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Abstract. This paper deals with asset price bubbles modeled by strict local martingales. To any

strict local martingale one can associate a new measure, which is studied in detail in the first part

of the paper. In the second part we determine the ”default term” apparent in risk-neutral option

prices if the underlying stock exhibits a bubble modeled by a strict local martingale. Results for

certain path dependent options and last passage time formulas are given.

Introduction

The goal of this paper is to determine the influence of asset price bubbles on the pricing of

derivatives. Asset price bubbles have been studied extensively in the economic literature looking

for explanations of why they arise, but have only recently gained attention in mathematical finance

by Cox and Hobson (2005), Jarrow et al. (2007, 2009, 2010), Protter and Pal (2007), and Heston

et al. (2007). When an asset price bubble exists, the market price of the asset is higher than its

fundamental value. From a mathematical point of view this is the case, when the stock price process

is modeled by a positive strict local martingale under the equivalent local martingale measure.

Here by a strict local martingale we understand a local martingale, which is not a true martingale.

Strict local martingales were first studied in the context of financial mathematics by Delbaen and

Schachermayer (1995). Afterwards Elworthy et al. (1997, 1999) studied some of their properties

including their tail behaviour. More recently, the interest in them grew again (cf. e.g. Mijatovic

and Urusov (2010)) because of their importance in the modelling of financial bubbles.

Obviously, there are options for which it does not matter whether the underlying is a strict local

martingale or not, but for which well-known results still hold true without modification under the

condition of no free lunch with vanishing risk (NFLVR). One example is the put option with strike

K ≥ 0. If the underlying is modeled by a continuous local martingale X with X0 = 1, it is shown

by Madan et al. (2008) that the risk-neutral value of the put option can be expressed in terms of

the last passage time ρXK = sup{t ≥ 0 | Xt = K} of the local martingale X at level K via

E(K −XT )+ = E
(

(K −X∞)+I{ρXK≤T}
)
.

This formula does not require X to be a true martingale, but is also valid for strict local martingales.

However this changes if we go from puts to calls. The general idea is to reduce the call case to

the put case by a change of measure with Radon-Nikodym density process given by (Xt)t≥0 as
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done in Madan et al. (2008) in the case where X is a true martingale. However, if X is a strict

local martingale, this does not define a measure any more. Instead, we first have to localize the

strict local martingale and can thus only define measures on stopped sub-σ-algebras. Under certain

conditions on the probability space, we can then extend the so-defined consistent family of measures

to a measure defined on some larger σ-field. Under the new measure the inverse of X turns into

a true martingale. The conditions we impose are taken from Föllmer (1972), who requires the

filtration to be a standard system (cf. Definition 1.7). This way we get an extension of Theorem 4

in Delbaen and Schachermayer (1995) to general probability spaces and càdlàg local martingales.

We study the behavior of X and other local martingales under the new measure.

Using these technical results we obtain decomposition formulas for some classes of European

path-dependent options under the NFLVR condition. These formulas are extensions of Proposition

2 in Pal and Protter (2007), which deals with non-path-dependent options. We decompose the

option value into a difference of two positive terms, of which the second one shows the influence of

the stock price bubble.

Furthermore, we express the risk-neutral price of an exchange option in the presence of asset

price bubbles as an expectation involving the last passage time at the strike level under the new

measure. This result is similar to the formula for call options derived by Madan, Roynette and Yor

(2008) or Yen and Yor (2009) for the case of inverse Bessel processes. We can further generalize

their formula to the case where the candidate density process for the risk-neutral measure is only a

strict local martingale. Then the NFLVR condition is not fulfilled and risk-neutral valuation fails,

so that we have to work under the real-world measure. Since in this case the price of a zero coupon

bond is decreasing in maturity even with an interest rate of zero, some people refer to this as a

bond price bubble as opposed to the stock price bubbles discussed above. In this general setup we

obtain expressions for the option value of European and American call options in terms of the last

passage time and the explosion time of the deflated price process, which make some anomalies of

the prices of call options in the presence of bubbles evident: European calls are not increasing in

maturity any longer and the American call option premium is not equal to zero any more.

This paper is organized as follows: In the next section we study strictly positive (strict) local

martingales in more detail. On the one hand, we demonstrate ways of how one can obtain strict

local martingales, while on the other hand we construct the above mentioned measure associated

to a càdlàg strictly positive local martingale on a general filtered probability space with a standard

system as filtration. We give some examples of this construction in Section 2. In Section 3 we

then apply our results to the study of asset price bubbles. After formally defining the financial

market model we obtain decomposition formulas for certain classes of European path-dependent

options, which show the influence of stock price bubbles on the value of the options under the

NFLVR condition. In Section 4 we further study the relationship between the original and the new

measure constructed in Section 1.2, which we apply in Section 5 to obtain last passage time formulas

for the European and American exchange option in the presence of asset price bubbles. Moreover,
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we show how this result can be applied to the real-world pricing of European and American call

options. The last section contains some results about multivariate strict local martingales.

1. Càdlàg Strictly Positive Strict Local Martingales

When dealing with continuous strictly positive strict local martingales a very useful tool is the

result from [6], see also Proposition 6 in [28], which states that every such process defined as the

coordinate process on the canonical space of trajectories can be obtained as the inverse of a ”Doob

h-transform”1 of a continuous non-negative true martingale. Conversely, any such transformation

of a continuous non-negative martingale, which hits zero with positive probability, yields a strict

local martingale.

The goal of this section is to extend these results to càdlàg processes and general probability

spaces satisfying some extra conditions, which were introduced by Parthasarathy in [29] and used

in a similar context in [13]. While the construction of strict local martingales from true martingales

follows from an application of the Lenglart-Girsanov theorem, the converse theorem relies as in [6]

on the construction of the Föllmer exit measure of a strictly positive local martingale as done in

[13] and [25].

1.1. How to obtain strictly positive strict local martingales. Examples of continuous strict

local martingales have been known for a long time, the canonical example being the inverse of a

Bessel process of dimension 3. This example can be generalized to a broader class of transient

diffusions, which taken in natural scale turn out to be strict local martingales, cf. [10]. More

recently, further results concerning the martingale property of certain local martingales have been

obtained, cf. for example [2, 26]. A natural way to construct strictly positive continuous strict

local martingales is given in Theorem 1 of [6]. There, it is shown that every uniformly integrable

non-negative martingale with positive probability to hit zero gives rise to a change of measure such

that its inverse is a strict local martingale under the new measure. For the non-continuous case

and for not necessarily uniformly integrable martingales we now give a simple extension of the just

mentioned theorem from [6]:

Theorem 1.1. Let (Ω,F , (Ft)t≥0,Q) be the natural augmentation of some probability space with

F =
∨
t≥0Ft, i.e. the filtration (Ft)t≥0 is right-continuous and F0 contains all Ft-negligible sets for

all t ≥ 0. Let X be a non-negative Q-martingale with Q(X0 = 1) = 1. Set τ = inf{t ≥ 0 : Xt = 0}
and assume that Q(τ < ∞) > 0. Furthermore, suppose that X does not jump to zero Q-almost

surely. For all t ≥ 0, define a probability measure Pt on Ft via Pt = Xt.Q|Ft; in particular,

Pt � Q|Ft. Assume that either X is uniformly integrable under Q or that the non-augmented

probability space satisfies condition (P)2. Then, we can extend the consistent family (Pt)t≥0 to a

1Note that we abuse the word “Doob h-transform” in this context slightly, since Doob h-transforms are normally

only defined in the theory of Markov processes, cf. Appendix B.
2Condition (P ) first appeared in [29] and was later used in [27]. We recall its definition in Appendix A.
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measure P on the augmented space (Ω,F , (Ft)t≥0). Under the measure P the process X does never

reach zero and its reciprocal 1/X is a strict local P-martingale.

Proof. Since the underlying probability space satisfies the natural assumptions, we may choose a

càdlàg version of X, cf. Propositions 3.1 and 3.3 in [27]. If X is a uniformly integrable martingale,

the measure P is defined on F by dP = X∞dQ. In the other case, when the probability space

fulfills condition (P ), the existence of the measure P follows from Corollary 4.9 in [27]. Moreover

note that

P(τ <∞) = lim
t→∞

P(τ ≤ t) = lim
t→∞

EQ
(
I{τ≤t}Xt

)
= 0,

therefore the process 1/X is a P-almost surely well defined semimartingale. The result now follows

from Corollary 3.10 of [?] applied to M ′t = 1
Xt

I{τ>t}, once we can show that (M ′t∧τnXt∧τn) with

τn = inf{t ≥ 0 : Xt ≤ 1
n} is a local P-martingale for every n ∈ N. But,

M ′t∧τnXt∧τn = I{τ>t∧τn} = 1,

which trivially proves the martingale property. Finally, the strictness of the local martingale 1/X

under P follows from

EP

(
1

Xt

)
= Q(τ > t) < 1

for t large enough, since by assumption Q (τ <∞) > 0. �

Starting with a Brownian motion stopped at zero under Q, it is easy to show that the associated

strict local martingale under P is the reciprocal of the three-dimensional Bessel process, which is

the canonical example of a strict local martingale (cf. Example 1 in [28]). Without stating the

general result, the above construction is also applied in [4] to construct examples of strict local

martingales with jumps related to Dunkl Markov processes on the one hand (cf. Proposition 3 in

[4]) and semi-stable Markov processes on the other hand (cf. Proposition 5 in [4]). Apart from the

previous, there do not seem to be any well-known examples of strict local martingales with jumps.

Note, however, that one can construct an example by taking any continuous strict local martingale

and multiplying it with the stochastic exponential of an independent compound Poisson process

or any other independent and strictly positive jump martingale.

In the following example we construct a “non-trivial” positive strict local martingale with jumps

by a shrinkage of filtration.

Example 1.2. Consider the well-known inverse three-dimensional Bessel process X as a function of

a three-dimensional standard Brownian motion B = (B1, B2, B3) starting from B0 = (1, 0, 0), i.e.

X =
1√

(B1)2 + (B2)2 + (B3)2
.
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We define the filtrations (Ft)t≥0 and (Gt)t≥0 by Ft = σ(B1
s , B

2
s , B

3
s ; s ≤ t) and Gt = σ(B1

s , B
2
s ; s ≤ t),

as well as the filtration (Ht)t≥0 via

Ht = F bntc
n

∨ Gt = σ

(
B1
s , B

2
s , s ≤ t; B3

u, u ≤
bntc
n

)
for some n ∈ N. It is shown in Theorem 15 of [14] that not only X itself is an (Ft)t≥0-strict

local martingale, but that also the optional projection of X onto (Gt)t≥0 is a continuous local

(Gt)t≥0-martingale. Since Gt ⊂ Ht ⊂ Ft for t ≥ 0, it follows by Corollary 2 of [14] that then the

optional projection of X onto (Ht)t≥0, denoted by ◦X, is also a local martingale. However, since

its expectation process is decreasing, ◦X must be a strict local martingale that jumps at t ∈ N
n . In

fact, ◦X is given by the explicit formula ◦Xt = u(B1
t , B

2
t , B

3
bntc
n

, t), where

u(x, y, a, t) =

∫
R

(x2 + y2 + z2)−1/2 ·
√√√√ 1

2π
(
t− bntcn

) exp

− 1

2
(
t− bntcn

)(z − a)2

 dz.

