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Abstract. In this note we introduce a new kind of augmentation of filtrations along a sequence

of stopping times. This augmentation is suitable for the construction of new probability measures

associated to a positive strict local martingale as done in [4], while it is on the other hand rich

enough to make classical results from stochastic analysis hold true on some stochastic interval of

interest.

1. Introduction

The goal of this paper is to introduce a new kind of augmentation of filtrations which is suitable

for a change of probability measure associated to a strict local martingale. While it is safe and very

convenient to work under the usual conditions when doing a change of probability measure where

the density process is a uniformly integrable martingale, one must be more careful if one takes a

non-uniformly integrable martingale or a strict local martingale as a ”potential” Radon-Nikodym

density process.

Indeed it was already noted by Bichteler ([1]), and later in [5], that in order to extend a consistent

family of probability measures from
⋃
t≥0Ft to F∞ = σ

(⋃
t≥0Ft

)
, one has to impose certain

topological requirements on the probability space and one must refrain from the usual assump-

tions. This is however rather unsatisfactory in general, since results from stochastic analysis like

the existence of regular versions of martingales do require some augmentation of the filtration.

The existence of such versions is for example of interest whenever one considers an uncountable

number of stochastic processes as it is often the case in dynamic optimization problems. This led

the authors of [5] to introduce a new kind of augmentation of filtrations, the natural augmentation,

that is compatible with the construction of a probability measure on F∞ whose density process is

defined via a non-uniformly integrable martingale.

While a positive strict local martingale, i.e. a positive local martingale which is not a true martin-

gale, cannot directly serve as a Radon-Nikodym density process, it is still possible to construct a

new measure Q on FτX− by extending the consistent family of measures Qn defined on FτXn by

Qn = XτXn
.P, τXn = inf{t ≥ 0 : Xt > n} ∧ n, τX = lim

n→∞
τXn ,

if the filtration on the underlying probability space is the right-augmentation of a so called standard

system. Standard systems were introduced in [7] and first used in the above context in [3]. Since
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in this case the measure Q is only uniquely defined on the sub-σ-algebra FτX− and is generally not

absolutely continuous with respect to P on Ft for all t ∈ R, we cannot use the natural augmentation

from [5]. While the problem in [5] was the inclusion of null-sets from F∞ in the initial filtration

F0, the problem now becomes even more severe in that one can no longer include any null-events

that happen after time τX in the initial filtration F0. This leads us to introduce a new kind of

augmentation of filtrations along a sequence of stopping times that is on the one hand rich enough

to make classical results from stochastic analysis hold true up to some stopping time and that on

the other hand still allows for the construction of the new probability measure.

This note is organized as follows: in the next section we introduce a new kind of augmentation

of filtrations along an increasing sequence of stopping times and we establish the existence of nice

versions of stochastic processes up to some stopping time under the new augmentation. In section

3 we briefly review the construction of the above mentioned probability measure associated to a

positive (strict) local martingale, before we apply the augmentation results from section 2 in this

setting.

2. (τn)-natural assumptions

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space. We will start with a definition before stating

the augmentation theorem.

Definition 2.1. Let (τn)n∈N be an increasing sequence of stopping times on (Ω,F , (Ft)t≥0,P).

• A subset A ∈ Ω is called (τn)n∈N-negligible with respect to (Ω,F , (Ft)t≥0,P), iff there exists

a sequence (Bn)n∈N of subsets of Ω, such that for all n ∈ N, Bn ∈ Fτn , P(Bn) = 0, and

A ⊂
⋃
n∈NBn.

• We say that the filtered probability space (Ω,F , (Ft)t≥0,P) is (τn)-complete, iff all the

(τn)-negligible sets of Ω are contained in F0. It satisfies the (τn)-natural conditions, iff it

is (τn)-complete and the filtration (Ft)t≥0 is right-continuous.

Note that in the case of τn = n, the above definition as well as the next theorem reduces to the

case of the natural augmentation studied in [1] and [5], where all F+
n -negligible sets for all n ∈ N

are included in F0. Thus, the following theorem can be seen as a generalization of Proposition 2.4

in [5].

