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1. The Historic Roots and ... 
(1.1)  In 1955, in his seminal work “Faisceaux algébriques cohérents
(FAC)”, Serre introduced the notion of “coherent sheaf over an algebraic
variety” and developed a “cohomology theory for such varieties with
respect to coherent sheaves of coefficients”.

(1.2) This opened the door to the use of functorial methods in Algebraic
Geometry and thus initiated a new aera in this theory. It lead
Grothendieck to develop his revolutionary “scheme theoretic approach
to Algebraic Geometry” presented in his series of monographs
“Éléments de géométrie algébrique (EGA)”. 
(1.3) If X is a projective algebraic variety (over the algebraically closed
field K) and F is a coherent sheaf over X then, for each non-negative
integer i, the i-th cohomology group H^i(X,F) is a K-vector space of finite
dimension, say 

                                  h^i(X,F) := dim(H^i(X,F)). 

(1.4) Moreover, for each integer n the so-called “n-th twist” F(n) of
F is defined: another coherent sheaf over X.



  

… Cohomology Tables
(1.5) This provides us with an important “system of (non-negative)
numerical invariants” 

(*) h^i(X,F(n)) := dimH^i(X,F(n)) (i = 0,1,2,… ; n = … , -2,- 1,0,1, 2, …) 

of the pair (X,F). We thus get a “discrete skeleton of the
continuous object (X,F)”: the family of non-negative integers

(**) h(X,F) := {h^i(X,F(n)) II  i = 0,1,2,… ; n = … , -2, -1, 0, 1, 2, …}.

We call this family h(X,F) the “cohomology table of the pair (X,F)”.

(1.6) The study of these cohomology tables is a basic issue
of Algebraic Geometry. 

(1.7) Our aim is to present a few results on this subject. These are
an outspring of the long-term research project:

“What bounds cohomology of a projective scheme with
 coefficients in a coherent sheaf?” 
       



  

2. Reminders on Varieties and ...
(2.1) Let r a positive integer. Consider the projective r-space

  IP^r := {(a_0: a_1 : … : a_r) | all a_i in K, not all of them 0}.

Let K[x_0, x_1, … , x_r] denote the polynomial ring over the field K in the

given r+1 indeterminates x_0, x_1, … , x_r.    

(2.2) A projective algebraic variety X in IP^r is the common set of zeros
of (finitely many) homogeneous polynomials f_1,  f_2, … , f_t in 

K[x_1, x_2,… , x_r]. We then write X = V(f_1, f_2, …  , f_t).

Keep in mind, that the point p = (a_0: a_1: … : a_r) in IP^r belongs to the
variety X if and only if 

                      f_i(a_0,a_1,…, a_r) = 0 for i=1, 2, … , t.

(2.3) Although projective algebraic varieties are the basic object of our
investigation, our results can be understood without knowing the
theory of these varieties, which is “Projective Algebraic Geometry”.          
       



  

… Sheaves
(2.4) A coherent sheaf F over the projective variety X is given by a map,
which assigns to each (Zariski-) open set U of X an algebraic object F(U)
such that certain properties hold … : We omit further details!       

(2.5) A basic example of coherent sheaf over X is the so called structure
sheaf F = O_X of X. It assigns to each open subset U of X the ring of
regular (or rational) functions O_X(U) on U, hence the ring of all
functions f: U –> K which are locally given by

  f(a_0: a_1, … , a_r) = g(a_0, a_1, … , a_r)/h(a_0, a_1, … , a_n),

where g and h in K[x_1, x_2, … , x_r] are homogeneous of the same
degree and the occurring denominator h(a_0, a_1, … , a_n) is not 0.
 
(2.6) There is a natural notion of morphism of coherent sheaves over X.
The coherent sheaves and their morphisms form an Abelian Category. In
particular we can speak of short exact sequences and finite direct sums
of coherent sheaves over X. Moreover, the “functor F → F(X) of global 
sections” is left-exact. This makes coherent sheaves over X accessible
to a cohomology theory based on right derived functors.

(2.7) In our talk we shall not introduce this cohomology
theory. Instead we shall content ourselves to present results
obtained by this theory.     
 



  

3. Cohomology Tables and ...
(3.1) Let X be a projective variety over the algebraically closed field K and
let F be a non-zero coherent sheaf over X. Then the dimension of (X,F) is
a non-negative integer d, which can be characterized by the property

         d = dim(X,F) := max{i II H^i(X,F(n)) does not vanish for some n}.

So, the cohomology table of (X,F) can be presented as follows:



  

… Cohomological Patterns 
(3.2) Let dim(X,F) = d. Then, the cohomological pattern PH(X,F) of (X,F) is
defined as the set of pairs (i,n) for which H^i(X,F(n)) does not vanish.

