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A note on Helson’s conjecture on moments of
random multiplicative functions

Adam J. Harper∗, Ashkan Nikeghbali, and Maksym Radziwiłł

To Prof. Helmut Maier on the occasion of his sixtieth birthday

1 Introduction

In this note we are interested in cancellations in sums of multiplicative functions.
It is well known that

M(x) := ∑
n≤x

µ(n) = O(x1/2+ε)

is equivalent to the Riemann Hypothesis. On the other hand itis also a classical
result thatM(x)> x1/2−ε for a sequence of arbitrarily largex. It is in fact conjectured
that

lim
x→∞

M(x)
√

x(log loglogx)
5
4

=±B

for some constantB> 0 (see [21]).
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Wintner [24] initiated the study of what happens for a generic multiplicative
function which is as likely to be 1 or−1 on the primes. Considerf (p), a sequence
of independent random variables taking values±1 with probability 1/2 each (i.e.
Rademacher random variables), and define a multiplicative function supported on
squarefree integersn by

f (n) := ∏
p|n

f (p).

We shall refer to such a function as aRademacher random multiplicative function.
By the three series theorem, the Euler productF(s) := ∏p(1+ f (p)p−s) converges
almost surely forℜs> 1

2. From this Wintner deduced that

∑
n≤x

f (n)≪ x1/2+ε almost surely (a.s.)

Since then the problem of the behavior of∑n≤x f (n) has attracted considerable at-
tention [7, 11, 12, 13, 17, 18]. A closely related model is to let f (p) be uniformly
distributed on the complex unit circle (i.e. Steinhaus random variables), and then de-
fine f (n) := ∏pα ||n f (p)α for all n. We shall refer to such a function as aSteinhaus
random multiplicative function.

Very recently mean values of random multiplicative functions arose in connec-
tion with harmonic analysis. In his last paper Helson [16] considered the question
of generalizing Nehari’s theorem to the infinite polydisk. He noticed that the gener-
alization could be disproved if one could show that

lim
T→∞

1
T

∫ T

0

∣∣∣ ∑
n≤N

n−it
∣∣∣dt = o(

√
N). (1)

Using Bohr’s identification, we have


E

∣∣∣∣∣ ∑
n≤N

f (n)

∣∣∣∣∣

2q



1/2q

=


 lim

T→∞

1
T

∫ T

0

∣∣∣∣∣ ∑
n≤N

n−it

∣∣∣∣∣

2q

dt




1/2q

(2)

for all 2q> 0, and withf (n) a Steinhaus random multiplicative function. Therefore
(1) is equivalent to

E

∣∣∣ ∑
n≤N

f (n)
∣∣∣= o(

√
N), (3)

with f (n) a Steinhaus random multiplicative function. Helson justified his belief in
(1) by observing thatN(it ) := ∑n≤N n−it is the multiplicative analogue of the clas-
sical Dirichlet kernelD(θ ) := ∑|n|≤N e2π inθ . Since‖D‖1 = o(‖D‖2) Helson conjec-
tured that the same phenomenon should happen for the “multiplicative analogue”
N(it ). Another reason one might believe the large cancellation in(1) to be possible
is that on the1

2-line one has



A note on Helson’s conjecture on moments of random multiplicative functions 3

lim
T→∞

1
T

∫ T

0

∣∣∣ ∑
n≤N

1

n1/2+it

∣∣∣dt ≪ log1/4+o(1)N,

as follows from the work of Bondarenko, Heap and Seip [2]. This bound is stronger
than one would expect assuming only squareroot cancellation, which would suggest
a size more like log1/2N.

Recently Ortegà-Cerda and Seip [22] proved that Nehari’s theorem doesn’t ex-
tend to the infinite polydisk. However the problem of establishing (1) remained.
There are now reasons to believe that (1) is false. In a recentpaper Bondarenko
and Seip [3] showed that the first absolute moment is at least

√
N(logN)−δ+o(1)

for some smallδ < 1. Our primary goal in this note is to improve further on the
lower bounds for (2). Our results also work for Rademacher random multiplicative
functions.

Theorem 1.Let f(n) be a Rademacher or Steinhaus random multiplicative func-
tion. Then,

E

∣∣∣∣∣ ∑
n≤N

f (n)

∣∣∣∣∣≫
√

N(log logN)−3+o(1)

as N→ ∞.

The main input in the proof of Theorem 1 is the work [12] of the first named au-
thor on lower bounds for sums of random multiplicative functions. Using Hölder’s
inequality, we can extend the result of Theorem 1 toLq norms.

Theorem 2.Let f(n) be a Rademacher or Steinhaus random multiplicative function
and let0≤ q≤ 1. Then,

E

∣∣∣∣∣ ∑
n≤N

f (n)

∣∣∣∣∣

2q

≫ Nq(log logN)−6+o(1).

Theorem 1 and Theorem 2 suggest it is rather unlikely that Helson’s conjecture is
true. See Conjecture 1, below.

In addition to the above results, we establish an asymptoticestimate for the 2k-th
moment whenk is a positive integer.

Theorem 3.Let k∈N. Suppose that f(n) is a Steinhaus random multiplicative func-
tion. Then, as N→ ∞,

E

∣∣∣∣∣ ∑
n≤N

f (n)

∣∣∣∣∣

2k

∼
(

2k−2
k−1

)
k−(k−1) ·ckγk ·Nk · (logN)(k−1)2.

whereγk is the volume of Birkhoff polytopeBk, defined as the(k−1)2 dimensional

volume of the set of(ui, j) ∈ Rk2

+ such that,
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for each i≤ k : ∑
1≤ j≤k

ui, j = 1

and for each j≤ k : ∑
1≤i≤k

ui, j = 1,

and

ck = ∏
p

(
1− 1

p

)k2

·
(

1+ ∑
α≥1

(α+k−1
k−1

)2

pα

)
.

Note thatBk is a(k−1)2 dimensional object embedded in ak2 dimensional space.
The (k− 1)2 dimensional volume ofBk is equal (see e.g. section 2 of Chan and
Robbins [6]) tokk−1 times the full-dimensional volume of the set of(ui, j)i, j≤k−1 ∈
R(k−1)2 such that, for alli, j ≤ k−1,

∑
j≤k−1

ui, j ≤ 1 and ∑
i≤k−1

ui, j ≤ 1 and ∑
i, j≤k−1

ui, j ≥ k−2.

