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Abstract. In this paper, we build a bridge between different reduced-
form approaches to pricing defaultable claims. In particular, we show
how the well known formulas by Duffie et al. [12] and by Elliott et al.
[14] are related. Moreover, in the spirit of Collin Dufresne et al. [8], we
propose a simple pricing formula under an equivalent change of measure.

Two processes will play a central role: the hazard process and the
martingale hazard process attached to a default time. The crucial step
is to understand the difference between them, which has been an open
question in the literature so far. We show that pseudo-stopping times
appear as the most general class of random times for which these two
processes are equal. We also show that these two processes always dif-
fer when τ is an honest time, providing an explicit expression for the
difference. Eventually we provide a solution to another open problem:
we show that if τ is an arbitrary random (default) time such that its
Azéma’s supermartingale is continuous, then τ avoids stopping times.

1. Introduction

Defaults occur when some contractual cash flows are not met. Therefore
for pricing or hedging a defaultable claim, a crucial step is to model the
arrival of the default event and its effect on the prices of the different financial
assets.

In this paper, our aim is to understand better the nature of the default
times by analyzing their properties in a background filtration, which repre-
sents the information attached to those financial assets which survive (i.e.,
do not default) when a particular default event occurs. This approach was
originally developed in [14]. We point out what we believe are the adequate
mathematical tools to deal with the models of default risk. Using these
tools, we build a bridge between different reduced-form approaches to pric-
ing defaultable claims. In particular we show how the well known formulas
by Duffie et al. [12] and by Elliott et al. [14] are related. In these formulas
the behavior of two processes plays a central role: the hazard process and
the martingale hazard process attached to a default time. The crucial step
is to understand the difference between them.

2000 Mathematics Subject Classification. 15A52.
Key words and phrases. Default modeling, credit risk models, random times, enlarge-

ments of filtrations, hazard process, immersed filtrations, pseudo-stopping times, honest
times.

1



2 DELIA COCULESCU AND ASHKAN NIKEGHBALI

We provide a solution to two problems which have been open in default
time modeling in credit risk. We first show that if τ is an arbitrary random
(default) time such that its Azéma’s supermartingale is continuous, then
τ avoids stopping times. We then disprove a conjecture about the equal-
ity between the hazard process and the martingale hazard process, which
first appeared in [19], and we show how it should be modified to become a
theorem. The pseudo-stopping times introduced in [26] appear as the most
general class of random times for which these two processes are equal. We
also show that these two processes always differ when τ is an honest time
and give a simple formula for the difference.

Finally, all the different theoretical results are used in an effective manner
for pricing defaultable claims.

1.1. Random times as default times: the modeling framework.
Following [5], [14], [19], a reduced-form model for defaultable claims may
be constructed in two steps. We begin with a filtered probability space
(Ω,F ,F = (Ft),P) satisfying the usual assumptions. The default time τ is
defined as a random time (i.e., a nonnegative F-measurable random vari-
able) which is not an F-stopping time. Then, a second filtration G = (Gt) is
obtained by progressively enlarging the filtration F with the random time τ :
G is the smallest filtration satisfying the usual assumptions, containing the
original filtration F, and for which τ is a stopping time, such as explained
in [20], [22].

When the random time is not a stopping time, several quantities play an
important role in the analysis of the model. The most fundamental object
attached to an arbitrary random time τ is certainly the supermartingale
Zτt = P(τ > t|Ft), chosen to be càdlàg, called the Azéma supermartingale
associated with τ ([2]). Two more processes, closely related to the Azéma
supermartingale Zτ and the G predictable compensator of 1{τ≤t}, are often
used in the evaluation of defaultable claims: the hazard process and the
martingale hazard process, which we now define.

Definition 1.1. (1) Let τ be a random time such that Zτt > 0, for all
t ≥ 0 (in particular τ is not an F-stopping time). The nonnegative
stochastic process (Γt)t≥0 defined by

Γt = − lnZτt ,

is called the hazard process.
(2) An F-predictable right-continuous increasing process Λ is called an

F-martingale hazard process of the random time τ if the process
M̃t = 1{τ≤t} − Λt∧τ is a G martingale.

We see that a martingale hazard process is only defined up to time τ
and that the stopped martingale hazard process is the G-predictable com-
pensator of the process 1{τ≤t}. This has two implications. First, several
martingale hazard processes might exist for a default time, even if the pre-
dictable compensator is unique. Unicity of Λ is a priori insured only on the
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interval [0, τ ]. Secondly, this representation allows the martingale hazard
process to be F-adapted as stated in the definition even if, obviously, the
compensator is only G-adapted. In Section 3 we will characterize the situ-
ation where the martingale hazard process is unique, and give examples of
constructions.

