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ENLARGEMENTS OF FILTRATIONS AND PATH

DECOMPOSITIONS AT NON STOPPING TIMES

ASHKAN NIKEGHBALI

Abstract. Azéma associated with an honest time L the supermartin-
gale Z

L
t = P [L > t|Ft] and established some of its important proper-

ties. This supermartingale plays a central role in the general theory
of stochastic processes and in particular in the theory of progressive
enlargements of filtrations. In this paper, we shall give an additive
characterization for these supermartingales, which in turn will naturally
provide many examples of enlargements of filtrations. We combine this
characterization with some arguments from both initial and progressive
enlargements of filtrations to establish some path decomposition results,
closely related to or reminiscent of Williams’ path decomposition results.
In particular, some of the fragments of the paths in our decompositions
end or start with a new family of random times which are not stopping
times, nor honest times.

1. Introduction

Other than stopping times, the most commonly studied random times
occur as the ends of optional sets, or honest times. We shall denote the
class of such times by L. A very powerful technique for studying such
random times is that of progressive enlargement of filtrations. The theory
of progressive enlargements of filtrations was introduced independently by
Barlow ([4]) and Yor ([25]), and further developed by Jeulin and Yor ([9,
8, 7, 26]). It has many applications in various parts of Probability Theory:
path decompositions for some diffusion processes ([7], [16]), mathematical
models of default times and insider trading in mathematical finance ([6]),
probabilistic inequalities ([9],[17]), or new proofs of well known results, such
as Pitman’s theorem (see [26], chapter XII).

Let (Ω,F , (Ft) , P) be a filtered probability space, satisfying the usual
assumptions, and L the end of an (Ft) optional set Γ, i.e:

L = sup {t : (t, ω) ∈ Γ} .

The main idea is to consider the larger filtration

FL
t = Gt+, with Gt ≡ Ft ∨ σ {L ∧ t, } ,
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2 ASHKAN NIKEGHBALI

which is the smallest right continuous filtration which contains (Ft) and
which makes L a stopping time, and then to see how martingales of the
smaller filtration are changed when considered as stochastic processes of the
larger one. One process plays an essential role in this theory, namely the
supermartingale:

ZL
t = P (L > t|Ft) , (1.1)

associated with L by Azéma in [1], and chosen to be càdlàg. An (Ft) lo-
cal martingale (Mt), is a semimartingale in the larger filtration

(
FL

t

)
and

decomposes as:

Mt = M̃t +

∫ t∧L

0

d〈M,ZL〉s
ZL

s−

−

∫ t

L

d〈M,ZL〉s
1 − ZL

s−

, (1.2)

where
(
M̃t

)
t≥0

denotes a
((
FL

t

)
, P

)
local martingale. One limitation of this

formula is that it may not be easy to compute the supermartingale ZL for
a given L; in fact only a few examples are known (see [7, 26]). Hence, it
would be useful to obtain a characterization result which would help produce
examples of honest times and their associated supermartingales.

For simplicity, we make the following assumptions throughout this paper,
which we call the (CA) conditions:

(1) all (Ft)-martingales are continuous (e.g: the Brownian filtration).
(2) the random time L avoids every (Ft)-stopping time T , i.e. P [L = T ] =

0.

Remark 1.1. Under the conditions (CA), the optional and the predictable
sigma fields (with respect to (Ft)) are equal and the supermartingale (ZL

t )
is continuous.

One of the aims of this paper is to characterize the supermartingales (ZL
t ).

In [16], we gave a multiplicative characterization for the supermartingales
(ZL

t ), while here we shall adopt an additive approach (Doob-Meyer decom-
position). The paper is organized as follows:

In Section 2, we prove the characterization result for Azéma’s super-
martingales. To state it, we need to define a special class of submartingales,
whose definition goes back to Yor [24], and which was also studied in [13]
(under more general conditions):

Definition 1.2. Let (Xt) be a positive local submartingale, which decom-
poses as:

Xt = Nt + At.