The latter is how the volume ofBk will actually arise in our calculations.
It is worth pointing out that finding a closed formula for the volume of the

Birkhoff polytopeBk is a notorious open question and would be of interest in enu-
merative combinatorics, statistics and computational geometry (see [23]). There are
evaluations of Vol(Bk) for small values ofk, (see [1] and [6]),

Vol(B3) =
3 ·32

22!
, Vol(B4) =

352·43

32!
, Vol(B5) =

4718075·54

42!
, . . .

and an asymptotic formula is known to hold [5]

Vol(Bk)∼
√

2πe1/3 · k−(k−1)2ek2

(2π)k , k→ ∞.

In addition the asymptotic behavior of the Euler productck is known (see [9, Propo-
sition]),

logck =−k2 log(2eγ logk)+o(k2)

whereγ is the Euler–Mascheroni constant.
We note that Conrey and Gamburd [8] compute the even integer moments

lim
T→∞

1
T

∫ T

0

∣∣∣∣∣ ∑
n≤N

n−1/2−it

∣∣∣∣∣

2k

dt

on the1
2-line, and unsurprisingly the answer is extremely similar to Theorem 3 (in

particular an Euler product and a volume related to the Birkhoff polytope again
appear). Conrey and Gamburd discuss the connection betweentheir result and the
moments of certain truncated characteristic polynomials of random matrices. In gen-
eral, it seems reasonable to say that the arithmetic factorck reflects local counting
modulo different primes in the moment computation, whereasthe geometric factor
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γk reflects global counting of tuplesn1, ...,nk andm1, ...,mk subject to the truncation
ni ,mi ≤ N.

We deduce Theorem 3 from a general result of La Bretèche [4] on mean values
of multiplicative functions in several variables. Theorem3 has also been obtained
independently by Granville and Soundararajan (unpublished), and also very recently
(and independently) by Heap and Lindqvist [15]. Additionally, Theorem 3 sheds
light on the conjectural behavior of moments of the theta functions,

θ (x,χ) = ∑
n≥1

χ(n)e−πn2x/p

with p ≥ 3 a prime, andχ an even Dirichlet character modulop. The rapidly de-
caying factore−πn2x/p essentially restricts the sum to thosen less than about

√
p

(if x = 1, say), and the average behavior ofχ(n) with n ≪ p1/2 is similar to that
of a Steinhaus random multiplicative function. Therefore Theorem 3 leads to the
conjecture that

1
p ∑

χ modp
χ even

|θ (1,χ)|2k ∼Ckpk/2(logp)(k−1)2 asp→ ∞.

In unpublished recent work the same conjecture was stated byMarc Munsch on the
basis of his lower bound for moments ofθ (1,χ). Louboutin and Munsch [19] prove
the conjecture fork= 1 andk= 2.

Combining Theorem 2 and Theorem 3 suggests the following “counter-conjecture”
to Helson’s claim (1).

Conjecture 1 If f (n) is a Steinhaus random multiplicative function, then we have
as N→ ∞,

E

∣∣∣∣∣ ∑
n≤N

f (n)

∣∣∣∣∣

2q

∼
{

C(q)Nq, for 0≤ q≤ 1

C(q)Nq(logN)(q−1)2, for 1≤ q.

Conjecture 1 suggests a possible line of attack on the problem of showing that for a
positive proportion of even charactersχ modulop, we haveθ (1,χ) 6= 0. This would
be based on comparing the first and secondabsolutemoments, i.e

∑
χ modp

χ even

|θ (1,χ)| and ∑
χ modp

χ even

|θ (1,χ)|2.

We emphasise that we do not have a lot of evidence towards Conjecture 1 when
q /∈ N, and perhaps especially when 0< q< 1, and it is conceivable the behaviour
could be more complicated. However this is the simplest possible conjecture re-
specting the information that we now have. In addition forq> 1 it perhaps seems
unlikely that the distribution of the tails of∑n<N f (n) (in a large deviation regime)
fluctuates so significantly that it would affect the exponent(q−1)2 of the logarithm
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whenq goes from an integer to a fractional exponent. We also note that if we could
obtain the order of magnitude for the 2q-th moment suggested by the Conjecture 1
for q= 1

2, then since we know it trivially forq= 1 a simple argument using Hölder’s
inequality (as in the proof of Theorem 2, below) would establish the order of mag-
nitude suggested by the Conjecture for all 0≤ q≤ 1.

Finally, following a question from the referee, we noticed that we can extend
Theorem 3 to the Rademacher case. We omit the simple cases ofk = 1,2 in the
theorem below, since both are different from the casek≥ 3.

Theorem 4.Let f(n) be a Rademacher random multiplicative function. Then, for
k≥ 3 an integer, as N→ ∞,

E

(
∑

n≤N
f (n)

)k
∼Ck ·Nk/2(logN)k(k−3)/2

with Ck > 0 constant.

Similarly as in Theorem 3 the constantCk splits into an arithmetic and geometric
factor. The interested reader should have no trouble working out the details. Theo-
rem 4 has also been obtained independently by Heap and Lindqvist [15].

At first glance it may seem strange that all the moments here (including the odd
ones) are non-trivially large, but that is because in the Rademacher case there is no
distinction between a term and its complex conjugate (and similarly if one calculated

an expression likeE
∣∣∑n≤N f (n)

∣∣2k(∑n≤N f (n)
)

in the Steinhaus case, this would be
non-trivially large providedk ≥ 1). Note also that the moments are rather larger
in the Rademacher case than the Steinhaus case, again because everything is real
valued and so the terms exhibit less cancellation.

AcknowledgmentsWe are grateful to the referee for a careful reading of the
paper and for asking several questions which led to Theorem 4and stronger results
in Theorem 3.

2 Lower bounds for the first moment

In this section we shall first prove the following result.

Proposition 1 Let f(n) be a Rademacher random multiplicative function. There
exist arbitrarily large values of x for which

E

∣∣∣∣∣∑n≤x
f (n)

∣∣∣∣∣ ≥
√

x

(log logx)3+o(1)
.

The same is true if f(n) is a Steinhaus random multiplicative function.

The above proposition is actually a fairly straightforwarddeduction from the
work of Harper [12]. However, it is a bit unsatisfactory because it only gives a lower
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bound along some special sequence ofx values. With more work we can correct this
defect, as in the following theorem announced in the Introduction:

Theorem 1 Let f(n) be a Rademacher random multiplicative function. Then forall
large x we have

E

∣∣∣∣∣∑n≤x
f (n)

∣∣∣∣∣ ≥
√

x

(log logx)3+o(1)
.