Theorem 2.2. Let (τn)n∈N be an increasing sequence of stopping times on (Ω,F , (Ft)t≥0,P) and

denote by N the family of all (τn)-negligible sets with respect to P. Set F̃ = σ(F ,N ) and F̃t =

σ(F+
t ,N ) for all t ≥ 0. Then there exists a unique probability measure P̃ on (Ω, F̃), which coincides

with P on F , and the space (Ω, F̃ , (F̃t)t≥0, P̃) satisfies the (τn)-natural conditions. Moreover,

(Ω, F̃ , (F̃t)t≥0, P̃) is the smallest extension of (Ω,F , (Ft)t≥0,P), which satisfies the (τn)-natural

conditions. We therefore call it the (τn)-augmentation of (Ω,F , (Ft)t≥0,P).

Proof. We only give a sketch of the proof, because all steps except the third one follow closely the

proof of Proposition 2.4. in [5].
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(1) Define E = {A ⊂ Ω| ∃A′ ∈ F : A∆A′ ∈ N}. As in [5] it is easily checked that E is a

σ-algebra and that E = F̃ . This implies that, if P̃ is a probability on (Ω, F̃) extending P,

we must have P̃(A) = P(A′) for A ∈ F̃ , where A′ ∈ F satisfies A∆A′ ∈ N . Therefore, the

measure P̃ is unique, if it exists. Furthermore, we have F̃t = {A ⊂ Ω| ∃A′ ∈ F+
t : A∆A′ ∈

N} for all t ≥ 0 as can be easily checked.

(2) Next, we show that (F̃t)t≥0 is right-continuous:

For this assume that A ∈
⋂
t<s F̃s. Therefore, A ∈ F̃t+1/n for all n ∈ N and there exists

A′n ∈ F(t+1/n)+ such that A∆A′n ∈ N for all n ∈ N. Thus,

A∆

 ⋂
m≥m0

⋃
n≥m

A′n


︸ ︷︷ ︸
∈F(t+1/m0)+

∈ N ∀ m0 ∈ N

and it follows that A′ :=
⋂
m∈N

⋃
n≥mA

′
n ∈ Ft+, which implies that A ∈ F̃t.

(3) The crucial step now is to show that σ(F+
T ,N ) = {A ⊂ Ω| ∃A′ ∈ F+

T : A∆A′ ∈ N} for

every (Ft)t≥0-stopping time T :

Indeed it is well-known that T can be approximated from above by a sequence of simple

stopping times. Because of the right-continuity of the filtration, it is therefore enough to

show the claim for every simple (Ft)-stopping time S. For this assume that S takes values

in {t1, . . . , tk,∞} with 0 ≤ t1 < t2 < · · · < tk <∞. Then we have

F̃S = {A ∈ F̃ | A ∩ {S ≤ t} ∈ F̃t ∀ t ≥ 0}

= {A ∈ F̃ | A ∩ {S ≤ tl} ∈ F̃t ∀ t ∈ [tl, tl+1) ∀ l = 1, . . . , k}

= {A ∈ F̃ | A ∩ {S ≤ tl} ∈ F̃tl ∀ l = 1, . . . , k}

= F̃S′ ∩ {A ∈ F̃ | A ∩ {S ≤ t1} ∈ F̃t1}

= {A ∈ F̃S′ | A ∩ {S ≤ t1} ∈ F̃t1},

where S′ = S ∨ t2. We will proceed by induction. Note that S′ takes only the values

{t2, . . . , tk,∞} and by the induction hypothesis therefore F̃S′ = σ(F+
S′ ,N ).