The filtration G is usually considered as the relevant filtration in credit
risk models: it represents the information available on the market, to be
used for pricing or hedging defaultable claims. The enlargement of filtration
appears to be a useful tool for several reasons. First, it provides a simple
formula to compute the G-predictable compensator of the process 1{τ≤t},
using the F-adapted process Λ. Secondly, prior to default, i.e., on the set
{(t, ω) : τ(ω) > t}, prices of defaultable claims can always be expressed using
F-adapted processes (here the process Γ comes into play, as shall be detailed
below). From a purely economic point of view, modeling distinctly the two
information sets forces the modeler to a reflection about the links between
the defaultable asset prices (which are G-adapted) and the non-defaultable
ones (which can be used as hedging instruments and are F-adapted), hence
allows a finer construction of the default event. This approach has been
proven particularly efficient in pricing (see [5], [14], [19]), hedging ([4]) and,
more recently, in models with imperfect information (see ([11], [23], [14],
[16], [6], [15]).

Note that an alternative and more direct reduced-form approach, which
historically appeared first, consists in introducing one single global filtration
G from the start, where the default time is a totally inaccessible stopping
time with a given intensity process λ (that is: Λt∧τ =

∫ t∧τ
0 λsds). Some of

the major papers using the intensity-based framework are [1], [18], [12], [17],
[24], [25], [13].

Both hazard-rate approaches mentioned above, i.e., the direct approach
or the one based on two different sets of filtrations, model the occurring of
the default as a surprise for the market, that is, the default time is a to-
tally inaccessible stopping time in the global market filtration G. Another
common feature of these two approaches is that under specific assumptions,
the price of a defaultable claim is obtained as the one of a default free se-
curity, but using adjusted discount rates, i.e., rates which are modified to
reflect the default risk. These simplified formulas represent a substantial
computational interest, since they permit to the well developed default-free
valuation techniques to be applied in the defaultable framework. However,
the pricing formulas obtained in each approach (i.e., the direct approach or
the one based on two different sets of filtrations) are not directly compa-
rable, for several reasons: the adjusted discount rates are not the same in
general; there are different specific assumptions under which these formulas
can be used; and eventually prices are computed conditionally to different
information sets. We are going to study the relation between the two ap-
proaches, compare the adjusted discount factors in general and clarify the
assumptions under which these adjusted discount factors can be used. We
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point out that there are important classes of models where these simplified
formulas cannot be directly applied (e.g. the important case where the de-
fault time is modeled by a last passage time). In this situation, we find
that it is sometimes possible to recover again the known formulas, under a
suitable equivalent change of the probability measure, that we shall define.

1.2. Pricing formulas in the reduced-form approach. The defaultable
claims we are going to analyze in this paper have the specific form

X = P1{τ>T} + Cτ1{τ≤T}, (1.1)

where we assume that P is a square integrable, FT -measurable random
variable which represents a single payment which occurs at time T and (Ct)
is a bounded, F-predictable process. P stands for the promised payment,
while the process C models the recovery in case of default. Hence, it is
assumed that a model for the recovery has already been selected and that
the focus is now to model the occurrence of the default τ .

Let us also denote Rt =
∫ t

0 rudu, where ru is the locally risk-fee interest
rate, and let R̃t := Rt + Λt. R̃t will be called default-adjusted account, for
reasons that will become obvious next.

We recall that the arbitrage-free price of a defaultable claim is given by
the following conditional expectation:

S(X)t := eRtE[Pe−RT 1{τ>T} + Cτe
−Rτ1{τ≤T}|Gt]1{t≤T}.

It follows that if the default has occurred before the maturity, i.e., on {τ ≤
t ≤ T} the price process is: S(X)t = Cτe

Rt−Rτ . Note other assumptions
exist in the literature regarding the post-default evolution of the price: the
recovery may be payed out at default and the price shrinks to zero in case
of default, or it may be paid at the maturity date T . In any case, as the
recovery process C is here given exogenously, the quantity of interest is now
the pre-default price process of the claim, i.e., S(X)t1{t>τ}.

Using the enlargement of filtrations framework, pre-default prices can
always be expressed in terms of an F adapted process, via projections on
the smaller filtration F:

Proposition 1.2 ([5]). The price of the defaultable claim X is given by

S(X)t = eRt+ΓtE
[∫ T

t
Cue

−RudZτu + PZτT e
−RT |Ft

]
on {t < τ}, t ≥ 0.

(1.2)
If moreover the process Zτ is continuous decreasing (or alternatively, the
hazard process Γ is continuous increasing), then

S(X)t = eRt+ΓtE
[∫ T

t
Cue

−(Ru+Γu)dΓu + Pe−(RT+ΓT )|Ft
]

on {t < τ}, t ≥ 0.

(1.3)

We note that when Γ is continuous and decreasing, pricing a defaultable
claim is similar to pricing in the filtration F a fictitious default-free claim
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which pays out dividends at the rate CtdΓt and using an adjusted account
Rt + Γt.

On the other hand, in the direct, intensity-based approach, pre-default
prices are directly computed in the filtration G:

Proposition 1.3 ([12]). Let the RCLL processes V and J be defined respec-
tively by:

Vt = eR̃tE
[∫ T

t
Cue

−R̃udΛu + Pe−R̃T |Gt
]

t < T, (1.4)

with Vt = 0 for t ≥ T , and:

Jt := eRtE
[
e−Rτ∆Vτ |Gt

]
. (1.5)

Then the claim’s price process S(X) satisfies:

S(X)t = Vt − Jt on {t < τ}, t ≥ 0.

If V is predictable, then S(X)t1{τ>t} = Vt1{τ>t}.