The same is true if f(n) is a Steinhaus random multiplicative function.

The proof of Proposition 1 has two ingredients. The first is the observation, es-
sentially due to Halász [11], that one can almost surely lower bound an average of∣∣∑n≤x f (n)

∣∣ in terms of the behaviour off (n) on primes only: more specifically, in
the Rademacher case we almost surely have that, for anyy≥ 2,

∫ ∞

1

∣∣∑n≤z f (n)
∣∣

z3/2+1/ logy
dz≫ sup

t≥1
exp
(
∑
p

f (p)cos(t logp)

p1/2+1/ logy
− logt − loglog(t +2)/2

)
.

Here the implicit constant in the≫ notation is absolute. The reader should note that
the presence of the supremum overt will be very significant here, since at any fixed
t the expected size of the right hand side would be too small to produce a useful
result (about log1/4y, rather than about logy which is what we need).

The second ingredient is a strong lower bound for the expected size of the right
hand side, which we deduce from the work of Harper [12]. We quote the relevant
statements from Harper’s work as a lemma now, for ease of reference later.

Lemma 1 (See §6.3 of [12].) If ( f (p))p primeare independent Rademacher random
variables, then with probability1−o(1) as x→ ∞ we have

sup
1≤t≤2(loglogx)2

∑
p

f (p)cos(t logp)

p1/2+1/ logx
≥ log logx− logloglogx

−O((log loglogx)3/4).

If ( f (p))p primeare independent Steinhaus random variables, then with probabil-
ity 1−o(1) as x→ ∞ we have

sup
1≤t≤2(loglogx)2

∑
p

(ℜ( f (p)p−it )

p1/2+1/ logx
+

1
2

ℜ( f (p)2p−2it )

p1+2/ logx

)
≥ loglogx− logloglogx

−O((log loglogx)3/4).

The first statement here is proved in the last paragraph in §6.3 of [12] (noting that the
quantityy there is log8x). The second statement can be proved by straightforward
adaptation of that argument, the point being that the expectation and covariance
structure of these random sums in the Steinhaus case are the same, up to negligible
error terms, as in the Rademacher case, so the same argumentscan be applied. (See
the preprint [14] for an explicit treatment of some very similar Steinhaus random
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sums.) The argument in [12] is quite involved, but the basic aim is to show that,
for the purpose of taking the supremum, the sums sup1≤t≤2(loglogx)2 ∑p

f (p)cos(t log p)
p1/2+1/ logx

behave somewhat independently at values oft that are separated by≫ 1/ logx, so
one has something like the supremum over logx independent samples.

To prove Theorem 1 we introduce a third ingredient, namely weshow that
E
∣∣∑n≤x f (n)

∣∣ may itself be lower bounded in terms of an integral average of
E
∣∣∑n≤z f (n)

∣∣, as follows:

Proposition 2 Let f(n) be a Rademacher random multiplicative function. For any
large x we have

E

∣∣∣∣∣∑n≤x
f (n)

∣∣∣∣∣≫
√

x
logx

∫ √
x

1

(
E|∑n≤z f (n)|√

z

)
dz
z
.

The same is true if f(n) is a Steinhaus random multiplicative function.

This uses the multiplicativity off (n) in an essential way (as does the proof of Propo-
sition 1, of course).

Theorem 1 then follows quickly by combining Proposition 2 with the proof of
Proposition 1.

As the reader will see, the proof of Proposition 2 is based on a“physical space”
decomposition of the sum∑n≤x f (n), which is somewhat related to the martingale
arguments of Harper [13]. This is unlike the other argumentsabove, which work by
establishing a connection between the integral average of∑n≤x f (n) and its Dirichlet
series∑n f (n)/ns (on the “Fourier space” side).

2.1 Proof of Proposition 1

The proof of Proposition 1 is slightly cleaner in the Rademacher case, because
then f (p)2 ≡ 1 for all primesp. So we shall give the proof in that case first, and
afterwards explain the small changes that arise in the Steinhaus case.

We know from work of Wintner [24] that almost surely∑n≤x f (n) = Oε(x1/2+ε).
Consequently, by partial summation the Dirichlet seriesF(s) := ∑n f (n)/ns is al-
most surely convergent in the half planeℜ(s) > 1/2, and then by term by term
integration it satisfies

F(s) = s
∫ ∞

1

∑n≤z f (n)

zs+1 dz, ℜ(s)> 1/2.

In particular,F(s) is almost surely a holomorphic function on the half planeℜ(s)>
1/2.

On the other hand, sincef (n) is multiplicative we have for anyℜ(s)> 1 that, in
the Rademacher case,
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F(s) = ∏
p

(
1+

f (p)
ps

)
= exp

(
∑
p

log

(
1+

f (p)
ps

))

= exp
(
∑
p

f (p)
ps − 1

2 ∑
p

f (p)2

p2s + ∑
k≥3

(−1)k+1

k ∑
p

f (p)k

pks

)
.

Therefore in the Rademacher case we have

s
∫ ∞

1

∑n≤z f (n)

zs+1 dz= exp
(
∑
p

f (p)
ps − 1

2 ∑
p

f (p)2

p2s + ∑
k≥3

(−1)k+1

k ∑
p

f (p)k

pks

)

at least whenℜ(s)> 1, since both sides are equal toF(s). But all the sums involving
p2s and pks are clearly absolutely convergent wheneverℜ(s) > 1/2, and therefore
define holomorphic functions there. In addition, for any fixed s with ℜ(s) > 1/2

the series∑p
f (p)
ps is a sum of independent random variables, and Kolmogorov’s

Three Series Theorem implies it converges almost surely. Since a Dirichlet series is
a holomorphic function strictly to the right of its abscissaof converge, we find that
almost surely∑p

f (p)
ps is a holomorphic function on the half planeℜ(s) > 1/2, and

so almost surely we have, for allℜs> 1
2,

s
∫ ∞

1

∑n≤z f (n)

zs+1 dz= exp
(
∑
p

f (p)
ps − 1

2 ∑
p

f (p)2

p2s + ∑
k≥3

(−1)k+1

k ∑
p

f (p)k

pks

)
.

Next, if we writes= σ + it and take absolute values on both sides then we find that,
almost surely,

|s|
∫ ∞

1

∣∣∑n≤z f (n)
∣∣

zσ+1 dz≥ exp

(
ℜ
(
∑
p

f (p)
ps − 1

2 ∑
p

f (p)2

p2s + ∑
k≥3

(−1)k+1

k ∑
p

f (p)k

pks

))

= exp
(
∑
p

ℜ( f (p)p−it )

pσ − 1
2 ∑

p

ℜ( f (p)2p−2it )

p2σ +O(1)
)
, ∀σ > 1/2.