(3.3) For all i > 0 and all n >> 0 it holds H^i(X,F(n)) = 0. This allows to
define the “Castelnuovo-Mumford regularity” of  (X,F), a basic invariant
of the pair (X,F):  

                           reg(X,F) := min{n II H^i(X,F(n-i))=0 for all I > 0}.



  

4. Structure of Cohomological
 Patterns and... 

(4.1) PROPOSITION (* - Hellus, 2002): The cohomological pattern P := PH(X,F) of
the pair (X,F) has the following properties:
(a) There are integers m and n with (0,m), (d,n) in P.
(b) If i>d, then (i,n) cannot be in P.
(c) If (i,n) in P, there is some j < i+1 such that (j,n+i-j+1) in P.
(d) If (i,n) in P, there is some k > i-1 such that (k,n+-k-1) in P.         
(e) If i>0, then (i,n) is not in P for all n>>0. 
(f) For each i either (i,n) in P for all n<<0 or else (i,n) not in P for all n<<0.  



  

           … their Realization
(4.2) From now on, we fix some non-negative integer d, and let Cl denote
the class of all pairs (X,F) for which X is a projective variety over some
algebraically closed field and F is a coherent sheaf over X such that
dim(X,F) = d. 

(4.3) From now on, we write ID : = {(i,n)  II  i = 0, 1, ... , d; n an integer} for
the range of indices of all cohomology tables h(X,F) of pairs (X,F) in Cl.

(4.4) Now, a subset P of ID is called a combinatorial pattern if it satifies
the properties (a) – (f) of Proposition 4.1. It is natural to ask, whether any
such combinatorial pattern is realized as the cohomological pattern
PH(X,F) of some pair (X,F) in CI. Indeed we have the following result: 

(4.5) PROPOSITION (* - Hellus, 2002):  For each combinatorial pattern P
contained in ID and each algebraically closed field K, there existst a coherent
sheaf over  the projective d-space IP^d over the field K such that P = PH(IP^d,F).   



  

 5. Cohomology Functions and… 
(5.1) Fix some non-negative integer i. Then, the function which maps n  
to h^i(X,F(n)) is called the i-th cohomology function of (X,F). 

(5.2) For each non-negative integer i, there is a polynomial p^i_(X,F) of
degree at most i, such that 
                        h^i(X,F(n)) = p^i_(X,F)(n) for all n << 0, 
the i-th Hilbert-Serre polynomial of (X,F). Moreover, the Hilbert-Serre
coregularity of (X,F) is defined by
         coreg(X,F) := max{c II h^i(X,F(n)) = p^i_(X,F)(n) for all n << 0. 

  



  

... Determinating Ranges  
(5.3) We call a subset R of  ID a determinating range, if for each pair (X,F)
in Cl the values h^i(X,F(n)) with (i,n) in R determine the full cohomology
table h(X,F) of this pair. 

(5.4) An example of a determinating range is sketched here. 

Observe, that this determinating range if finite.  So, a finite part of
the cohomology table h(X,F) determines that table completely!  



  

6. Bounding Ranges, ...
(6.1) Let (X,F) be in Cl. The precise computation of the single entries
h^i(X,F) of the cohomolgy table h(X,F) is usually very difficult. So,
determinating ranges are not of great use in most cases. Instead we
head for another concept, motivated by te following result:

(6.2) PROPOSITION (* - Jahangiri - Linh, 2010) Let R be a subset of ID and, for
each (X,F) in Cl let h(X,F)_R : = {h^i(X,F(n)) II (i,n) in R} denote the restriction of 
the cohomology table h(X,F) to the set of indices R. Then, the following
statements are equivalent:
(i) For each subclass S of Cl such that the set {h^i(X,F(n)) II (X,F) in S} is finite for
all (i,n) in R, the set  {h^i(X,F(n)) II (X,F) in S} is finite for all (i,n) in ID.
(ii) For each subclass S of Cl such that the set {h(X,F)_R II (X,F) in S} of restricted 
cohomoogy tables is finte, the set {h(X,F) II (X,F) in S} of unrestricted 
cohomology tables is finite, too.  

(6.3) A subset R of ID which satisfies the equivalent conditions (i) and (ii)
of  Propsition (6.2) is called a bounding range. 



  

... Quasi – Diagonals, ...
(6.4)  We call a subset Q of ID a Quasi-Diagonal if is of the of the form 
   Q = {(i,n_i)  II  i = 0, 1, 2, ... , d and d_0 > d_1 > d_2 > ... > d_n}.

(6.5)  THEOREM: (* - Jahangiri - Linh, 2010) [Structure of Bounding Ranges] A
subset R of ID is a bounding range, if and only if it contains a quasi-diagonal.



  

... Examples and ... 
(6.6) The simplest type of bounding range is shown below: A diagonal. 

