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Abstract. In this survey on last passage times we propose a new viewpoint which
provides a unified approach to many different results which appear in the mathe-
matical finance literature and in the theory of stochastic processes. In particular
we are able to improve the assumptions under which some well known results are
usually stated. Moreover we give some new and detailed calculations for the com-
putation of the distribution of some large classes of last passage times. We have
kept in this survey only the aspects of the theory which we expect potentially to
be relevant for financial applications.

Notation

In this paper, (Ω,F , (Ft)t≥0,P) will denote a filtered probability space. C(R+,R)
is the space of continuous functions from R+ to R. D(R+,R) is the space of càdlàg
functions from R+ to R. If Y is a random variable, we denote indifferently by P[Y ] or
by EP[Y ] the expectation of X with respect to P. If (At)t≥0 is an increasing process,
as usual, the increasing limit of At, when t→∞, is denoted A∞.

If (Xt)t≥0 is a stochastic process, then X̄t denotes the running maximum supu≤tXu.
We also recall that a stochastic process (Xt)t≥0 is said to be of class (D) if the family
of random variables {|XT |11T<∞ : T a stopping time } is uniformly integrable.

We say that a nonnegative local martingale (Mt)t≥0 belongs to M0 if it satisfies
the following: (M̄t)t≥0 is continuous and M0 = 1, limt→∞Mt = 0.

We say that g is the end of a predictable or an optional set if

g = sup {t : (t, ω) ∈ Γ} ,
where Γ is a predictable or an optional set.

1. Introduction

Ends of optional sets, most commonly called ”last passage times”, are random
times which are not stopping times. For, instance if (Wt)t≥0 is a standard Brownian
motion, then

g = sup{t ≤ 1 : Wt = 0}
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is such a time.The distribution of this time was already studied by Paul Lévy in [19].
Another interesting example, which will play an important role in our discussion, can
be constructed as follows: let (Mt)t≥0 be a continuous nonnegative local martingale,
with M0 = 1 and limt→∞Mt = 0. Then

g = sup{t ≥ 0 : Mt = M̄t}, (1.1)

is another such time. As illustrated with the above two examples, last passage
times look into the future and that feature makes their analysis more delicate. The
standard theorems from martingale theory such as Doob’s optional stopping theorem
do not apply to them. They have nevertheless received some attention in stochastic
analysis (see e.g.the papers by Chung [8] and Azéma [1]). They play an important
role in the theory of enlargements of filtrations (see e.g. the works by Barlow [4],
Jeulin [16], Yor [40], Nikeghbali and Yor [30] or the monograph [11] for a survey), in
the characterizations of strong Brownian filtrations (see the monograph by Mansuy
and Yor [23] for details and references) and in path decompositions of diffusions (e.g.
[16] and [28]). One should mention that last passage times have also inspired some
fear because the standard martingale techniques do not apply to them, as noticed
by Kai Lai Chung ([8]):

For some reason the notion of a last exit time, which is manifestly
involved in the arguments, would not be dealt with openly and di-
rectly. This may be partially due to the fact that such a time is not
an ”optional” (or ”stopping”) time, does not belong to the standard
equipment, and so must be evaded at all costs.

Last passage times have also played an increasing role in financial modeling in
recent years, thus outlining the needs for a framework which would allow a systematic
study of them. They appear for instance in the seminal paper of Elliott, Jeanblanc
and Yor [13] on models of default risk (see also the recent book [15] for more references
towards this direction) or in the work by Imkeller [14] on insider trading. In these
works, examples of last passage times such as the last time some transient diffusion
hits some fixed level or the last time the standard Brownian motion hits zero before
some fixed time are considered; they do not contain statements which would hold
for any such time. On the other hand, in a series of very recent papers (which have
grown into the book [37]), Madan, Roynette and Yor ([21],[22]), have discovered that
the price of European put and call options for asset prices which can be modeled
by nonnegative and continuous martingales that vanish at infinity, can be expressed
in terms of the probability distributions of some last passage times. Their formulae
are very general and exhibit the striking feature of being model independent. More
precisely, let (Mt)t≥0 be a continuous and nonnegative local martingale, with M0 = 1
and limt→∞Mt = 0. Then Madan, Roynette and Yor prove that the price of a
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European put option for a risky asset modeled by (Mt), with strike K ≥ 0, is given
by

E[(K −Mt)+] = K P(gK ≤ t) (1.2)

where
gK = sup{s : Ms = K}. (1.3)

The above representation holds for instance if the underlying filtered probability
space (Ω,F , (Ft)t≥0,P) satisfies the usual assumptions, which are standard in the
mathematical finance literature. A formula similar to (1.2) holds as well for call
options but one needs to make some extra assumptions ([37], chapter 2 p. 21 and
p.24-25):

• the martingale (Mt)t≥0 must be a true martingale, i.e. E[Mt] = 1 for all t ≥ 0;
• the filtration (Ft)t≥0 satisfies Ft = σ(Ms, s ≤ t) and F = F∞ = σ(Ms, s ≥ 0).

If the above conditions hold, then it is shown in [37] that the price of the European
call option associated to (Mt)t≥0 and K ≥ 0 is given by

E[(Mt −K)+] = P(M)(gK ≤ t), (1.4)

where gK is defined by (1.3) and P(M) is the unique probability measure on (Ω,F∞)
satisfying

P(M)
|Ft = Mt.P|Ft . (1.5)

In fact, formula (1.4) suggests a natural approach to understand last passage times,
but it also reveals all the difficulties that can be attached to such times. Indeed in
the framework suggested in [37] and recalled above, formula (1.4) is not rigorously
correct. There are two issues that can fortunately be fixed:

• The measure P(M) does not always exist; one has to make extra assumptions of
topological nature on the filtration (Ft)t≥0. These conditions were introduced
by Parthasarathy in his book [31] and we shall call them (P ). We have
included them in the Appendix in order to concentrate exclusively on last
passage times in the main body of the paper. An important fact for now
is that the canonical path spaces C(R+,R) and D(R+,R), endowed with the
filtration Ft = σ(Xs, s ≤ t) and F∞ = σ(Xs, s ≥ 0), where (Xt)t≥0 is the

coordinate process satisfy condition (P ) and consequently the measure P(M)

exists.
• The other problem is caused by the fact that if one takes the usual augmen-

tation of the Wiener space with respect to the Wiener measure, then the
measure P(M) does not exist again (see the introduction of [24]). This is due