If we takeσ = 1/2+1/ logy for a parametery≥ 2, and we note that then|s| ≍ |t|
providedt ≥ 1 (say), we have almost surely that for ally≥ 2,

∫ ∞

1

∣∣∑n≤z f (n)
∣∣

z3/2+1/ logy
dz≫ sup

t≥1
exp
(
∑
p

ℜ( f (p)p−it )

p1/2+1/ logy
− 1

2 ∑
p

ℜ( f (p)2p−2it )

p1+2/ logy
− logt

)
.

In the Rademacher case the first sum overp is ∑p
f (p)cos(t logp)

p1/2+1/ logy , and (sincef (p)2 =

1) the second sum overp is ℜ∑p
1

p1+2/ logy+2it = ℜ logζ (1+2/ logy+2it )+O(1),

whereζ denotes the Riemann zeta function. Standard estimates (seee.g. Theo-
rem 6.7 of Montgomery and Vaughan [20]) imply that| logζ (1+2/ logy+2it )| ≤
loglog(t +2)+O(1) for t ≥ 1, so we have almost surely that for ally≥ 2,
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∫ ∞

1

∣∣∑n≤z f (n)
∣∣

z3/2+1/ logy
dz≫ sup

t≥1
exp
(
∑
p

f (p)cos(t logp)

p1/2+1/ logy
− logt− log log(t+2)/2

)
. (4)

(The above argument and inequality (4) are essentially due to Halász [11], and
are also related to the arguments of Wintner [24]. The only small difference is that
Halász restricted to 1≤ t ≤ 2. See Appendix A of Harper [12] for a presentation
similar to the above.)

Now to prove Proposition 1, note that for any large parametersx andx0 < x1 we
have

sup
x0<z<x1

E|∑n≤z f (n)|√
z

≥ 1
logx

∫ x1

x0

E
∣∣∑n≤z f (n)

∣∣
z3/2+1/ logx

dz,

since
∫ x1

x0
dz

z1+1/ logx ≤
∫ ∞

1
dz

z1+1/ logx = logx. Then by Cauchy–Schwarz we always have

E|∑n≤z f (n)| ≤ √
z, so

∫ x1

x0

E
∣∣∑n≤z f (n)

∣∣
z3/2+1/ logx

dz≥
∫ ∞

1

E
∣∣∑n≤z f (n)

∣∣
z3/2+1/ logx

dz−
∫ x0

1

dz

z1+1/ logx
−
∫ ∞

x1

dz

z1+1/ logx

≥
∫ ∞

1

E
∣∣∑n≤z f (n)

∣∣
z3/2+1/ logx

dz− logx0−
logx

x1/ logx
1

.

In particular, if we choosex0 = e
√

logx andx1 = e(logx) log logx, say, then we have

sup
x0<z<x1

E|∑n≤z f (n)|√
z

≥ 1
logx

∫ ∞

1

E
∣∣∑n≤z f (n)

∣∣
z3/2+1/ logx

dz− 2√
logx

. (5)

Finally, in the Rademacher case Lemma 1 implies that, with probability 1−o(1)
asx→ ∞,

sup
1≤t≤2(loglogx)2

∑
p

f (p)cos(t logp)

p1/2+1/ logx
≥ loglogx− logloglogx−O((logloglogx)3/4).

This implies that with probability 1−o(1) one has

sup
t≥1

exp
(
∑
p

f (p)cos(t logp)

p1/2+1/ logx
− logt − loglog(t +2)/2

)
≥ logx

(log logx)3+o(1)
,

and then by the Halász type lower bound inequality (4) we deduce

∫ ∞

1

E
∣∣∑n≤z f (n)

∣∣
z3/2+1/ logx

dz≥ logx

(log logx)3+o(1)
. (6)

Proposition 1 follows in the Rademacher case by combining this with (5).
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In the Steinhaus case the initial argument of Wintner [24] still works, so the first
change that is needed in the preceding argument comes in the expression for the
Euler productF(s), which forℜ(s)> 1 is now

F(s) = ∏
p

(
1+

∞

∑
j=1

f (p) j

p js

)
= exp

(
−∑

p
log

(
1− f (p)

ps

))

= exp
(
∑
p

f (p)
ps +

1
2 ∑

p

f (p)2

p2s + ∑
k≥3

1
k ∑

p

f (p)k

pks

)
.

Notice this is the same as we had in the Rademacher case, except now there are
no alternating minus signs in the final exponential. The argument using the Three
Series Theorem, etc. then continues as in the Rademacher case to yield that, almost
surely,

s
∫ ∞

1

∑n≤z f (n)

zs+1 dz=exp
(
∑
p

f (p)
ps +

1
2 ∑

p

f (p)2

p2s +∑
k≥3

1
k ∑

p

f (p)k

pks

)
∀ℜ(s)>1/2.

Puttings= 1/2+1/ logy+ it and taking absolute values on both sides, we deduce
that almost surely,

∫ ∞

1

∣∣∑n≤z f (n)
∣∣

z3/2+1/ logy
dz≫ sup

t≥1
exp
(
∑
p
(

ℜ( f (p)p−it )

p1/2+1/ logy
+

1
2

ℜ( f (p)2p−2it )

p1+2/ logy
)− logt

)
,∀y≥ 2.

(7)
Since we don’t now havef (p)2 ≡ 1, we cannot remove the contribution of the

prime squares using estimates for the zeta function. However, by the Steinhaus case
of Lemma 1 we still have that, with probability 1−o(1) asx→ ∞,

sup
1≤t≤2(loglogx)2

∑
p

(ℜ( f (p)p−it )

p1/2+1/ logx
+

1
2

ℜ( f (p)2p−2it )

p1+2/ logx

)
≥ loglogx− logloglogx

−O((log loglogx)3/4),

and therefore with probability 1−o(1) we have

sup
t≥1

exp
(
∑
p

(ℜ( f (p)p−it )

p1/2+1/ logy
+

1
2

ℜ( f (p)2p−2it )

p1+2/ logy

)
− logt

)
≥ logx

(log logx)3+o(1)
.