We say that (Xt) is of class (Σ) if:

(1) (Nt) is a continuous local martingale, with N0 = 0;
(2) (At) is a continuous increasing process, with A0 = 0;
(3) the measure (dAt) is carried by the set {t : Xt = 0}.

If additionally, (Xt) is of class (D), we shall say that (Xt) is of class (ΣD).
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Now, consider the Doob-Meyer decomposition of ZL
t :

ZL
t ≡ 1 + µL

t − AL
t .

We prove that if (Zt) is a nonnegative supermartingale, with Z∞ = 0, then,
Z may be represented as P (L > t|Ft), for some honest time L which avoids
stopping times, if and only if (Xt ≡ 1 − Zt) is a submartingale of the class
(Σ), with the limit condition:

lim
t→∞

Xt = 1.

Section 3 contains our main results: we apply the results of Section 2 to
obtain decompositions analogous to Williams’ path decomposition result
for the supermartingale

(
ZL

t

)
. We also establish some path decomposition

results for certain classes of diffusion processes which play an important role
in applications. In particular, we shall see that the pseudo-stopping times,
introduced in [15], play an important role in path decompositions, exhibiting
thus a new family of random times enjoying nice properties with respect to
path decomposition.

2. A characterization of Azéma’s supermartingale and
applications

2.1. The characterization of Azéma’s supermartingale for honest

times. Azéma has studied in depth the supermartingale ZL
t = P (L > t|Ft)

associated with an honest time L and has proved many interesting proper-
ties. A classical example of such a random time, which has received much
attention in the literature ([7, 26], see [14] for a one parameter extension),
is:

L = sup {t ≤ 1 : Bt = 0} ,

where as usual (Bt) denotes the standard Brownian Motion.
Let us briefly recall some results of Azéma. We assume that the conditions

(CA) hold. We consider the Doob-Meyer decomposition of ZL:

ZL
t = 1 + µL

t − AL
t (2.1)

The process
(
AL

t

)
, which we shall sometimes denote (At) in the sequel, is

the dual predictable projection of the increasing process 1{L≤t}, and

µL
t = E

(
AL

∞ | Ft

)
− 1

Proposition 2.1 (Azéma [1]). Let L be the end of an optional set, or an
honest time (as was discovered by M.T. Barlow [4], every honest time is the
end of some optional set); then

L = sup {t : Zt = 1} ,

and the measure dAt is carried by the set {t : Zt = 1}. In particular, A does
not increase after L, i.e. AL = A∞.
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To prove our main theorem, we shall need the following very useful lemma,
which appears in the papers of Azéma, Meyer and Yor [2] and Azéma and
Yor [3].

Lemma 2.2. Let (Xt) be a submartingale of the class (ΣD) and let

L = sup {t : Xt = 0} .

Assume further that:
P (X∞ = 0) = 0.

Then:
Xt = E

(
X∞1{L≤t}|Ft

)
. (2.2)

Now, we can state our characterization theorem.

Theorem 2.3. Let (Xt) be a submartingale of the class (ΣD) satisfying:
lim
t→∞

Xt = 1. Let

L = sup {t : Xt = 0} .

Then (Xt) is related to Azéma’s supermartingale associated with L in the
following way:

Xt = 1 − ZL
t = P (L ≤ t|Ft) .

Consequently, if (Zt) is a nonnegative supermartingale, with Z0 = 1, then,
Z may be represented as P (L > t|Ft), for some honest time L which avoids
stopping times, if and only if (Xt ≡ 1 − Zt) is a submartingale of the class
(Σ), with the limit condition:

lim
t→∞

Xt = 1.

Proof. This is an immediate application of Lemma 2.2, with X∞ = 1 and
Proposition 2.1. �

2.2. Some fundamental examples. In the sequel, we give some explicit
(yet generic) computations of Azéma’s supermartingales for some honest
times associated with some very well known stochastic processes. These
computations are the first steps towards the path decompositions proved in
the next section.