Remark 1.3. As a further example, any nonnegative non-uniformly integrable (Ft)t≥0-martingale

Y with Y0 = 1 allows to construct a strictly positive strict local martingale X relative to a new

filtration (F̃t)t≥0 through a deterministic change of time: simply set

Xt =


1
2

(
1 + Y t

1−t

)
: 0 ≤ t < 1

1
2 (1 + limt→∞ Yt) : 1 ≤ t

and define F̃t = F t
1−t

for t < 1 and F̃t = F∞ for t ≥ 1. Since Y is not uniformly integrable, we

have EX1 < X0 = Y0 = 1 almost surely. Instead of setting X constant for t ≥ 1 one can also

define X to behave like any other strictly positive local martingale starting from X1 := limt→∞ Yt

on [1,∞). Note however that X is a true martingale on the interval [0, 1).

1.2. From strictly positive strict local martingales to true martingales. In the following

let (Ω,F , (F̃t)t≥0,P) be a filtered probability space. Furthermore, we denote by (Ft)t≥0 the right-

continuous augmentation of (F̃t)t≥0, i.e. Ft := F̃t+ =
⋂
s>t F̃s for all t ≥ 0. Note, however, that

the filtration is not completed with the negligible sets of F .

Definition 1.4. (cf. [13]) Let (F̃t)t∈T be a filtration on Ω, where T is a partially ordered non-void

index set, and let (Ft)t∈T be its right-continuous augmentation. Then (F̃t)t∈T is called a standard

system if

• each measurable space (Ω, F̃t) is a standard Borel space, i.e. F̃t is σ-isomorphic to the

σ-field of Borel sets on some complete separable metric space.

• for any increasing sequence (ti)i∈N ⊂ T and for any A1 ⊃ A2 ⊃ · · · ⊃ Ai ⊃ . . . , where Ai is

an atom of Fti , we have
⋂
iAi 6= ∅.

As noted in [27] the filtration F̃t = σ(Xs, s ≤ t), where Xt(ω) = ω(t) is the coordinate process

on the space C(R+,R+) of non-explosive non-negative continuous functions, is not a standard
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system. However, it will be seen below that when dealing with strict local martingales it is natural

to work on the space of all non-negative continuous processes that stay at infinity once they reach

infinity, C∞(R+,R+), where R+ = R+∪{∞} is endowed with the usual one-point compactification

topology. As noted in example (6.3) in [13] the filtration generated by the coordinate process on

this space is indeed a standard system. More generally, we have the following lemma. Recall that

for any (Ft)t≥0-stopping time τ the sigma-algebra Fτ− is defined as

Fτ− = σ(F0, {{τ > t} ∩ Γ : Γ ∈ Ft, t ≥ 0}).

Lemma 1.5. Let Ω = D∞(R+,R
n
+) be the space of functions from R+ into Rn+ = (R+∪{∞})n, n ∈

N, with componentwise càdlàg paths (ωi(t))t≥0, i = 1, . . . , n, that remain constant after τ− at the

value ωi(τ−), where τ = limk→∞ τk and τk = inf{t ≥ 0| ∃ i = 1, . . . , n : ωi(t) > k}. We denote

by (Xt)t≥0 the coordinate process, i.e. Xt(ω1, . . . , ωn) = (ω1(t), . . . , ωn(t)), and by (F̃t)t≥0 the

canonical filtration generated by the coordinate process, i.e. F̃t = σ(Xs; s ≤ t). Furthermore, set

F =
∨
t≥0 F̃t. Then, (F̃t)t≥0 is a standard system on the space (Ω,F , (F̃t)t≥0). The same is true,

if we replace D∞(R+,R
n
+) by its subspace C∞(R+,R

n
+) of component-wise continuous functions

allowing for explosions. Moreover, in both cases we have Fτ− = Fτ = F .

Proof. We prove the claim for Ω = D∞(R+,R
n
+). The case Ω = C∞(R+,R

n
+) is done in a similar

way. As in [9] we define a bijective mapping i from Ω to some subspace A ⊂ (Rn+)Q, (where here

Q denotes the set of all rational numbers), via ω 7→ (Xr(ω))r∈Q. It is clear that i is bijective and

we have F = i−1(B(A)). Furthermore, a sequence A1 ⊃ A2 ⊃ · · · ⊃ Ai ⊃ . . . of atoms of Fti =⋂
r>ti

σ(Xs; s ≤ r) defines a component-wise càdlàg function on every interval [0, limi→∞ ti]∩[0,∞)

for every sequence (ti)i∈N ⊂ R+, because we allow for explosions. This function can easily be

extended to an element of D∞(R+,R
n
+). The equality Fτ− = Fτ = F is obvious from the definition

of the respective spaces. �

Remark 1.6. In the same way it can be shown that the spaces Ω = D∞(R+,R
n
) and C∞(R+,R

n
)

of componentwise càdlàg resp. continuous functions from R+ into Rn = (R∪ {∞}∪ {−∞})n, that

remain constant after τ−, where τ = limk→∞ τk and τk = inf{t ≥ 0| ∃ i = 1, . . . , n : |ωi(t)| > k},
with their canonical filtrations generated by the coordinate process are also standard spaces.

Lemma 1.7. (cf. [13], Remark 6.1) Let (F̃t)t≥0 be a standard system on Ω. Then for any

increasing sequence (τn)n∈N of (Ft)-stopping times the family (Fτn−)n∈N is also a standard system.

Notation: When working on the subspace (Ω,Fτ−) of (Ω,F), where τ is some (Ft)-stopping

time, we must restrict the filtration to (Ft∧τ−)t≥0, where with a slight abuse of notation we set

Ft∧τ− := Ft ∩ Fτ−. In the following we may also write (Ft)0≤t<τ for the filtration on (Ω,Fτ−,P).

Working with standard systems will allow us to derive for every strictly positive strict local

P-martingale the existence of a measure Q on (Ω,Fτ−, (Ft)0≤t<τ ), such that the reciprocal of the

strict local P-martingale is a true Q-martingale. In Section 3 we will use this result to reduce
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calculations involving strict local martingales to the much easier case of true martingales.

From Theorem 4 in [6] and Proposition 6 [28] we know that every continuous local martingale

understood as the canonical process on C(R+,R+) gives rise to a new measure under which its

inverse turns into a true martingale. The following theorem is an extension of this result to more

general probability spaces and càdlàg processes. Its proof relies on the construction of the Föllmer

measure, cf. [13]; nevertheless we will give a detailed proof, since it is essential for the rest of the

paper.

Theorem 1.8. Let
(

Ω,F , (F̃t)t≥0,P
)

be a filtered probability space and assume that (F̃t)t≥0 is a

standard system. Let X be a càdlàg local martingale on the space (Ω,F , (Ft)t≥0,P) with values in

(0,∞) and X0 = 1 P-almost surely. We define τXn := inf{t ≥ 0 : Xt > n}∧n and τX = limn→∞ τ
X
n .

Then there exists a unique probability measure Q on
(
Ω,FτX−, (Ft∧τX−)t≥0

)
, such that 1

X is a Q-

martingale up to time τX and Q|Ft∩FτX− � P|Ft∩FτX− for all t ≥ 0 with Radon-Nikodym derivative

given by dP
dQ

∣∣∣
Ft∩FτX−

= 1
Xt

I{t<τX}.

Proof. First, note that τXn is an (Ft)t≥0-stopping time and the process (Xt∧τXn )t≥0 is a uniformly

integrable {(Ft)t≥0,P}-martingale for all n ∈ N. Furthermore, P(τX = ∞) = 1, since a positive

càdlàg local martingale does not explode almost surely. We define on (Ω,FτXn ) the probability

measure Q̃n via Q̃n = XτXn
.P|F

τXn
for all n ∈ N. The family (Q̃n)n∈N constitutes a consistent family

of probability measures on (FτXn )n≥1: If A ∈ FτXn , then

Q̃n+k(A) = EP
(
XτXn+k

IA
)

= EP(XτXn
IA) = Q̃n(A),

i.e. Q̃n+k|F
τXn

= Q̃n for all n, k ∈ N. This induces a sequence of consistently defined measures

(Qn)n∈N on the sequence (FτXn −)n∈N, which is a standard system by Lemma 1.7. Note that FτX− =∨
n≥1FτXn −, since (τXn )n≥1 is increasing. We can thus apply Theorem 3.2 together with Theorem 4.1

in Chapter V of [29], cf. also Theorem 6.2 in [13], which yield the existence of a unique measure Q on

(Ω,FτX−, (Ft∧τX−)t≥0 such that Q|F
τXn −

= Qn = Q̃n|F
τXn −

. Moreover, since {τXn < τXm } ∈ FτXm−,

Q(τXn < τX) = lim
m→∞

Q(τXn < τXm ) = lim
m→∞

Q̃m(τXn < τXm ) = lim
m→∞

EP
(
I{τXn <τXm }XτXm

)
= lim

m→∞
EP
(
I{τXn <τXm }XτXn

)
= EP

(
I{τXn <τX}XτXn

)
= EP

(
XτXn

)
= 1,

i.e., 1/X does not jump to infinity under Q. Therefore, if Λn ∈ FτXn , then

Q(Λn) = Q
(
Λn ∩ {τX > τXn }

)
= lim

m→∞
Q
(
Λn ∩ {τXm > τXn }

)
= lim

m→∞
EP
(
XτXm

IΛnI{τXm>τXn }
)

= lim
m→∞

EP
(
XτXn

IΛnI{τXm>τXn }
)

= EP
(
XτXn

IΛn
)

= Q̃n(Λn).

Therefore, Q|F
τXn

= Q̃n for all n ∈ N.
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Now let S be an (Ft)t≥0-stopping time. Note that {S < τXn } ∈ FS and {S < τXn } ∈ FτXn . Thus,

(1)

Q(S < τXn ) = Q̃n(S < τXn ) = EP
(
I{S<τXn }XτXn

)
= EP

(
I{S<τXn }E

P(XτXn
|FS)

)
= EP

(
I{S<τXn }XS

)
.

Since P(τXn < τX =∞) = 1, taking the limit as n→∞ in equation (1) yields

(2) Q(S < τX) = EP
(
I{S<∞}XS

)
.

Applied to the stopping time SA := SIA +∞IAc , where A ∈ FS , this gives

Q(S < τX , A) = EP
(
IA∩{S<∞}XS

)
.

Especially, if S is finite P-almost surely, then Q(S < τX , A) = EP(XSIA) for A ∈ FS .

Now assume that A ∈ Ft ∩ FτX− with Q(A) = 0. Then,

0 = Q(A) ≥ Q(t < τX , A) = EP (IAXt) ≥ 0
Xt>0 P−a.s.⇒ P(A) = 0.

This shows that Q|Ft∩FτX− � P|Ft∩FτX− for all t ≥ 0. If A ∈ Ft ∩ FτX−, then

P(A) = lim
n→∞

P(A ∩ {t < τXn }) = lim
n→∞

EQ

(
IAI{t<τXn }

1

XτXn

)

= lim
n→∞

EQ

(
IAI{t<τXn }

1

Xt

)
= EQ

(
IAI{t<τX}

1

Xt

)
.

Therefore, dP
dQ

∣∣∣
Ft∩FτX−

= 1
Xt

I{t<τX} for all t ≥ 0.