The expression for V can be seen as the risk-neutral valuation formula for
a fictitious security that pays out dividends at rate CtdΛt under a fictitious
short rate dR̃t = d(Rt + Λt), i.e., the default-adjusted account. The term J
adds however much complexity to the above formula, since it is difficult to
compute in practice the expected jumps at default. For this reason, many
models assume the so-called no-jump assumption, that is the assumption
that the process V does not jump at time τ . No explicit expression for
this term is known in general, hence the formula is difficult to implement
in practice and this is still nowadays a major problem in the credit risk
research.

In [8] it is shown that when the process Dt := 1{τ>t}eΛt is a martingale,
then using the absolutely continuous change of measure: dP′ = DT · dP on
GT , it is possible to express the pre-default price as:

S(X)t = eR̃tEP′
[∫ T

t
Cue

−R̃udΛu + Pe−R̃T |Gt
]

(1.6)

on {t < τ}. In Section 4 we shall show that in most of the situations (i.e.,
whenever C or P are not constants), this formula does not circumvent the
difficulty to make explicit the jumps of G-adapted processes at the time τ .
We therefore propose an alternative change of measure, but on the filtration
F and equivalent to P, and show that it is efficient for pricing complex
products.

1.3. Objectives and outline of the paper. Due to the simplicity of the
formula (1.3), very often the random time τ is given with extra regularity
assumptions, such as continuity or monotonicity of its Azéma supermartin-
gale Zτ . However, these assumptions were not translated into properties of
the random time τ . We shall try to clarify the link between the assumptions
about the process Zτt and the properties of the default time τ , since it is
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crucial for the modeler to select the properties of the random time which
appear to be the most sensible.

From the above pricing formulas it already appears that a main quantity
to study in order to link the two approaches is the difference between the
hazard process Γ and the martingale hazard process Λ. A first important
problem is to clarify under which conditions they coincide: this was the
object of a conjecture made in [19]:
Conjecture: Suppose that the process Zτt is decreasing. If Λ is continuous,
then Λ = Γ.

We shall show that the problem was not well posed and we shall see how it
should be phrased in order to have the equality between the hazard process
and the martingale hazard process under some general conditions.

More generally, the aim of this paper is to show that the general theory
of stochastic processes provides a natural framework to pose and to study
the modeling of default times, and that it helps solve in a simple way some
of the problems raised there.

The paper is organized as follows:
In Section 2, we recall some basic facts from the general theory of stochastic
processes that will be relevant for this paper.
In Section 3, we show that if Zτt is continuous, then τ avoids stopping
times. We also see under which conditions the martingale hazard process
and the hazard process coincide: the pseudo-stopping times, introduced in
[26], appear there as the most general class of random times for which these
two processes are equal. Moreover, we prove that for honest times, which
form another remarkable class of random times, the hazard process and the
martingale hazard process always differ.
Eventually, in Section 4, we apply the results from Section 3 to analyse the
pricing formulas introduced above. We shall show that, even when Γ 6= Λ,
it is sometimes possible to find an equivalent martingale measure under
which simple pricing formulas still apply: the pre-default price process can
be computed as a default-free security paying a flow of negative dividends at
the rate CdΛ and using the default adjusted account R̃. We shall see that
for pricing, the intensity process is not sufficient in general, and that one
also needs the hazard process Γ. We illustrate this fact with an example of
last passage time.

2. Basic facts

Throughout this paper, we assume we are given a filtered probability
space (Ω,F ,F,P) satisfying the usual assumptions.

Definition 2.1. A random time τ is a nonnegative random variable τ :
(Ω,F)→ [0,∞].

When dealing with arbitrary random times, one often works under the
following conditions:
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• Assumption (C): all (Ft)-martingales are continuous (e.g: the Brow-
nian filtration).
• Assumption (A): the random time τ avoids every (Ft)-stopping time
T , i.e. P [ρ = T ] = 0.

When we refer to assumptions (CA), this will mean that both the con-
ditions (C) and (A) hold.

We also recall that the Azéma supermartingale is the (Ft) supermartingale

Zτt = P [τ > t | Ft] (2.1)

chosen to be càdlàg, associated with τ by Azéma ([2]). We note that the
supermartingale (Zτt ) is the F-optional projection of 1[0,τ [.

There are some other processes related to Zτ , which play an important
role when characterizing the time τ . First, the F dual optional and dual
predictable projections of the process 1{τ≤t}, denoted respectively by Aτt
and aτt .

Secondly, the càdlàg martingale:

µτt = E [Aτ∞ | Ft] = Aτt + Zτt .

Finally, the Doob-Meyer decomposition of (2.1):

Zτt = mτ
t − aτt . (2.2)

Let us now rigorously define the progressively enlarged filtration G that
was already mentioned in the introduction as being the market filtration in
the default models.

We enlarge the initial filtration F with the process (τ ∧ t)t≥0, so that
the new enlarged filtration G is the smallest filtration (satisfying the usual
assumptions) containing F and making τ a stopping time, that is

Gt = Kt+,
where

Kt = Ft
∨
σ(τ ∧ t).