to the fact that since limt→∞Mt = 0, the measure P(M) is locally absolutely
continuous with respect to the Wiener measure but is globally singular with
respect to it, and putting all the negligible sets in F0 prevents such a measure
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from existing. On the other hand, without the usual assumptions, many re-
sults from the theory of stochastic processes do not hold or hold only almost
surely at best (e.g. the existence of an adapted, right continuous with left
limit version for martingales, the Doob-Meyer decomposition, the different
projections, stochastic integrals, etc.). For instance, it is shown in [24] that
without the usual augmentation on the Wiener space, there does not exist an
adapted and continuous version of the local time which is defined everywhere.
More generally it is well known that one needs some sort of augmentation
to have well defined versions of continuous and increasing processes which
are finite for finite times and which are adapted. To overcome this difficulty
which can become very annoying, it is proposed in [24] to consider a new kind
of augmentation of filtrations, called the natural augmentation (in fact this
augmentation has already been discovered earlier by Bichteler in [5]). We
have also stated a few definitions and results related to this augmentation
in the appendix. It is enough for our purpose to note that a filtered proba-
bility space (Ω,F , (Ft)t≥0,P) satisfies the natural conditions if the filtration
(Ft)t≥0 is right-continuous and for all t ≥ 0 and for every P-negligible set
A ∈ Ft, all the subsets of A are contained in F0. This definition excludes
events which are negligible in F∞ but not negligible for any Ft (for instance
g = sup{t : Wt = 0} where W is the standard Brownian motion). Moreover
most important results of the theory of stochastic processes which are proved
under the usual augmentation also hold under the natural augmentation. The
remarkable feature of this augmentation is that it combines very well with
changes of probability measures which are only locally absolutely continuous.
More precisely a filtered probability space (Ω,F , (Ft)t≥0,P) is said to satisfy
the property (NP ) if and only if it is the natural enlargement of a filtered
probability space (Ω,F0, (F0

t )t≥0,P0) such that the filtered measurable space

(Ω,F0, (F0
t )t≥0) enjoys property (P ). The measure P(M) always exists un-

der the conditions (NP ) which are hence the optimal conditions to establish
formula (1.4).

Both (1.2) and (1.4) suggest that the processes (K − Mt)+ and (Mt − K)+ are
uniquely characterized by a pair (Q, g) where Q is a measure and g is the last zero
of the process. In the first case Q = K.P which is equivalent to P and in the second
case Q = P(M) is singular with respect to P. We shall present an approach to last
passage times based on this remark: first introduce the class of processes (Xt)t≥0

which are uniquely characterized by a pair (Q, g) where Q is a sigma-finite measure
and where g is the last zero of X. We shall then see how with this approach one
recovers at once formulae (1.2) and (1.4) and other formulas that appear in [37]. We
also give a few extra formulae that can be interesting for applications; additionally
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we fix a few small inaccuracies which appear in the literature by providing the correct
assumptions on the underlying filtered probability space. This approach seems to
be the most natural one to understand the role of last passage times. Our paper is
organized as follows:
In Section 2, we introduce a natural class of stochastic processes (which may have
jumps), called of class (Σ), to study last last passage times. We show that they are
uniquely characterized by a pair (Q, g) where Q is a measure and g is the last zero
of the process. This result which solves a conjecture of Madan, Roynette and Yor
([21]), and which unifies the framework of the generalized Black-Scholes formulae
and some problems of penalization of the Wiener measure by Najnudel, Roynette
and Yor ([26]), was obtained by Najnudel and Nikeghbali in [25]. We also state and
prove a special case of this result which was obtained by Cheridito, Nikeghbali and
Platen in [7]. It is very useful in applications, and strong enough to derive almost
all our formulas (except those involving the European call option).
In Section 3 we show how to recover naturally from our approach the multiplicative
characterization of last passage times obtained by Nikeghbali and Yor in [30] which
underlies some of the important results by Madan, Roynette and Yor or presented in
the monograph [37]. This derivation is not so surprising but is new. In particular, we
shall see that any end of a predictable set that avoids stopping times can be written
as the last time when a nonnegative local martingale whose supremum process is
continuous, starting at one and vanishing at infinity, reaches its maximum. Moreover
there exist formulas for the conditional distribution of this random time that looks
into the future and for the conditional distribution of the global maximum over the
whole trajectory. Very remarkably, these formulas are universal and do not depend
on any Markov assumption. We believe that these results are of their own interest.
Indeed nonnegative local martingales with no positive jumps (hence the supremum
process is continuous) which vanish at infinity occur in different situations in financial
modeling: they often model stock prices under a risk neutral probability measure
or they can model benchmarked derivative prices (the growth optimal portfolio is
used as a numeraire, see [36] for more details and references). Consequently, any
information (such as the conditional distribution) on the time when such a process
is at its highest or on the value of the global maximum can be valuable.
In Section 4, following Profeta, Roynette and Yor ([37]), we give some examples of
explicit computations for the distribution of last passage times of the form gK in
(1.3). We also give in this section some new formulas for the distribution of last
passage times, together with some examples, based on the multiplicative approach
of Nikeghbali and Yor in [30].
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2. Last passage times and processes of the class Σ

2.1. A remarkable measure. The relevant class of stochastic processes consists
of submartingales called of class (Σ); they were first introduced by Yor in [41] and
some of its main properties were further studied by Nikeghbali in [27]. Let us recall
its definition.

Definition 2.1 (([27, 41])). Let (Ω,F , (Ft)t≥0,P) be a filtered probability space. A
nonnegative submartingale (resp. local submartingale) (Xt)t≥0 is of class (Σ), iff it
can be decomposed as Xt = Nt +At, where (Nt)t≥0 and (At)t≥0 are (Ft)t≥0-adapted
processes satisfying the following assumptions:

• (Nt)t≥0 is a càdlàg martingale (resp. local martingale);
• (At)t≥0 is a continuous increasing process, with A0 = 0;
• The measure (dAt) is carried by the set {t ≥ 0, Xt = 0}.

We shall say that (Xt)t≥0 is of class (ΣD) if X is of class (Σ) and of class (D).

One notes that a process of class (Σ) is ”almost” a martingale: outside the zeros of X,
the process A does not increase. In fact many processes one often encounters fall into
this class, e.g. Xt = |Mt|, where (Mt) is a continuous martingale; Xt = (Mt −K)+

when (Mt) is a càdlàg local martingale with only positive jumps and K ∈ R is a
constant, Xt = M̄t −Mt where M is a local martingale with only negative jumps.
Other remarkable families of examples consist of a large class of recurrent diffusions
on natural scale (such as some powers of Bessel processes of dimension δ ∈ (0, 2), see
[25]) or of a function of a symmetric Lévy process (in these cases, At is the local time
of the diffusion process or of the Lévy process), or the age process of the standard
Brownian motion Wt in the filtration of the zeros of the Brownian motion, namely√
t− gt, where gt = sup{u ≤ t : Wu = 0} (for more example see [27]).
Before giving our characterization results, we state a simple but useful lemma:

Lemma 2.2 ([27]). Let (Xt)t≥0 be a process of class (Σ) and let f be a locally bounded
and nonnegative Borel function. Define F (x) =

∫ x
0
f(y)dy. Then f(At)Xt is again

of class (Σ) and decomposes as

f(At)Xt =

∫ t

0

f(Au)dNu + F (At). (2.1)

Proof. If f is C1, then an integration by parts yields:

f (At)Xt =

∫ t

0

f (Au) dXu +

∫ t

0

f ′ (Au)XudAu

=

∫ t

0

f (Au) dNu +

∫ t

0

f (Au) dAu +

∫ t

0

f ′ (Au)XudAu.
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Since (dAt) is carried by the set {t : Xt = 0}, we have
∫ t

0
f ′ (Au)XudAu = 0. As∫ t

0
f (Au) dAu = F (At), we have thus obtained that:

F (At)− f (At)Xt = −
∫ t

0

f (Au) dNu. (2.2)

The general case follows from a density and monotone class arguments. �

We now show that any process of class (Σ) is uniquely characterized by its last zero
and a remarkable measure. We start with an elementary case that we can shortly
prove in this survey and which is very useful in applications. This result is in fact an
extension of a result by Azéma and Yor [3] and Azéma, Meyer and Yor [2] (Indeed,
in the case when X is of class (ΣD), one could deduce it from part 1 of Theorem 8.1
in [2]).