Finally, note that because (X
τXn
t )t≥0 is a positive finite-valued uniformly integrable P-martingale

for all n ∈ N, P|F
τXn
∼ Q|F

τXn
and

dP|F
τXn

=
1

XτXn

dQ|F
τXn

⇔ dQ

dP

∣∣∣∣
F
t∧τXn

= Xt∧τXn ∀ t ≥ 0.

Thus,

EQ

(
1

Xt∧τXn

∣∣∣∣∣Fs
)

= EP

(
1

Xt∧τXn
·
Xt∧τXn
Xs∧τXn

∣∣∣∣∣Fs
)

=
1

Xs∧τXn

for s ≤ t, i.e. 1
X is a local martingale up to time τX . �

Corollary 1.9. Under the assumptions of Theorem 1.8, X is a strict local P-martingale, if and

only if Q(τX <∞) > 0.

Proof. It follows directly from equation (2) that Q(t < τX) = EPXt, which is smaller than 1 for

some t, iff X is a strict local martingale under P. �

Remark 1.10. Corollary 1.9 makes clear why we cannot work with the natural augmentation of

(F̃t)t≥0. Indeed, we have An := {τX ≤ n} ∈ Fn ∩ FτX− and P(An) = 0 for all n ∈ N, while

Q(An) > 0 for some n if X is a strict local P-martingale. However, it is in general rather inconve-

nient to work without any augmentation, especially if one works with an uncountable number of

stochastic processes as for example in an incomplete market situation. For this reason a new kind
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of augmentation - called the (τXn )-natural augmentation - is introduced in [21], which is suitable

for the change of measure from P to Q undertaken here. Since for the financial applications in the

second part of this paper the setup introduced above is already sufficient, we do not bother about

this augmentation here and refer the interested reader to [21] for more technical details.

In the following we extend the measure Q in an arbitrary way from FτX− to F∞ =
∨
t≥0 F̃t.

For notational convenience we assume that F = F∞. In fact it is always possible to extend a

probability measure from FτX− to F : since (Ω, F̃t) is a standard Borel space for every t ≥ 0 and

(Ω,FτXn −) is a standard Borel space for all n ∈ N by Lemma 1.7, it follows from Theorem 4.1 in [29]

that (Ω,F) and (Ω,FτX−) are also standard Borel spaces. Especially, they are countably generated

which allows us to apply Theorem 3.1 of [12] that guarantees an extension of Q from FτX− to F .

Moreover, it does not matter for the results how we extend it, because all events that happen with

positive probability under P take place before time τX under Q almost surely. However, if Y is

any process on (Ω,F , (Ft)t≥0,P), then Yt is only defined on {t < τX} under Q. Especially, if Y

is a P-semimartingale, then Y τXn is a Q-semimartingale for each n ∈ N as follows from Girsanov’s

theorem, since Q|F
τXn
∼ P|F

τXn
. Therefore, Y is a Q-semimartingale on the stochastic interval⋃

n∈N[0, τXn ] or a “semimartingale up to time τX” in the terminology of [16]. We note that in

general it may not be possible to extend Y to the whole positive real line under Q in such a way

that Y remains a semimartingale. Indeed, according to Proposition 5.8 of [16] such an extension

is possible if and only if YτX− exists in R+ Q-almost surely. We define the process Ỹ as

Ỹt =

Yt : t < τX

lim infs→τX ,s<τX ,s∈Q Ys : τX ≤ t <∞
.

Note that Ỹt = Yt on {t < τX}. The above definition specifies an extension of the process Y , which

is a priori only defined up to time τX , to the whole positive real line. In the following we will work

with this extension.

Lemma 1.11. Under the assumptions of Theorem 1.8 we have 1
X̃t

= 1
Xt

I{t<τX}. Furthermore, the

process
(

1
X̃t

)
t≥0

is a true Q-martingale for any extension of Q from FτX− to F .

Proof. First note that

lim sup
n→∞

1

Xt∧τXn
= lim sup

n→∞

(
1

Xt
I{t<τXn } +

1

XτXn

I{t≥τXn }

)
≤ 1

Xt
I{t<τX}+lim sup

n→∞

1

n
I{t≥τXn } =

1

Xt
I{t<τX}

and

lim inf
n→∞

1

Xt∧τXn
= lim inf

n→∞

(
1

Xt
I{t<τXn } +

1

XτXn

I{t≥τXn }

)
≥ lim inf

n→∞

1

Xt
I{t<τXn } =

1

Xt
I{t<τX} Q-a.s.

Thus, 1
X̃t

= 1
Xt

I{t<τX}. Furthermore,

0 ≤ 1

XτX−
I{τX<∞} = lim

k→∞

1

XτX−
I{τX<k} = lim

k→∞
lim
n→∞

1

XτXn

I{τX<k} = lim
k→∞

lim
n→∞

1

n
I{τX<k} = 0
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implies that XτX− = ∞ on {τX < ∞} Q-almost surely. From Theorem 1.8 we know that 1

XτXn
is

a true Q-martingale for all n ∈ N. By the definition of τXn we have for any integer n ≥ t:

Xt∧τXn = X̃t∧τXn = X̃t∧inf{s≥0: X̃s>n} ≥ X̃t ∧ 1 ⇒ 1

Xt∧τXn
≤ 1

X̃t ∧ 1
= 1 ∨ 1

X̃t

.

Because

EQ

(
1

X̃t

)
= EQ

(
lim inf
n→∞

1

Xt∧τXn

)
≤ lim inf

n→∞
EQ

(
1

Xt∧τXn

)
= 1,

the dominated convergence theorem implies that for all 0 ≤ s ≤ t

EQ

(
1

X̃t

∣∣∣∣Fs) = EQ

(
lim
n→∞

1

Xt∧τXn

∣∣∣∣∣Fs
)

= lim
n→∞

EQ

(
1

Xt∧τXn

∣∣∣∣∣Fs
)

= lim
n→∞

1

Xs∧τXn
=

1

X̃s

.

�

To simplify notation we identity in the following the process X with X̃.

2. Examples

In this section we shed new light on some known examples of strict local martingales by applying

the theory from the last section for illustration.

2.1. Continuous local martingales. For the following examples we work on the pathspace

C∞(R+,R+) with X denoting the coordinate process and (Ft)t≥0 being the right-continuous aug-

mentation of the canonical filtration generated by the coordinate process.

2.1.1. Scaled transient diffusions. Let (Xt)0≤t<ζ be a regular transient homogeneous diffusion on

(0,∞), i.e.

Xt = x0 +

∫ t∧ζ

0
b(Xs)ds+

∫ t∧ζ

0
σ(Xs)dWs,

where ζ = inf{t ≥ 0| Xt− = 0 ∨ Xt− = ∞} = τX ∧ τ1/X and as before X0 = 1. Then a scale

function for X is

s(x) =

∫ x

c
exp

(
−2

∫ u

c

b(v)

σ2(v)
dv

)
du

for some c > 0 such that s(1) = −1. We assume that s(0) = −∞ and s(∞) = 0 and that 0 is an

entrance boundary for X. Under these assumptions it was shown in [10] that (−s(Xt))0≤t<ζ is a

strict local martingale. Indeed, we have

d(−s(Xt)) = −s′(Xt)σ(Xt)dWt.

The behaviour of
(

1
−s(Xt)

)
0≤t<ζ

under Q is given by

d

(
−1

s(Xt)

)
=
s′(Xt)σ(Xt)

s2(Xt)
dWQ

t ,
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where WQ is a Q-Brownian motion. Indeed, using that dP
dQ

∣∣∣
Ft

= 1
−s(Xt) , Girsanov’s theorem implies

that

WQ
t −

∫ t

0
s(Xt)d

〈
1

s(X)
,WQ

〉
t

= WQ
t +

∫ t

0

s′(Xt)σ(Xt)

s(Xt)
dt = Wt

is actually a P-Brownian motion. Furthermore,

d(−s(Xt)) = d

(
1

−1/s(Xt)

)
= −s2(Xt)d

(
−1

s(Xt)

)
− s3(Xt)

〈
−1

s(X)

〉
t

= −s′(Xt)σ(Xt)dW
Q
t −

[s′(Xt)]
2σ2(Xt)

s(Xt)
dt = −s′(Xt)σ(Xt)dWt.

2.1.2. Exponential local martingales. In this subsection we consider positive local martingales of

the form

dXt = Xtb(Yt)dWt, X0 = 1,

where Y is assumed to be a (possibly explosive) diffusion following

dYt = µ(Yt)dt+ σ(Yt)dWt, Y0 = y ∈ R,

with a P-Brownian motion W . Exponential local martingales of this type are further studied in

[26]. Assuming that σ(x) 6= 0 for all x > 0 and that

1

σ2
,
µ

σ2
,
b2

σ2
∈ L1

loc(R+),

∫ t

0
b2(Yu)du <∞ ∀ t ≥ 0 P-a.s.

a strictly positive weak solution of the given SDEs exists3. Under Q the dynamics of 1
X are

d

(
1

Xt

)
= −b(Yt)

Xt
dWQ

t

for a Q-Brownian motion WQ, and the Q-dynamics of Yt are

dYt = [µ(Yt) + σ(Yt)b(Yt)] dt+ σ(Yt)dW
Q
t .

Notably, the criterion whether X is a strict local or a true P-martingale from [26], Theorem 2.1,

is deterministic and only involves the functions b, σ and µ via the scale function of the original

diffusion Y under P and an auxiliary diffusion Ỹ , whose dynamics are identical with the Q-dynamics

of Y stated above.

3In [26] the conditions on b are less restrictive and the exponential local martingale X may hit zero, but in our

setup the local martingale X needs to be strictly positive.
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2.1.3. Diffusions in natural scale. We now further specify the setting from 2.1.1 to the case, where

dXt = σ(Xt)dWt, X0 = 1,

is already a P-local martingale, assuming that σ(x) is locally bounded and bounded away from zero

for x > 0 and σ(0) = 0. Using the results from [8], we know that X is strictly positive, whenever∫ 1

0

x

σ2(x)
dx =∞,

which we shall assume in the following. Furthermore, X is a strict local martingale, iff∫ ∞
1

x

σ2(x)
dx <∞.

We know that 1
X is a Q-martingale, where dP

dQ

∣∣∣
Ft

= 1
Xt

, with decomposition

d

(
1

Xt

)
= −σ(Xt)

X2
t

dWQ
t = σ

(
1

Xt

)
dWQ

t

for a Q-Brownian motion WQ and σ(y) := −y2 · σ
(

1
y

)
. Note that∫ ∞

1

y

σ2(y)
dy =

∫ 1

0

x

σ2(x)
dx =∞,

which confirms that 1
X is a true Q-martingale. We see that, if X is a strict local martingale under

P, then ∫ 1

0

y

σ2(y)
dy =

∫ ∞
1

x

σ2(x)
dx <∞,

i.e. 1
X hits zero in finite time Q-almost surely.

2.2. Jump example. 4 Let Ω = D(R+,R) with (ξt)t≥0 denoting the coordinate process and

(Ft)t≥0 being the right-continuous augmentation of the canonical filtration generated by the co-

ordinate process. Assume that under P, (ξt)t≥0 is a one-dimensional Lévy process with ξ0 = 0,

EP exp(bξt) = exp(tρ(b)) <∞ for all t ≥ 0 and characteristic exponent

Ψ(λ) = iaλ+
1

2
σ2x2 +

∫
R

(
1− eiλx + iλxI{|x|<1}

)
π(dx),

where a ∈ R, σ2 ≥ 0 and π is a positive measure on R\{0} such that
∫

(1∧|x|2)π(dx) <∞. Define

Xt = Y b
t exp

(
−ρ(b)

∫ t

0

ds

Ys

)
,

where (Yt)t≥0 is a semi-stable Markov process, i.e.
(

1
cY

(x)
ct

)
t≥0

(d)
=
(
Y

(xc−1)
t

)
t≥0

for all c > 0,

implicitly defined via

exp(ξt) = Y∫ t
0 exp(ξs)ds

.

