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ON THE NUMBER OF CYCLES IN A RANDOM

PERMUTATION

KENNETH MAPLES, ASHKAN NIKEGHBALI, AND DIRK ZEINDLER

Abstract. We show that the number of cycles in a random per-
mutation chosen according to generalized Ewens measure is nor-
mally distributed and compute asymptotic estimates for the mean
and variance.

1. Introduction

Let Sn denote the permutation group on n letters. For each permu-
tation σ ∈ Sn, we write cj(σ) for the number of disjoint cycles of length
j in σ. For any permutation, we let K0n(σ) :=

∑n
j=1 cj(σ) denote the

number of cycles in σ.
We are interested in the statistics of permutations produced in a ran-

dom way. Random (uniform) permutations and their cycle structures
have received much attention and have a long history (see e.g. the first
chapter of [1] for a detailed account with references). The literature on
the topic has grown quickly in recent years in relation to mathematical
biology and theoretical physics, where models of non-uniform permuta-
tions are considered (see e.g. [2, 3, 4, 5]). We will restrict our attention
to random permutations with cycle weights as considered in the recent
work of Betz, Ueltschi and Velenik [4] and Ercolani and Uelstschi [5].
These are families of probability measures on Sn that are constant on
conjugacy classes with the distribution

P(σ) :=
1

hnn!

n
∏

j=1

θ
cj(σ)
j

where θj ≥ 0 is a given sequence of weights and hn is a normalization
constant. If θj = 1 for all j then this is the uniform measure on Sn,
while if θj = θ0 is constant then this gives Ewens measure, which plays
an important role in mathematical biology.

A situation of interest which appears in the study of the quantum
gas in statistical mechanics is when the asymptotic behavior of θj is
fixed for large j (see [4] and [5]). Natural important historical questions
arise on the behavior of cj(σ) or K0n(σ). For instance, it is known that
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under the Ewens measure, or in special cases of weighted random per-
mutations, the cycle counts (cj(σ))j converge to independent Poisson
distributions (see [1] for the Ewens measure and [5] and [7] for weighted
random permutations). The case of K0n(σ) is in fact more delicate and
less results are available in the general case with cycle weights. It
is well known that under the Ewens measure K0n(σ) satisfies a cen-
tral limit theorem (see [1] for details and historical references). The
methods used in this case are very probabilistic and rely on the Feller
coupling. However, the Feller coupling does not exist in the model of
random permutations with cycle weights. Ercolani and Ueltschi ([5])
used generating series and refined saddle point analysis to obtain some
asymptotic estimates for the mean of K0n(σ) in some special cases but
were not able to prove any central limit theorem. In [7] the second
and third authors used generating series and singularity analysis to
prove a central limit theorem and some large deviations estimates in
the cases where the generating series exhibit some logarithmic singu-
larities, but the important cases corresponding to subexponential and
algebraic growth of the generating series were still open (see the corol-
laries below for a more precise statement). In this paper we propose
yet another, but more elementary, approach based on Cauchy’s integral
theorem for analytic functions to solve these problems.

More precisely, with a sequence θ = {θj}∞j=1 fixed, we write

gθ(t) =

∞
∑

k=1

θk
k
tk

for the indicated generating function. We will always assume that
the series for gθ converges in a neighborhood of the origin. We will
also require that gθ satisfies a technical condition which we call log-
admissibility, which will be defined in Section 2.

Our main result is the following.

Theorem 1.1 (Central Limit Theorem for K0n). Suppose that gθ(t) is
defined for t ∈ [0, 1) with gθ(t) → ∞ as t → 1. Suppose further that
g is log-admissible (see Definition 2.1). Then there are sequences µn

and σn such that
K0n − µn

σn

converges to a standard normal distribution.

The mean and standard deviation can also be explicitly computed.
For now we will state explicit results for two cases of interest, and defer
the general result to Section 3.

Corollary 1.2. Let g(t) = γ(1− t)−β for some β > 0 and γ > 0. Then
K0n converges asymptotically to a normal distribution with mean

µn = (βγ)−β/(β+1)nβ/(β+1)(1 + o(1))



ON THE NUMBER OF CYCLES IN A RANDOM PERMUTATION 3

and variance

σ2
n = ((βγ)−1 − (β + 1)−1)(βγ)1/(β+1)nβ/(β+1)(1 + o(1)).