Theorem 2.3 ([7]). Assume that (Ω,F , (Ft)t≥0,P) satisfies the usual assumptions
or the natural conditions. Let (Xt)t≥0 be a process of class (Σ) such that limt→∞Xt =
X∞ exists a.s. and is finite (in particular N∞ and A∞ exist and are a.s. finite). Let

g := sup{t : Xt = 0} with the convention sup ∅ = 0.

(1) If (Xt)t≥0 is of class (D), then

XT = E[X∞1{g≤T} | FT ] for every stopping time T. (2.3)

(2) More generally, if there exists a strictly positive Borel function f such that
(f(At)Xt)t≥0 is of class (D), then (2.3) holds.

(3) If (N+
t )t≥0 is of class (D), then (2.3) holds.

Proof. (1) For a given stopping time T , denote

dT = inf{t > T : Xt = 0} with the convention inf ∅ =∞.
dT is a stopping time. Since X∞1{g≤T} = XdT and AT = AdT , it follows from Doob’s
optional stopping theorem that

E[X∞1{g≤T} | FT ] = E[NdT + AdT | FT ] = E[NdT + AT | FT ] = NT + AT = XT .

(2) Assume that there exists a strictly positive Borel function such that (f(At)Xt)t≥0

is of class (D). This property is preserved if one replaces f by a smaller strictly
positive Borel function, hence, one can suppose that f is locally bounded. Then
(f(At)Xt)t≥0 is of class (ΣD), and from part (1) of the theorem, we have:

f(AT )XT = E[f(A∞)X∞1{g≤T} | FT ].

But on the set {g ≤ T}, we have A∞ = AT , and consequently

f(AT )XT = f(AT )E[X∞1{g≤T} | FT ].

The result follows by dividing both sides by f(AT ) which is strictly positive.
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(3) Since X ≥ 0 and since (N+
t )t≥0 is of class (D), we note that (exp(−At)Xt)t≥0

is of class (D) and the result follows from (2). �

Remark 2.4. With the notation of the introduction, the measure Q is given by Q =
X∞.P.

An interesting case is constructed as follows: let (Mt)t≥0 ∈ M0. Then Xt =
M̄t − Mt is of class (Σ) but not of class (D). However, with the notation of the
Theorem, Nt = −Mt satisfies N+

t = 0 and hence Q = M̄∞.P. In this example,
the process Xt is called the drawdown process and is extensively studied in [7];
the interested reader can find there more results related to drawdown and relative
drawdown processes and applications to some options.

We now see how the results of Madan, Roynette and Yor and Profeta, Roynette
and Yor on the price of put options would follow from Theorem 2.3.

Corollary 2.5 (Madan-Roynette-Yor [21]). Let K be a constant and (Mt) a local
martingale with no positive jumps such that (M−

t ) is of class (D). Denote gK =
sup{t ≥ 0 : Mt = K}. Then

(K −MT )+ = E[(K −M∞)+11{gK≤T} | FT ], (2.4)

for every stopping time T . In particular, if M∞ = 0, then

(K −MT )+ = K P[gK ≤ T | FT ].

Proof. K−Mt is a local martingale with no negative jumps. It follows that (K−Mt)
+

is a local submartingale of class (Σ) (see for instance [7]). Since (M−
t ) is of class (Σ),

(K −Mt)
+ is of class (ΣD) and the result follows from Theorem 2.3 by noting that

gK = sup{t : (K −Mt)
+ = 0}. �

The following extension of Corollary 2.5 has been proved by Profeta, Roynette and
Yor [37] with methods from the theory of enlargement of filtrations. We can deduce
it under slightly weaker assumptions from Theorem 2.3.

Corollary 2.6 (Profeta, Roynette and Yor [37]). Let K1, . . . , Kn be positive con-
stants and (M1

t ), . . . , (Mn
t ) nonnegative local martingales that have no positive jumps.

Assume [M i,M j]t = 0 for i 6= j and denote gi = sup{t : M i
t = Ki}. Then

n∏
i=1

(Ki −M i
T )+ = E[

n∏
i=1

(Ki −M i
∞)+11{gi≤T} | FT ], (2.5)

for every stopping time T . In particular, if M i
∞ = 0 for all i = 1, . . . , n, then

n∏
i=1

(Ki −M i
T )+ =

n∏
i=1

Ki P

[
n∨
i=1

gi ≤ T | FT

]
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Proof. X i
t = (Ki−M i

t )
+ are local submartingales of class (Σ) such that [X i, Xj]t = 0

for i 6= j. A simple induction shows that
∏n

i=1X
i
t is again of class (Σ) and is bounded.

Now (2.5) is a consequence of Theorem 2.3. �

We now state a more general and subtle result from [25] linking a process X of class
(Σ) and a pair (Q, g) consisting of the last zero of X and a remarkable sigma-finite
measure Q. This theorem unifies the results of Madan, Profeta, Roynette and Yor
on prices of European put and call options and the results of Najnudel, Roynette
and Yor on penalizations of the Wiener measure. It is also the right framework
to study call options in terms of last passage times. This new framework is also
much more general since it contains processes with jumps. For stating this general
case, we need to be very careful: the theorem below would be wrong under the
usual assumptions and it would also be wrong if the filtration (Ft) does not allow
the extension of coherent probability measures. The natural assumptions are here
to ensure, in particular, that there exists a continuous and adapted version of the
process A which is defined everywhere (think of At being for example the local time
at the level 0 of the Wiener process). According to Section 1, typical probability
spaces where the following theorem holds are C(R+,R) and D(R+,R) endowed with
the filtration generated by the coordinate process.

Theorem 2.7 (Najnudel-Nikeghbali [25]). Let (Xt)t≥0 be a true submartingale of the
class (Σ): its local martingale part (Nt)t≥0 is a true martingale, and Xt is integrable
for all t ≥ 0. We suppose that (Xt)t≥0 is defined on a filtered probability space
(Ω,F ,P, (Ft)t≥0) satisfying the property (NP), in particular, this space satisfies the
natural conditions and F is the σ-algebra generated by Ft for t ≥ 0. Then, there
exists a unique σ-finite measure Q, defined on (Ω,F ,P), such that for g := sup{t ≥
0, Xt = 0}:

• Q[g =∞] = 0;
• For all t ≥ 0, and for all Ft-measurable, bounded random variables Γt,

Q [Γt 1g≤t] = P [ΓtXt] . (2.6)

Remark 2.8. For example, the theorem applies when Xt is the absolute value of the
standard Brownian motion, or a Bessel process of dimension d ∈ (0, 2). It also applies
when Xt = |Yt|α−1, where Y is a symmetric Lévy stable process of index α ∈ (1, 2).