Combining this estimate with (7) and (5) then proves Proposition 1 in the Steinhaus
case.
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2.2 Proofs of Theorem 1 and Proposition 2

Proof (Proof of Theorem 1, assuming Proposition 2).In view of Proposition 2, it
will suffice to prove that for all largex we have

∫ √
x

1

(
E|∑n≤z f (n)|√

z

)
dz
z

≥ logx

(loglogx)3+o(1)
.

However, for any large parametery we have

∫ √
x

1

(
E|∑n≤z f (n)|√

z

)
dz
z

≥
∫ √

x

1

E|∑n≤z f (n)|
z3/2+1/ logy

dz

≥ logy

(loglogy)3+o(1)
−
∫ ∞

√
x

E|∑n≤z f (n)|
z3/2+1/ logy

dz,

in view of the lower bound
∫ ∞

1
E|∑n≤z f (n)|
z3/2+1/ logy dz≥ logy

(loglogy)3+o(1) obtained in (6). By

Cauchy–Schwarz we always haveE|∑n≤z f (n)| ≤ √
z, so the subtracted term here

is at most ∫ ∞

√
x

dz

z1+1/ logy
=

logy

(
√

x)1/ logy
.

If we choose logysomewhat smaller than logx, say logy=(logx)/(100logloglogx),
we deduce that

∫ √
x

1

(
E|∑n≤z f (n)|√

z

)
dz
z

≥ logx

(log logx)3+o(1)
− logx

(loglogx)50 =
logx

(loglogx)3+o(1)
,

as required.

Proof (Proof of Proposition 2).The first part of the proof again differs slightly de-
pending on whether we are in the Rademacher or the Steinhaus case. We will first
work in the Rademacher case and then explain the small changes needed in the other
situation.

Let At := ∑n≤t f (n). If we let P(n) denote the largest prime factor ofn, we have

∑
n≤x

f (n) = ∑
p≤x

∑
n≤x,P(n)=p

f (n) = ∑
p≤x

f (p) ∑
m≤x/p,P(m)<p

f (m),

since f is multiplicative. Here the inequalityP(m) < p in the final sum is strict
becausef is supported on squarefree numbers. Notice here that ifp >

√
x then

x/p<
√

x< p, so we automatically haveP(m)< p in the inner sums overm. Thus
we can rewrite things slightly as
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∑
n≤x

f (n) = ∑√
x<p≤x

f (p) ∑
m≤x/p

f (m)+ ∑
p≤√

x

f (p) ∑
m≤x/p,P(m)<p

f (m)

=: ∑√
x<p≤x

f (p)Ax/p+Bx,

say. Notice also that the random variablesAx/p andBx are independent of thef (p)
for

√
x< p≤ x.

We shall introduce a penultimate piece of notation, by defining the random vari-
able

Cx := ∑√
x<p≤x

f (p)Ax/p.

Finally, let ε be a Rademacher random variable that is independent of everything
else.

Now since the( f (p))√x<p≤x are symmetric random variables independent ofBx

and theAx/p, it follows that

∑
n≤x

f (n) = ∑√
x<p≤x

f (p)Ax/p+Bx
d
= ε ∑√

x<p≤x

f (p)Ax/p+Bx,

where
d
= denotes equality in distribution. Then if wecondition on the values of

Bx,Cx, we find the conditional expectation

E

(∣∣∣∣∣ε ∑√
x<p≤x

f (p)Ax/p+Bx

∣∣∣∣∣

∣∣∣∣∣Bx,Cx

)
= (1/2)|Cx+Bx|+(1/2)|−Cx+Bx| ≥ |Cx|,

by the triangle inequality. Now if we average over values ofBx,Cx, and use the
Tower Property of conditional expectations (the fact that the expectation of a condi-
tional expectation is the unconditional expectation), we obtain

E

∣∣∣∣∣∑n≤x
f (n)

∣∣∣∣∣= E

∣∣∣∣∣ε ∑√
x<p≤x

f (p)Ax/p+Bx

∣∣∣∣∣≥ E|Cx|.

On recalling the definitions ofCx andAx/p, we see we have proved the following:

Lemma 2 For all large x we have

E

∣∣∣∣∣∑n≤x
f (n)

∣∣∣∣∣≥ E

∣∣∣∣∣ ∑√
x<p≤x

f (p) ∑
m≤x/p

f (m)

∣∣∣∣∣ .

(In the Steinhaus case one has a weak inequalityP(m)≤ p in the definition ofBx,
since f is totally multiplicative, but this makes no difference to the argument just
given. Instead of choosingε to be a Rademacher random variable one can chooseε
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to be uniformly distributed on the unit circle, and then one obtains exactly the same
conclusion in Lemma 2.)

Since thef (p) are Rademacher or Steinhaus random variables independent of
the “coefficients”∑m≤x/p f (m) = Ax/p, an application of Khintchine’s inequality
(see e.g. Gut’s textbook [10]) yields that

E

∣∣∣∣∣ ∑√
x<p≤x

f (p) ∑
m≤x/p

f (m)

∣∣∣∣∣≫ E

√√√√ ∑√
x<p≤x

∣∣∣∣∣ ∑
m≤x/p

f (m)

∣∣∣∣∣

2

.

It would be nice if we could find a way to exploit this (sharp) bound with the squares
still in place on the inside, but to prove Proposition 2 we shall trade them away in
order to remove the intractable squareroot. Thus by the Cauchy–Schwarz inequality
and the fact that∑√

x<p≤x1/p= log2+o(1) we have

∑√
x<p≤x

√
1
p

∣∣∣∣∣ ∑
m≤x/p

f (m)

∣∣∣∣∣ ≤
√

∑√
x<p≤x

1
p

√√√√ ∑√
x<p≤x

∣∣∣∣∣ ∑
m≤x/p

f (m)

∣∣∣∣∣

2

≪

√√√√ ∑√
x<p≤x

∣∣∣∣∣ ∑
m≤x/p

f (m)

∣∣∣∣∣

2

.

Combining this with the above, we deduce:

Lemma 3 For all large x we have

E

∣∣∣∣∣∑n≤x
f (n)

∣∣∣∣∣≫ ∑√
x<p≤x

1√
p
E

∣∣∣∣∣ ∑
m≤x/p

f (m)

∣∣∣∣∣ ≥
1

logx ∑√
x<p≤x

logp√
p

·E
∣∣∣∣∣ ∑
m≤x/p

f (m)

∣∣∣∣∣ .