Corollary 1.3. Let g(t) = exp(1 − t)−β for some β > 0. Then K0n

converges asymptotically to a normal distribution with mean

µn =
n

(log n)1+1/β
(1 + o(1))

and variance

σ2
n = (2 + β−1)

n

(logn)2+1/β

Our approach relies in the following well-known calculation of the
moment generating function for K0n.

Proposition 1.4. We have the power series identity

exp(e−sgθ(t)) =

∞
∑

n=0

hnE exp(−sK0n)t
n

for all s ∈ R, with the conventions that h0 = 1 and K00 = 0.

This proposition follows immediately from Polya’s enumeration the-
orem with a small calculation. More details can be found for instance
in [7, Section 4]

Remark. In [7] the characteristic function E exp(itK0n) of K0n was con-
sidered. In our new approach it is crucial to rather consider the Laplace
transform E exp(−sK0n) where the variable s is real in order to be able
to evaluate the relevant contour integrals.

The outline of this article is as follows. In Section 2 we define log-
admissible g(t) and derive a formula for the coefficients of its generating
function. In Section 3 we use the formula to compute asymptotics for
E exp(−sK0n), of which Theorem 1.1 is a direct consequence. We also
prove Corollary 1.2 and Corollary 1.3. Finally, in Section 4 we show
how the proof of Theorem 1.1 can be modified to give large deviation
estimates for K0n.

Notation. We will also freely employ asymptotic notation as follows;
let f , g, and h be arbitrary functions of a parameter n. Then we write
f = O(g) to indicate the existence of a constant C and threshold n0

such that for all n > n0, |f(n)| ≤ C|g(n)|; the constant and threshold
may be different in each use of the notation. We also write f = h+O(g)
to indicate |f − h| = O(g). We similarly write f = o(g) to indicate
that

lim
n→∞

f(n)

g(n)
= 0.

It is convenient to also employ Vinogradov notation: we write f . g
(and equivalently g & f) for f = O(g).
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2. Estimates for the moment generating function

We shall now introduce the class of functions gθ(t) where we can
compute the asymptotic behavior of E exp(−sK0n).

Definition 2.1. Let g(t) =
∑∞

n=0 gnt
n be given with radius of conver-

gence ρ > 0 and gn ≥ 0. We say that g(t) is log-admissible if there
exist functions a, b, δ : [0, ρ) → R

+ and R : [0, ρ)× (−π/2, π/2) → R
+

with the following properties.

approximation: For all |ϕ| ≤ δ(r) we have the expansion

g(reiϕ) = g(r) + iϕa(r)− ϕ2

2
b(r) +R(r, ϕ) (2.1)

where R(r, ϕ) = o(ϕ3δ(r)−3) and the implied constant is uni-
form.

divergence: a(r) → ∞, b(r) → ∞ and δ(r) → 0 as r → ρ.
width of convergence: For all ǫ > 0, we have ǫδ2(r)b(r) −
log b(r) → ∞ as r → ρ.

monotonicity: For all |ϕ| > δ(r), we have

ℜg(reiϕ) ≤ ℜg(re±iδ(r)). (2.2)

These properties can be interpreted as a logarithmic analogue of
Hayman-admissibility [6, Chapter VIII.5]. In fact, if g(t) is log-admissible
then exp g(t) is Hayman-admissible. We have also introduced the ǫ
term in the width condition, which is required for uniformity in the
error term of Proposition 2.2.

The approximation condition allows us to compute the functions a
and b exactly. We have

a(r) = rg′(r), (2.3)

b(r) = rg′(r) + r2g′′(r). (2.4)

Clearly a and b are strictly increasing real analytic functions in [0, ρ).
The error in the approximation can similarly be bounded, so that

R(r, ϕ) . rg′(r) + 3r2g′′(r) + r3g′′′(r).

Note that for Ewens measure (θj = 1 for all j ≥ 0), we have g(r) =
− log(1− r), so we can compute

b(r) =
r

(1− r)2
and R(r, ϕ) ≈ r2 + r

(1− r)3
.