In [25], the measureQ is explicitly constructed in the following way (with a slightly
different notation). Let f be a Borel, integrable, strictly positive and bounded func-
tion from R to R, and let us define the function G by the formula:

G(x) =

∫ ∞
x

f(y) dy.
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One can prove that the process(
M f

t := G(At)− EP[G(A∞)|Ft] + f(At)Xt

)
t≥0

, (2.7)

is a martingale with respect to P and the filtration (Ft)t≥0. Since (Ω,F ,P, (Ft)t≥0)
satisfies the natural conditions and since G(At) ≥ G(A∞), one can suppose that
this martingale is nonnegative and càdlàg, by choosing carefully the version of
EP[G(A∞)|Ft]. In this case, since (Ω,F ,P, (Ft)t≥0) satisfies the property (NP), there
exists a unique finite measure Mf such that for all t ≥ 0, and for all bounded,
Ft-measurable functionals Γt:

Mf [Γt] = EP[ΓtM
f
t ].

Now, since f is strictly positive, one can define a σ-finite measure Qf by:

Qf :=
1

f(A∞)
.Mf .

It is proved in [25] that if the function G/f is uniformly bounded (this condition is,
for example, satisfied for f(x) = e−x), then Qf satisfies the conditions defining Q in
Theorem 2.7, which implies the existence part of this result. The uniqueness part
is proved just after in a very easy way; one remarkable consequence of it is the fact
that Qf does not depend on the particular choice of f .

Remark 2.9. If Q is a probability measure, then (2.6) can be written as

Xt = Q[g ≤ t|Ft].

Now we are able to state a rigorous and more general version for the price of a
European call option when (Mt)t≥0 is a true martingale.

Theorem 2.10. Let (Mt)t≥0 be a (true) nonnegative and continuous martingale on a
filtered probability space (Ω,F ,P, (Ft)t≥0) satisfying the property (NP). Without loss
of generality we can assume that M0 = 1. Then there exists a probability measure
P(M) such that for all K > 0 and for all Ft-measurable, bounded (or nonnegative)
random variables Γt,

P
[
Γt(Mt −K)+

]
= γ P(M)[Γt 1gK≤t], (2.8)

where

γ = 1−K + E[(K −M∞)+] and gK = sup{t ≥ 0 : Mt = K}.
In particular,

E[(Mt −K)+] = γ P(M)[gK ≤ t], (2.9)

The probability measure P(M) is given by

P(M)
|Ft = Mt.P|Ft .
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When limt→∞Mt = 0, then γ = 1 and

E[(Mt −K)+] = P(M)[gK ≤ t]

which is the formula obtained by Profeta, Roynette and Yor ([37]). Moreover, in this
case, we have the remarkable identity

P(M)[gK > t] = K P[gK > t].

Proof. Since (Mt)t≥0 is a true martingale, Xt = (Mt −K)+ is a true submartingale
and hence Theorem 2.7 applies and gives the existence of a σ-finite measure Q such
that for g := sup{t ≥ 0, Xt = 0} ≡ gK :

• Q[gK =∞] = 0;
• for all t ≥ 0, and for all Ft-measurable, bounded random variables Γt,

Q [Γt 1gK≤t] = P
[
Γt(Mt −K)+

]
. (2.10)

Now we note that since (Mt−K)+ = Mt−K+ (K−Mt)
+, we have E[(Mt−K)+] =

1−K+E[(K−Mt)
+]. An application of Lebesgue’s dominated convergence theorem

yields: limt→∞ E[(Mt −K)+] = 1−K + E[(K −M∞)+]. We call this limit γ. Now,
taking Γt ≡ 1 in (2.6), and then letting t → ∞ we obtain that γ = Q[11gK<∞].
But since Q[gK = ∞] = 0, we have that Q is a finite measure and with total mass

γ. Consequently P(M) ≡ 1

γ
Q is a probability measure that satisfies (2.9). Now it

remains to check that P(M)
|Ft = Mt.P|Ft . Since the measure Q is unique, one can

directly check that it satisfies the requested properties (see [37], p. 24–26). �

Remark 2.11. The case when (Mt) is a strict local martingale is much more involved:
it was dealt with in a special case by Yen and Yor in [39] and was solved in a very
general setup by Kardaras, Kreher and Nikeghbali in [17]. The formula involves, in
addition to the last passage time, the explosion time of M as well (see [17] for more
details).

2.2. Some examples of Azéma’s supermartingales and some identities in
law. When one studies random times which are not stopping times, there is a su-
permartingale that plays a crucial role, namely the Azéma supermartingale. More
precisely, if ρ is a measurable nonnegative random variable, its Azéma’s supermartin-
gale is the càdlàg version of P[ρ >| Ft]. This supermartingale is the key process in
the theory of progressive enlargements of filtrations (see e.g. [16] or the survey [29]).
It also plays an important role in the modeling of default times in credit risk models
(see e.g. [13] and [15]). Given a random time which is not a stopping time, it is in
general not possible to compute its Azéma supermartingale. We now give a Corollary
of Theorem 2.3 which will allow us to compute explicitly the Azéma supermartingale
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of many last passage times of interest in applications (this method was first used in
[28]).

Corollary 2.12. Let (Xt) be a process of the class (ΣD), such that X∞ = 1 almost
surely. Let g ≡ sup{t : Xt = 0}. Then

Xt = P[g ≤ t | Ft]. (2.11)

Remark 2.13. The proof is straightforward by taking X∞ = 1 in Theorem 2.3. In
particular, we are able to get rid of the assumption that the filtration (Ft) should be
a Brownian type filtration with only continuous martingales, which is a commonly
imposed in the literature. Moreover, this result can be viewed as a reciprocal to
an important result by Azéma ([1]) which states that one minus the Azéma super-
martingale of any end of a predictable set which avoids stopping times is of class
(ΣD) and satisfies X∞ = 1.

We now show how to use the above Corollary to compute some Azéma super-
martingales.

Example 2.14. Let (Mt) be a continuous martingale such that 〈M,M〉∞ =∞, and
let T1 = inf {t ≥ 0 : Mt = 1} . Let g = sup {t < T1 : Mt = 0}. Then M+

t∧T1 satisfies
the conditions of Corollary 2.12, and hence:

P (g ≤ t|Ft) = M+
t∧T1 =

∫ t∧T1

0

1Mu>0 dMu +
1

2
Lt∧T1 ,

where (Lt) is the local time of M at 0. When M = W is the standard Brown-
ian motion, this example plays an important role in the celebrated Williams’ path
decomposition for the standard Brownian Motion on [0, T1].

One can also consider T±1 = inf {t ≥ 0 : |Mt| = 1) and
τ = sup {t < T±1 : |Mt| = 0}. |Mt∧T±1| satisfies the conditions of Corollary 2.12,
hence hence:

P (τ ≤ t|Ft) = |Mt∧T±1| =
∫ t∧T±1

0

sgn (Mu) dMu + `t∧T±1 .

Example 2.15. Let (Yt) be a real continuous recurrent diffusion process, with
Y0 = 0. Then from the general theory of diffusion processes, there exists a unique
continuous and strictly increasing function s, with s (0) = 0, limx→+∞ s (x) = +∞,
limx→−∞ s (x) = −∞, such that s (Yt) is a continuous local martingale. Let

T1 ≡ inf {t ≥ 0 : Yt = 1} .
Now, if we define

Xt ≡
s (Yt∧T1)

+

s (1)
,

12



we easily note that X is a local submartingale of the class (Σ) which satisfies the
hypotheses of Corollary 2.12. Consequently for

g = sup {t < T1 : Yt = 0} ,
we have:

P (g ≤ t|Ft) =
s (Yt∧T1)

+

s (1)
.