We have now almost finished the proof of Proposition 2. If we have two primes
z≤ p≤ p′ ≤ z+ z/ log1000x for some

√
x< z≤ x then

∣∣∣∣∣E
∣∣∣∣∣ ∑
m≤x/p

f (m)

∣∣∣∣∣−E

∣∣∣∣∣ ∑
m≤x/p′

f (m)

∣∣∣∣∣

∣∣∣∣∣≤ E

∣∣∣∣∣ ∑
x/p′<m≤x/p

f (m)

∣∣∣∣∣

≪
√

x(
1
p
− 1

p′
)+1≪

√
x

plog1000x
+1,

by the Cauchy–Schwarz inequality and orthogonality of thef (m). And we see

1
logx ∑√

x<p≤x

logp√
p

(√
x

plog1000x
+1

)
≪

√
x

log500x
+

1
logx ∑√

x<p≤x

logp√
p

≪
√

x
logx

,
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which will make a negligible contribution in Proposition 2,so in Lemma 3 we may
replace each termE

∣∣∑m≤x/p f (m)
∣∣ by an averaged version

log1000x
p

∫ p(1+1/ log1000x)

p
E

∣∣∣∣∣ ∑
m≤x/t

f (m)

∣∣∣∣∣dt.

Since we know that primes are well distributed in intervals of relative length 1+
1/ log1000x (with density 1 when weighted by logp) we can rewrite Lemma 3 as

E

∣∣∣∣∣∑n≤x
f (n)

∣∣∣∣∣ ≫
1

logx ∑√
x<p≤x

logp
log1000x

p

∫ p(1+1/ log1000x)

p
E

∣∣∣∣∣ ∑
m≤x/t

f (m)

∣∣∣∣∣
dt√

t

≫ 1
logx

∫ x

√
x
E

∣∣∣∣∣ ∑
m≤x/t

f (m)

∣∣∣∣∣
dt√

t
.

Proposition 2 now follows by making the substitutionz= x/t in the integral.

3 Lower bounds for small moments - Proof of Theorem 2

The proof is a very simple argument using the Cauchy–Schwarzinequality and
Hölder’s inequality.

Indeed, for any 0≤ q≤ 1 we have

E

∣∣∣ ∑
n≤N

f (n)
∣∣∣≤ E

[∣∣∣ ∑
n≤N

f (n)
∣∣∣
2q]1/2

·E
[∣∣∣ ∑

n≤N

f (n)
∣∣∣
2−2q]1/2

≤ E

[∣∣∣ ∑
n≤N

f (n)
∣∣∣
2q]1/2

·E
[∣∣∣ ∑

n≤N
f (n)

∣∣∣
2](1−q)/2

.

SinceE|∑n≤N f (n)|2 ≤N andE|∑n≤N f (n)| ≥
√

N/(log logN)3+o(1), by re-arranging
we obtain the lower bound

E

[∣∣∣ ∑
n≤N

f (n)
∣∣∣
2q]

≥ Nq(log logN)−6+o(1).

4 Asymptotics for even moments - Proof of Theorem 3

Note that
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E

∣∣∣ ∑
n≤X

f (n)
∣∣∣
2k
= ∑

n1,...,nk≤X
m1,...,mk≤X

E[ f (n1) . . . f (nk) f (m1) . . . f (mk)]

= ∑
n1,...,nk≤X
m1,...,mk≤X

n1...nk=m1...mk

1. (8)

Now
g(n1, . . . ,nk,m1, . . . ,mk) = 1n1...nk=m1...mk

is a multiplicative function of several variables2 and our problem reduces to under-
standing the mean value of

∑
n1,...,nk≤X
m1,...,mk≤X

g(n1, . . . ,nk,m1, . . . ,mk).

We notice that the associated multiple Dirichlet series

∑
n1,...,nk
m1,...,mk

g(n1, . . . ,nk,m1, . . . ,mk)

ns1
1 . . .nsk

k mw1
1 . . .mwk

k

= ∑
n

∑
n1n2...nk=n

1

ns1
1 . . .nsk

k
∑

m1m2...mk=n

1

mw1
1 . . .mwk

k

is absolutely convergent forℜsi ,ℜwi >
1
2 and moreover it factors as

H(s1, . . . ,sk,w1, . . . ,wk)
k

∏
i=1

k

∏
j=1

ζ (si +wj)

with H(s1, . . . ,sk,w1, . . . ,wk) absolutely convergent in the regionℜsi ,ℜwi >
1
4. In

addition a direct check shows that

H(1
2, . . . ,

1
2) = ∏

p

(
1− 1

p

)k2

·
(

1+
k2

p
+ ∑

α≥2

(a+k−1
k−1

)2

pα

)
> 0.

Therefore the main result of La Bretèche [4] is applicable with thek2 linear forms
ℓ(i, j)(s1, . . . ,sk,w1, . . . ,wk) := si +wj with 1≤ i, j ≤ k. We note that the rank of the
collection of linear formsℓ(i, j) (inside the space of allC-linear forms onC2k) is
2k−1. Therefore it follows from La Bretèche’s result that (8) is equal to

(1+o(1))CkX
k(logX)k2−(2k−1).

2 In other words

g(n1, . . . ,nk,m1, . . . ,mk)g(u1, . . . ,uk,v1, . . .,vk) = g(n1u1, . . . ,nkuk,m1v1, . . .,mkvk)

for any natural numbersni ,mi andui ,vi whose least common multiples are coprime.



A note on Helson’s conjecture on moments of random multiplicative functions 17

Using Théorème 2 in La Bretéche’s work allows us to recover the precise value
of Ck. Indeed, according to Théorème 2 in [4] we get that (8) is equal to

(1+o(1))H(1
2, . . . ,

1
2)Vol(Ak(X))

whereAk(X) is a subset of[1,∞)k2
corresponding to tuples(ai, j) ∈ [1,∞)k2

with
1≤ i, j ≤ k such that

for eachj ≤ k : ∏
1≤i≤k

ai, j ≤ X

and for eachi ≤ k : ∏
1≤ j≤k

ai, j ≤ X

Therefore it remains to understand the asymptotic behaviorof

Vol(Ak(X))

asX → ∞. Surprisingly, this is somewhat involved, and the rest of the proof is de-
voted to that.

Proposition 3 Let k≥ 2 be fixed. Then,

Vol(Ak(X))∼
(

2k−2
k−1

)
k−(k−1) ·Vol(Bk) ·Xk · (logX)(k−1)2

where Vol(Bk) corresponds to the(k−1)2 dimensional volume of the Birkhoff poly-

topeBk ⊂ Rk2
.