Let A ∈ F̃S . Then A ∈ F̃S′ = σ(F+
S′ ,N ), which yields the existence of a set A0 ∈ F+

S′

such that A∆A0 ∈ N and A0 ∩ {S′ ≤ tl} = A0 ∩ {S ≤ tl} ∈ F+
tl

for all l ∈ {2, . . . , k}.
Furthermore, since A ∩ {S ≤ t1} ∈ F̃t1 , there exists A1 ∈ F+

t1
such that A1∆(A ∩ {S ≤

t1}) ∈ N . Define A := (A0 ∩ {S > t1}) ∪ (A1 ∩ {S ≤ t1}). Then A ∈ F+
S :

A ∩ {S ≤ t1} = A1 ∩ {S ≤ t1} ∈ F+
t1
,

A ∩ {S ≤ tl} = {S > t1}︸ ︷︷ ︸
∈Ft1

∩ (A0 ∩ {S ≤ tl})︸ ︷︷ ︸
∈F+

tl

∈ F+
tl
∀ l = 2, . . . , k.
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Moreover,

A∆A = [(A0 ∩ {S > t1}) ∪ (A1 ∩ {S ≤ t1})] ∆A

= ([(A0 ∩ {S > t1}) ∪ (A1 ∩ {S ≤ t1})] \A) ∪ (A\ [(A0 ∩ {S > t1}) ∪ (A1 ∩ {S ≤ t1})])

⊂ (A0\A) ∪ [A1\(A ∩ {S ≤ t1})] ∪ [(A\A1) ∩ {S ≤ t1})] ∪ [(A\A0) ∩ {S > t1}]

= (A0\A) ∪ [A1\(A ∩ {S ≤ t1})] ∪ [(A ∩ {S ≤ t1})\A1)] ∪ [(A\A0) ∩ {S > t1}]

⊂ A∆A0 ∪A1∆(A ∩ {S ≤ t1}) ∈ N .

Therefore, the claim follows by induction, once we show that it holds for the stopping

time S∗ ∈ {t1,∞}. For this note that

F̃S∗ = {A ∈ F̃ | A ∩ {S∗ ≤ t1} ∈ F̃t1}.

Let B ∈ F̃S∗ . Then there exists B1 ∈ F+
t1

such that B1 ⊂ {S∗ ≤ t1} and B1∆(B ∩ {S∗ ≤
t1}) ∈ N . Also, there exists B0 ∈ F such that B∆B0 ∈ N . Now define B = B1∪(B0∩{S∗ >
t1}) ∈ F . Then B ∩ {S∗ ≤ t1} = B1 ∈ F+

t1
and

B∆B = (B1 ∪ (B0 ∩ {S∗ > t1}))∆B

= (B1 ∪ (B0 ∩ {S∗ > t1}))∆((B ∩ {S∗ ≤ t1}) ∪ (B ∩ {S∗ > t1}))

= (B1∆(B ∩ {S∗ ≤ t1})︸ ︷︷ ︸
∈N

∪((B0∆B)︸ ︷︷ ︸
∈N

∩{S∗ > t1}) ∈ N .

Therefore, B ∈ F+
S∗ and F̃S∗ ⊂ σ(F+

S∗ ,N ). The inclusion F̃S∗ ⊃ σ(F+
S∗ ,N ) is trivial.

Finally, let T be an arbitrary (Ft)t≥0-stopping time and (Tn)n∈N a decreasing sequence of

simple stopping times such that Tn → T from above. Then, since the filtration is right-

continuous,

F̃T =
⋂
n∈N
F̃Tn =

⋂
n∈N

σ(F+
Tn
,N ) ⊃ σ(F+

T ,N ).

Now take a set A ∈ F̃T . From the above equality we get for each n ∈ N the existence of a

set An ∈ F+
Tn

such that An∆A ∈ N . We define A′n =
⋃
m≥nAm ∈ F

+
Tn

for all n ∈ N. Note

that (A′n)n∈N is decreasing and that

A′n∆A =

 ⋃
m≥n

Am

∆A =

 ⋃
m≥n

Am\A

∪
A\ ⋃

m≥n
Am

 =

 ⋃
m≥n

Am\A︸ ︷︷ ︸
∈N

∪
 ⋂
m≥n

A\Am︸ ︷︷ ︸
∈N

 ∈ N .
By the right-continuity of the filtration, we have

A′ :=
⋂
n∈N

⋃
m≥n

Am =
⋂
n∈N

A′n ∈ F+
T .