Example 2.16. Now let (Mt) be a positive local martingale, such that: M0 =

x, x > 0 and limt→∞Mt = 0. Then, Tanaka’s formula shows us that

(
1− Mt

y
∧ 1

)
,

for 0 ≤ y ≤ x, is a local submartingale of the class (Σ) satisfying the assumptions of
Corollary 2.12. Hence with

g = sup {t : Mt = y} ,
we have:

P (g > t|Ft) =
Mt

y
∧ 1 = 1 +

1

y

∫ t

0

1(Mu<y) dMu −
1

2y
Lyt ,

where (Lyt ) is the local time of M at y.

Example 2.17. As an illustration of the previous example, consider (Rt), a transient
diffusion with values in [0,∞), which has {0} as entrance boundary. Let s be a scale
function for R, which we can choose such that:

s (0) = −∞, and s (∞) = 0.

Then, under the law Px, for any x > 0, the local martingale (Mt = −s (Rt)) satisfies
the conditions of the previous example and for x, y ≥ 0, we have:

Px (gy > t|Ft) =
s (Rt)

s (y)
∧ 1 = 1 +

1

s (y)

∫ t

0

1(Ru>y) d (s (Ru)) +
1

2s (y)
L
s(y)
t ,

where
(
L
s(y)
t

)
is the local time of s (R) at s (y), and where

gy = sup {t : Rt = y} .
This last formula was the key point for deriving the distribution of gy in [32], Theorem
6.1, p.326.

The structure of the class (Σ), together with the examples above suggest that
the increasing process (At) should have some interesting properties. The examples
we have considered so far show that At can be the local time of a martingale, of a
diffusion process or a Lévy process. It can also be the supremum process of a local
martingale with only negative jumps. Hence it would be interesting to have some
information about the distribution of A∞ when it is finite. This is clearly the case
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for the examples above and more generally for processes of the class (ΣD). In many
situations, by stopping, one is in the situation where X∞ = ϕ(A∞): this occurs in
the resolution of the Skorokhod problem by Azéma and Yor (see e.g. [38]), or in the
resolution of the Skorokhod problem for processes of the class (Σ) (see [27]); it also
appears naturally around problems related to the drawdown or relative drawdown
processes (see [7]). All these situations are covered by the following theorem:

Theorem 2.18 ([7]). Let (Xt)t≥0 be a process of the class (Σ) and assume that there
exists a locally bounded Borel function f : R+ → R+ such that the process f(At)Xt is
of class (ΣD) and limt→∞ f(At)Xt = 1 almost surely. Denote F (x) =

∫ x
0
f(y)dy and

assume that F (∞) =∞. Then for every stopping time T and for all Borel functions
h : [0, a)→ R satisfying ∫ ∞

0

|h(y)|e−F (y)dF (y) <∞,

one has

E[h(A∞) | FT ] = h(0)f(0)X0 + hF (0)(1− f(0)X0) +

∫ T

0

(h− hF )(Au)f(Au)dNu

= h(AT )f(AT )XT + hF (AT )(1− f(AT )XT )

where

hF (x) = eF (x)

∫ ∞
x

h(y)e−F (y)dF (y), x ≥ 0.

In particular, conditioned on FT , the law of A∞ is given by

P[A∞ > x | FT ] = 11{AT>x} + 11{AT≤x}(1− f(AT )XT )eF (AT )−F (x), x ≥ 0.

We postpone an important application of the above theorem to the next section.

3. The multiplicative approach

There also exists a simple multiplicative approach to study ends of predictable
sets which was developed by Nikeghbali and Yor in [30] and which underlies some
of the techniques used by Madan, Profeta, Roynette and Yor in their studies of the
generalized Black-Scholes formulae ([21],[22],[37]). This multiplicative approach has
also been used by Coculescu and Nikeghbali in [9] to obtain general formulas when
the default time in credit risk models is modeled by the end of a predictable set. It
was also more recently used by Li and Rutkowski in [20]. The idea in this approach is
to consider a multiplicative decomposition for the Azéma supermartingale of the end
of a predictable set rather than the Doob-Meyer decomposition. As a consequence,
every end of a predictable set has an intuitive representation in terms of some simple
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and intuitive last passage time. We deduce these results from those of the previous
section. This is new and as a consequence we avoid the assumption that the filtration
(Ft)t≥0 covers only continuous martingales.

Proposition 3.1. Let (Mt)t≥0 ∈M0. Consider

g = sup{t ≥ 0 : Mt = M̄t} = sup{t ≥ 0 : Mt = M̄∞}. (3.1)

Then the Azéma supermartingale of g is given by

Zt ≡ P[g > t | Ft] =
Mt

M̄t

= 1 +

∫ t

0

dMs

M̄s

− log M̄t. (3.2)

Proof. The result follows directly from Theorem 2.3 when applied to the process

Xt = 1− Mt

M̄t

which is of class (ΣD). �

The remarkable feature of the above family of examples is that it actually covers
all cases of ends of optional sets which avoid stopping times:

Theorem 3.2. Let g be the end of an optional set which avoids stopping times, that
is P[g = T > 0] = 0 for all (Ft)-stopping times T . Then there exists a unique local
martingale (Mt) ∈M0 such that

g = sup{t ≥ 0 : Mt = M̄t} and P[g > t | Ft] =
Mt

M̄t

.

Proof. It is a well known result of Azéma ([1]) that 1− P[g > t | Ft] ≡ Xt is of class
(Σ). Let us denote it Xt = Nt + At. Now it follows from (2.1) that

exp(At)Xt =

∫ t

0

exp(Au)dNu + exp(At)− 1,

or equivalently

exp(At)(1−Xt) = 1−
∫ t

0

exp(Au)dNu. (3.3)

Let us write Mt = 1 −
∫ t

0
exp(Au)dNu. This is a local martingale starting from 1.

Using the above representation Mt = exp(At)(1 − Xt), we see that M̄t = exp(At)
since (At) is continuous, increasing, and increases only on the zeros of X (hence (M̄t)
is continuous). Hence it follows from (3.3) that

Zt = 1−Xt =
Mt

M̄t

.

It also follows from the above representation that limt→∞Mt = 0, which completes
the proof. �
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Remark 3.3. In modeling the default time in credit risk modeling, it is important
to know when the hazard process and the martingale hazard process are different.
In [9], Theorem 3.2 is used to show that under the assumption that the end of an
optional set g avoids stopping times, the martingale hazard process and the hazard
process are always different and this difference is explicitly computed (in fact in [9],
it is assumed that the filtration (Ft) is such that all martingales are continuous; our
slightly improved version shows that one can avoid this assumption). Theorem 3.2
is also used in [9] to compute the price of defaultable claims.

In [30], Doob’s maximal identity (which state that for a local martingale inM0 the
distribution of M̄∞ is the same as the inverse of a uniform random variable on (0, 1))
is used to derive the conditional distribution of M̄∞, which is a crucial step in some
problems of enlargements of filtrations. Here we shall deduce it from the more general
Theorem 2.18. This result seems to be important enough on its own to be included
in this survey.It is also valuable in the context where prices under the risk neutral
probability measure as well as benchmarked portfolios are local martingales in M0,
to have information on the conditional distribution of the maximum of martingales
in M0.