Modeling default times as F random times forces one to a reflection on
what should be the impact of default not only on the defaultable assets,
but also on the ones which do not default at time τ . This type of modeling
is therefore more elaborate than the one which directly assumes that the
default is a G stopping time with a given intensity, since we have here to
deal with projections on the smaller filtration F. The useful characteristics
of τ are synthesized in the properties of the process Zτ .

We can identify two types of random times that have been studied in the
theory of the enlargements of filtrations and which have also been applied
in default models: pseudo-stopping times and last passage times.

Definition 2.2 ([26]). We say that τ is a F pseudo-stopping time if for
every F-martingale (Mt) in H1, we have

EMτ = EM0. (2.3)
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Remark. It is equivalent to assume that (2.3) holds for bounded martingales,
since these are dense in H1. It can also be proved that then (2.3) also holds
for all uniformly integrable martingales (see [26]).

The most common situation encountered in the default risk literature is
the (H) hypothesis (or immersion property): every F-local martingale is also
a G-local martingale. For instance, this property is always satisfied when
the default time is a Cox time. Also it has been shown that this property
has links with no arbitrage and informational efficiency (see [5], [7]). The
following characterization of pseudo-stopping times, which will be often used
in the sequel, shows that pseudo-stopping times are the natural extension
of the (H) hypothesis framework:

Theorem 2.3 ([26]). The following four properties are equivalent:

(1) τ is a (Ft) pseudo-stopping time, i.e (2.3) is satisfied;
(2) µτt ≡ 1, a.s, that is, (Zτt )t≥0 is decreasing.

If, furthermore, all (Ft) martingales are continuous, then each of
the preceding properties is equivalent to:

(3) (Zτt )t≥0 is a decreasing F-predictable process

Remark. Of course, every stopping time is a pseudo-stopping time by the
the optional sampling theorem. But there are many examples or families of
pseudo-stopping which are not stopping times (see [26]). Similarly, all ran-
dom times which ensure that the (H) hypothesis holds are pseudo-stopping
times. But there are pseudo-stopping times for which the (H) hypothesis
does not hold (in particular those which are F∞-measurable, see [26] for
more details).

The following classical lemma will be very helpful: it indicates the prop-
erties of the above processes under the assumptions (A) or (C) (for more
details or references, see [9] or [28]).

Lemma 2.4. Under condition (A), Aτt = aτt is continuous.
Under condition (C), Aτ is predictable (recall that under (C) the pre-

dictable and optional sigma fields are equal) and consequently Aτ = aτ .
Under conditions (CA), Zτ is continuous.

We give a first application of theorem 2.3 and lemma 2.4 to illustrate how
the general theory of stochastic processes shed a new light on default time
modeling. It is very often assumed in the literature on default times that τ is
a random time whose associated Azéma supermartingale is continuous and
decreasing (as seen in the introduction, this simplifies the pricing procedure).

Proposition 2.5. Let τ be a random time that avoids stopping times, that
is condition (A) holds. Then (Zτt ) is continuous and decreasing if and only
if τ is a pseudo-stopping time.
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Proof. From lemma 2.4, when (A) holds, Aτ is continuous and consequently
Zτ = µτ − Aτ is the Doob-Meyer decomposition of Zτ . If τ is a pseudo-
stopping, then from theorem 2.3, µτ ≡ 1 a.s. hence Zτ = 1−Aτt is continuous
decreasing.

Conversely, if Zτ is continuous decreasing, then from the uniqueness of
the Doob-Meyer decomposition, Zτ = 1 − aτ . But since τ avoids stopping
times, we have aτt = Aτt (lemma 2.4) and hence Zτ = 1−Aτ . Consequently,
from theorem 2.3, τ is a pseudo-stopping time.

�

Remark. We shall see a slight reinforcement of this proposition in the next
section: indeed, we shall prove that if Zτ is continuous, then τ avoids stop-
ping times.

3. Main theorems

First, we clarify a situation concerning the hazard process. Indeed, in
the credit risk literature, the G martingale Lt ≡ 1τ>teΓt plays an important
role (see [19] or [5]). But from definition 1.1, the hazard process is defined
only when Zτt > 0 for all t ≥ 0. We wish to show that nevertheless, the
martingale (Lt) is always well defined. For this, it is enough to show that on
the set {τ > t}, Γt = − logZτt is always well defined. This is the case thanks
to the following result from the general theory of stochastic processes:

Proposition 3.1 ([20], [9], p.134). Let τ be an arbitrary random time. The
sets {Zτ = 0} and

{
Zτ− = 0

}
are both disjoint from the stochastic interval

[0, τ [, and have the same lower bound T , which is the smallest stopping time
larger than τ .

The next proposition gives general conditions under which Γ is continuous,
which is generally taken as an assumption in the literature on default times:
indeed, when computing prices or hedging, one often has to integrate with
respect to Γ (see [5], [14] or [19]).

Proposition 3.2. Let τ be a random time.
(i) Under (CA), (Γt) is continuous and Γ0 = 0.

(ii) If τ is a pseudo-stopping time and if (A) holds, then (Γt) is a contin-
uous increasing process, with Γ0 = 0.