2.2.1. A Brownian example. First, consider (Bt), the standard Brownian
Motion, and let T1 = inf {t ≥ 0 : Bt = 1) . Let σ = sup {t < T1 : Bt = 0}.
Then B+

t∧T1
satisfies the conditions of Theorem 2.3, and hence:

P (σ ≤ t|Ft) = B+
t∧T1

=

∫ t∧T1

0
1Bu>0 dBu +

1

2
ℓt∧T1

,

where (ℓt) is the local time of B at 0. This example plays an important
role in Williams’ celebrated path decomposition for the standard Brownian
Motion on [0, T1]. This result is usually obtained by exploiting the strong
Markov property of the Brownian Motion. Our method allows us to get
rid of the Markov property, and to get similar formulae in the more general
context of continuous local martingales, as is shown in the next paragraph.
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One can also consider T±1 = inf {t ≥ 0 : |Bt| = 1} and τ = sup {t < T±1 : |Bt| = 0}.
|Bt∧T±1

| satisfies the conditions of Theorem 2.3, and hence:

P (τ ≤ t|Ft) = |Bt∧T±1
| =

∫ t∧T±1

0
sgn (Bu) dBu + ℓt∧T±1

.

2.2.2. Generalization to continuous local martingales. More generally, con-
sider a continuous local martingale (Mt) such that M0 = 0 and < M >∞=
∞, a.s.; let T1 = inf {t ≥ 0 : Mt = 1} and σ = sup {t < T1 : Mt = 0}.
Then, again, an application of Theorem 2.3 gives:

P (σ ≤ t|Ft) = M+
t∧T1

=

∫ t∧T1

0
1Mu>0 dMu +

1

2
Lt∧T1

,

where (Lt) is the local time of M at 0.

2.2.3. Recurrent diffusions. Let (Yt) be a real continuous recurrent diffusion
process, with Y0 = 0. Then from the general theory of diffusion processes,
there exists a unique continuous and strictly increasing function s, with
s (0) = 0, limx→+∞ s (x) = +∞, limx→−∞ s (x) = −∞, such that s (Yt) is a
continuous local martingale. Our aim is to establish some results analogous
to those established for the Brownian Motion and recurrent continuous local
martingales. Let

T1 ≡ inf {t ≥ 0 : Yt = 1) .

Now, if we define

Xt ≡
s (Yt∧T1

)+

s (1)
,

we easily note that X is a local submartingale of the class (Σ) which satisfies
the hypotheses of Theorem 2.3. Consequently, if we note

σ = sup {t < T1 : Yt = 0} ,

we have:

P (σ ≤ t|Ft) =
s (Yt∧T1

)+

s (1)
.

2.2.4. Nonnegative continuous martingales which vanish at infinity. Now
let (Mt) be a positive local martingale, such that: M0 = x, x > 0 and

limt→∞ Mt = 0. Then, Tanaka’s formula shows that

(
1 −

Mt

y
∧ 1

)
, for

0 ≤ y ≤ x, is a local submartingale of the class (Σ) satisfying the assump-
tions of Theorem 2.3, and hence with

g = sup {t : Mt = y} ,

we have:

P (g > t|Ft) =
Mt

y
∧ 1 = 1 +

1

y

∫ t

0
1(Mu<y) dMu −

1

2y
L

y
t ,

where (Ly
t ) is the local time of M at y.
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2.2.5. Transient diffusions. As an illustration of the previous example, con-
sider (Rt), a transient diffusion with values in [0,∞), which has {0} as
entrance boundary. Let s be a scale function for R, which we can choose
such that:

s (0) = −∞, and s (∞) = 0.

Then, under the law Px, for any x > 0, the local martingale (Mt = −s (Rt))
satisfies the conditions of the previous example and for 0 ≤ x ≤ y, we have:

Px (gy > t|Ft) =
s (Rt)

s (y)
∧ 1 = 1 +

1

s (y)

∫ t

0
1(Ru>y) d (s (Ru)) +

1

2s (y)
L

s(y)
t ,

(2.3)

where
(
L

s(y)
t

)
is the local time of s (R) at s (y), and where

gy = sup {t : Rt = y} .