The proof of the Proposition depends on the following Lemma.

Lemma 4 Let n≥ 1 be fixed. Then as X→ ∞ we have

∫∫
0≤x1,...,xn≤logX
0≤y1,...,yn≤logX

exp
(

min(x1+ ...+ xn,y1+ ...+ yn)
)

dx1...dyn ∼
(

2n
n

)
Xn.

Proof. Making the substitutionsvi = logX−xi andwi = logX−yi in Lemma 4, we
see the integral there is the same as

Xn
∫∫

0≤v1,...,vn≤logX
0≤w1,...,wn≤logX

exp
(
−max(v1+ ...+ vn,w1+ ...+wn)

)
dv1...dwn.

Here we can extend all the ranges of integration up to positive infinity, at the cost of
a multiplicative error term 1+o(1). Then by symmetry

∫∫
0≤v1,...,vn
0≤w1,...,wn

exp
(
−max(v1+ ...+ vn,w1+ ...+wn)

)
dv1...dwn

= 2
∫

0≤v1,...,vn

exp
(
− (v1+ ...+ vn)

)∫

w1+...+wn≤v1+...+vn

dv1...dwn,



18 Adam J. Harper, Ashkan Nikeghbali, and Maksym Radziwiłł

and making the further substitutionv= v1+ ...+vn in the integral, we see the above
is

= 2
∫ ∞

0
e−v
(∫

v1+...+vn−1≤v
dv1...dvn−1

)(∫

w1+...+wn≤v
dw1...dwn

)
dv

= 2
∫ ∞

0
e−vv2n−1

(∫

v1+...+vn−1≤1
dv1...dvn−1

)(∫

w1+...+wn≤1
dw1...dwn

)
dv.

Here the two integrals in brackets are simply the volume of the standardn−1 sim-
plex and the standardn simplex, which are well known to be 1/(n−1)! and 1/n!
respectively. Threfore the above integral is equal to

2
(n−1)!n!

∫ ∞

0
e−vv2n−1dv= 2

(
2n−1

n

)
=

(
2n
n

)
.

We conclude that the integral in the statement of Lemma 4 is equal to (asX → ∞),

(1+o(1))

(
2n
n

)
Xn

as claimed.

We are now ready to prove the Proposition, and thus finish the proof of Theorem
3.

Proof (of Proposition 3).Notice first that, if we setui, j = logai, j , and if we write

c j = ∑
1≤i≤k

ui, j andr i = ∑
1≤ j≤k

ui, j

for all i, j ≤ k, then we find

Vol(Ak(X)) =

∫

(ui, j )1≤i, j≤k⊆[0,∞)k
2:cj ,r i≤logX ∀i, j≤k

exp

(

∑
i, j≤k

ui, j

)
du1,1...duk,k.

To prove the proposition we shall obtain upper and lower bounds for the integral on
the right that are asymptotically equal.

For convenience of writing, we start by introducing a littlemore notation. Let
Sk−1 := ∑i, j≤k−1ui, j . Let alsoUk,ε (X) be the set ofui, j with i, j ≤ k−1 for which

∑
i≤k−1

ui, j ≤ logX and ∑
j≤k−1

ui, j ≤ logX and ∑
i, j≤k−1

ui, j > (k−2− ε) logX.

Considering the vectoru of ui, j with i, j ≤ k−1 as fixed, letTC,k(u,X) be the set of
thoseuk,i with i ≤ k−1 for which

c j ≤ logX for all j ≤ k−1
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Finally, again consider theui, j with i, j ≤ k−1 as fixed letTR,k(u,X) be the set of
thoseu j ,k with j ≤ k−1 for which

r i ≤ logX for all i ≤ k−1.

We setε = 1/
√

logX, say. First seeking an upper bound, we note that if we have
Sk−1 ≤ (k−2−ε) logX thenSk ≤ (k−ε) logX, and therefore the part of the integral
whereSk−1 ≤ (k−2− ε) logX contributes at most

Xk−ε ·
∫

(ui, j )1≤i, j≤k⊆[0,∞)k
2:cj ,r i≤logX ∀i, j≤k

1du1,1...duk,k ≤ Xk−ε logk2
X.

This is asymptotically negligible (for any fixedk) by our choice ofε. Meanwhile,
the part of the integral whereSk−1 > (k−2− ε) logX is equal to

∫

Uk,ε (X)
exp(Sk−1)

∫

TC,k(u,X)
exp
(

uk,1+ ...+uk,k−1

)
× (9)

×
∫

TR,k(u,X)
exp
(

u1,k+ ...+uk−1,k

)∫

uk,k:ck,rk≤logX
exp(uk,k) du1,1...duk,k.

Here the innermost integral is over those

0≤ uk,k ≤ logX−max(uk,1+ ...+uk,k−1,u1,k+ ...+uk−1,k),

assuming the upper range of integration is at least zero. Therefore the innermost
integral is certainly bounded above (extending the lower limit to negative infinity,
and then performing the integration) by

X exp
(
−max(uk,1+ ...+uk,k−1,u1,k+ ...+uk−1,k)

)
.

Substituting this in, it follows that (9) is less than

X
∫

Uk,ε (X)

∫

TC,k(u,X)

∫

TR,k(u,X)
exp
(

min( ∑
1≤ j≤k−1

c j , ∑
1≤i≤k−1

r i)
)

∏
(i, j) 6=(k,k)

dui, j .

(10)
At this point we change variables, lettingr1, . . . , rk−1 andc1, . . . ,ck−1 run through
the interval[0, logX] so thatui,k = r i −∑1≤ j≤k−1ui, j anduk, j = c j −∑1≤i≤k−1ui, j .
Sinceui,k ≥ 0 anduk, j ≥ 0 this change of variable implies the additional condition
that for all i, j ≤ k−1,

∑
j≤k−1

ui, j ≤ r i and ∑
i≤k−1

ui, j ≤ c j (11)

The Jacobian of this linear change of variable is equal to 1 since the linear trans-
formation taking the(ui, j) with (i, j) 6= (k,k) into (rℓ,cℓ,ui, j) with i, j, ℓ ≤ k−1 is
upper triangular with only 1’s on the diagonal.