4This example is taken from [4]. However, we corrected a small mistake concerning the time-scaling.
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Following [4], (Xt)t≥0 is a strict local martingale if b satisfies

−a+

∫
|x|>1

xπ(dx) ≥ 0, −a+ bσ2 −
∫
|x|<1

x(1− ebx)π(dx) +

∫
|x|>1

xebxπ(dx) < 0.

Furthermore, under the new measure Q the process

1

Xt
= Y −bt exp

(
ρ(b)

∫ t

0

ds

Ys

)
is a true martingale, where now (ξt)t≥0 has characteristic component Ψ̃ with

Ψ̃(u) = Ψ(u− ib)−Ψ(−ib).

3. Application to Financial Bubbles I: Decomposition formulas

In this section we apply our results to option pricing in the presence of strict local martingales.

For this, let X be a strictly positive càdlàg local martingale with X0 = 1 on a probability space

(Ω,F , (Ft)t≥0,P) that satisfies the assumptions of Theorem 1.8, i.e. the filtration is a standard

system. The stopping times τXn , n ∈ N, and τX are defined as in sections 1.2 and 4. Furthermore,

we denote by Q any extension of the measure Q constructed in Theorem 1.8 to (Ω,F).

We consider a financial market model which satisfies the NFLVR property as defined in [7].

We denote by P the equivalent local martingale measure (ELMM). Assuming that the interest rate

equals zero, we interpretX as the (discounted) stock price process, which is a local martingale under

P. In this context, the question of whether X is a strict local or a true P-martingale determines

whether there exists a stock price bubble. If X is a strict local P-martingale, the fundamental value

of the asset (given by the conditional expectation) deviates from its actual market price X. Several

authors like Cox and Hobson [5], Jarrow et al. [18, 19] or Pal and Protter [28] have interpreted this

as the existence of a stock price bubble, which we formally define as follows:

Definition 3.1. With the previous notation the asset price bubble for the stock price process X

between time t ≥ 0 and time T ≥ t is equal to the Ft-measurable random variable

γX(t, T ) := Xt − EP(XT |Ft).

Remark 3.2. For t = 0 we recover the default function γX(0, T ) = X0−EPXT of the local martingale

X, which was introduced in [11]. In [10, 11] the authors derive several expressions for the default

funtion in terms of the first hitting time, the local time and the last passage time of the local

martingale.

In [28, Proposition 7], the price of a non-path-dependent option written on a stock, whose

price process is a (strict) local martingale, is decomposed into a ”normal” (“non-bubble”) term

and a default term. In the following we give an extension of this theorem to a certain class of

path-dependent options. For this let us introduce the following notation for all k ∈ N:

Rk+ = {x ∈ Rk : xl ≥ 0, l = 1, . . . , k}, Rk++ = {x ∈ Rk : xl > 0, l = 1, . . . , k}.
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Theorem 3.3. Let 0 ≤ t1 < t2 < · · · < tn ∈ R+ and consider any Borel-measurable non-negative

function h : Rn++ → R+. Set g(x) := xn · h
(

1
x1
, . . . , 1

xn

)
for all x = (x1, . . . , xn) ∈ Rn++. Then

EPh (Xt1 , . . . , Xtn) = EQ

(
g

(
1

Xt1

, . . . ,
1

Xtn

)
I{τX>tn}

)
.

Now suppose that the following limits exist in R+ for yi ∈ R++, i = 1, . . . , n− 1:

lim
|z|→0

g (y1, . . . , yk; z1, . . . , zn−k) =: ηk(y1, . . . , yk), k = 1, . . . , n− 1, lim
|z|→0

g (z1, . . . , zn) =: η0.

Define g : A→ R+ as the extension of g from Rn++ to A ⊂ Rn+, where A is defined as

A := {x ∈ Rn+ : if xk = 0 for some k = 1, . . . , n, then xl = 0 ∀ l ≥ k}. Then:

(3) EPh (Xt1 , . . . , Xtn) = EQg

(
1

Xt1

, . . . ,
1

Xtn

)
−
n−1∑
k=0

EQ
(
I{tk<τX≤tk+1} · ηk(X

k)
)
,

where we set t0 = 0 and Xk =
(

1
Xt1

, . . . , 1
Xtk

)
for k = 1, . . . , n− 1, X0 ≡ 0.

In particular, if ηk(·) ≡ ck, k = 1, . . . , n− 1, are constant, then:

(4) EPh (Xt1 , . . . , Xtn) = EQg

(
1

Xt1

, . . . ,
1

Xtn

)
−
n−1∑
k=0

ck · Q
(
tk < τX ≤ tk+1

)
.

Proof. First note that

I{τX>tn} = I{τX>t1}I{τX>t2} . . . I{τX>tn−1}I{τX>tn}.

Using the change of measure dP|Ftn = 1
Xtn

dQ|Ftn on {τX > tn} we deduce

EPh(X) = EQ

(
g

(
1

X

)
I{τX>tn}

)
= EQ

(
g

(
1

X

)
I{τX>t1} . . . I{τX>tn}

)
=

EQ

(
I{τX>t1}E

Q

(
I{τX>t2} . . .E

Q

(
I{τX>tn−1}E

Q

(
I{τX>tn}g

(
1

X

)∣∣∣∣Ftn−1

)∣∣∣∣Ftn−2

)
. . .

∣∣∣∣Ft2)∣∣∣∣Ft1)) .
Because on {τX > tn−1} we have

EQ

(
I{τX>tn}g

(
1

X

)∣∣∣∣Ftn−1

)
= EQ

(
g

(
1

X

)∣∣∣∣Ftn−1

)
− EQ

(
I{tn−1<τX≤tn}ηn−1

(
Xn−1

)∣∣∣Ftn−1

)
,

it follows that

EPh(X) = EQ

(
I{τX>t1}E

Q

(
I{τX>t2} . . .E

Q

(
I{τX>tn−2}E

Q

(
I{τX>tn−1}g

(
1

X

)∣∣∣∣Ftn−2

)
. . .

∣∣∣∣Ft1))
−EQ

(
I{τX>t1}I{τX>t2} . . . I{τX>tn−1}I{tn−1<τX≤tn}ηn−1

(
Xn−1

))
.

Similarly, on {τX > tn−2} we have

EQ

(
I{τX>tn−1}g

(
1

X

)∣∣∣∣Ftn−2

)
= EQ

(
g

(
1

X

)∣∣∣∣Ftn−2

)
−EQ

(
I{tn−2<τX≤tn−1}ηn−2

(
Xn−2

)∣∣∣Ftn−2

)
,
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and we deduce that

EPh(X) = EQ

(
I{τX>t1}E

Q

(
I{τX>t2} . . .E

Q

(
I{τX>tn−2}g

(
1

X

)∣∣∣∣Ftn−3

)
. . .

∣∣∣∣Ft1))
−EQ

(
I{tn−2<τX≤tn−1}ηn−2

(
Xn−2

))
− EQ

(
I{tn−1<τX≤tn}ηn−1

(
Xn−1

))
.

Iterating this procedure results in

EPh(X) = EQ

(
I{τX>t1}g

(
1

X

))
−
n−1∑
k=1

EQ
(
I{tk<τX≤tk+1}ηk

(
Xk
))

= EQg

(
1

X

)
− EQ

(
I{τX≤t1}η0

)
−
n−1∑
k=1

EQ
(
I{tk<τX≤tk+1}ηk

(
Xk
))

.

�

Remark 3.4. The second term in the above decompositions (3) and (4) with the minus sign in front

will be called the default term in the following. This is motivated by the following observation:

γX(t, T ) = Xt − EP(XT |Ft) = Xt −Xt · Q(τX > T |Ft) = Xt · Q(τX ≤ T |Ft).

Taking expectations under P yields

EPγX(t, T ) = EP
(
Xt · Q(τX ≤ T |Ft)

)
= EQ

(
I{τX>t}Q(τX ≤ T |Ft)

)
= Q(t < τX ≤ T ).

Thus, the default term is directly related to the expected bubble of the underlying.

The convergence conditions that must be fulfilled in Theorem 3.3 may seem to be rather strict.

However, below we give a few examples of options which satisfy those conditions.

Example 3.5. Let us consider a modified call option with maturity T and strike K, where the

holder has the option to reset the strike value to the current stock price at certain points in time

t1 < t2 < · · · < tn < T , i.e. the payoff profile of the option is given by

H(X) = (XT −min(K,Xt1 , Xt2 , . . . , Xtn))+.

With the notation in Theorem 3.3 it follows that

η0 = η1 = · · · = ηn−1 = 1

and the option value can be decomposed as

EPh(X) = EQ

(
1− 1

XT
·min (K,Xt1 , . . . , Xtn)

)+

−
n−1∑
k=0

Q
(
tk < τX ≤ tk+1

)
= EQ

(
1− 1

XT
·min (K,Xt1 , . . . , Xtn)

)+

− γX(0, T ).

Therefore, this modified call option has the same default as the normal call option, cf. (14) in [28].
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Example 3.6. Let us consider a call option on the ratio of the stock price at times S and T ≥ S

with strike K ∈ R+, i.e.

h(X) =

(
XT

XS
−K

)+

for S < T ∈ R+. In this case

η0 = 0, η1(y) = y

and the decomposition of the option value is given by

EPh(X) = EQ

(
1

XS
− K

XT

)+

− EQ

(
I{S<τX≤T}

1

XS

)
.

Example 3.7. A chooser option with maturity T and strike K entitles the holder to decide at time

S < T , whether the option is a call or a put. He will choose the call, if its value is as least as high

as the value of the put option with strike K and maturity T at time S. However, in the presence

of asset price bubbles, i.e. when the underlying is a strict local martingale, put-call-parity does not

hold, but instead we have

EP((XT −K)+|FS)− EP((K −XT )+|FS) = EP(XT |FS)−K.

Therefore, the payoff of the chooser option equals

h(XS , XT ) = (XT −K)+I{EP(XT |FS)≥K} + (K −XT )+I{EP(XT |FS)<K}.

Let us assume that X is Markovian. Then we can express EP(XT |FS) as a function of XS , say

EP(XT |FS) = m(XS), and the limits defined in Theorem 3.3 exist, if m is monotone for large

values, and equal

η1(y) = I{
m
(

1
y

)
≥K

}, η0 = lim
x→∞

I{m(x)≥K}.

Thus, the value of the chooser option can be decomposed as

EPh(XS , XT ) = EQ

(
h(XS , XT )

XT

)
− Q

(
m(XS) ≥ K, S < τX ≤ T

)
− lim
x→∞

I{m(x)≥K}Q(τX ≤ S) .

If X is the inverse of a BES(3)-process under P, it is calculated in subsection 2.2.2 in [5] that

m(Xs) = EP(XT |XS) = XS

(
1− 2Φ

(
− 1

XS

√
T − S

))
.