Proof. This is a consequence of Lemma 2.4 and theorem 2.3. �

Now, what can one say about the random time τ if one assumes that its
associated Azéma’s supermartingale is continuous? It seems to have been an
open question in the literature on credit risk modeling. The next proposition
answers this question:

Proposition 3.3. Let τ be a finite random time such that its associated
Azéma’s supermartingale Zτt is continuous. Then τ avoids stopping times.
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Proof. It is known that
Zτt = o(1[0,τ)),

that is Zτt is the optional projection of the stochastic interval [0, τ). Now,
following Jeulin-Yor [22], define Z̃t as the optional projection of the stochas-
tic interval [0, τ ]:

Z̃t = o(1[0,τ ]).
It can be shown (see [22]) that

Z̃+ = Zτ and Z̃− = Zτ−.

Since Zτ is continuous, we have

Z̃+ = Z̃− = Zτ ,

and consequently, for any stopping time T :

E[1τ≥T ]−E[1τ>T ] = 0,

which means that P[τ = T ] = 0 for all stopping times T . �

As an application, we can state the following enforcement of proposition
2.5:

Corollary 3.4. Let τ be a random time. Then (Zτt ) is a continuous and
decreasing process if and only if τ is a pseudo-stopping time that avoids
stopping times.

Te above corollary says that pseudo-stopping times which avoid stopping
times represent the more general class of default times such that the simple
pricing formula (1.3) applies.

Now we recall a theorem which is useful in constructing the martingale
hazard process.

Theorem 3.5 ([21]). Let H be a bounded (Gt) predictable process. Then

Hτ1τ≤t −
∫ t∧τ

0

Hs

Zτs−
daτs

is a (Gt) martingale.

Corollary 3.6. Let τ be a pseudo-stopping time that avoids F stopping
times. Then the G dual predictable projection of 1τ≤t is log

(
1

Zτt∧τ

)
.

Let g be an honest time (that means that g is the end of an F optional
set) that avoids F stopping times. Then the G dual predictable projection of
1g≤t is Agt .

Proof. Let τ be a random time; taking H ≡ 1, in Theorem 3.5 we find that∫ t∧τ
0

1
Zτs−

dAτs is the G dual predictable projection of 1τ≤t.
When τ is a pseudo-stopping time that avoids F stopping times, we

have from Theorem 2.3 that the G dual predictable projection of 1τ≤t is
− log (Zτt∧τ ) since in this case Aτt = 1− Zτt is continuous.
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The second fact is an easy consequence of the well known fact that the
measure dAgt is carried by {t : Zgt = 1} (see [2]). �

As a consequence, we have the following characterization of the martingale
hazard process:

Proposition 3.7. Let τ be a random time. Suppose that Zτt > 0, ∀t. Then,
there exists a unique martingale hazard process Λt, given by

Λt =
∫ t

0

daτu
Zu−

, (3.1)

where aτt is the dual predictable projection of 1τ≤t.

Proof. We suppose there exist two different martingale hazard processes Λ1

and Λ2 and denote

T (ω) = inf
{
t : Λ1

t (ω) 6= Λ2
t (ω)

}
.

T is an (Ft)-stopping time hence a G stopping time. Due to the uniqueness
of the predictable compensator we must have for all t ≥ 0 :

Λ1
t∧τ = Λ2

t∧τ a.s.

Hence, T > τ a.s. and hence Zτt = 0, ∀t ≥ T . By assumption, this is
impossible, hence Λ1 = Λ2 a.s. �

It is conjectured in [19] that if τ is any random time (possibly a stopping
time) such that P(τ ≤ t|Ft) is an increasing process, and if the martingale
hazard process Λ is continuous, then Λ = Γ, where Γ is the hazard process.
We now provide a counterexample to this conjecture. Indeed, let τ be a
totally inaccessible stopping time of the filtration F. Then of course P(τ ≤
t|Ft) = 1τ≤t is an increasing process. Let now (At) be the predictable
compensator of 1τ≤t. It is well known (see [2] or [20] for example) that
At is a continuous process (that satisfies At = At∧τ ) and hence Λt = At is
continuous. But clearly Γt 6= Λt.

We propose the following theorem instead of the above conjecture (recall
the fact that the Azéma supermartingale is continuous and decreasing means
that τ is a pseudo-stopping time):

Theorem 3.8. Let τ be a pseudo-stopping time. Assume further that Zτt >
0 for all t.

(i) Under (A), Γ is continuous and Γt = Λt = − lnZt.
(ii) Under (C), if Λ is continuous, then Γt = Λt = − lnZt.

Proof. (i) follows from lemma 2.4, Theorem 2.3 and proposition 3.7.
(ii) Assume (C) holds. Since Λ is assumed to be continuous, it follows

from proposition 3.7 (2) that aτt is continuous. Hence τ avoids all pre-
dictable stopping times. But under (C), all stopping times are predictable.
Consequently τ avoids all stopping times and we apply part (i). �
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Remark. In the next section, the above theorem will be used to compare the
two different pricing formulas mentioned in the introduction.