Therefore g(r) = − log(1−r) is not log-admissible and we cannot apply
this method to such distributions.

We will frequently require the inverse function of a on the interval
[0, ρ), and define rx to be the (unique) solution to a(r) = x there. It is
easy to see that rx is strictly increasing real analytic function in x and
rx → ρ if x tends to infinity.
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We now define for s ∈ R the sequence Gn,s by
∞
∑

n=0

Gn,st
n = exp(e−sg(t)). (2.5)

If g(t) is log-admissible, then we can compute the asymptotic behav-
ior of Gn,s for n → ∞. The generating function in Proposition 1.4 has
the same form as (2.5) and we thus can compute also the asymptotic be-
havior of the moment generating function forK0n if gθ is log-admissible.

Proposition 2.2. Let s ∈ R and let g be log-admissible with associated
functions a, b. Let further be rx to be the (unique) solution of a(r) = x.

Then Gn,s has the asymptotic expansion

Gn,s =
1√
2π

es/2r−n
esnb(resn)

−1/2 exp(e−sg(resn))(1 + o(1))

as n → ∞ with the implied constant uniform in s for s bounded.

Proof. We apply Cauchy’s integral formula to the circle γ centered at
0 of radius r. We get

Gn,s =
1

2πi

∫

γ

exp(e−sg(z))
dz

zn+1

=
1

2πrn

∫ π

−π

exp(e−sg(reiϕ)− inϕ) dϕ

with r = resn. We now split the integral into the parts [−δ(r), δ(r)]
and [−π,−δ(r))∪(δ(r), π]. We first look at the minor arc [−δ(r), δ(r)].
By hypothesis on g we can expand in ϕ, giving

I1 :=

∫ δ(r)

−δ(r)

exp(e−sg(reiϕ)− inϕ) dϕ

=

∫ δ(r)

−δ(r)

exp(e−s(g(r) + iϕa(r)− b(r)ϕ2/2 + o(ϕ3δ(r)−3)− inϕ)) dϕ.

We have e−sa(resn) = n since r = resn, which cancels the linear terms
in ϕ. We get

I1 =

∫ δ(r)

−δ(r)

exp(e−s(g(r)− b(r)ϕ2/2 + ϕ3o(δ(r)−3))) dϕ.

We now observe that ϕ3o(δ(r)−3) = o(1) on [−δ(r), δ(r)] as r = resn →
ρ, or equivalently as n → ∞. Rearranging, we get

I1 = exp(e−sg(r))

∫ δ(r)

−δ(r)

exp(−e−sb(r)ϕ2/2) dϕ(1 + o(1)).

By assumption on the width of convergence of g, the integral converges
to

es/2b(r)−1/2

∫ δ(r)e−s/2b(r)1/2

−δ(r)e−s/2b(r)1/2
exp(−x2/2) dx =

√
2πes/2b(r)−1/2(1 + o(1))
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so that
I1 =

√
2π exp(e−sg(r))es/2b(r)−1/2(1 + o(1)).

Next we estimate the integral over the major arc. By the monotonic-
ity assumption on g, we have

I2 :=

∫

[−π,−δ(r)]∪[δ(r),π]

exp(e−sg(reiϕ)−inϕ) dϕ ≤ 2π exp(ℜ(e−sg(reiδ(r))))

We can apply the approximation for g at ϕ = δ(r), giving

ℜg(reiδ(r)) = g(r)− δ(r)2

2
b(r) + o(1)

Collecting terms and rearranging,

I2 ≤ 2π exp(e−sg(r))b(r)−1/2 exp(−e−sδ(r)2b(r)/2 +
1

2
log b(r))

= o(exp(e−sg(r))b(r)−1/2) (2.6)

where at the last step we used the width of approximation for g.
Combining the estimates for I1 and I2, we find that

Gn,s =
1√
2π

r−n
esne

s/2 exp(e−sg(resn))(1 + o(1)).

where the error term is uniform in s for s in a fixed compact set.
Note that all error-terms in this proof are uniform in s for s in a fixed
compact set. �

Note that the ǫ in the definition of log-admissibility is required to
make the error in (2.6) uniform in s.