Therefore,

lim
x→∞

m(x) = lim
x→∞

EP(XT |XS = x) = lim
x→∞

2ϕ

(
− 1

x
√
T − S

)
1√
T − S

=

√
2√

π(T − S)

and

η1(y) = I{ 1
y

(
1−2Φ

(
− y√

T−S

))
≥K

}, η0 = I{ √
2√

π(T−S)
>K

}.
In the following we give another extension of Proposition 7 in [28] to Barrier options, i.e. we

allow the options to be knocked-in or knocked-out by passing some barrier.
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Theorem 3.8. Consider any non-negative Borel-measurable function h : R++ → R+ and define

g(x) = x · h
(

1
x

)
for x > 0. Suppose that limx→0 g(x) =: η <∞ exists and denote by g : R+ → R+

the extension of g with g(0) = η. Define m̂X
T = mint≤T Xt, m

X
T = maxt≤T Xt and τXa := inf{t ≥

0 : Xt > a}, TXa := inf{t ≥ 0 : Xt ≤ a} for a ∈ R+. Then for any bounded stopping time T and

for any real numbers D ≤ 1 and F ≥ 1:

(DI) EP
(
h(XT )I{m̂XT ≤D}

)
= EQ

(
g

(
1

XT

)
I{m̂XT ≤D}

)
− η · Q

(
TXD < τX ≤ T

)
(DO) EP

(
h(XT )I{m̂XT ≥D}

)
= EQ

(
g

(
1

XT

)
I{m̂XT ≥D}

)
− η · Q

(
TXD =∞, τX ≤ T

)
(UI) EP

(
h(XT )I{mXT ≥F}

)
= EQ

(
g

(
1

XT

)
I{mXT ≥F}

)
− η · Q

(
τX ≤ T

)
(UO) EP

(
h(XT )I{mXT ≤F}

)
= EQ

(
g

(
1

XT

)
I{mXT ≤F}

)
Before proving the theorem we remark that the result is intuitively reasonable in that the default

only plays a role if the option is active. Especially note that the default term for Up-and-out options

is equal to zero, a result which is true for all options with bounded payoffs (cf. Corollary 1 in [28]).

Proof. Keeping in mind that D ≤ 1 and F ≥ 1, it follows from the absolute continuity relationship

between P and Q that

EP
(
h(XT )I{m̂XT ≤D}

)
= EQ

(
g

(
1

XT

)
I{τX>T, m̂XT ≤D}

)
= EQ

(
g

(
1

XT

)
I{τX>T≥TXD }

)
= EQ

(
g

(
1

XT

)
I{m̂XT ≤D}

)
− η · Q

(
TXD ≤ T, τX ≤ T

)
= EQ

(
g

(
1

XT

)
I{m̂XT ≤D}

)
− η · Q

(
TXD < τX ≤ T

)
.

Similarly,

EP
(
h(XT )I{m̂XT ≥D}

)
= EQ

(
g

(
1

XT

)
I{τX>T, m̂XT ≥D}

)
= EQ

(
g

(
1

XT

)
I{τX>T, TXD >T}

)
= EQ

(
g

(
1

XT

)
I{m̂XT ≥D}

)
− η · Q

(
τX ≤ T < TXD

)
= EQ

(
g

(
1

XT

)
I{m̂XT ≥D}

)
− η · Q

(
τX ≤ T, TXD =∞

)
.

Continuing,

EP
(
h(XT )I{mXT ≥F}

)
= EQ

(
g

(
1

XT

)
I{τX>T, mXT ≥F}

)
= EQ

(
g

(
1

XT

)
I{τX>T≥τXF }

)
= EQ

(
g

(
1

XT

)
I{mXT ≥F}

)
− η · Q

(
τXF ≤ T, τX ≤ T

)
= EQ

(
g

(
1

XT

)
I{mXT ≥F}

)
− η · Q

(
τX ≤ T

)
.
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Finally,

EP
(
h(XT )I{mXT ≤F}

)
= EQ

(
g

(
1

XT

)
I{τX>T, mXT ≤F}

)
= EQ

(
g

(
1

XT

)
I{τX>T, τXF >T}

)
= EQ

(
g

(
1

XT

)
I{mXT ≤F}

)
− η · Q

(
τX ≤ T < τXF

)
= EQ

(
g

(
1

XT

)
I{mXT ≤F}

)
.

All the formulas have been proved. �

Remark 3.9. Above we used the risk-neutral pricing approach to calculate the value of some options

written on stocks which may have an asset price bubbles, as suggested by the first fundamental

theorem of asset pricing. The derived decompositions show that there is an important difference

in the option value depending on whether the underlying is a strict local or a true martingale

under the risk-neutral measure, which is reflected in the default term. Even though we do not

create arbitrage opportunities when pricing opions by their fundamental values calculated above,

several authors have suggested to “correct” the option price to account for the strictness of the

local martingale, cf. e.g. [17, 18, 19, 24]. While the authors of [17, 18, 19] work under the additional

No Dominance assumption which is strictly stronger than NFLVR, Madan and Yor suggest in [24]

the following pricing formulas for European and American call options written on (continuous) X

with strike K and maturity T :

CstrictE (K,T ) := lim
n→∞

EP(XT∧σn −K)+,

CstrictA (K,T ) := sup
σ∈T0,T

lim
n→∞

EP(Xσ∧σn −K)+

for some localizing sequence (σn)n∈N of the strict local martingale X. It is proven in [24] that this

definition is independent of the chosen localizing sequence and that CstrictE = CstrictA . However, a

generalization of this definition to any other option h(·) on X with maturity T is problematic: the

independence of the chosen localizing sequence (σn)n∈N is not true in general, so one may have

to choose σn = τXn as defined above. Moreover, in general limn→∞ EPh(Xσn) may not even be

well-defined and equal to EPh(XT ), when X is a true martingale. Since in this case there are no

asset price bubbles, it does not seem correct to trade the option for a price which differs from

its fundamental value. Therefore, in the case where we have a decomposition of the fundamental

option value as above or more generally as proven in Theorem 3.3, this suggests that the most

sensible approach to correct the option value for bubbles in the underlying is to set the default

term equal to zero. Equivalently, we can also set τX equal to infinity under the measure Q. This

even gives a way of correcting the option value for stock price bubbles in the general case, where

a decomposition formula may not be available. By doing so we basically treat the price process as

if it was a true martingale. However, we want to emphasize that it is not necessary to correct the

price at all, since the fundamental value gives an arbitrage-free price.
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4. Relationship Between P and Q

In the following we study the relationship between the original measure P and the measure Q in

more detail. To avoid an overload of notation in what follows, we introduce the following conven-

tion which will be valid throughout:

X is assumed to be a càdlàg strictly positive local martingale on the probability space (Ω,F , (Ft)t≥0,P),

whose filtration is the right-continuous augmentation of a standard system and F =
∨
t≥0Ft. We

set τXn = inf{t ≥ 0| Xt > n} ∧ n for all n ∈ N and τX = limn→∞ τ
X
n . Furthermore, we denote by

Q any extension to (Ω,F) of the measure associated with X, defined in Theorem 1.8.

Lemma 4.1. Set X = X̃, i.e. Xt =∞ on {t ≥ τX}. Then, Q(X∞ =∞) = 1 ⇔ P(X∞ = 0) = 1.

Proof. Since X is a P-supermartingale and 1
X a Q-martingale, both converge and therefore X∞ is

almost surely well-defined under both measures.

⇐: Assume that P(X∞ = 0) = 1. Because 1/X is a Q-martingale, we have by Fatou’s lemma for

all u > 0,

EQ

(
1

X∞
I{τX>t,Xt>u}

)
≤ lim inf

n→∞
EQ

(
1

Xt+n
I{τX>t,Xt>u}

)
= EQ

(
1

Xt
I{τX>t,Xt>u}

)
= P(Xt > u).

By dominated convergence for t→∞,

EQ

(
1

X∞
I{τX=∞,X∞>u}

)
≤ P(X∞ ≥ u) = 0 ∀u > 0.

This implies that

EQ

(
1

X∞
I{τX=∞,X∞>0}

)
= 0.

Since 1
X is a Q-martingale,

EQ

(
1

X∞

)
≤ EQ

(
1

Xt

)
= 1.

Thus, Q(X∞ = 0) = 0 and

EQ

(
1

X∞
I{τX=∞}

)
= 0 ⇔ 1

X∞
I{τX=∞} = 0 Q-a.s.

Since 1
X∞

I{τX<∞} = 0, it follows that 1
X∞

= 0 Q-almost surely.

⇒: Assume that Q(X∞ =∞) = 1. Because X is a P-supermartingale, we have

EPX∞ ≤ EPXt ≤ 1

and

EP
(
X∞I{Xt<k}

)
≤ EP

(
XtI{Xt<k}

)
= Q(t < τX , Xt < k) = Q(Xt < k) ∀ k ≥ 0.

For t→∞ by dominated convergence then

EP
(
X∞I{X∞<k}

)
≤ Q(X∞ < k) = 0 ∀ k ≥ 0.
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This implies that X∞I{X∞<k} = 0 P-almost surely for all k ≥ 0. Therefore, P(X∞ ∈ {0,∞}) = 1.

Since EP(X∞) ≤ 1, it follows that P(X∞ =∞) = 0 and thus X∞ = 0 P-almost surely. �

Until here we have only considered the behaviour of the local P-martingale X under Q. But how

do other processes change their behaviour, when passing from P to Q? This question is of particular

interest, since we want to apply our result to option pricing, where under the risk-neutral measure

all discounted stock price processes turn into local martingales. Let us assume that besides X there

exists another process Y on (Ω,F , (Ft)t≥0,P). For all n ∈ N we set τYn = inf{t ≥ 0 : Yt > n} ∧ n
and τY = limn→∞ τ

Y
n . Note that in what follows we identify Y with the process Ỹ defined above.

Lemma 4.2. Let Y be a strictly positive càdlàg local P-martingale. Then: Q(τX ≤ τY ) = 1.

Proof.

Q(τY < τX) = lim
n→∞

Q(τY < τXn ) = lim
n→∞

EP
(
XτXn

I{τY <τXn }
)

= 0.

�

Moreover, we introduce condition (A): Q(YτX− =∞) = 0.

It can be shown that (A) is always fulfilled, if X and Y are independent or if X is a true

martingale. However, in general it is hard to check (A), since it requires some knowledge of the

joint distribution of τXn and τYm for n,m large.

If X and Y are assumed to be càdlàg processes under P, they are also almost surely càdlàg

under Q before time τX because P and Q are equivalent on every FτXn . Furthermore, since 1
X is a

Q-martingale, it does not explode and therefore Xt− 6= 0 and Xt 6= 0 Q-almost surely for all t ≥ 0.

Thus, the process Z := Y
X does also have almost surely càdlàg paths before time τX . Since from

time τX on everything is constant, the only crucial question is whether Z = Y
X has a left-limit at

τX .

Lemma 4.3. Let Y be a non-negative local P-martingale. Then Zt :=
(
Yt
Xt

)
0≤t<τX

is a local

martingale on (Ω,FτX−, (Ft∧τX−)t≥0,Q). Furthermore, setting Zt := Z̃t and Xt =∞ on {t ≥ τX}
is the unique way to define Z and X after time τX such that 1

X and Z remain non-negative càdlàg

local martingales on [0,∞) for all possible extensions of the measure Q from FτX− to F =
∨
t≥0Ft.