It has been proved in [19] that in general, even under the assumptions
(CA), the hazard process and the martingale hazard process may differ.
The example they used was g ≡ sup{t ≤ 1 : Wt = 0}, where W denotes
as usual the standard Brownian Motion. This time is a typical example of
an honest time (i.e. the end of an optional set). We shall now show that
this result actually holds for any honest time g and compute explicitly the
difference in this case. We shall need for this the following characterisation
of honest times given in [27]:

Theorem 3.9 ([27]). Let g be an honest time. Then, under the conditions
(CA), there exists a unique continuous and nonnegative local martingale
(Nt)t≥0, with N0 = 1 and limt→∞Nt = 0, such that:

Zgt = P (g > t | Ft) =
Nt

Σt
,

where Σt = sups≤tNs. The honest time g is also given by:

g = sup {t ≥ 0 : Nt = Σ∞}
= sup {t ≥ 0 : Σt −Nt = 0} . (3.2)

Proposition 3.10. Let g be an honest time. Under (CA), assume that
P(g > t|Ft) > 0. Then there exists a unique strictly positive and continuous
local martingale N , with N0 = 1 and limt→∞Nt = 0, such that:

Γt = ln Σt − lnNt whilst Λt = ln Σt,

where Σt = sups≤tNs. Consequently,

Λt − Γt = lnNt, (3.3)

and Γ 6= Λ.

Proof. From theorem 3.9, there exists a unique strictly positive continuous
local martingale N , such that N0 = 1 and limt→∞Nt = 0, such that:

Zgt = P (g > t | Ft) =
Nt

Σt
.

Now an application of Itô’s formula yields:

P (g > t | Ft) = 1 +
∫ t

0

dNs

Σs
−
∫ t

0

Ns

Σ2
s

dΣs.

But on the support of (dΣs), we have Σt = Nt and hence:

P (g > t | Ft) = 1 +
∫ t

0

dNs

Σs
− ln Σt.
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From the uniqueness of the Doob-Meyer decomposition, we deduce that the
dual predictable projection of 1g≤t is ln Σt. Now,applying proposition 3.7,
we have:

Λt =
∫ t

0

d(ln Σs)
P (g > s | Fs)

=
∫ t

0

Σs

ΣsNs
dΣs = ln Σt,

where we have again used the fact that the support of (dΣs), we have Σt =
Nt. The result of the proposition now follows easily. �

The following theorem gathers properties of the difference between the
hazard and the martingale hazard processes, which will reveal to be very
important in pricing. We only concentrate on the situation where Λ is con-
tinuous, because in the reduced-form models the process Λ is continuous (it
is usually supposed to be absolutely continuous with respect to the Lebesgue
measure, i.e., an intensity process exists).

Theorem 3.11. Suppose that Zτt > 0, ∀t and denote Θt := Γt −Λt. If Λ is
continuous, then the process Nt := e−Θt , t ≥ 0 is a strictly positive F-local
martingale. Moreover:

(i) If τ is a pseudo stopping time, then e−Θt is a finite variation local
martingale. It is constant if one of the conditions (C) or (A) is
satisfied.

(ii) If τ is a honest time, then e−Θt is never constant. It is a continuous
local martingale if condition (CA) is satisfied.

Proof. Using integration by parts and the expression of Λ (see equation
(3.1)) we obtain

Nt = exp{−Θt} = Zτt e
Λt = 1+

∫ t

0
Zτs−e

ΛsdΛs+
∫ t

0
eΛsdZτs = 1+

∫ t

0
eΛsdmτ

s ,

which is indeed a local martingale. When τ is a pseudo-stopping time, we
have from Theorem 2.2 that mτ

t = 1 − Aτt + aτt , which is a martingale of
finite variation. Moreover, when (C) or (A) holds, Aτ = aτ as proved in
Theorem 3.8 and consequently mτ ≡ 1.

When τ is a honest time, the result follows immediately from Proposition
3.10, formula (3.3).

�

4. Applications to the pricing of defaultable claims

In this section we always assume that Zτt > 0,∀t, so that Γ is well defined
and Λ is unique. We moreover assume that the process Λ is continuous,
which is the usual assumption appearing in the reduced-form models. It is
known that, when unique, Λ is a continuous process if and only if τ is a
totally inaccessible G-stopping time. We now apply the results of the last
section in order to price a defaultable claim X of the type introduced in
equation (1.1).
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We shall denote by S̃(X) the F-adapted process which equals the pre-
default price process of X, that is: S̃(X)t1{τ>t} = S(X)t1{τ>t},∀t ≥ 0.
S̃(X)t is given by the right-hand side of equation (1.2).

We now rewrite the general pricing result which was stated in equation
(1.2) in order to emphasize the role of the process N = e−Θ:

S̃t(X) = eRt+ΓtE
[∫ T

t
Cse

−(R̃s−Λs)daτs + e−(R̃T+ΘT )P |Ft
]

= eR̃t+ΘtE
[∫ T

t
Cse

−(R̃s−Λs)Zτs−dΛs + e−(R̃T+ΘT )P |Ft
]

= eR̃t+ΘtE
[∫ T

t
Cse

−(R̃s+Θs−)dΛs + e−(R̃T+ΘT )P |Ft
]

(4.1)

since Λ is continuous (recall that R̃t = Rt + Λt is the default-adjusted ac-
count).