3. The total number of cycles

We are now ready to compute the asymptotic number of cycles in a
random permutation as described in the introduction. We will restrict
our attention to those examples in [5] where the limiting behavior was
not known, namely where the generating function gθ is of the form

gθ(r) = γ(1− r)−β

or
gθ(r) = exp(1− r)−β.

We will refer to such functions as exhibiting algebraic and sub-exponential
growth, respectively.

We begin by observing that a formula for the moment generating
function of K0n can be determined from Proposition 2.2.

Corollary 3.1. Let s ∈ R, gθ(t) be log-admissible with associated func-
tions a, b. Let further rx be the (unique) solution to a(r) = x.

Then

hn =
1

√

2πb(rn)rnn
exp(gθ(rn))(1 + o(1))



ON THE NUMBER OF CYCLES IN A RANDOM PERMUTATION 7

and

E exp(−sK0n) = es/2
(

rn
resn

)n
exp(e−sgθ(resn))

exp(gθ(rn))

(

b(rn)

b(resn)

)1/2

(1+o(1)),

where the error terms are uniform in s for s in a fixed compact set.

Proof. By Proposition 1.4, we have

hnE exp(−sK0n) = Gn,s.

Apply Proposition 2.2 at 0 to get the desired formula for hn, and apply
it again at s to find the formula for E exp(−sK0n). �

3.1. A simple example. Before we consider more complicated func-
tions, we will illustrate the method with gθ given by the equation

gθ(t) =
1

1− t
.

This generating function corresponds to the sequence θk = k.
Our first step is to compute the moment generating function of K0n

by finding an asymptotic expansion of the formula in Corollary 3.1.

Proposition 3.2. Let gθ(t) = (1− t)−1. Then gθ is admissible,

hn =
1√
4π

n−3/4 exp(2
√
n(1 + o(1))),

and

E exp(−sK0n) = e−s/4 exp(2
√
n(e−s/2 − 1)(1 + o(1)))

where the errors are uniform in s for s in a fixed compact set.

We will prove Proposition 3.2 in a moment. We first see how to use
this result to prove a central limit theorem for K0n.

Corollary 3.3. Let gθ(t) = (1− t)−1. Then

K0n − n1/2

2−1/2n1/4

d−→ N.

where N is the standard normal distribution.

Proof of Corollary 3.3. It suffices to show that the moment generating
function of the renormalized cycle count converges to es

2/2 for bounded
s (in fact, we only need this for s sufficiently small, but our theorem
gives a stronger result). We apply Theorem 3.2 at s/(2−1/2n1/4) to find

E exp(−s
K0n

2−1/2n1/4
) = exp(−

√
2sn1/4 + s2/2 +O(s3n−1/4)).

Here we used the uniformity of the error for bounded s. Multiplying
both sides by exp(

√
2sn1/4) and letting n tend to ∞ completes the

proof. �
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Proof of Theorem 3.2. We first show that gθ(t) = (1− t)−1 is admissi-
ble. The monotonicity condition is obvious. We compute

a(t) =
t

(1− t)2

and

b(t) =
t

(1− t)2
+

2t2

(1− t)3

and note that a, b → ∞ as t → 1 from the left. It suffices to choose
a function δ(t) that satisfies the remaining hypotheses. We observe
that the width condition on δ is satisfied if δ(t) . (1− t)3/2−η for some
η > 0. Likewise, for the error in the approximation condition to be
satisfied we need δ(t)3(1 − t)−4 = o(1). It therefore suffices to choose
δ(t) = (1− t)α for any 4/3 < α ≤ 3/2.

We first calculate rx. By definition we have
rx

(1− rx)2
= x,

which can be inverted to find

rx = 1− x−1/2(1 + o(1)).

We then compute
g(rx) =

√
x(1 + o(1))

and
b(rx) = 2x3/2(1 + o(1)).