Proposition 3.4 ([30]). Let (Mt)t≥0 ∈ M0. For any Borel bounded or positive
function f , we have:

E
(
f
(
M̄∞

)
|Ft
)

= f
(
M̄t

)(
1− Mt

M̄t

)
+

∫ Mt/M̄t

0

dxf

(
Mt

x

)
(3.4)

= f
(
M̄t

)(
1− Mt

M̄t

)
+Mt

∫ ∞
M̄t

dx
f (x)

x2
.

Moreover we have the following representation of E
(
f
(
M̄∞

)
|Ft
)

as a stochastic
integral:

E
(
f
(
M̄∞

)
|Ft
)

= E
(
f
(
M̄∞

))
+

∫ t

0

g
(
M̄s

)
dMs, (3.5)

where h is given by g(x) =
∫∞
x

dy

y2
(f(y)− f(x)).

Proof. The proof follows immediately from Theorem 2.18 applied to the process

Xt = 1− Mt

M̄t

= −
∫ t

0

dMs

M̄s

+ log M̄t.

Indeed in this case we take h(x) = f(exp(x)) in Theorem 2.18, with Nt = −
∫ t

0

dMs

M̄s

and At = log M̄t. �
16



Remark 3.5. By taking t = 0 above we obtain the well known identity in law

M̄∞
law
=

1

U
,

where U is a uniform random variable on (0, 1).

Remark 3.6. Formulae (3.4) and (3.5) suggest that there should exist ways of creating
new financial products. For instance one could imagine an option with pay-off f(M̄∞)
in areas where modeling risk over a long period has been of much concern, as it is
in pension fund and insurance. In this case formulas (3.4) and (3.5) give the price
of the option together with a hedging strategy. The formulas are very robust since
they do not depend on the underlying dynamics of the stock price (Mt).

4. Distributions of last passage times

At this point in our discussion, the following questions can be raised:

• the last passage time gK defined by (1.3) plays a central role in the generalized
Black-Scholes formulae; can one compute the law of such times for a wide
range of examples?
• Theorem 3.2 gives a simple general representation for the Azéma supermartin-

gale of ends of optional sets that avoid stopping times. Can this be used to
obtain a systematic way to compute the law of such a random time?

The next subsections give some answers to the above questions.

4.1. Some examples for distributions of gK. In this paragraph, we follow closely
the computations in the monograph by Profeta, Roynette and Yor (p. 32–41) to
obtain a family of interesting examples.

We assume that (Mt)t≥0 ∈ M0 and is continuous. We make the following addi-
tional assumptions:

i) for every t > 0, the law of the random variableMt admits a density (mt(x), x ≥
0) and (t, x)→ mt(x) may be chosen continuous on (0,∞)2;

ii) We assume that the quadratic covariation of (〈M,M〉t)t≥0 of M satisfies
d〈M,M〉t = σ2

t dt. We further assume that there exists a jointly continu-
ous function:

(t, x)→ θ(x) := E[σ2
t |Mt = x]

on (0,∞)2.

Theorem 4.1 (Profeta, Roynette and Yor, [37]). Under the preceding hypotheses,
the law of gK is given by

P[gK ∈ dt] = (1− a

K
)+δ0(dt) +

1

2K
θt(K)mt(K)11{t>0}dt (4.1)

where a = M0 and δ0 is the Dirac measure at 0.
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Proof. Using Tanaka’s formula we have

E[(K −Mt)
+] = (K − a)+ +

1

2
E[LKt ],

where (LKt , t ≥ 0, K ≥ 0) denotes the continuous family of local times of the mar-
tingale (Mt). Thus from (1.2), it follows that

P[gK ∈ dt] = (1− a

K
)+δ0(dt) +

11{t>0}

2K
dt E[LKt ],

and it remains to show that

dt E[LKt ] = θt(K)mt(K)dt.

To prove the above formula we note that for every f : R+ → R+ Borel, the density
of occupation formula yields∫ t

0

f(Ms)d〈M,M〉s =

∫ ∞
0

f(K)LKt dK.

Under the assumption of the theorem the above equality becomes∫ t

0

f(Ms)σ
2
sds =

∫ ∞
0

f(K)LKt dK.

Taking expectation on both sides we obtain

E[

∫ t

0

f(Ms)σ
2
sds] =

∫ ∞
0

f(K)E[LKt ]dK.

But under our assumptions, we can also write:

E[

∫ t

0

f(Ms)σ
2
sds] =

∫ t

0

E[f(Ms)E[σ2
s |Ms]]ds (4.2)

=

∫ ∞
0

f(K)dK

∫ t

0

θs(K)ms(K)ds. (4.3)

Since our formulas hold for every f : R+ → R+ Borel, we can thus conclude that

E[LKt ] =

∫ t

0

θs(K)ms(K)ds,

which proves the theorem. �

We now give some examples.
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Example 4.2. Consider Mt = exp(Wt −
t

2
), where (Wt) is the standard Brownian

motion. From Itô’s formula, we have Mt = 1 +
∫ t

0
MsdWs, thus d〈M,M〉t = M2

t dt
and we may apply Theorem 4.1 with θt(x) = x2 and

mt(x) =
1

x
√

2πt
exp(− 1

2t
(log x+

t

2
)2).

We thus obtain

P[gK ∈ dt] = (1− 1

K
)+δ0(dt) +

11{t>0}

2
√

2πt
exp(− 1

2t
(logK +

t

2
)2)dt.

Example 4.3. We come back to the case of transient diffusions considered in Exam-
ple 2.17 (recall that s is the scale function). We assume further that the infinitesimal
generator of our diffusion has the form

Γ =
1

2
a(x)

∂2

∂x2
+ b(x)

∂

∂x
.

In this case, if we denote by p(t, x, y) the density of the random variable Xt with
respect to the Lebesgue measure dy, then the distribution of gK is (see [37], p.40):

P[gK ∈ dt] = (1− s(x)

s(K)
)+δ0(dt)− s′(K)a(K)

2s(K)
p(t, x,K)dt. (4.4)

For instance if (Mt)t≥0 is a Bessel process, i.e. a = 1 and b(x) =
2ν + 1

2x
, with index

ν > 0 (i.e. with dimension d = 2ν + 2 > 2), we have s(x) = −x−2ν and

p(t, 0, K) =
2−ν

Γ(ν + 1)
t−(ν+1)K2ν+1 exp(−−K

2

2t
).

Hence

P(ν)
0 [gK ∈ dt] =

ν2−ν

Γ(ν + 1)

1

K

K2ν+1

tν+1
exp(−−K

2

2t
)dt

=
2−ν

Γ(ν)

K2ν

tν+1
exp(−−K

2

2t
)dt.

A few more examples based on Theorem 4.1 are computed in [37].

4.2. The general distribution of last passage times. We now use Theorem 3.2
to obtain a representation for the law of an arbitrary end of an optional set which
avoids stopping times. Indeed, we know from Theorem 3.2 that any such time is the
last time when a local martingale inM0 is equal to its running maximum. We start
with a simple lemma:
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Lemma 4.4. Under the assumptions of Theorem 3.2 the law of the last passage
time g is given by

P[g ≤ t] = E[log M̄t]. (4.5)

Proof. This follows immediately by taking the expectation of Zt in Theorem 3.2. �

We now state and prove a theorem that can be very useful in practice to compute
the law of a last passage time.