It remains to show that A′∆A ∈ N . Indeed:

A′∆A =

(⋂
n∈N

A′n

)
∆A =

(⋂
n∈N

A′n\A

)
∪

(
A\

⋂
n∈N

A′n

)
=

⋂
n∈N

A′n\A︸ ︷︷ ︸
∈N

 ∪
⋃
n∈N

A\A′n︸ ︷︷ ︸
∈N

 ∈ N .
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Therefore, A ∈ σ(F+
T ,N ) and F̃T ⊂ σ(F+

T ,N ). The reverse inclusion is obvious.

(4) To show existence of the (τn)-augmentation we define for A ∈ F̃ , P̃(A) := P(A′), where

A′ ∈ F satisfies A∆A′ ∈ N . This definition does not depend on the particular choice of

A′. Obviously, P̃|F = P and it is easily checked that P̃ is σ-additive. It remains to verify

that (Ω, F̃ , (F̃t)t≥0, P̃) satisfies the (τn)-natural conditions: If A ∈ F̃ is (τn)-negligible, then

there exist (Bn)n∈N such that Bn ∈ F̃τn , P̃(Bn) = 0 for all n ∈ N and A ⊂
⋃
n∈NBn. Since

Bn ∈ F̃τn , there exists B′n ∈ F+
τn such that Bn∆B′n ∈ N . Thus, P(B′n) = P̃(Bn) = 0 and

B′n ∈ N , which implies that also Bn = (B′n ∪ (Bn\B′n))\(B′n\Bn) ∈ N . It follows that

A ⊂
⋃
n∈NBn ∈ N ⊂ F̃0. Finally, it is easy to see that (Ω, F̃ , (F̃t)t≥0, P̃) is the smallest

extension of (Ω,F , (Ft)t≥0,P) that satisfies the (τn)-natural assumptions.

�

2.1. Martingales under the (τn)-natural augmentation. We have the following simple but

important result which shows that martingale properties of stochastic processes are not changed

when taking the (τn)-natural augmentation.

Lemma 2.3. (similar to Prop. 4.5 in [5]) Let (Ω,F , (Ft)t≥0,P) be a filtered probability space

and (Ω, F̃ , (F̃t)t≥0, P̃) its (τn)-augmentation with respect to an increasing sequence of (Ft)-stopping

times (τn)n∈N. Let X be an F-measurable P-integrable random variable. Then X is also integrable

with respect to P̃ and EP̃X = EPX. Moreover, EP̃(X|F̃t) = EP(X|Ft) P̃-a.s. for all t ≥ 0.

The proof is omitted, since it is exactly the same as the proof of Proposition 4.5 in [5].

Corollary 2.4. (similar to Cor. 4.6 in [5]) Let (Ω,F , (Ft)t≥0,P) be a filtered probability space

and (Ω, F̃ , (F̃t)t≥0, P̃) its (τn)-augmentation, where (τn)n∈N is an increasing sequence of (Ft)-
stopping times.

(1) If (Xt)t≥0 is an {(Ft)t≥0,P}-(super-)martingale, then it is also an
{

(F̃t)t≥0, P̃
}

-(super)martingale.

(2) If (Xt)t≥0 is a local {(Ft)t≥0,P}-martingale, then it is also a local
{

(F̃t)t≥0, P̃
}

-martingale.

Proof. Obviously, (Xt)t≥0 is (F̃t)t≥0-adapted and by Lemma 2.3 Xt is integrable for all t ≥ 0.

(1) Furthermore, EP̃(Xt|F̃s) = EP(Xt|Fs)
(>)
= Xs for all s ≤ t by Lemma 2.3.