Proof. First, we show that Z = Y
X is a local Q-martingale on

⋃
n∈N[0, τXn ] with localizing sequence

(τYn ∧ τXn )n∈N. Indeed, for t ≥ s we have for all n ∈ N

EQ
(
Zt∧τYn ∧τXn |Fs

)
= EQ

(
Yt∧τYn ∧τXn
Xt∧τYn ∧τXn

∣∣∣∣∣Fs
)

= EP

(
Yt∧τYn ∧τXn
Xs∧τYn ∧τXn

∣∣∣∣∣Fs
)

=
Ys∧τYn ∧τXn
Xs∧τYn ∧τXn

= Zs∧τYn ∧τXn
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and by the first part of Lemma 4.2 we know that τXn ∧ τYn → τX Q-almost surely. Since Z is a

non-negative local supermartingale on
⋃
n∈N[0, τXn ], we can apply Fatou’s lemma twice with s ≤ t:

Z̃s = lim inf
u→τX ,u<τX ,u∈Q

Zs∧u = lim inf
u→τX ,u<τX ,u∈Q

lim
n→∞

Zs∧u∧τXn ∧τYn

≥ lim inf
u→τX ,u<τX ,u∈Q

lim
n→∞

EQ
(
Zt∧u∧τXn ∧τYn

∣∣∣Fs) ≥ lim inf
u→τX ,u<τX ,u∈Q

EQ (Zt∧u|Fs)

≥ EQ

(
lim inf

u→τX ,u<τX ,u∈Q
Zt∧u

∣∣∣∣Fs) = EQ(Z̃t|Fs),

where the second inequality is due to the fact that EQ
(
Zt∧u∧τXn ∧τYn

∣∣∣Fs) ≥ EQ (Zt∧u|Fs) by the

supermartingale property. By the convergence theorem for positive supermartingales, we conclude

that Z̃τX− = ZτX− exists Q-almost surely in R+. To see that Z̃ is indeed a local martingale and

not only a supermartingale, we show that Z̃τ
Z
n is a uniformly integrable martingale for all n ∈ N,

where τZn = inf{t ≥ 0| Zt > n} ∧ n. Since Z̃ is a non-negative supermartingale, it is sufficient to

prove that the expectation of Z̃τ
Z
n is constant:

EQZ̃τZn = EQ
(
Z̃τZn I{τZn <τX} + Z̃τZn I{τZn ≥τX}

)
= lim

m→∞
EQ
(
ZτZn I{τZn <τXm }

)
+ EQ

(
Z̃τX−I{τZn ≥τX}

)
= lim

m→∞
EQ
(
ZτXm I{τZn <τXm }

)
+ EQ

(
lim
m→∞

ZτXm I{τZn ≥τX}
)

= lim
m→∞

EQZτXm − lim
m→∞

EQ
(
ZτXm I{τZn ≥τXm }

)
+ lim
m→∞

EQ
(
ZτXm I{τZn ≥τX}

)
= Z0 − lim

m→∞
EQ
(
ZτXm I{τX>τZn ≥τXm }

)
= Z0.

To prove the uniqueness of the extension of Z for all possible extensions of Q to F , define for all

n ∈ N τZn = inf{t ≥ 0 : Zt > n}, where Z is an arbitrary càdlàg extension of (Zt)t<τX . Then

(τZn )n∈N is a localizing sequence for Z for all possible extensions of Q. Fix one of these extensions

and call it Q0. We have

EQ0
(Z

τZn
t |Fs) = Z

τZn
s ∀ n ∈ N.

Now for fix n ∈ N define the new measure Qn on F via

dQn

dQ0
=

ZτZn

Z
τZn
τX−

.

Note that Qn is also an extension of Q from FτX− to F . Furthermore, for all ε ≥ 0, we have

Z
τZn
τX− = EQn

(
Z
τZn
τX+ε

∣∣∣FτX−) = EQ0

 ZτZn

Z
τZn
τX−

· Zτ
Z
n

τX+ε

∣∣∣∣∣∣FτX−
 = EQ0


(
Z
τZn
τX+ε

)2

Z
τZn
τX−

∣∣∣∣∣∣∣FτX−
 ,

because Z
τZn must also be a uniformly integrable martingale under Qn. Therefore, Z

τZn and (Z
τZn )2

are both Q0-martingales, which implies that Zε+τX = ZτX− for all ε ≥ 0. Thus, Z ≡ Z̃ is uniquely

determined. �

As usual to simplify notation we will identify Z with the process Z̃ in the following.
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Remark 4.4.

• Note that if (A) is satisfied, then ZτX = 0 on {τX <∞} Q-almost surely.

• Even though we proved that ZτX− exists Q-almost surely and also XτX− is well-defined,

this does not allow us to infer any conclusions about the set {YτX− exists in R+} in general.

• For our purposes it is sufficient that local Q-martingales are càdlàg almost everywhere, since

we are only interested in pricing and do not deal with an uncountable number of processes.

One should however have in mind that in order to have everywhere regular paths some kind

of augmentation is needed, cf. [21].

Remark 4.5. If Ω = C∞(R+,R
2
+) is the pathspace introduced in Lemma 1.5 and (X,Y ) is the

coordinate process as well as (Ft)t≥0 the canonical filtration generated by (X,Y ), then we extend

Q to F =
∨
t≥0Ft such that

Q
(
ω1(t) =∞, ω2(t) = ω2(τX−) ∀ t ≥ τX

)
= 1.

Lemma 4.6.

(1) If X is a P-martingale, then Z := Y
X is a strict local Q-martingale if and only if Y is a

strict local P-martingale.

(2) Assume that X is a strict local P-martingale. Then:

(a) If Y is a P-martingale, then Z is a Q-martingale and ZτX = 0 on {τX <∞}.
(b) If Z is a strict local Q-martingale, then Y is a strict local P-martingale.

(c) If Z is a Q-martingale and if (A) holds, then Y is a P-martingale.

(d) If Y is a strict local P-martingale and if (A) holds, then Z is a strict local Q-martingale.

Proof.

(1) This is obvious, because Q and P are locally equivalent, if X is a true P-martingale.

(2) First note that

EPY0 = EQZ0 ≥ EQZt = EQ
(
ZtI{t<τX}

)
+ EQ

(
ZtI{t≥τX}

)
= EQ

(
Yt
Xt

I{t<τX}
)

+ EQ
(
ZτX I{t≥τX}

)
= EPYt + EQ

(
ZτX I{t≥τX}

)
.

(a) Since Y is a positive local P-martingale, we have:

Y is a true P-martingale ⇔ EPYt = EPY0 for all t ≥ 0

⇔ EQZt = EQZ0 for all t ≥ 0, ZτX I{τX<∞} = 0 Q-almost surely.

(b) Obviously, if EQZt < EQZ0 for some t ≥ 0, the above inequality is strict and thus also

EPYt < EPY0.

(c) If (A) holds, ZτX = 0 on {τX < ∞} Q-almost surely by Remark 4.5. Therefore,

since Z is a Q-martingale, the above inequality turns into an equality and Y is a true

P-martingale.
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(d) Assume that Y is a strict local P-martingale, i.e. EPYt < EPY0 for some t > 0.

Furthermore assume that (A) holds, which implies that ZτX = 0 Q-almost surely on

{τX <∞}. Then:

EQZt = EPYt + EQ
(
ZτX I{t≥τX}

)
= EPYt < EPY0 = EQZ0,

i.e. Z is a strict local Q-martingale.

�

Example 4.7. (Continuation of Example 2.1.3)

For the following example we work on the pathspace C∞(R+,R
2
+) with (X,Y ) denoting the

coordinate process and (Ft)t≥0 being the right-continuous augmentation of the canonical filtration

generated by the coordinate process. Remember from example 2.1.3 that for σ(x) locally bounded

and bounded away from zero for x > 0, σ(0) = 0, the local P-martingale

dXt = σ(Xt)dWt, X0 = 1,

is strictly positive whenever ∫ 1

0

x

σ2(x)
dx =∞,

and under Q with dP
dQ

∣∣∣
Ft

= 1
Xt

the inverse process is a true martingale with decomposition

d

(
1

Xt

)
= −σ(Xt)

X2
t

dWQ
t = σ

(
1

Xt

)
dWQ

t

for a Q-Brownian motion WQ and σ(y) := −y2 · σ
(

1
y

)
.

Now let us assume that Y is also a local martingale under P with dynamics

dYt = γ(Yt)dBt,

where γ fulfills the same assumptions as σ andB is another P-Brownian motion such that d〈B,W 〉t =

ρdt. Then Y
X is a Q-local martingale with decomposition

d

(
Yt
Xt

)
=
γ(Yt)

Xt
dBQ

t + Ytσ

(
1

Xt

)
dWQ

t ,

where BQ is a Q-BM such that d〈BQ,WQ〉t = ρdt.

5. Applications II: Last passage times formulas

In Section 3 we have seen how one can determine the influence bubbles have on option pricing

formulas through a decomposition of the option value into a “normal” term and a default term

(cf. Theorems 3.3, 3.8). However this approach only works well for options written on one under-

lying. It is rather difficult to give a universal way of how to determine the influence of asset price

bubbles on the valuation of more complicated options and we will not do this here in all generality.

Instead, we will do the analysis for a special example, the so called exchange option, which allows

us to connect results about last passage times with the change of measure that was defined from
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the beginning of the paper.

The setup is the same as in the previous subsection, but now we assume that there exists another

strictly positive process Y on (Ω,F , (Ft)t≥0,P), which is also a local P-martingale. In the following

we will assume that X and Y are continuous. As before we define Z = Y
X , which is a local

Q-martingale.

5.1. Exchange option. With the interpretation of X and Y as two stock price processes and

assuming an interest rate of r = 0, we can define the price of a European exchange option with

strike K ∈ R+ (also known as the ratio of notionals) and maturity T ∈ R+ as

E(K,T ) := EP(XT −KYT )+.

The corresponding price of the American option is given by

A(K,T ) := sup
σ∈T0,T

EP(Xσ −KYσ)+,

where T0,T is the set of all stopping times σ, which take values in [0, T ]. Let us define the last

passage time ρK := sup
{
t ≥ 0| Zt = 1

K

}
, where as usual the supremum of the empty set is equal

to zero. In the next theorem the prices of European and American exchange options are expressed

in terms of the last passage time ρK in the spirit of [31].

Theorem 5.1. For all K,T ≥ 0 the prices of the European and American exchange option are

given by

E(K,T ) = EQ
(

(1−KZτX )+ I{ρK≤T<τX}
)
, A(K,T ) = EQ

(
(1−KZτX )+ I{ρK≤τX∧T}

)
.

Proof. Assume σ ∈ T0,T . As seen above, Z = Y
X is a non-negative local Q-martingale, thus a super-

martingale, which converges almost surely to Z∞ = ZτX . From Corollary 3.4 in [3] resp. Theorem

2.5 in [31] we have the identity

(5)

(
1

K
− Zσ

)+

= EQ

((
1

K
− ZτX

)+

I{ρK≤σ}

∣∣∣∣∣Fσ
)
.

Multiplying the above equation with the Fσ-measurable random variable KI{τX>σ} and taking

expectations under Q yields

EQ
(

(1−KZσ)+ I{τX>σ}
)

= EQ
(

(1−KZτX )+ I{ρK≤σ<τX}
)
.