Notably, a vertical in ID cannot be a bounding range if d > 0:  



  

... Bounding Properties 
(6.7) Unlike to determinating ranges, bounding ranges my be fairly small  
sets, namely just quasi-diagonals. Nevertheless, quasi-diagonals enjoy a
number of interesting properties which are indeed quite useful in the
search of bounds for the numbers h^i(X,F(n)) for all (i,n) in ID! We list a
few of these Bounding Properties of Quasi-Diagonals:

(6.8) THEOREM: (* - Jahangiri - Linh, 2010) Fix an arbitrary quasi-diagonal 
Q = {(i,n_i)  II  i = 0, 1, ..., d}. For each sequence of positive integers  
b := b_0, b_1, ... , b_d we introduce the notation 
                     C(Q,b) := { (X,F) in Cl  II h^i(X,F(n_i)) < b_i, i = 0, 1, ... d}.
Then, there are algorithms which, for each sequence b, allow to compute: 
(a) For all (i,n) in ID a positive integer b_(i,n) such that h^i(X,F(n)) < b_(i,n) for all
(X,F) in C(Q,b).  
(b) An upper bound for the set {reg(X,F) II (X,F) in C(Q,b)}.
(c) A lower bound for the set {coreg(X,F) II (X,F) in C(Q,b)}.
(d) An upper bound for the (finite!) cardinality  of the set {h(X,F) II (X,F) in C(Q,b)}. 

 

                                                  



  

7. Vector Bundles over IP^d
(7.1) A particularly important subclass of Cl is the subclass Vect of all
vector bundles over a projective d-space.  Vect is the class of all pairs 
(X,F) in Cl for which X is a projective d-space IP^d over an algebraically
closed field K and the coherent sheaf F is locally free, hence “locally a
direct sum of structure sheaves”. We do not explain more details!
 (7.2) On use of the so-called Vanishing Theorem of Severi-Enriques-
Zariski-Serre, the pairs (X,F) in Cl which belong to Vect may be
characterized cohomologically by saying that X must be some IP^d and
H^i(X,F(n)) = 0 whenever i < d and n << 0. This means, that the
cohomological patterns of pairs (X,F) in Vect are particularly simple. So,
the question arises, whether the bounding ranges in Vect have to satisfy
the same condition as the bounding ranges in the full class Cl. Indeed -
surprisingly - this is the case:     
(7.3) THEOREM: (* - Cathomen-Keller, 2014) A subset R of ID is a bounding
range in the class Vect of all vector bundles over some projective d-spcac if and
only if it contains a quasi-diagonal.       



  

8. Hilbert Schemes and ...
(8.1) We recall that the notion of (projective) scheme was introduced by
Grothendieck. It is a generalization of the notion of (projective) algebraic
variety. We do not explain more details! 

(8.2) Let (X,F) in Cl. Then, there is a polynomial p_(X,F) of degree d such
that for all integers n it holds
p_(X,F)(n) = h^0(X,F(n)) – h^1(X,F(n)) + h^2(X,F(n)) + (-1)^d h^d(X,F(n)),
the Hilbert-Serre Polynomial of (X,F).

(8.3) A coherent sheaf J of ideals over a projective algebraic variety is
given by  the condition that J(U) is an ideal of the ring O_X(U) for each
open subset U of X.  

(8.4) A particularly important projective scheme was introduced by
Grothendieck in 1962 - the so-called Hilbert Scheme.  Namely:  
Let p be a polynomial of degree d. Then, there is is a projective scheme
Hilb_p (called the Hilbert Scheme of p), which parametrizes all coherent
sheaves J of ideals over IP^d which satisfy p_(IP^d,J) = p.



  

... their Cohomological Strata 
(8.5) In 1966, Hartshorne proved his fundamental Connectivity Theorem
 for Hilbert Schemes, which says that the Hilbert scheme Hilb_p is
(rationally) connected. 
(8.6) In 1988, Gotzmann improved on this by his Connectivity Theorem
for  0-th Cohomolgical Hilbert Scheme Strata, which says: Let f be a
function which assigns to each integer n an integer f(n). Then, the subset  
    Hilb^0_(p,f) := {(IP^d,J) in Hilb_p  II h^0(IP^d,J(n)) > f(n) for all n}
of Hilb_p is (locally closed) and connected.

(8.7) Using techniques developed by Mall (2000) and Sbarra (2001), a
PhD student of mine could improve the Connectivity Theorem of
Gotzmann to the maximally possible extend:

(8.8) THEOREM (Fumasoli, 2007) Let f^i (i = 0, 1, ..., d) be functions which assign
to each integer n an integer f^i(n). Then each of the subsets
      Hilb_(p,f)^i := {(IP^d,J) in Hilb_p II h^i(IP^d,J(n)) > f^i(n) for all integers n}
of Hilb_p is (locally closed) and (rationally) connected.   