Let us notice that the above formula is very general, but we cannot in
this generality give the interpretation of a default-free pricing using an ”ad-
justed” discount factor. Indeed, the ”discounting rate”: R̃ + Θ = R + Γ is
not in general an increasing process, as cumulated interests are. In some sit-
uations, it can be discontinuous, or have infinite variation. In what follows,
we shall write the pricing formula under other, more useful forms.

We first state a lemma.

Lemma 4.1. Assume that (Nt)0≤t≤T is a square integrable martingale.
Then we have

S̃t(X) = eR̃tN−1
t E

[
NT

(∫ T

t
e−R̃uCudΛu + e−R̃TP

) ∣∣∣Ft] (4.2)

Proof. Let us denote: C̃t :=
∫ t

0 e
−(Ru+Λu)CudΛu. An integration by parts

(recall that Λ is supposed continuous) yields

NT C̃T = NtC̃t +
∫ T

t
Nu−dC̃u +

∫ T

t
C̃udNu.

Consequently

E
[∫ T

t
Nu−dC̃u|Ft

]
= E

[
NT C̃T −

∫ T

t
C̃udNu|Ft

]
−NtC̃t

The pre-default price of the defaultable claim from equation (4.1) can be
re-written:

S̃t(X) = eR̃tN−1
t E

[∫ T

t
Ns−dC̃s + e−R̃TNTP |Ft

]
= eR̃tN−1

t

(
E
[
NT C̃T −

∫ T

t
C̃udNu + e−R̃TNTP

∣∣∣Ft]−NtC̃t

)
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Since C is bounded and N is a square integrable martingale, C̃ is also
bounded and hence

∫
C̃dN is also a square integrable martingale. Thus the

pricing formula can be further simplified:

S̃t(X) = eR̃tN−1
t

(
E
[
NT

(
C̃T + e−R̃TP

) ∣∣∣Ft]−NtC̃t

)
(4.3)

= eR̃tN−1
t

(
E
[
NT

(∫ T

t
dC̃u + e−R̃TP

) ∣∣∣Ft]+ C̃tE[NT |Ft]−NtC̃t

)
(4.4)

= eR̃tN−1
t E

[
NT

(∫ T

t
e−R̃uCudΛu + e−R̃TP

) ∣∣∣Ft] . (4.5)

�

Now we emphasize the link with the formula of Duffie et al. [12] in the case
when the F-martingales are G-martingales, that is when the (H) hypothesis
is valid. As explained in Section 2, in this case τ is a pseudo-stopping time.

Proposition 4.2. Suppose that the (H) hypothesis holds and that (Nt)0≤t≤T
is a square integrable martingale. Define V as in equation (1.4) and also
define the following F-martingale:

Ṽt := E
[∫ T

0
Cue

−(Ru+Λu)dΛu + Pe−(RT+ΛT )|Ft
]

Then the claim’s price process S satisfies for t ≥ 0 and on {t < τ}:

S̃t(X) = Vt(X)− eR̃t+ΘtE
[
[Ṽ , N ]T − [Ṽ , N ]t|Ft

]
= Vt(X)− Jt.

Therefore, if [Ṽ , N ] ≡ 0 then J ≡ 0. In particular:

(i) If one of the conditions (C) or (A) holds, then J ≡ 0.
(ii) If V is predictable then J ≡ 0.

Proof. It is assumed that the (H) hypothesis holds. In this case, it is known
(see [10]) that for every F∞-measurable random variable F :

E[F |Gt] = E[F |Ft]

Hence, the process V , which was defined in equation (1.4) may be written
as an F-adapted process, that is:

Vt = eR̃tE
[∫ T

t
Cue

−R̃udΛu + Pe−R̃T |Ft
]

t < T,

and Vt = 0 for t ≥ T . Hence, when (H) holds, we have:

Ṽt = Vte
−(Rt+Λt) +

∫ t

0
e−(Ru+Λu)CudΛu, (4.6)
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i.e., Ṽt = Vte
−R̃t + C̃t. Replacing this in equation (4.3) and using the fact

that VT = P , we obtain

S̃t(X) = eR̃tN−1
t

(
E
[
NT ṼT

∣∣∣Ft]−NtC̃t

)
= eR̃tN−1

t

(
E
[
NT ṼT

∣∣∣Ft]−Nt(Ṽt − Vte−R̃t)
)

= Vt + eR̃tN−1
t E

[
[Ṽ , N ]T − [Ṽ , N ]t|Ft

]
.

The statements about the term J are obtained from Theorem 3.11. �

The proposition above gives another expression for the jump term J (see
equation (1.5)), when the (H) hypothesis holds, and thus it allows to see
better in which situations J ≡ 0.

Now, let us return to the general situation, when (H) does not necessarily
hold. Whenever the local martingale N is a true martingale, it can serve as a
change of measure which permits to recover again a simple pricing formula.
Indeed, a simple use of the Girsanov’s theorem gives:

Proposition 4.3. Suppose that (Nt)0≤t≤T is a square integrable martingale,
and define the default-adjusted measure as:

dQτ := NT · dP on FT .
Then, it follows that the pre-default price of the defaultable claims is:

S̃t(X) = eR̃tEQτ

[∫ T

t
Cue

−R̃udΛu +Xe−R̃T |Ft
]

t < T ;

Proof. The proof follows directly by application of the definition of the new
measure Qτ and equation (4.2). �

Remark. Note that
(
S̃t(X)e−R̃t −

∫ t
0 Cue

−R̃udΛu
)

is a Qτ -martingale.