(2) Let (σn)n∈N be a localizing sequence for X under P. Since (σn)n∈N are (Ft)t≥0-stopping

times, {σn ≤ t} ∈ Ft ⊂ F̃t for all t ≥ 0 and P̃(σn → ∞) = P(σn → ∞) = 1, thus (σn)n∈N

is also a localizing sequence for X with respect to (Ω, F̃ , (F̃t)t≥0, P̃). By 1. and Lemma 2.3

(Xt∧σn)t≥0 is a uniformly integrable
{

(F̃t)t≥0, P̃
}

-martingale for all n ∈ N.

�

In the following subsection we show that one can do even better: in fact, it is possible to construct

for any martingale an (adapted) version with regular trajectories for all ω ∈ Ω up to time τ =

limn→∞ τn.
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2.2. Existence of regular versions of trajectories up to time τ . As in [5] the following

lemma, which relates the (τn)-natural conditions to the usual assumptions, is the main tool for

establishing classical results from stochastic calculus under the (τn)-natural conditions.

Lemma 2.5. (similar to Prop. 2.5 in [5]) Assume that the filtered probability space (Ω,F , (Ft)t≥0,P)

satisfies the (τn)-natural assumptions for an increasing sequence of stopping times (τn)n∈N. Then

for all n ∈ N the space (Ω,Fτn , (Ft∧τn)t≥0,P) satisfies the usual assumptions.

Proof. Let A be an Fτn-negligible set, i.e. there exists B ∈ Fτn such that A ⊂ B and P(B) = 0.

Thus, A is (τn)-negligible with respect to (Ω,F , (Ft)t≥0,P), which is assumed to be (τn)-complete.

Therefore, A ∈ F0. �

For the rest of this subsection let (Ω,F , (Ft)t≥0,P) be a filtered probability space that satisfies

the (τn)-natural assumptions for an increasing sequence of stopping times (τn)n∈N. Denote τ =

limn→∞ τn. Then on the subspace (Ω,Fτ−,P) many classical results from stochastic analysis can

be proven to be true in a similar way as it is done in section 3 of [5] under the natural assumptions.

As an illustration of the usefulness of the (τn)-usual assumptions we prove the existence of nice

versions on [0, τ) below.

Theorem 2.6. (similar to Prop. 3.1 in [5]) Let (Xt)t≥0 be a supermartingale with respect to

(Ω,F , (Ft)t≥0,P). If t 7→ EPXt∧τn is right-continuous for all n ∈ N, then (Xt)0≤t<τ admits a

càdlàg modification on (Ω,Fτ−, (Ft∧τ−)t≥0,P), which is P-a.s. unique.

Proof. Since the filtration is in particular assumed to be right-continuous, there exists a right-

continuous adapted version of (Xt)t≥0 by Lemma (1.1) in [3]. Denote it by X. Then by Doob’s

optional sampling theorem the process (Xt∧τn)t≥0 is also a right-continuous supermartingale for

every n ∈ N, which is adapted to (Ft∧τn)t≥0. But the space (Ω,Fτn , (Ft∧τn)t≥0,P) satisfies the usual

conditions by Lemma 2.5. Thus, (Xt∧τn)t≥0 admits a càdlàg modification, since t 7→ EP(Xt∧τn) =

EP(Xt∧τn) is right-continuous. Let us denote this modification by X̃
(n)
t , which is unique up to

indistinguishability. Then X̃
(n)
t is also a modification of (Xt∧τn)t≥0, and the uniqueness implies

that the family (X̃(n))n∈N is consistent, i.e. X̃
(n+k)
t I{t≤τn<∞} = X̃

(n)
t I{t≤τn<∞} P-almost surely for

all t ≥ 0 and n, k ∈ N. We define the set

N :=
{
ω ∈ Ω : ∃ n,m ∈ N, n ≥ m, ∃ t ∈ [0, τm] ∩ R+ s.t. X̃(n)

s (ω) 6= X̃
(m)
t (ω)

}
,

which is (τn)-negligible. Therefore, N ∈ F0 and P(N) = 0. Defining the process (X̃t)0≤t<τ on