Changing the measure via dP|Fσ = 1
Xσ
dQ|Fσ , we obtain

(6) EP (Xσ −KYσ)+ = EP
(
I{τX>σ}Xσ (1−KZσ)+

)
= EQ

(
(1−KZτX )+ I{ρK≤σ<τX}

)
,

since I{τX>σ} = 1 P-almost surely. Taking σ = T the formula for the European option is proven.

For the American option value we note that in the proof of Theorem 1.4 in [1] it is shown that

A(K,T ) = lim
n→∞

EP

(
YτXn ∧T

(
1

ZτXn ∧T
−K

)+)
= lim

n→∞
EP
(
XτXn ∧T −KYτXn ∧T

)+
.



STRICT LOCAL MARTINGALES AND BUBBLES 25

Setting σ = τXn ∧ T in equality (6), it follows that

A(K,T ) = lim
n→∞

EP
(
XτXn ∧T −KYτXn ∧T

)+
= lim

n→∞
EQ
(

(1−KZτX )+ I{ρK≤τXn ∧T<τX}
)

= lim
n→∞

EQ
(

(1−KZτX )+ I{ρK≤τXn ∧T}
)

= EQ
(

(1−KZτX )+ I{ρK≤τX∧T}
)
.

�

Remark 5.2. If we take Y ≡ 1 in the above theorem, we get the formula for the standard European

call option expressed as a function of the last passage time of X as it can be found in [32] for the

special case of Bessel processes or [22]:

(7) E(K,T ) = Q
(
ρK ≤ T < τX

)
.

More generally, formula (7) is always true, if (A) holds.

Remark 5.3. We can also express the price of a barrier exchange option in terms of the last passage

time of Z at level 1
K as done in Theorem 5.1 for exchange options without barriers. For example,

in the case of the Down-and-In exchange option we simply have to multiply equation (5) with the

Fσ-measurable random variable I{m̂Xσ ≤D}.

We now analyze a few special cases of Theorem 5.1 in more detail:

(1) X is a true P-martingale

If X is a true P-martingale, the price process for X exhibits no asset price bubble. Then,

regardless of whether the stock price process Y has an asset price bubble or not, we know

that Q is locally equivalent to P and Q(τX =∞) = 1. Therefore

E(K,T ) = A(K,T ) = EQ
(
(1−KZ∞)+ I{ρK≤T}

)
and the European and American call option values are equal. For Y ≡ 1 this formula is

well-known, cf. [31].

(2) Y is a true P-martingale

We recall from Lemma 4.6 that in this case ZτX = 0 on {τX < ∞} Q-almost surely.

Denoting τZ0 = inf{t ≥ 0| Zt = 0} this translates into Q(τX = τZ0 ) = 1, since

Q(τZ0 < τX) = lim
n→∞

Q(τZ0 < τXn ) = lim
n→∞

EP
(
XτXn

I{τZ0 <τXn }
)

= 0.

Therefore,

E(K,T ) = Q
(
ρK ≤ T < τZ0

)
,

A(K,T ) = Q
(
ρK ≤ T ∧ τX

)
= Q

(
ρK ≤ T ∧ τZ0

)
= Q (ρK ≤ T ) ,

where the last equality follows from the fact that the last passage time of the level 1
K by

Z cannot be greater than its first hitting time of 0. We thus recover the formula for the

European call option given in [22], Proposition 7, see also [32] for the case of the inverse
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Bessel process of dimension greater than two.

Especially, the American option premium is equal to

A(K,T )− E(K,T ) = Q (ρK ≤ T )− Q
(
ρK ≤ T < τZ0

)
= Q

(
ρK ≤ T, τZ0 ≤ T

)
= Q(τZ0 ≤ T ) = Q(τX ≤ T ) = γX(0, T ),

which is just the default of the local P-martingale X or, in other words, the bubble of the

stock X between 0 and T .

(3) X and Y are both strict local P-martingales: An example

Let X and Y be the inverses of two independent BES(3)-processes under P and assume

that X0 = x ∈ R+, while Y0 = 1. (Note that this normalization is different from the

previous one. However, since the density of X resp. Y is explicitly known in this case, we

can do calculations directly under P. This allows us to point out some anomalies of the

option value in the presence of strict local martingales).

We apply the formula for the European call option value written on an inverse BES(3)-

process from Example 3.6 in [5] and integrate over Y :

E(K,T ) =

∫ ∞
0

x

[
Φ

(
x−Kz
xzK

√
T

)
− Φ

(
− 1

x
√
T

)
+ Φ

(
1

x
√
T

)
− Φ

(
zK + x

xzK
√
T

)]
P(Yt ∈ dz)

−Kz
∫ ∞

0
Φ

(
zK + x

xzK
√
T

)
− Φ

(
zK − x
xzK

√
T

)
+

1

x
√
T

[
ϕ

(
zK + x

xzK
√
T

)
− ϕ

(
x− zK
xzK

√
T

)]
P(Zt ∈ dz),

where

P(Yt ∈ dz) =
1

z3

dz√
2πT

(
exp

(
−(1/z − 1)2

2T

)
− exp

(
−(1/z + 1)2

2T

))
.

Since EPXT
x→∞−→ 2√

2πT
as shown in [15], the option value converges to a finite positive value

as the initial stock price goes to infinity. Therefore, the convexity of the payoff function

does not carry over to the option value. This anomaly for stock price bubbles has been

noticed before by e.g. [5, 15]. We refer for the economic intuition of this phenomenon to

[15], where a detailed analysis of stock and bond price bubbles modelled by the inverse

BES(3)-process is done.

Furthermore, recall that by Jensen’s inequality the European exchange option value is

increasing in maturity if X and Y are true martingales. However, in our example the option

value is not increasing in maturity anymore: Since E(K,T ) ≤ EPXT
T→∞−→ 0, the option

value converges to zero as T → ∞. Taking Y ≡ 1, this behaviour has been noticed before

by e.g. [5, 15, 24, 28] and is also directly evident from the representation of E(K,T ) in

Theorem 5.1.

5.2. Real-world pricing. Here we want to give another interpretation of Theorem 5.1. Note that

from a mathematical point of view we have only assumed that X and Y are strictly positive local

P-martingales for the result. Above we have interpreted P as the risk-neutral probability and X,Y

as two stock price processes. Now note that we have the identity (X−KY )+ = Y
(

1
Z −K

)+
. This
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motivates the following alternative financial setting: we take P to be the historical probability and

assume that also P(Y0 = 1) = 1. Normalizing the interest rate to be equal to zero, the process

S := 1
Z denotes the (discounted) stock price process, while Y is the density of a candidate for an

equivalent local martingale measure (ELMM). Since Y and X = Y S are both strictly positive local

P-martingales, they are P-supermartingales and cannot reach infinity under P. Thus, S = 1
Z is

also strictly positive under P and does not attain infinity under P either.

As before X and Y are both allowed to be either strict local or true P-martingales. While the

question of whether X = Y S is a true martingale or not is related to the existence of a stock

price bubble as discussed earlier, the question of whether Y is a strict local martingale or not is

connected to the absence of arbitrage. If Y is a true P-martingale, an ELMM for Z exists and the

market satisfies NFLVR. However, as shown in [20] and explained in [1], even if Y is only a strict

local martingale, a superhedging strategy for any contingent claim written on S exists. Therefore,

the “normal” call option pricing formulas

E(K,T ) = EP
(
YT (ST −K)+) , A(K,T ) = sup

σ∈T0,T
EP
(
Yσ (Sσ −K)+)

are still reasonable when Y is only a strict local martingale. This pricing method is also known as

”real-world pricing”, since we cannot work under an ELMM directly, but must define the option

value under the real-world measure, cf. [30]. Note that if Y is a true martingale, we can define an

ELMM P∗ for S via P∗|Ft = Yt.P|Ft and the market satisfies the NFLVR property. In this case we

obtain the usual pricing formulas

E(K,T ) = EP∗(ST −K)+ resp. A(K,T ) = sup
σ∈T0,T

EP∗(Sσ −K)+.

Following [15] we can interpret the situation when Y is only a strict local martingale as the

existence of a bond price bubble as opposed to the stock price bubble discussed above. This is

motivated by the fact that the real-world price of a zero-coupon bond is strictly less than the

(discounted) pay-off of one, if Y is a strict local martingale. Of course, it is possible to make a

risk-free profit in this case via an admissible trading strategy. From Theorem 5.1 we have the

following corollary:

Corollary 5.4. For all K,T ≥ 0 the values of the European and American call option under

real-world pricing are given by

E(K,T ) = EQ

((
1− K

SτX

)+

I{ρSK≤T<τX}

)
, A(K,T ) = EQ

((
1− K

SτX

)+

I{ρSK≤τX∧T}

)
,

where ρSK = sup{t ≥ 0| St = K}.

From the above formulas for the European and American call options it can easily be seen that

their values are generally different, unless X = Y S is a true P-martingale (in this case τX = ∞
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Q-a.s.). Therefore Merton’s no early exercise theorem does not hold anymore, cf. also [1, 5, 18, 19].

Furthermore, note that we have the following formula for any bounded stopping time T :

E(K,T ) = EP(XT −K · YT )+ = EQ (1−KZT )+ − EQ
(
I{τX≤T}(1−KZT )+

)
,

where the second term equals Q(τX ≤ T ), if (A) holds. For Y ≡ 1 this decomposition of the

European call value is shown in [28]. However, in general Z is only a local martingale under Q.

Therefore, the above formula is qualitatively different from the decomposition formulas in section

??.

Now we show that also the asymptotic behaviour of the European and American call option is

unusual, when we allow X and / or Y to be strict local P-martingales. From the definition of the

European call value we easily see that

lim
K→0

E(K,T ) = EP(YTST ) = EPXT = Q(τX > T ), lim
K→∞

E(K,T ) = 0.

Moreover, using the last passage time formula for the American call derived above, it follows that

lim
K→0

A(K,T ) = lim
K→0

Q(ρSK ≤ τX ∧ T ) = 1

and

lim
K→∞

A(K,T ) = lim
K→∞

Q(ρSK ≤ τX ∧ T, SτX =∞) = lim
K→∞

Q(ρSK ≤ T, SτX =∞)

= Q(τX ≤ T, ZτX = 0) = Q(ZT = 0),

which may be strictly positive and equals Q(τX ≤ T ) under (A).

For the asymptotics in T we get

lim
T→∞

E(K,T ) = EQ

((
1− K

S∞

)+

I{ρSK<τX=∞}

)
,

lim
T→∞

A(K,T ) = EQ

((
1− K

SτX

)+

I{ρSK<τX}

)
,

and from the definition of the call option it is also clear that

lim
T→0

E(K,T ) = lim
T→0

A(K,T ) = (1−K)+.

5.2.1. American option premium under real-world pricing. In this subsection we keep the notation

and interpretation introduced in the last section. However, we do not assume that Z and / or X

are continuous any more.

Lemma 5.5. Let h : R++ → R+ be a Borel-measurable function such that limx→∞
h(x)
x =: η

exists in R+. Define g : R+ → R+ via g(x) = x · h
(

1
x

)
for x > 0 and g(0) = η. We denote by
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E(h, T ) = EP(YTh(ST )) the value of the European option with maturity T and payoff function h

and by A(h, T ) the value of the corresponding American option. Then,

E(h, T ) = EQg(ZT )− EQ
(
I{τX≤T}g (ZτX )

)
.

Furthermore, if in addition h is convex with h(0) = 0, h(x) ≤ x for all x ∈ R+ and η = 1, then

A(h, T ) = EQg (ZT ) .