Formula (2.3) was the key point in the derivation of the distribution of gy

in [18], Theorem 6.1, p.326.

3. Path decompositions

In this section, inspired by Williams’ path decompositions for the stan-
dard Brownian Motion and for transient diffusions given their minima, we
establish path decompositions for Azéma’s supermartingales and some fam-
ilies of recurrent and transient diffusions. What follows is similar in spirit
to what we have done in [16], but in an additive setting, and of course the
results are different. It is also an opportunity to show that the techniques of
progressive and initial enlargements of filtrations can be combined to prove,
quite shortly, some non trivial path decomposition results.

Let us recall briefly the random times introduced by D. Williams to study
the paths of a standard Brownian Motion B:

T1 = inf {t : Bt = 1} , σ = sup {t < T1 : Bt = 0} ;

and

ρ = sup {u < σ : Bu = Su} , where Su = sup
s≤u

Bs.

D. Williams ([23]) discovered the remarkable fact that although ρ is not a
stopping time, it nevertheless satisfies the optional stopping theorem, i.e.
for every bounded martingale (Mt) of the filtration (Ft), we have:

EMρ = EM∞.

In [15], we have called such random times pseudo-stopping times and we
have characterized them. Before stating and proving our results, we shall
first recall in the next subsection some standard facts about pseudo-stopping
times and multiple enlargements of filtrations.

3.1. Basic facts about pseudo-stopping times and double enlarge-

ments of filtrations.
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3.1.1. Pseudo-stopping times. In [15], following D. Williams, we have pro-
posed the following generalization of stopping times:

Definition 3.1 ([15]). Let ρ : (Ω,F) → R+ be a random time; ρ is called
a pseudo-stopping time if for every bounded (Ft) martingale (Mt) we have:

E (Mρ) = E (M0) .

David Williams ([23]) gave the first example of such a random time and
the following systematic construction is established in [15]:

Proposition 3.2 ([15]). Let L be an honest time. Then, under the condi-
tions (CA),

ρ ≡ sup

{
t < L : ZL

t = inf
u≤L

ZL
u

}
,

is a pseudo-stopping time, with

Z
ρ
t ≡ P (ρ > t | Ft) = inf

u≤t
ZL

u ,

and Z
ρ
ρ follows the uniform distribution on (0, 1).

The following property, also proved in [15], is essential in studying path
decompositions:

Proposition 3.3 ([15]). Let ρ be a pseudo-stopping time and let Mt be an
(Ft) local martingale. Then (Mt∧ρ) is an (Fρ

t ) local martingale.

To conclude, let us illustrate Proposition 3.2 with an example. Let Y be a
recurrent diffusion; with the notations and assumptions of paragraph 2.2.3,

ρ ≡ sup

{
t < σ : Yt = max

u≤σ
Yu

}
,

is a pseudo-stopping time.

3.1.2. Double enlargements of filtrations. We recall some lesser known re-
sults of Jeulin ([7]) about successive progressive enlargements of filtrations.
The reader can also refer to [5] for a more recent exposition (summary) of
these facts.

Proposition 3.4 (Jeulin [7]). Let L be an honest time for the filtration

(Ft) and let ρ be an honest time for
(
FL

t

)
, and define

(
FL,ρ

t

)
the filtra-

tion obtained by enlarging progressively
(
FL

t

)
with ρ. Then, any (Ft) local

martingale (Mt) is a semimartingale in
(
FL,ρ

t

)
and decomposes as:

Mt = M̃t+

∫ t∧ρ

0

d〈M,Zρ〉u
Z

ρ
u−

+

∫ t∧L

ρ

d〈M,ZL − Zρ〉u

ZL
u− − Z

ρ
u−

−

∫ t

L

d〈M,ZL〉u

1 − ZL
u−

, (3.1)

where
(
M̃t

)
is an

(
FL,ρ

t

)
local martingale.
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Honest times enjoy the remarkable property that every (Ft) semimartin-
gale is an