(Ω,Fτ−,P) via

X̃t(ω) =

X̃
(n)
t (ω) , if ω 6∈ N

0 , if ω ∈ N

for t ∈ [0, τn], we have constructed the desired càdlàg modification of (Xt)0≤t<τ on (Ω,Fτ−,P). �
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Theorem 2.7. (similar to Prop. 3.3 in [5]) Let (Xt)t≥0 be an adapted process on the space

(Ω,F , (F)t≥0,P) and assume that there exists a càdlàg version (Yt)0≤t<τ of (Xt)0≤t<τ , i.e. for

all t ≥ 0 s.t. P(τ > t) > 0 we have P(Yt 6= Xt | t < τ) = 0. Then there exists a càdlàg and

adapted version of (Xt)0≤t<τ on (Ω,Fτ−, (Ft∧τ−)t≥0,P), which is indistinguishable from (Yt)0≤t<τ

on (Ω,Fτ−,P).

Proof. We define the stopping times (τmn )n,m∈N by

τmn :=
∞∑
k=1

k

2m
I{ k−1

2m
≤τn< k

2m }.

Then each τmn takes only countably many values, τmn ≥ τm+1
n ≥ τn and τmn → τn as m→∞. Set

D =

{
k

2m
: k,m ∈ N

}
,

which is a countable dense subset of R+. Furthermore, define the function fω : D → R via

fω(t) = Xt(ω). Then for all n,m ∈ N the set

Nn,m =
{
ω ∈ Ω : fω|[0,τmn (ω)]∩D does not admit a unique càdlàg extension to [0, τmn (ω)]

}
is Fτmn -measurable by Lemma 3.2 in [5], since (Xt∧τmn )t≥0 is adapted to (Ft∩Fτmn )t≥0. Furthermore,

Nn,m ⊃ Nn,m+1 for all n,m ∈ N and

Nn :=
⋂
m∈N

Nn,m ∈ Fτn ,

since the filtration is right-continuous. Because (Yt)0≤t<τ is a càdlàg version of (Xt)0≤t<τ , we must

have

Nn ⊂ {ω ∈ Ω | ∃ t ∈ D ∩ [0, τ) : Xt(ω) 6= Yt(ω)} =: C

for all n ∈ N. Since (Yt)0≤t<τ is a version of (Xt)0≤t<τ on (Ω,Fτ−,P), P(C) = 0 and therefore also

P(Nn) = 0 for all n ∈ N, which implies that N :=
⋃
n∈NNn is (τn)-negligible, i.e. P(N) = 0 and

N ∈ F0. Now, for ω 6∈ N let gω,n be the unique càdlàg extension of the function fω,n := fω|[0,τn)
from D ∩ [0, τn) to [0, τn). By uniqueness the functions (gω,n)n∈N are consistent, implying the

existence of a càdlàg function gω : [0, τ)→ R such that gω(t) = Xt(ω) for all t ∈ D ∩ [0, τ). Next,

we define the càdlàg process (Xt)0≤t<τ by Xt(ω) = gω(t)I{ω 6∈N}. Indeed, for all tω < τ(ω) and for

every sequence (tωn)n∈N ⊂ D ∩ [0, τ(ω)) tending to tω from above, we have

Xtω(ω) = I{ω 6∈N} lim
n→∞

gω(tωn) = I{ω 6∈N} lim
n→∞

Xtωn(ω).

Because the filtration is right-continuous and N ∈ F0, the adaptedness of (Xt)t≥0 implies that the

process (Xt)0≤t<τ is adapted to (Ft∧τ−)t≥0. Since Y is a version of X, Xt(ω) is the right limit of Y

at t restricted to D∩[0, τ) for all t ∈ [0, τ) for almost all ω ∈ Ω. But since both, Y and X, are càdlàg

on (Ω,Fτ−,P), Xt = Yt for t ∈ [0, τ) P-almost surely. Since P(Yt 6= Xt | t < τ) = 0 for all t ≥ 0 with

P(τ > t) > 0 by assumption, X is a càdlàg and adapted version of X on (Ω,Fτ−, (Ft∧τ−)t≥0,P).