With the approximation (1 − η)n ∼ exp(−ηn) for η sufficiently small,
we apply Corollary 3.1 to find

hn =
1√
4π

n−3/4 exp(2
√
n(1 + o(1)))

and
E exp(−sK0n) = e−s/4 exp(2

√
n(e−s/2 − 1)(1 + o(1)))

as required. �

3.2. The general case. The previous calculation suggests how to
transform the formula in Corollary 3.1 into a form that is easier to
manage. We will restrict our attention to those functions g where the
induced functions rx satisfy a family of inequalities

|r(k)x xk| . |r(k−1)
x x(k−1)| (3.1)

for all x sufficiently large and 2 ≤ k ≤ 4. This is easy to verify in
practice and avoids some technical details for functions g which diverge
slowly at 1 (i.e. slower than (1− r)−ǫ for any ǫ > 0).

It is convenient to define the functions

ηk(x) := (−1)k
∂k

∂ks

∣

∣

∣

∣

s=0

log(resx).
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For example, this gives

η1(x) = −x
r′x
rx

and η2(x) = −η1(x) + x2

(

r′′x
rx

+

(

r′x
rx

)2
)

.

Proposition 3.4. Let g be log-admissible and rx be defined as above,
satisfying condition 3.1. Fix M > 0. Then for every −M < s < M ,
we have

logE exp(−sK0n) =− g(rn)(1 + o(1))s

+ (g(rn) + nη1(n))(1 + o(1))s2/2

+O(ξ(n)s3)

where
ξ(n) = sup

x∈[e−Mn,eMn]

g(rx) + x|η1(x)|.

Proof. We use Corollary 3.1 and expand each factor with respect to s.
We start with the first term. Taking logarithms, we find

log(rnr
−1
esn)

n = n log(rn)− n log(resn)

= nη1(n)s− nη2(n)s
2/2 +O(ξ1(n)s

3).

where
ξ1(n) := sup

x∈[e−Mn,eMn]

|η3(x)|.

Next we consider exp(e−sg(resn)− g(rn)). We use x = a(rx) = rxg
′(rx)

and get

∂

∂s
g(resn) = g′(resn)r

′
esne

sn = e2sn2 r
′
esn

resn
= −esn · η1(esn).

This gives

e−sg(resn)− g(rn) =− (nη1(n) + g(rn))s

+ (nη1(n) + nη2(n) + g(rn))s
2/2

+O(ξ2(n)s
3)

where

ξ2(n) = sup
x∈[e−Mn,eMn]

gr(x) + x|η1(x)|+ x|η2(x)|+ x|η3(x)|.

Finally we consider (b(rn)b(resn)
−1)1/2. Writing b in terms of a, we

get
b(rx) = a(rx) + r2xg

′′(rx) = x+ r2xg
′′(rx)

Differentiating the defining equation x = rxg
′(rx) in x, we find that

1 = r′xg
′(rx) + rxr

′
xg

′′(rx)

so that
r2xg

′′(rx) =
rx
r′x

− x
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and thus

b(rx) =
rx
r′x

=
−x

η1(x)
.

This then gives

log

(

b(rn)

b(resn)

)1/2

= s/2− η2(n)

2η1(n)
s+

(

η3(n)

2η1(n)
− η22(n)

2η21(n)

)

s2

2
+O(ξ3(n)s

3)

where

ξ3(n) = sup
x∈[n,esn]

∣

∣

∣

∣

η4(x)

η1(x)

∣

∣

∣

∣

+

∣

∣

∣

∣

η2(x)η3(x)

η21(x)

∣

∣

∣

∣

+

∣

∣

∣

∣

η32(x)

η31(x)

∣

∣

∣

∣

.

We now apply the technical assumption to see that ηk(n) . η1(n)
for k = 2, 3, 4. In particular, we see that the (b(rn)b(resn)

−1)1/2 is
dominated by the other terms. Collapsing other redundant terms, we
find that

logE exp(−sK0n) =− g(rn)(1 + o(1))s

+ (g(rn) + nη1(n))(1 + o(1))s2/2

+O(s3 sup
x∈[e−Mn,eMn]

g(rx) + x|η1(x)|)

as desired. �

As above, this has the following immediate corollary.

Corollary 3.5. Let θ be the defining sequence for a generalized Ewens
measure. Suppose that gθ is log-admissible and rx satisfies the technical
condition 3.1. Then there are functions µn and σn such that

K0n − µn

σn

d−→ N(0, 1)

where µn, σn satisfy the asymptotics

µn = g(rn)(1 + o(1))

and

σ2
n = (g(rn) + nη1(n))(1 + o(1)).