20 Adam J. Harper, Ashkan Nikeghbali, and Maksym Radziwiłł

Given r = (r1, . . . , rk−1) andc = (c1, . . . ,ck−1) we letŨk,ε (r ,c,X) be the set of
ui, j with i, j ≤ k−1 satisfying the conditions (11) and the standing conditionthat

∑
i, j≤k−1

ui, j ≥ (k−2− ε) logX, (12)

and we letT̃k(X) be the set of 0≤ r1, . . . , rk−1 ≤ logX and 0≤ c1, . . . ,ck−1 ≤ logX.
Then (10) can be re-written as

X
∫

T̃k(X)
exp
(

min( ∑
1≤ j≤k−1

c j , ∑
1≤i≤k−1

r i)
)

Vol
(
Ũk,ε (r ,c,X)

)
∏

i≤k−1

dci dri (13)

Sincer i ,ci ≤ logX for all i ≤ k−1, we have

Vol(Ũk,ε (r ,c,X))≤ Vol(Ũk,ε (logX, logX,X))

= (logX)(k−1)2 ·Vol(Ũk,ε (1,1,e))∼ (logX)(k−1)2 ·Vol(Ũk,0(1,1,e))

asX →∞, where logX := (logX, . . . , logX) and1 := (1, . . . ,1), and where we recall
for the final asymptotic thatε = 1/

√
logX. As already mentioned in the introduction

Vol(Ũk,0(1,1,e)) = k−(k−1)Vol(Bk) whereBk is the Birkhoff polytope. It follows
that (10) is

≤ (1+o(1))X(logX)(k−1)2 ·k−(k−1)Vol(Bk)

×
∫

T̃k(X)
exp
(

min( ∑
1≤ j≤k−1

c j , ∑
1≤i≤k−1

r i)
)

∏
i≤k−1

dcidri

and by Lemma 4 this is less than or equal to to

(1+o(1))X(logX)(k−1)2 ·k−(k−1)Vol(Bk) ·Xk−1
(

2k−2
k−1

)

thus finishing the proof of the upper bound.
For the lower bound we restrict attention, as we may (due to positivity), to the

part of the integral whereSk−1 > (k−2+ ε) logX and eachr i , ci is≥ (1− ε) logX.
The point of the former condition is that if it is satisfied then

u1,k+u2,k+ . . .+uk−1,k ≤ (k−1) logX−Sk−1 ≤ (1− ε) logX

and similarlyuk,1+uk,2+ . . .+uk,k−1 ≤ (1− ε) logX, and therefore

logX−max
(

uk,1+ . . .+uk,k−1,u1,k+ . . .+uk−1,k

)
> ε logX =

√
logX → ∞.

Therefore arguing as above the innermost integral overuk,k in (9) contributes

(1+o(1))Xexp
(
−max(uk,1+ . . .+uk,k−1,u1,k+ . . .+uk−1,k)

)
.



A note on Helson’s conjecture on moments of random multiplicative functions 21

Proceeding as before we thus arrive to (13) but with the additional condition that
(1− ε) logX < r i ,ci < logX (and with the condition that∑i, j≤k−1ui, j ≥ (k− 2−
ε) logX replaced by the condition that∑i, j≤k−1ui, j ≥ (k−2+ ε) logX). It follows
that on this set ofr i andci we have

Vol(Ũk,ε (r ,c,X))> Vol(Ũk,ε ((1− ε) logX,(1− ε) logX,X))

= (1+o(1))(logX)(k−1)2 ·k−(k−1)Vol(Bk)

Therefore we obtained the following lower bound

(1+o(1))X(logX)(k−1)2 ·k−(k−1)Vol(Bk)

×
∫∫

T̃k,ε (X)
exp
(

min( ∑
1≤ j≤k−1

c j , ∑
1≤i≤k−1

r i)
)

∏
i≤k−1

dci dri

where T̃k,ε(X) is the set ofr i ,ci satisfying (1− ε) logX < r i ,ci ≤ logX for all
i ≤ k−1. Note that the condition(1− ε) logX < r i ,ci can be dropped. Indeed the
contribution to the integral of any tuple of(r1, . . . , rk−1) or (c1, . . . ,ck−1) where at
least one of theci , r i is ≤ (1− ε) logX is ≤ Xk−1−ε and therefore negligible. Thus
we can extend the integration to all ofci , r i ≤ logX. Because of this Lemma 4 is
applicable and we have therefore obtained the lower bound

≥ (1+o(1))

(
2k−2
k−1

)
·k−(k−1)Vol(Bk)X

k · (logX)(k−1)2

as claimed. Since we have obtained asymptotically matchingupper and lower
bounds the proof of the proposition is finished.

5 Proof of Theorem 4

In the Rademacher case we have, letting� denote a generic square,

E

(
∑

n≤X

f (n)
)k

= ∑
n1,...,nk≤X

E[ f (n1) . . . f (nk)]

= ∑
n1,...,nk≤X
n1...nk=�

µ2(n1) . . .µ2(nk)

Let g(n1, . . . ,nk) be a multiplicative function of several variables, supported on
square-freeni, and such thatg = 1 whenn1 . . .nk = � andg = 0 otherwise. Then
we find that the Dirichlet series

∞

∑
n1=1

. . .
∞

∑
nk=1

g(n1, . . . ,nk)

ns1
1 . . .nsk

k
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is equal to

∏
p

(
1+ ∑

0≤α1,...,αk≤1
α1+...+αk≡0 mod 2

1
pα1s1+...+αksk

)
.

This factors as
H(s1, . . . ,sk) ∏

1≤i< j≤k

ζ (si + sj)

with

H(1
2, . . . ,

1
2) = ∏

p

(
1− 1

p

)k(k−1)/2(
1+ ∑

1≤ j≤k/2

( k
2 j

)

p j

)

The main result of La Bretèche is applicable with
(k

2

)
linear formsℓ(i, j)(s1,s2, . . . ,sk)=

si +sj defined for 1≤ i < j ≤ k. The rank of these linear forms is equal tok for k≥ 3
(for k= 2 the rank is equal to 1 since there is only one form in that case). Therefore
applying La Bretèche’s result it follows that the moment isasymptotically

(1+o(1))CkX
k/2(logX)(

k
2)−k.

In order to determine the constantCk one could use Théorème 2 of La Bretèche, to
conclude that the moment is asymptotically

(1+o(1))H(1
2, . . . ,

1
2)Vol(B(X))

whereB(X) is the set of(ui, j)i< j ∈Rk(k−1)/2 such that

for all 1≤ i ≤ k : ∏
j<i

u j ,i ∏
i< j

ui, j ≤ X

and then proceed in a manner similar to Theorem 3. However we leave this compu-
tation to the interested reader.
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