We now compare this result with the one which appears in Collin Dufresne
et al. [8]. Indeed, as we already mentioned in the introduction, the following
change of measure was used in [8]: dP′ = Dt := 1{τ>t}eΛt · dP. Now we
show that in general, to use effectively pricing under the measure P′, one
needs to be able to compute the compensators of the jumps of martingales
at τ . This problem is as complicated as the original problem of computing
the jump term J .

To understand this, assume that C ≡ 0 and P = YT , where (Yt) is a G
adapted process (let us recall that in this approach the smaller filtration F
does not play a role). Moreover take Λt = λt, t ≥ 0, where λ is a positive
constant. Y can be a primary asset price (i.e. a traded asset, for instance
a stock), in which case Ỹ := Y e−R is a P-martingale in the filtration G, by
the usual no-arbitrage arguments. The evaluation formula for X is before
default (see 1.6):

S(1{τ>T}YT )t = eR̃t−λTEP′ [ỸT |Gt].
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Hence, the only needed thing is the dynamics of the P-martingale Ỹ under
the measure P′. Using the Lenglart-Girsanov theorem when the change of
measure is only absolutely continuous (see [29] page 135), and noticing that
the density process Dt := 1{τ>t}eΛt is a finite variation martingale with a
unique jump in τ , we get that the process:

Ỹ ′t := Ỹt −
∫ t

0

d〈Ỹ , D〉s
Ds−

= Ỹt +
(
1{τ≤t}∆Ỹτ

)p
is a P′-martingale, where (·)p stands for the predictable compensator, in the
filtration G, under the measure P. We find that before default:

S(1{τ>T}YT )t = eR̃t−ΛT
(
Ỹt − J ′t

)
.

where J ′t := EP′
[(

1{τ≤T}∆Ỹτ
)p ∣∣Gt]. We see that finding an explicit ex-

pression for J ′ has the same degree of difficulty as the original problem.
In what follows, in order to illustrate the method introduced in Propo-

sition 4.3, we give an example of pricing when the default time is a last
passage time for which neither Γ or Λ are absolutely continuous, and such
that (Nt)0≤t≤T is a square integrable and non constant martingale.

More precisely, consider the framework of Proposition 3.10 and assume
that F is generated by a standard Brownian motion (Wt)t≥0. Let

Nt = exp(2aWt − 2a2t),

where a > 0, and

Σt = exp
(

sup
s≤t

2a(Ws − as)
)
.

We assume that the default time is:

τ := sup
{
t : Wt − at = sup

s≥0
(Ws − as)

}
In this case, the default-adjusted measure is

dQτ := exp(2aWT − 2a2T ) · dP on FT ,
and the adjusted discount factor is:

R̃t = Rt + sup
s≤t

2a(Ws − as) = Rt + sup
s≤t

2a(W τ
s + as),

where W τ = W − 2at is a Qτ Brownian motion. The price of a defaultable
zero-bond with maturity T and zero recovery in case of default is before
default:

B̃(t, T ) := S̃(1{τ>T})t = EQτ [e−(R̃T−R̃t)|Ft].
Therefore, there exists some F-predictable volatility process (σ(t, T ), t ≥ 0)
such that the dynamics of the pre-default price of the bond is:

dB̃(t, T ) = B̃(t, T )
(
dR̃t + σ(t, T )dW τ

t

)
(4.7)

= B̃(t, T ) {(dRt + dΛt − 2aσ(t, T )dt) + σ(t, T )dWt} . (4.8)
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We see that under the risk-neutral measure P, the drift of the process is
affected by two terms, which are specific to a defaultable bond: dΛ and
−2aσ(t, T )dt.

Let us now analyze the pricing of vulnerable options written on a stock.
Let (Yt) be the price process of a default-free stock. We may assume:

dYt = Yt (rtdt+ σtdWt) .

It follows that under Qτ the stock behaves as a negative-dividends paying
stock:

dYt = Yt ((rt + σa)dt+ σtdW
τ
t )

A vulnerable option with exercise date T and zero recovery in case of default
is defined as:

X = 1{τ>T}f(Yu, u ∈ [0, T )),

for some functional f of the paths of the process Y (this definition applies
for European, Asian or lookback options). Because the adjusted account R̃t
is stochastic, it is convenient to price by using as numéraire the pre-default
defaultable T -bond, i.e., B(t, T ). Let us introduce the default-adjusted for-
ward measure as:

dQT =
e−R̃T

B̃(0, T )
· dQτ on FT

Using the standard change of numéraire techniques we obtain:

S(X)t = eR̃tEQτ
[
e−R̃T f(Su, u ≤ T )|Ft

]
= B̃(t, T )EQT

[f(Su, u ≤ T )|Ft]

Hence one can price a vulnerable option using the standard (i.e., default-
free) evaluation techniques, but under the measure QT .
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