Proof. The only thing to check is whether the coefficient of s3 is bounded
by (g(rx) + x|η1(x)|)3/2, but this is obvious. �

3.3. Computing g(rn) and η1(n). We now give two examples of how
to apply Corollary 3.5 to compute explicit asymptotics for given gθ.
First we prove Corollary 1.2.

Proposition 3.6. Let gθ(t) = γ(1 − t)−β for some β > 0 and γ > 0.
Then gθ is log-admissible, rx satisfies the technical condition 3.1, and
there are asymptotic expansions

gθ(rn) = (nβ−1γ−1)
β

β+1 (1 + o(1))
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and

nη1(n) = −(βγ)1/(β+1)

β + 1
nβ/(β+1)(1 + o(1)).

Proof. Admissibility follows once we construct an explicit δ(t). It suf-
fices to find a function that satisfies the inequalities

ǫδ(t)2b(t)− log b(t) → ∞
for all ǫ > 0, and

δ(t)3R(t, ϕ) → 0.

For t → 1, we have the lower bound b(t) &γ,β (1−t)−β−2 and the upper
bound R(t, ϕ) .γ,β (1 − t)−β−3. Thus we see that any δ of the form

δ(t) = (1− t)α with 1 + β
3
≤ α < 1 + β

2
suffices.

We compute rn by inverting n = a(rn) = βγrn(1− rn)
−β−1, so that

rn = 1− (βγn−1)
1

β+1 (1 + o(1)).

The derivatives of rn can be approximated in an analogous way, so that

|r(k)n | = Cβ,γn
−1

β+1
−k

and the technical condition is clear. We then estimate

gθ(rn) = (nβ−1γ−1)
β

β+1 (1 + o(1)).

and

nη1(n) = −(βγ)1/(β+1)

β + 1
nβ/(β+1)(1 + o(1))

with our estimate for rn and r′n. �

Next we prove Corollary 1.3.

Proposition 3.7. Let gθ(r) = exp(1 − r)−β for some β > 0. Then gθ
is log-admissible, rx satisfies the technical condition 3.1, and there are
asymptotic expansions

gθ(rn) =
n

(log n)1+1/β
(1 + (logn)−1/β + (1 + β−1)

log log x

log x
(1 + o(1)))

and

nη1(n) = − n

(log n)1+1/β
(1 + (logn)−1/β − (1 + β−1)

1

log x
(1 + o(1)))

Proof. First we verify that gθ is admissible. Monotonicity is obvious.
We compute

a(r) = rg′(r) = rβ(1− r)−β−1 exp(1− r)−β

and

b(r) = rg′(r) + r2g′′(r)

= r2(β(β + 1)(1− r)−β−2 + β2(1− r)−2β−2) exp(1− r)−β

= r2β2(1− r)−2β−2 exp(1− r)−β(1 +Oβ(1− r)β).



12 K. MAPLES, A. NIKEGHBALI, AND D. ZEINDLER

These diverge at 1. Once we estimate

R(r, ϕ) = rg′(r) + 3r2g′′(r) + r3g′′′(r)

= r3β3(1− r)−3β−3 exp(1− r)−β(1 +Oβ(1− r)β)

we see that it remains to choose any δ that satisfies the pair of inequal-
ities

ǫδ(r)2r2β2(1− r)−2β−2 exp(1− r)−β → ∞
and

r3β3(1− r)−3β−3 exp(1− r)−β . δ(r)−3.

Any δ of the form

δ(r) = exp(α(1− t)−β)

with 1/3 ≤ α < 1/2 suffices.
We next need an asymptotic approximation for rx. This is provided

by the following lemma.

Lemma 3.8. Let f(x) := (1 − rx)
−β. Then we have the asymptotic

expansion

f(x) = log x− (1 + β−1) log log x− log β

+ ((log x)−1/β + (1 + β−1)
log log x

log x
)(1 + o(1))

Furthermore, we have the estimates

f (k)(x) = (−1)k+1(k − 1)!
1

xk
(1− 1 + β−1

log x
) +Oβ,k(

log log x

xk(log x)2
)

Proof. Once we make the substitution f(x) = (1−rx)
−β in the equation

a(rx) = x, we see that f is implicitly defined by the equation

x = β(1− f(x)−1/β)f(x)1+1/β exp f(x).