Moreover, since both, X and Y , are càdlàg versions of X on (Ω,Fτ−, (Ft∧τ−)t≥0,P), they must be

indistinguishable. �
7



It should be obvious that in a similar way other classical results of stochastic analysis like the

Doob-Meyer decomposition or the existence of stochastic integrals can be proven up to time τ . We

will not go in any more details here, but instead concentrate on the application of the (τn)-natural

augmentation in the context of the extension of probability measures associated to strict local

martingales in the next section.

3. Change of measure by a (strict) local martingale

We briefly review the construction of a probability measure associated to a positive (strict) local

martingale. For more details the reader may consult [4].

In the following let (Ω,F , (Ft)t≥0,P) be a filtered probability space. Furthermore, we denote by

(F+
t )t≥0 the right-continuous augmentation of (Ft)t≥0, i.e. F+

t := Ft+ =
⋂
s>tFs for all t ≥ 0.

Note that for now the filtration is not completed with any negligible set of F . In order to be

able to construct the measure Q associated with a (strict) local martingale X mentioned in the

introduction, the underlying probability space has to fulfill certain topological requirements.

Definition 3.1. (cf. [3]) Let (Ft)t∈T be a filtration on Ω, where T is a partially ordered non-

void index set, and let (F+
t )t∈T be its right-continuous augmentation. We call (Ft)t∈T a standard

system if

• each measurable space (Ω,Ft) is a standard Borel space, i.e. Ft is σ-isomorphic to the

σ-field of Borel sets on some complete separable metric space.

• for any increasing sequence (ti)i∈N ⊂ T and for any A1 ⊃ A2 ⊃ · · · ⊃ Ai ⊃ . . . , where Ai is

an atom of F+
ti

, we have
⋂
iAi 6= ∅.

The most important examples of standard systems are the filtrations generated by the coordinate

process on the spaces C∞(R+,R+) or D∞(R+,R+) of all non-negative continuous resp. càdlàg pro-

cesses that stay at infinity once they reach infinity. Note that the spaces C(R+,R) or C([0, 1],R),

endowed with the filtrations generated by the coordinate process, are not standard systems. Adding

the point {∞} is crucial.

Notation: When working on the subspace (Ω,Fτ−) of (Ω,F), where τ is some (Ft)-stopping

time, we must restrict the filtration to (Ft∧τ−)t≥0, where with a slight abuse of notation we set

Ft∧τ− := Ft ∩ Fτ−. In the following we may also write (Ft)0≤t<τ for the filtration on (Ω,Fτ−,P).

The following theorem is a generalization of Theorem 4 in [2] and Proposition 1 in [6] that deal with

continuous local martingales on path spaces. Its proof relies on the construction of the Föllmer

measure, cf. [3] and can be found in [4].1 In Theorem 3.3 below we will state a further extension

of this result involving the new kind of augmentation of filtrations introduced in section 2.

1In [4] the result is proven for a strictly positive (instead of merely non-negative) local martingale X. This does

not make any difference, however, since in any case Xt > 0 Q-a.s. on {t < τX}.
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Theorem 3.2. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space and assume that (Ft)t≥0 is a

standard system. Let X be a càdlàg local martingale on the space (Ω,F , (F+
t )t≥0,P) with values in

[0,∞) and X0 = 1 P-almost surely. We define τXn := inf{t ≥ 0 : Xt > n}∧n and τX = limn→∞ τ
X
n .

Then there exists a unique probability measure Q on
(

Ω,F+
τX−, (F

+
t∧τX−)t≥0

)
, such that 1

X is a

Q-martingale up to time τX . Furthermore, Q|F+
t ∩F

+

τX−
� P|F+

t ∩F
+

τX−
for all t ≥ 0 with Radon-

Nikodym derivative given by dP
dQ

∣∣∣
F+
t ∩F

+

τX−

= 1
Xt

I{t<τX} = 1
Xt

.