Theorem 4.5. Under the assumptions of Theorem 3.2 define τa = inf{t : Mt > a}
for a ≥ 1. Then for any bounded or positive Borel function f , we have

E[f(g)] =

∫ ∞
1

E[f(τa)11{τa<∞}]
da

a
. (4.6)

In particular, the Laplace transform of the law of g is given by

E[exp(−λg)] =

∫ ∞
1

E[exp(−λτa)]
da

a
, (4.7)

for λ > 0.

Proof. We differentiate (4.5) to obtain:

E[f(g)] = E[

∫ ∞
0

f(s)
dM̄s

M̄s

] = E[

∫ M̄∞

1

f(τa)
da

a
] (4.8)

=

∫ ∞
1

E[f(τa)11{τa<∞}]
da

a
. (4.9)

�

This result allows us to derive some explicit examples for the law of a last passage
time when the underlying nonnegative local martingale M belongs to some class of
well-known diffusions. We begin with the standard asset price model in finance, the
Black-Scholes model. We set

Mt = exp{2σWt − 2σ2 t}, (4.10)

which follows a geometric Brownian motion for t ≥ 0. Here W = {Wt, t ≥ 0}
denotes a standard Wiener process under the real world probability measure P and
we assume σ > 0. The last passage time considered here, that is the time of the total
maximum of Mt, is then given as

g = sup

{
t ≥ 0 : (Wt − σ t) = sup

s≥0
(Ws − σ s)

}
.
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Proposition 4.6. The law of g is characterized by its Laplace transform

E[exp(−λg)] =
2

1 +
√

1 + 2λ
σ2

(4.11)

for λ ≥ 0.

Proof. We can use (4.7) to compute the law of g. For this we will use the Laplace
transform of τa = inf{t : Mt > a}, which is given for instance in [6]:

E[exp(−λτa)] =

(
1

a

)√√√√ 1
4

+
λ

2σ2
+ 1

2

(4.12)

for a > 1 and λ ≥ 0. Substituting formula (4.12) into (4.7) yields

E[exp(−λg)] =

∫ ∞
1

(
1

a

)√ 1
4

+ λ
2σ2

+ 1
2 da

a
=

∫ ∞
0

e
−u
(√

1
4

+ λ
2σ2

+ 1
2

)
du

=
2

1 +
√

1 + 2λ
σ2

.

�

Remark 4.7. It is interesting to note that by (4.11) the time g has the same law as
the first hitting time of a level twice the value of an independent exponential random
variable ẽ by a Brownian motion with drift, that is,

g
law
=
=

1

σ2
T2ẽ

with Ta = inf{t : W̃t + t = a}, where W̃t follows a standard Brownian motion.

One can sometimes reduce the problem of finding the law of the end of a predictable
set to that of a geometric Brownian motion after time change.

Proposition 4.8. Assume that the hypotheses of Theorem 3.2 hold and assume
further that all martingales of the filtration (Ft)t≥0 are continuous. Then there exists

a unique local martingale D = {Dt, t ≥ 0} with 〈D〉∞ =∞ a.s. and Dt =
∫ t

0
dMu

Mu
=

W〈D〉t, where W is an (F〈D〉−1
u

)-Brownian motion, such that

g = sup

{
t : W〈D〉t −

1

2
〈D〉t = sup

s≥0

(
W〈D〉s −

1

2
〈D〉s

)}
.

21



Proof. It is a standard fact of stochastic calculus that there exists a local martingale
D such that 〈D〉∞ =∞ and Mt = exp{Dt− 1

2
〈D〉t}. Moreover, the local martingale

D is unique and Dt =
∫ t

0
dMu

Mu
. From the Dubins-Schwarz theorem there exists then

an (F〈D〉−1
u

)-Brownian motion W = {Wu, u ≥ 0} in 〈D〉t-time such that Dt = W〈D〉t .

If we denote by 〈D〉−1
u , the generalized inverse of 〈D〉t defined by

〈D〉−1
u = inf{t ≥ 0 : 〈D〉t > u},

then we can define the last passage time

L = sup

{
t ≥ 0 : Wu −

1

2
u = sup

s≥0

(
Ws −

1

2
s

)}
.

Consequently, g = 〈D〉−1
L is also given by

g = sup

{
t : W〈D〉t −

1

2
〈D〉t = sup

s≥0

(
W〈D〉s −

1

2
〈D〉s

)}
.

�

Squared Bessel processes play an essential role in various financial models. This
includes, for instance, the constant elasticity of variance model, see [10]; the affine
models, see [12]; and the minimal market model, see [34] [35]. To study last passage
times in some of these models let R2 = {R2

t , t ≥ 0} denote a squared Bessel process
of dimension δ > 2. In this case R2 is transient, see [38]. Furthermore, for any
squared Bessel process with index ν = δ

2
− 1 > 0 the process M = {Mt, t ≥ 0} with

Mt =

(
R2

0

R2
t

)ν
(4.13)

is a nonnegative, strict local martingale from the class (M0). By application of
Proposition 3.1 one obtains that for g = sup{t ≥ 0 : R2

t = It} with It = infs≤tR
2
s

the conditional probability

P(g > t|Ft) =

(
It
R2
t

)ν
, (4.14)

for all t ≥ 0. Moreover it follows from Remark 3.5 that the random limit 1/I∞ is
uniformly distributed on (0, 1) for the case of dimension δ = 4. This is an interesting
observation for the rather realistic minimal market model, where such dynamics arise.

Proposition 4.9. The Laplace transform of the last passage time g given in (4.14)
is for λ > 0 of the form

E[exp(−λg)] =
2 ν Kν(

√
2λx)

(2λx)
ν
2

∫ √2λx

0

uν−1

Kν(u)
du (4.15)
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where R2
0 = x and Kν(·) is the modified Bessel function of the second kind, see [6].

Proof. We first recall the Laplace transform of the random variable τa = inf{t ≥ 0 :
Mt = a} = inf{t ≥ 0 : R2

t = x

a
1
ν
}, a ≥ xν , from [18] and [6] in the form

E[exp(−λτa)] =
Kν

√
2λx

aKν

(√
2λx

a
1
ν

) , (4.16)

for λ > 0. A combination of (4.16) and (4.7) gives (4.15). �

In the special case of dimension δ = 4, as it arises for the stylized minimal market
model in [34] [35], we have ν = 1 and it follows that

E[exp(−λg)] =
2K1(

√
2λx)√

2λx

∫ √2λx

0

1

K1(u)
du.

Another interesting special case is obtained for the squared Bessel process of di-
mension δ = 3, where we are able to provide the following explicit formula for the
density.

Corollary 4.10. For dimension δ = 3 the law of the last passage time g given in
(4.14) has the density

p(t) =
1√

2πxt

(
1− exp

(
−x
2t

))
, (4.17)

where R2
0 = x > 0 and t ≥ 0.

Proof. For the squared Bessel process of dimension δ = 3 we have ν = 1
2

and from
(4.16)

E[exp(−λg)] =
2√

2λx
exp

{
−
√

2λx

2

}
sinh

(√
2λx

2

)
.

The linearity of the Laplace transform and a close look at a table of inverse Laplace
transforms, see for instance [6], then yields (4.17). �

Note that the above density (4.17) of the last passage time is dependent on the
initial level of the squared Bessel process. Such dependence was not observed in the
case of the geometric Brownian motion.