(
FL

t

)
semimartingale, or in the jargon of the theory of enlarge-

ments of filtrations, the pair of filtrations
(
(Ft) ,

(
FL

t

))
satisfy the (H′) hy-

pothesis. The previous proposition shows that there might be non-honest
times which enjoy this property; indeed, the pseudo-stopping times defined
in Proposition 3.2 have this property:

Corollary 3.5. Let us consider the pseudo-stopping time defined in Propo-
sition 3.2. Then, every (Ft) semimartingale is an (Fρ

t ) semimartingale, or
in other words, the pair of filtrations ((Ft) , (Fρ

t )) satisfy the (H′) hypothesis.

Proof. It suffices to prove that every ((Ft)) local martingale (Mt) is an (Fρ
t )

semimartingale. From Proposition 3.4, every ((Ft)) local martingale is an(
FL,ρ

t

)
semimartingale, and since Fρ

t ⊂ FL,ρ
t and (Mt) is (Fρ

t ) adapted, it

follows from a well known result of Stricker (see [19]) that (Mt) is also an
(Fρ

t ) semimartingale. �

We shall also need another result of Jeulin which certainly deserves to be
better known: the problem of initial enlargement with AL

∞.

Proposition 3.6. Let T be a totally inaccessible stopping time, such that
P (T > 0) = 1 and let (At) be the (Ft) dual predictable projection of (1T≤t).
Then the following hold:

(1) A is continuous and T = inf {t : At = AT } = sup {t : At = AT }
(Azéma [1]);

(2) define Gt ≡
⋂

ε>0 (Ft+ε ∨ σ (AT )); then every continuous (Ft) mar-
tingale is a (Gt) martingale (Jeulin [7]).

Remark 3.7. In fact, every (Ft) martingale, which does not jump at T , is a
(Gt) martingale.

Corollary 3.8. (1) If L is an honest time which avoids stopping times,

then every (Ft) martingale is an

(
F

L,σ(AL
∞)

t

)
semimartingale and

the decomposition formula is the same as the decomposition formula
(1.2):

Mt = M̃t +

∫ t∧L

0

d〈M,ZL〉s
ZL

s−

+

∫ t

L

d〈M,ZL〉s
1 − ZL

s−

.

(2) Similarly, under the assumptions (CA), the pseudo-stopping times
of Proposition 3.2 are inaccessible stopping times for the filtration(
FL,ρ

t

)
and

(
log

(
1

Z
ρ
t∧ρ

))
is the

(
FL,ρ

t

)
dual predictable projection

of (1ρ≤t). Here again, every (Ft) martingale is an

(
F

L,σ(Z
ρ
ρ)

t

)
semi-

martingale whose decomposition is given by (3.1):

Mt = M̃t +

∫ t∧L

ρ

d〈M,ZL〉u
ZL

ρ − Z
ρ
u

−

∫ t

L

d〈M,ZL〉u
1 − ZL

u

, (3.2)
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where
(
M̃t

)
is an

(
FL,ρ

t

)
and

(
F

L,σ(Z
ρ
ρ)

t

)
local martingale, every

continuous
(
FL,ρ

t

)
martingale being an

(
F

L,σ(Z
ρ
ρ)

t

)
martingale.

Proof. (1). This first point follows from the fact that L is a totally inacces-
sible stopping time for

(
FL

t

)
(see [8]), and Proposition 3.6 can be applied

with AT ≡ AL
∞.

(2). First, we note from Proposition 3.2 that (Zρ
t ) is a continuous and

decreasing process (Zρ
t = 1 − A

ρ
t ). Moreover, from a result of Jeulin and

Yor ([8]), 1(ρ≤t) −
∫ t∧ρ

0
A

ρ
u

Z
ρ
u

= 1(ρ≤t) − log
(

1
Z

ρ
t∧ρ

)
is an (Fρ

t ) martingale. It

remains a martingale in
(
FL,ρ

t

)
, since it is of finite variation and ρ < L.

