.

Our next aim is to show that the set of minimal combinatorial patterns

T := {M[r] | r ∈ N0}
is not finite. Observe first, that for each r ∈ N0 there is some n(r) ∈ N0 such that
(t,−n), (0, n) ∈ M[r] for all n ≥ n(r). Assume now that T is finite, so that there are
finitely many integers r1, . . . , rk with T = {M[r1], . . . ,M[rk]}. As S = ∪r∈N0S[r] and by our
choice of the patterns M[r], we then obtain

S ∩
k⋂

j=1

M[rk] = ∅.

It follows that (t,−n), (0, n) /∈ S for all n ≥ m := max{n(rj) | j = 1, . . . , k}. But this
implies that beg0(S) ≥ −m and end0(S) ≤ m, a contradiction!
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So, the set T is infinite, as requested. As a consequence, {hE[r] | r ∈ N0} is an infinite subset
of

{hE | E ∈ V t
K : hi

E(n) ≤ h(i,n) for all (i, n) ∈ S}.
This shows that S does not bound cohomology in V t

K . �

Corollary 4.2. Let K be a field. Then the set S ⊆ {0, . . . , t}×Z bounds cohomology in the
class V t

K of algebraic vector bundles over Pt
K if and only if S contains a quasi-diagonal of

width t.

Proof. This is clear by Theorem 4.1 and by Remark 2.4 (B). �

Corollary 4.3. Let K be a field and let S ⊆ {0, . . . , t} × Z. Then, the following statements
are equivalent:

(i) S contains a quasi-diagonal of width t.
(ii) S bounds cohomology in the class St.

(iii) S bounds cohomology in the class V t
K.

Proof. This is clear by Theorem 2.3, Corollary 4.2 and Theorem 4.1. �

5. Indecomposable Vector Bundles

We keep the hypotheses and notations of the previous sections. It is natural to ask, whether
one can replace the class V t

K in Corollary 4.2 by the smaller class of all indecomposable vector
bundles over Pt

K . The present section is devoted to this question. We first introduce the
following notation.

Notation 5.1. Let t ∈ N0 and let K be a field. We write

indV t
K := {(Pt

K , E) ∈ V t
K | E is indecomposable }

for the class of all indecomposable algebraic vector bundles over the projective space Pt
K .

The following example shows that we can not expect in general that the class V t
K may be

replaced by its subclass indV t
K in Corollary 4.2.

Example 5.2. Let t = 1 and consider the set S := {(0,−1), (1,−1)} ⊂ {0, 1} × Z. Clearly,
S does not contain a quasi-diagonal. According to the algebraic form of Grothendieck’s
Splitting Theorem for vector bundles over the projective line (see [G, Théorème 2.1] or
[BS’, 20.5.9]), (up to isomorphism) the line bundles OP1

K
(n) with n ∈ Z are precisely the

indecomposable algebraic vector bundles over P1
K . So, (up to isomorphism) for each choice

of h(0,−1), h(1,−1) ∈ N0 the h(0,−1) + h(1,−1) + 1 bundles

OP1
K

(n) with − h(1,−1) ≤ n ≤ h(0,−1)

are precisely the indecomposable algebraic vector bundles E over the projective line P1
K which

satisfy hi
E(n) ≤ h(i,n) for all (i, n) ∈ S. Hence

#{hE | E ∈ indV1
K : ∀(i, n) ∈ S : hi

E(n) ≤ h(i,n)} ≤ h(0,−1) + h(1,−1) + 1.
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This clearly shows that the set S does indeed bound cohomology in the class indV1
K , although

it does not contain a quasi-diagonal.

On the other hand, we have he following result, in which we use the notation

Supp(h) := {(i, n) ∈ N0 × Z | h(i,n) 6= 0}
for a family h :=

(
h(i,n)

)
(i,n)∈N0×Z

of non-negative integers h(i,n).

Corollary 5.3. Let K be a field and let S ⊆ {0, . . . , t}×Z be such that one of the following
two conditions is satisfied

(1) begt(S) = −∞ or end0(S) =∞.
(2) There is a finite subset T ⊂ S such that T ∩ Supp(hE) 6= ∅ for all non-zero bundles
E ∈ indV t

K .

Then the set S bounds cohomology in the class indV t
K of indecomposable algebraic vector

bundles over Pt
K if and only if it contains a quasi-diagonal of width t.

Proof. Suppose that S does not contain a quasi-diagonal of width t. We have to show, that
S does not bound cohomology in the class indV t

K , provided that one of the two conditions
(1) or (2) holds.
Assume first, that condition (1) is satisfied. According to [BH, Proposition 4.5] the locally
free sheaf E[r] ∈ V t

K used in the proof of Theorem 4.1 can be chosen to be indecomposable
for all r ∈ N0. In doing so, we enforce the set {hE[r] | r ∈ N0} to be an infinite subset of the
set of cohomology tables

{hE | E ∈ indV t
K : hi

E(n) ≤ h(i,n) for all (i, n) ∈ S},
where, again h(i,n) := sup{hi

E[r](n) | r ∈ N0} (∈ N0) – as in the proof of Theorem 4.1. This

shows, that S does not bound cohomology in the subclass indV t
K and hence proves our claim

if condition (1) is satisfied.
Assume now that condition (2) holds. As S does not contain a quasi-diagonal of width t
it does not bound cohomology in the class V t

K , by Corollary 4.2. Consequently there is a
family

(
h(i,n)

)
(i,n)∈S such that the set of cohomology tables

U := {hE | E ∈ V t
K and hi

E(n) ≤ h(i,n) for all (i, n) ∈ S}
is not finite. Contrary to our claim, we assume now, that S bounds cohomology in the class
indV t

K of indecomposable algebraic vector bundles over Pr
K . Then, the set

indU := {hE | E ∈ indV t
K and hi

E(n) ≤ h(i,n) for all (i, n) ∈ S}
is finite. Moreover, by condition (2), each algebraic vector bundle E ∈ V t

K splits in at most

u :=
∑

(i,n)∈T

h(i,n) (∈ N0)

indecomposable summands. So, for each cohomology table h ∈ U we may write

h = h1 + . . . + hs, with 0 ≤ s ≤ u and h1, . . . , hs ∈ indU.
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As indU is finite, this yields the contradiction that U is finite. So, S does not bound
cohomology in the class indV t

K and this proves our claim. �

Remark 5.4. (A) Observe, that in Example 5.2 the set S does satisfy none of the two
conditions (1) or (2) of Corollary 5.3. Observe also, that in this example we did use the
classification of indecomposable algebraic vector bundles over P1

K . A slight modification of
the argument performed in Example 5.2 shows indeed, that a set S ⊆ {0, 1} × Z bounds
cohomology in the class indV1

K if and only if w(S) = 1 (see Definition 3.2 (B)).
(B) We do not know, whether there is a purely combinatorial necessary and sufficient con-
dition for the set S to bound cohomology in the class indV t

K of indecomposable algebraic
vector bundles over Pt

K if t > 1.
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E-mail address: brodmann@math.uzh.ch

E-mail address: a.cathomen@gmail.com

E-mail address: benikeller@access.uzh.ch