We then substitute f(x) = log x− (1 + β−1) log log x+ w and observe
that w = ((log x)−1/β + (1 + β−1) log log x

log x
)(1 + o(1)).

For the estimates on the derivatives of f , we differentiate the defining
equation for f to find

1 = (f(x)1/β + β(f(x)1/β − 1) + β(f(x)1/β − 1)f(x))f ′(x) exp f(x).

We can use the defining equation again to eliminate the exponential
term, which gives us

f ′(x) =
1

x
(1− β−1(1− f(x)−1/β)−1 + 1

β−1(1− f(x)−1/β)−1 + 1 + f(x)
).

This gives us the lemma for k = 1. For the higher derivatives, we
differentiate by parts and apply our earlier asymptotics. �
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Note that this lemma also shows that rx satisfies the technical con-
dition. We apply this formula to g(rn) to get

g(rn) =
n

(logn)1+1/β
(1 + (log n)−1/β + (1 + β−1)

log log x

log x
(1 + o(1)))

and to nη1(n) to get

nη1(n) = − n

(log n)1+1/β
(1+ (logn)−1/β − (1+β−1)

1

log x
(1+ o(1))). �

Other g(t) can be computed in similar ways. Note that in the proof
of Corollary 1.3, it was crucial to develop g(rn) and nη1(n) beyond the
first term; this reflects the reduced variance of the number of cycles
when there most of the cycles are of logarithmic length.

4. Large deviation estimates

The method developed in the previous two sections actually gives
more information than a central limit theorem. In fact, it was enough
for us to show that

E
K0n − µn

σn
= exp(

s2

2
(1 + o(1)))

for s arbitrarily close to 0, but our method applied to all s in a fixed
compact set. In this section we will briefly indicate how to use this
extra information to prove large deviation estimates for K0n.

Let M(s) denote the moment generation function for the renormal-
ized cycle count; i.e.

M(s) = E exp(s
K0n − µn

σn
)

and let Λ(s) = logM(s) denote its logarithm. We restate the corollary
of Proposition 3.4 as follows.

Proposition 4.1. There are functions σ2
n, ξ(n) such that the for all

s = O(σn), we have the estimate

Λ(s) = s2/2 +O(ξ(n)σ−3
n )s3.

As an immediate consequence, we also have

Λ′(s) = s+O(ξ(n)σ−3
n )s2

and

Λ′′(s) = 1 +O(ξ(n)σ−3
n )s.

Furthermore, Λ′(s) is monotone increasing (hence injective) for such s.

Theorem 4.2. For all a = O(σn) we have

P(|K0n − µn

σn
− a| < ǫ) = (1− ǫ−2(1 + δ)) exp(−a2/2 +O(δ + ǫa))
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where

δ = O(ξ(n)σ−3
n a)

and the errors are absolute.

Proof. Let Xn := (K0n − µn)/σn and let η denote the pdf for Xn. We
define a pdf νs depending on s ∈ R by

dνs(x) =
1

M(s)
esxdη(x).

Then if Y is a random variable with pdf νs, we see that

P(|Xn − a| < ǫ) = M(s)Ee−sY 1|Y−a|<ǫ

We want to choose s so that Y has mean a. In fact,

EY = M(s)−1
EXn exp(sXn)] = Λ′(s)

Therefore, because Λ′ is injective we solve s = a + O(ξ(n)σ−3
n a2). On

the event that |Y − a| < ǫ, we see that e−sY = e−sa+O(sǫ) so that

P(|Xn − a| < ǫ) = exp(−a2/2 +O(αa3 + ǫa))P(|Y − a| < ǫ).

It is not hard to show that for s chosen so that a = EY ,

E|Y − a|2 = Λ′′(s)

so that by the second moment method,

P(|Y − a| < ǫ) = 1− ǫ−2(1 +O(ξ(n)σ−3
n a)),

and the result follows. �
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