Moreover, X is a strict local P-martingale if and only if Q(τX <∞) > 0.

From here it is easy to see we cannot work with the natural augmentation of (Ft)t≥0, but will have

to use the (τXn )-natural augmentation introduced in section 2. Indeed, we have At := {t ≥ τX} ∈
F+
t ∩ FτX− and P(At) = 0 for all t ≥ 0, while

Q(At) = 1− Q(τX > t) = 1− EP(Xt) > 0

for some t > 0, if X is a strict local martingale. Now, if (Ω,F , (Ft)t≥0,P) satisfied the natural con-

ditions, then At ∈ F0 for all t ≥ 0 and since P|F0 = Q|F0 this would imply that Q(At) = P(At) = 0

for all t ≥ 0, an obvious contradiction.

With the help of section 2 we can nevertheless state the following extension of Theorem 3.2:

Theorem 3.3. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space and assume that (Ft) is a

standard system. Let X be a càdlàg local martingale on the space (Ω,F , (F+
t )t≥0,P) with values in

R+ and X0 = 1 P-almost surely. We define τXn := inf{t ≥ 0 : Xt > n}∧n, τX := limn→∞ τ
X
n and

denote by (Ω, F̃ , (F̃t)t≥0, P̃) the (τXn )-augmentation of (Ω,F , (Ft)t≥0,P). Then there exists a unique

probability measure Q̃ on (Ω, F̃τX−, (F̃t∧τX−)t≥0), such that 1
X is a Q̃-martingale. Furthermore,

Q̃|F̃t � P̃|F̃t for all t ∈ [0, τX) with Radon-Nikodym derivative dP̃
dQ̃

∣∣∣
F̃t∩F̃τX−

= 1
Xt

I{t<τX}.

Proof. Let
(
Ω,FτX−, (F t∧τX−)t≥0,Q

)
be the (τXn )-augmentation of

(
Ω,F+

τX−, (F
+
t∧τX−)t≥0,Q

)
as

constructed in Theorem 3.2. Then F t∧τX− = F̃t∧τX− for t ≥ 0 and F̃τX− = FτX−: A is (τXn )-

negligible with respect to
(
Ω,F , (F+

t )t≥0,P
)

iff there exist (Bn)n∈N such that A ⊂
⋃
n∈NBn and

Bn ∈ F+
τXn
, P(Bn) = 0 for all n ∈ N. Since Q|F+

τXn

∼ P|F+

τXn

, Q(Bn) = P(Bn) = 0. Thus,

A is (τXn )-negligible with respect to (Ω,F , (F+
t )t≥0,P) iff A is (τXn )-negligible with respect to(

Ω,F+
τX−, (F

+
t∧τX−)t≥0,Q

)
, i.e. A ∈ F t∧τX− for t ≥ 0.

Now let A ∈ F̃t for some t ≥ 0, i.e. there exists A′ ∈ F+
t such that A∆A′ is (τXn )-negligible with

respect to Q and P. Then:

P̃(A) = P̃(A′) = P(A′) = EQ

(
I{A′,τX>t}

1

Xt

)
= EQ

(
I{A′,τX>t}

1

Xt

)
= EQ

(
I{A,τX>t}

1

Xt

)
,

i.e. dP̃
dQ

∣∣∣
F̃t∩F̃τX−

= 1
Xt

I{τX>t}. Identifying Q̃ with Q yields the result. �
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Let us briefly explain why the (τXn )-natural augmentation is ”good enough” for the setup consid-

ered here. First note that the measure Q is unevitably connected with the local martingale X.

Therefore, it is not surprising that also the augmentation depends on the process X itself. On the

other hand every process Y defined on (Ω,F , (Ft)t≥0,P) is only defined up to time τX under Q.

Since one is normally interested in the P-probability of events and uses the measure Q just as a

helpful device to infer something about the P-probabilites, it is therefore almost always sufficient in

applications to have results from stochastic analysis holding only until time τX , because everything

that happens with positive probability under P takes place before time τX Q-almost surely.
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