Proof. For the European option value we have

E(h, T ) = EP(YTh(ST )) = EQ
(
g(ZT )I{τX>T}

)
= EQg(ZT )− EQ

(
I{τX≤T}g (ZτX )

)
.

And for the American option value we get

A(h, T ) = lim
n→∞

EP
(
YT∧τXn h(ST∧τXn )

)
= lim

n→∞
EQ

(
ZT∧τXn h

(
1

ZT∧τXn

))
= lim

n→∞
EQg(ZT∧τXn ) = EQg(ZT∧τX ) = EQg(ZT ),

where the first equality is proven in [1] under the above stated assumptions on h and the fourth

equality follows by dominated convergence due to g ≤ 1. �

Under the assumptions of Lemma 5.5 the American option premium is thus equal to

A(h, T )− E(h, T ) = EQ
(
I{τX≤T}g (ZτX )

)
.

Note that Lemma 5.5 is a generalization of Theorem A1 in [5]. Indeed, if NFLVR is satisfied, then

Y is a true P-martingale and ZτX = 0 on {τX <∞} by part 2(a) of Lemma 4.6. Thus,

A(h, T ) = E(h, T ) + g(0) · Q
(
τX ≤ T

)
= E(h, T ) + γX(0, T ).

6. Multivariate Strictly Positive Local Martingales

So far the measure Q defined in Theorem 1.8 above is only associated with the local P-martingale

X in the sense that XτXn .P|F
τXn

= Q|F
τXn

for all n ∈ N and that 1
X is a true martingale under Q.

One may now naturally wonder whether, given two (or more) positive local P-martingales X and

Y , there exists a measure Q, under which 1
X and 1

Y are both true martingales. Obviously, this is

the case, if X and Y are independent under P. Moreover, if X and Y are continuous, this question

has a positive answer as is shown in the following theorem:

Theorem 6.1. Assume that the filtration of (Ω,F , (F̃t)t≥0,P) is a standard system. Let X,Y be

both strictly positive continuous local P-martingales with respect to the right-continuous augmen-

tation (Ft)t≥0 of (F̃t)t≥0 with d〈X〉t = ftdt, d〈Y 〉t = gtdt and d〈X,Y 〉t = htdt. Suppose that

ftgt 6= h2
t almost surely. Then there exists a measure Q on (Ω,FτE−, (Ft)0≤t<τE ), under which 1

X

and 1
Y are Q-martingales and dP

dQ

∣∣∣
Ft∩FτE−

= 1
E(M)t

, where

Mt =

∫ t

0

(fsYs − hsXs)gs
YsXs(fsgs − h2

s)
dXs +

∫ t

0

(gsXs − hsYs)fs
YsXs(fsgs − h2

s)
dYs
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and τE is the explosion time of E(M).

Proof. The stochastic exponential E(M) is a continuous local P-martingale with localizing sequence

τEn := inf{t ≥ 0 : E(M)t > n} ∧ n.

We define a consistent family of probability measures Qn on FτEn by

dQn
dP

∣∣∣∣
F
τEn

= E(M)τEn , n ∈ N.

Using the same trick as in the proof of Theorem 1.8, we restrict each measure Qn to FτEn−. Since

(FτEn−)n∈N is a standard system by Lemma 1.7, there exists a unique measure Q on FτE−, such

that Q|F
τEn

= Qn for all n ∈ N. For any stopping time S and A ∈ FS we get

Q(S < τEn , A) = EP
(
E(M)S∧τEn I{S<τEn ,A}

)
.

Taking n→∞ results in

Q(S < τE , A) = EP
(
E(M)SI{S<∞,A}

)
.

It follows that P is locally absolutely continuous with respect to Q before τE . Next, according to

Girsanov’s theorem applied on FτEn

Nt∧τEn := X
τEn
t − 〈M τEn , XτEn 〉t = X

τEn
t −

∫ t∧τEn

0

(fsYs − hsXs)gs
YsXs(fsgs − h2

s)
d〈X〉s −

∫ t∧τEn

0

(gsXs − hsYs)fs
YsXs(fsgs − h2

s)
d〈X,Y 〉s

= X
τEn
t −

∫ t∧τEn

0

(fsYs − hsXs)gsfs + (gsXs − hsYs)fshs
YsXs(fsgs − h2

s)
ds = X

τEn
t −

∫ t∧τEn

0

fs
Xs

ds

is a local Q-martingale. We apply Itô’s formula:

1

Xt∧τEn
=

1

X0
−
∫ t∧τEn

0

dXs

X2
s

+

∫ t∧τEn

0

d〈X〉s
X3
s

=
1

X0
−
∫ t∧τEn

0

dNs

X2
s

−
∫ t∧τEn

0

fs
X3
s

ds+

∫ t∧τEn

0

fs
X3
s

ds.

Thus, 1

XτEn
is a local Q-martingale for all n ∈ N. Since 1

X is continuous, (τ
1/X
m )m∈N is a localizing

sequence for 1

XτEn
on (Ω,FτEn ,Q) for all n ∈ N, where

τ1/X
m := inf

{
t ≥ 0 :

1

Xt
> m

}
∧m, τ1/X := lim

m→∞
τ1/X
m .

Moreover, we have

Q(τ1/X < τE) = lim
n→∞

Q(τ1/X < τEn ) = lim
n→∞

EP
(
E(M)τEn I{τ1/X<τEn }

)
= 0,

which yields that

1

X0
= lim

m→∞
EQ

(
1

X
t∧τEn∧τ

1/X
m

)
= lim

m→∞
EQ

(
1

Xt∧τEn
I{τEn<τ1/Xm }

)
+ lim
m→∞

EQ

(
1

X
t∧τ1/Xm

I{τEn≥τ1/Xm }

)

= lim
m→∞

EQ

(
1

Xt∧τEn

)
+ lim
m→∞

EQ

(
1

X
t∧τ1/Xm

I{τEn≥τ1/Xm }

)
.
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Since 1
X is a P-submartingale,

lim
m→∞

EQ

(
1

X
t∧τ1/Xm

I{τEn≥τ1/Xm }

)
= lim

m→∞
EP

(
E(M)τEn
X
t∧τ1/Xm

I{τEn≥τ1/Xm }

)
≤ lim

m→∞
EP

(
n

Xt∧τEn
I{τEn≥τ1/Xm }

)
= 0.

Therefore, 1

XτEn
is actually a Q-martingale, which shows that 1

X is a Q-martingale on the stochastic

interval [0, τE).

For 1
Y the claim follows by analogous calculations. �

Remark 6.2. The above theorem deals with two strictly positive local P-martingales. It is however

obvious that one can get a similar result for n ≥ 2 strictly positive local martingales.

We briefly want to describe a different approach focusing on “conformal local martingales” in

Rd, d > 2, which is dealt with in [28]. However, in [28] the authors make the restriction that the

conformal local martingale does not enter some compact neighborhood of the origin in Rd. Using

simple localization arguments as in Theorem 1.8 above, one can get rid off this assumption which

seems somehow inappropriate when dealing with stock price processes. This yields the following

extended version of Lemma 12 in [28]. We denote by | · | the Euclidean norm in Rd.

Definition 6.3. A continuous local martingale X, taking values in Rd, is called a conformal local

martingale on (Ω, (Ft)t≥0,P), if 〈Xi, Xj〉 = 〈X1〉I{i=j} P-almost surely for all 1 ≤ i, j ≤ d.

Theorem 6.4. Assume that the filtration of (Ω, (F̃t)t≥0,P) is a standard system and denote by

(Ft)t≥0 its right-continuous augmentation. Let X = (X1, . . . , Xd) be a conformal local P, (Ft)-
martingale, where each Xi is non-negative and X 6= 0 P-almost surely. Suppose X0 = x0 with

|x0| = 1. Define τ := inf{t ≥ 0| |Xt| = 0}. Then there exists a measure Q on Fτ−, such that

Y := X
|X|2 is a non-negative Q-martingale with 〈Y i, Y j〉 = 〈Y 1〉I{i=j} Q-a.s. for all 1 ≤ i, j ≤ d.

Proof. Define τn := inf{t ≥ 0 : |Xt| ≤ 1
n}. As in Lemma 11 in [28] it follows that

(
|Xt∧τn |2−d

)
t≥0

is a uniformly integrable P-martingale for all n ∈ N, because | · |2−d is harmonic. We define a

consistent family of probability measures Qn on Fτn by

dQn
dP

∣∣∣∣
Fτn

= |Xτn |2−d, n ∈ N.

Using the same trick as in the proof of Theorem 1.8, we restrict each measure Qn to Fτn−. Since

(Fτn−)n∈N is a standard system, there exists a unique measure Q on Fτ−, such that Q|Fτn = Qn

for all n ∈ N. For any stopping ime S we thus get

Q(S < τn) = EP
(
|Xτn |2−dI{S<τn}

)
= EP

(
|XS |2−dI{S<τn}

)
.

Choosing S = t <∞ and taking n→∞ results in

Q(t < τ) = EP|Xt|2−d.

Therefore, P is locally absolutley continuous to Q before τ .

From Lemma 12 in [28] we know that Xt∧τn
|Xt∧τn |2

is a conformal Qn-martingale and thus Y is a

Q-martingale up to time τ . �
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Appendix A. Condition (P )

In Theorem 1.1 we mentioned the condition (P ), which was introduced in Definition 4.1 in [27]

following [29] as follows:

Definition A.1. Let (Ω,F , (Ft)t≥0) be a filtered measurable space, such that F is the σ- algebra

generated by (Ft)t≥0: F =
∨
t≥0Ft. We shall say that the property (P ) holds if and only if (Ft)t≥0

enjoys the following conditions:

• For all t ≥ 0, Ft is generated by a countable number of sets;

• For all t ≥ 0, there exists a Polish space Ωt, and a surjective map πt from Ω to Ωt , such

that Ft is the σ-algebra of the inverse images, by πt, of Borel sets in Ωt , and such that for

all B ∈ Ft , ω ∈ Ω, πt(ω) ∈ πt(B) implies ω ∈ B;

• If (ωn)n≥0 is a sequence of elements of Ω, such that for all N ≥ 0,

N⋂
n≥0

An(ωn) 6= ∅,

where An(ωn) is the intersection of the sets in Fn containing ωn , then:

∞⋂
n≥0

An(ωn) 6= ∅.

Appendix B. Doob h-transform

Doob h-transforms are defined in the theory of Markov processes as follows:

Let X be a Markov process starting from x with values in I and a cemetery state δ under the

measure Px. Let Ft = σ(Xs; s ≤ t) for all t ≥ 0, and let h be an excessive function for X, i.e.

Exh(Xt) ≤ h(x) ∀ x ∈ I, ∀ t ≥ 0, Exh(Xt)→ h(x) ∀ x ∈ I as t→ 0.

Then a new sub-Markovian measure can be defined via

Phx|Ft =
h(Xt)

h(x)
.Px|Ft , t < ζ := inf{t ≥ 0| Xt = δ}.

Then, X considered as a process under Ph is called the Doob h-transform of X.

If one takes h to be the identity and requires X to be a Markovian strictly positive local martingale,

we have

I{t<ζ}Phx|Ft =
Xt

x
.Px|Ft ,

i.e. under Phx the process X is killed at ζ, which happens with positive probability, if X is a strict

local martingale.

Note however that we do not assume that the process is Markov in the analysis done in this

paper.
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