Consequently,
(
log

(
1

Z
ρ
t∧ρ

))
is also the

(
FL,ρ

t

)
dual predictable projection

of (1ρ≤t) and the announced results now easily follow from Propositions 3.4
and 3.6. �

3.2. An analogue of Williams’ path decomposition theorem for

P (L ≤ t|Ft). We are going to use techniques from both stochastic calculus
and the general theory of stochastic processes (the Dubins-Schwarz theo-
rem and the decomposition formula in the larger filtration) to generalize
some fragments of Williams’ path decomposition for the standard Brow-
nian to more general processes, namely the submartingale (P (L ≤ t|Ft)),
associated with an honest time L, under the conditions (CA).

Theorem 3.9. Let

Xt = Nt + At,

be a submartingale of the class (Σ) satisfying

lim
t→∞

Xt = 1. (3.3)

and let L = sup {t : Xt = 0} . Recall (Theorem 2.3) that

Xt = 1 − ZL
t = P (L ≤ t|Ft) .

Let us also define the random time:

ρ = sup {t < L : Xt = SL} ,

where

St = sup
u≤t

Xu.

Then:

(1) the process (Xt), stopped at ρ is, up to the time change (〈N〉t), a
reflected Brownian Motion started from 0, stopped when it first hits
1.
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(2) The random time ρ is a pseudo-stopping time and

P (ρ > t|Ft) = 1 − St.

Moreover, Xρ is uniformly distributed on (0, 1), and conditionally on
Xρ = m, (Xt) is up to the time change (〈N〉t), a reflected Brownian
Motion started from 0 and stopped when it first hits m.

(3) Conditionally on FL, the process (XL+t) is, up to the time change
(〈N〉L+t − 〈N〉L), a Bessel process of dimension 3, started from 0,
and stopped when it first hits 1.

Proof. (1). First, from Skorokhod’s reflection lemma (see [20] or [13]), we
have:

At = sup
u≤t

(−Nu) .

Moreover, there exists a Brownian Motion (βu) such that:

Nt = β〈N〉t .

Hence, up to the time change (〈N〉t), (Xt) has the same decomposition as
the absolute value of a Brownian Motion (this is immediate from Tanaka’s
formula). Thus it is a time changed reflected Brownian Motion.

(2). The first point follows immediately from Proposition 3.2: indeed,
ρ is a pseudo-stopping time and Xρ is equal to Z

ρ
ρ , which is uniformly

distributed. The second point follows from a combination of Proposition 3.4

and Corollary 3.8. Indeed, in the filtration
(
F

L,σ(Xρ)
t

)
, obtained by initially

enlarging the filtration
(
FL

t

)
with log

(
1

Z
ρ
t∧ρ

)
= log

(
1

1−Xρ

)
, we have:

Xt∧ρ = Nt∧ρ + At∧ρ.

(3). We first note that, since XL = 0, we have NL = −AL, and conse-
quently,

XL+t = NL+t − NL.

Now, using the fact that Xt = 1 − ZL
t = P (L ≤ t|Ft) the decomposition

formula (1.2) yields:

XL+t = NL+t − NL = Ñt +

∫ t

0

d〈N〉L+u

XL+u
,

where Ñ is an
(
FL

t

)
martingale. Now, the result follows from the fact that

the Bessel process of dimension 3 (Rt) can be characterized as the unique
solution to the stochastic differential equation:

dRt = dBt +
dt

Rt
,

where (Bt) is a one dimensional Brownian Motion. �



PATH DECOMPOSITIONS AND RANDOM TIMES 11

As an illustration of the above theorem, let us consider

Xt ≡ αB+
t + βB−

t ,

where B is the standard Brownian Motion and α > 0, β > 0. Let T1 =
inf {t : Xt = 1}. Then, it is easy to check that (Xt∧T1

) satisfies the assump-
tions of the Theorem 3.9 with the time change

〈N〉t = α2

∫ t

0
1(Bu>0) du + β2

∫ t

0
1(Bu≤0) du.