We end this section by considering again the general case of a transient diffusion
Y = {Yt, t ≥ 0}. Recall that it generates a local martingale M in the class (M0) via

the ratio Mt = s(Yt)
s(x)

, t ≥ 0, Y0 = x > 0. Here s(·) is the differentiable scale function
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of Y (see [6]) which we can choose such that s(0) = −∞ and s(∞) = 0. Then we
have by Proposition 3.1 again

P[g > t | Ft] =
s(Yt)

s(Zt)
,

where Zt = infs≤t Ys and g is defined as g = sup{t ≥ 0 : Yt = Zt}. The law of the
last passage time g can then be characterized as follows:

Proposition 4.11. The Laplace transform of the above last passage time g is for
λ > 0 of the form

E[exp(−λg)] = −
∫ x

0

s′(u)

s(u)

ϕλ(x)

ϕλ(u)
du. (4.18)

Here ϕλ(·) is a continuous solution of the equation

Gϕλ(y) = λϕλ(y), (4.19)

with G denoting the infinitesimal generator of the diffusion Y .

The function ϕλ(·) is characterized as the unique (up to a multiplicative constant)
solution of (4.19) by demanding that ϕλ(·) is decreasing and satisfies some appro-
priate boundary conditions. The reader is referred to [33] for further details on the
function ϕλ(·) and its relation to hitting times, as well as [15], Chapter 5, and more
specifically p. 279–281, where examples of diffusions and associated ϕλ(·) functions
are developed.

Proof. Let us consider the hitting time

τz = inf

{
t ≥ 0 :

s(Yt)

s(x)
= a

}
= inf{t ≥ 0 : Yt = s−1(a s(x))}

for a ≥ 1 and z := s−1(a s(x)) ≤ x. The Laplace transform of τz follows by [33] and
[6] in the form

E[exp(−λτz)] =
ϕλ(x)

ϕλ(z)
. (4.20)

It suffices to substitute z = s−1(a s(x)) in (4.20) and then apply the resulting ex-
pression in (4.7). �

Appendix

In this appendix we recall a few facts about the natural conditions and the
Parathasarathy conditions (P). For more details see [24].

Recall that most of the properties which generally hold under the usual conditions
remain valid under the natural conditions (for example, existence of càdlàg versions
of martingales, the Doob-Meyer decomposition, the début theorem, etc.). Let us
recall here the definition.
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Definition 4.12. A filtered probability space (Ω,F , (Ft)t≥0,P), satisfies the natural
conditions if and only if the following two assumptions hold:

• The filtration (Ft)t≥0 is right-continuous;
• For all t ≥ 0, and for every P-negligible set A ∈ Ft, all the subsets of A are

contained in F0.

This definition is slightly different from the definitions given in [5] and [24] but one
can easily check that it is equivalent. The natural enlargement of a filtered probability
space can be defined by using the following proposition:

Proposition 4.13 ([24]). Let (Ω,F , (Ft)t≥0,P) be a filtered probability space. There

exists a unique filtered probability space (Ω, F̃ , (F̃t)t≥0P̃) (with the same set Ω), such
that:

• For all t ≥ 0, F̃t contains Ft, F̃ contains F and P̃ is an extension of P;

• The space (Ω, F̃ , (F̃t)t≥0P̃) satisfies the natural conditions;
• For any filtered probability space (Ω,F ′, (F ′t)t≥0,P′) satisfying the two items

above, F ′t contains F̃t for all t ≥ 0, F ′ contains F̃ and P′ is an extension of

P̃.

The space (Ω, F̃ , (F̃t)t≥0P̃) is called the natural enlargement of (Ω,F , (Ft)t≥0,P).

Intuitively, the natural enlargement of a filtered probability space is its smallest ex-
tension which satisfies the natural conditions. We also introduce a class of filtered
measurable spaces (Ω,F , (Ft)t≥0) such that any compatible family (Qt)t≥0 of proba-
bility measures, Qt defined on Ft, can be extented to a probability measure Q defined
on F .

Definition 4.14. Let (Ω,F , (Ft)t≥0) be a filtered measurable space, such that F is
the σ-algebra generated by Ft, t ≥ 0: F =

∨
t≥0Ft. We say that the property1 (P)

holds if and only if (Ft)t≥0 enjoys the following properties:

• for all t ≥ 0, Ft is generated by a countable number of sets.
• for all t ≥ 0, there exists a Polish space Ωt, and a surjective map πt from Ω

to Ωt, such that Ft is the σ-algebra of the inverse images, by πt, of Borel sets
in Ωt, and such that for all B ∈ Ft, ω ∈ Ω, πt(ω) ∈ πt(B) implies ω ∈ B.
• if (ωn)n≥0 is a sequence of elements of Ω, such that for all N ≥ 0,

N⋂
n=0

An(ωn) 6= ∅,

1(P) stands for Parthasarathy since such conditions where introduced by him in [31].
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where An(ωn) is the intersection of the sets in Fn containing ωn, then:
∞⋂
n=0

An(ωn) 6= ∅.

A fundamental example of a filtered measurable space (Ω,F , (Ft)t≥0) satisfying the
property (P) can be constructed as follows: we take Ω to be equal to C(R+,Rd),
the space of continuous functions from R+ to Rd, or D(R+,Rd), the space of càdlàg
functions from R+ to Rd (for some d ≥ 1), and for t ≥ 0, we define (Ft)t≥0 as the
natural filtration of the canonical process, and we set

F :=
∨
t≥0

Ft.

The combination of the property (P) and the natural conditions gives the following
definition:

Definition 4.15. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space. We say that
it satisfies the property (NP) iff it is the natural enlargement of a filtered probability
space (Ω,F0, (F0

t )t≥0,P0) such that the filtered measurable space (Ω,F0, (F0
t )t≥0)

enjoys property (P).

In [24], the following result, about extensions of probability measures, is proved (in
a slightly more general form):

Proposition 4.16. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space, satisfying
property (NP). Then, the σ-algebra F is the σ-algebra generated by (Ft)t≥0, and for
all coherent families of probability measures (Qt)t≥0, such that Qt is defined on Ft,
and is absolutely continuous with respect to the restriction of P to Ft, there exists a
unique probability measure Q on F which coincides with Qt on Ft for all t ≥ 0.
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Lecture Notes in Math., vol. 1526, Springer, Berlin, 1992, pp. 248–306.

4. M. T. Barlow, Study of a filtration expanded to include an honest time, Z. Wahrsch. Verw.
Gebiete 44 (1978), 307–324.

5. K. Bichteler, Stochastic integration with jumps, Cambridge University Press, 2002.
6. A. N. Borodin, and P. Salminen, Handbook of Brownian motion- facts and formulae, 2nd edition

ed., Birkhauser, 2002.
7. P. Cheridito, A. Nikeghbali, and E. Platen, Processes of the class sigma, last zero and draw-

down processes, 2009.
26



8. K.L. Chung, Probabilistic approach in potential theory, Ann. Inst. Fourier-3 23 (1973), 313–322.
9. D. Coculescu and A. Nikeghbali, Hazard processes and martingales hazard processes, Accepted

for publication in Math. Finance (2010).
10. J. C. Cox, Notes on option pricing i: constant elasticity of variance diffusions., Stanford Uni-

versity, unpublished., 1975.
11. C. Dellacherie, B. Maisonneuve, and P.-A. Meyer, Probabilités et potentiel, chapitres xvii-xxiv:
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