3.3. Path decompositions for some recurrent diffusions. D. Williams’s
path decomposition also admits a generalization to the wider class of recur-
rent diffusions (Yt), satisfying the stochastic differential equation:

Yt = Bt +

∫ t

0
b (Yu) du, (3.4)

where (Bt) is the standard Brownian Motion, and b is a Borel integrable
function which allows existence and uniqueness for equation (3.4). We note
L the infinitesimal generator of this diffusion:

L =
1

2

d2

dx2
+ b (x)

d

dx
.

Let T1 ≡ inf {t : Yt = 1), and denote by s the scale function of Y , which is
strictly increasing and which vanishes at zero, i.e:

s (z) =

∫ z

0
exp

(
−2b̂ (y)

)
dy,

where

b̂ (y) =

∫ y

0
b (u) du.

From the results of paragraph (2.2.3), if we define

σ = sup {t < T1 : Yt = 0} ,

we have, with (Lt) the local time at 0 of the local martingale s (Y ):

P (σ ≤ t|Ft) =
s (Yt∧T1

)+

s (1)

=
1

s (1)

∫ t∧T1

0
1(Yu>0)s

′ (Yu) dBu +
1

2s (1)
Lt∧T1

,

where the last equality is obtained by an application of Tanaka’s formula.
Moreover, from Proposition (3.2),

ρ ≡ sup

{
t < σ : Yt = max

u≤σ
Yu

}
, (3.5)

is a pseudo-stopping time.
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Proposition 3.10. Let (Yt) be a diffusion process satisfying equation (3.4).
Define:

Y t = max
u≤t

Yu.

Then:

• The process (Yσ+t, t ≤ T1 − σ) is an (Fσ+t) diffusion, starting from
0, considered up to the first time it hits 1, and is independent of Fσ.
Its infinitesimal generator is given by:

L =
1

2

d2

dx2
+

(
b (x) +

s′ (x)

s (x)

)
d

dx
.

• The random time ρ is a pseudo-stopping time and satisfies:

P (ρ > t|Ft) = 1 −
s
(
Y t∧T1

)+

s (1)
.

Moreover, Yρ = Y σ follows the same law as s−1 (s (1) U), where
U is a random variable following the uniform law on (0, 1), and is
independent of the whole process (Yσ+t, t ≤ T1 − σ).

• Conditionally on Yρ = m,
(1) the process (Yt; t ≤ ρ) is a diffusion process, considered up to

Tm, the first time when it hits m, with the same infinitesimal
generator as Y .

(2) the process (Yρ+t; t ≤ σ − ρ) is a (Fρ+t) diffusion process, started
from m, considered up to T0, the first time when it hits 0, and is
independent of (Yt; t ≤ ρ); its infinitesimal generator is given
by:

1

2

d2

dx2
+

(
b (x) + 1(x>0)

s′ (x)

s (x) − s (m)

)
d

dx
.

Proof. The proof is based on enlargements arguments. First, we note that
from Proposition 3.2 s (Yρ) is distributed as s (1) U , where U follows the
uniform law on (0, 1).

Now, let us study the path of Y on [σ, T1]. From formula (1.2), the Brow-
nian Motion B is a semimartingale in the filtration (Fσ

t ) and decomposes
as:

Bt = B̃t +

∫ t∧σ

0

d < B,Zσ >u

Zσ
u

+

∫ t∧T1

σ

d < B, 1 − Zσ >u

1 − Zσ
u

,

where B̃ is a (Fσ
t ) Brownian Motion (indeed it is a continuous local mar-

tingale with bracket t). Consequently, the diffusion Y , which is an(Ft)
semimartingale, remains a semimartingale in (Fσ

t ) and its decomposition is
given by:

Yt = B̃t +

∫ t

0
b (Yu) du −

∫ t∧σ

0
1Yu>0

s′ (Yu)

s (1) − s (Yu)
du +

∫ t∧T1

σ

s′ (Yu)

s (Yu)
du.
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Now, considering Yσ+t − Yσ = Yσ+t, for t ≤ T1 − σ, we obtain:

Yσ+t =
(
B̃σ+t − B̃σ

)
+

∫ σ+t

σ

b (Yu) du +

∫ (σ+t)∧T1

σ

s′ (Yu)

s (Yu)
du.

Now, using the fact that σ is a stopping time for the filtration (Fσ
t ), we

have that
(
B̃σ+t − B̃σ

)
, which we note

(
B̂t

)
, is a Brownian Motion, which

is independent of Fσ
σ ⊃ Fσ. Consequently, for t ≤ T1 − σ, we have:

Yσ+t = B̂t +

∫ t

0
b (Yσ+u) du +

∫ t∧(T1−σ)

0

s′ (Yσ+u)

s (Yσ+u)
du,

and the result announced for the path on [σ, T1] follows now easily.
Now, let us consider the path of Y on [0, ρ], and [ρ, σ]. For this, we enlarge

initially the filtration (Fσ
t ) with the variable Yρ: according to Proposition

3.4 and Corollary 3.8, for t ≤ σ, B decomposes in
(
F

σ,σ(Yρ)
t

)
, which we note

(
F

σ,Yρ

t

)
for notational convenience, as:

Bt = B̃t −

∫ t∧σ

ρ

1(Yu>0)
s′ (Yu)

s (Yρ) − s (Yu)
du,

where B̃ is an
(
F

σ,Yρ

t

)
Brownian Motion which is independent of Yρ. Con-

sequently, for t ≤ ρ, Y decomposes in
(
F

σ,Yρ

t

)
as:

Yt = B̃t +

∫ t

0
b (Yu) du, for t ≤ ρ, (3.6)

and for t ≤ (σ − ρ), we have:

Yρ+t = Yρ +
(
B̃ρ+t − B̃ρ

)
+

∫ t∧(σ−ρ)

ρ

b (Yu) du−

∫ t∧(σ−ρ)

ρ

s′ (Yu)

s (Yρ) − s (Yu)
du.

(3.7)
Now,

B̂t ≡ B̃ρ+t − B̃ρ

is again a standard Brownian Motion, independent of Yρ, and hence, condi-
tionally on Yρ = m, the process (Yρ+t; t ≤ σ − ρ) satisfies:

Yρ+t = m + B̂t +

∫ t∧(σ−ρ)

0
b (Yρ+u) du +

∫ t∧(σ−ρ)

0

s′ (Yρ+u)

s (Yρ+u) − s (m)
du.

The statement of the Proposition now follows from the last equality and
equation (3.6). �

Remark 3.11. When b ≡ 0, we have s (x) = x, and we recover D. Williams’path
decomposition for the standard Brownian Motion.
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3.4. Path decompositions for some transient diffusions. Now, we
consider a special subfamily of the transient diffusions of paragraph 2.2.5
which play an important role in the extension of Pitman’s theorem (see [26],
p.46). More precisely, let (Rt) be any transient diffusion which takes its
values in (0,∞), and satisfies:

Rt = x + Bt +

∫ t

0
c (Ru) du, , x > 0 t ≥ 0, (3.8)

where c : R+ → R allows uniqueness in law for this equation. Noting
T0 = inf {t : Rt = 0}, we assume that Px (T0 < ∞) = 0, so that a scale
function s of R may be chosen to satisfy:

s (0) = −∞; s (∞) = 0;
1

2
s′′ + cs′ = 0.

We keep the notation of paragraph 2.2.5: for 0 ≤ x ≤ y, and

gy = sup {t : Rt = y} ,

we have:

Px (gy > t|Ft) =
s (Rt)

s (y)
∧ 1

= 1 +
1

s (y)

∫ t

0
1Ru>y s′ (Ru) dBu +

1

2s (y)
L

s(y)
t ,

where L
s(y)
t is the local time of s (R) at s (y).

From Proposition 3.2, the random time:

ρ = sup

{
t < gy : Rt = sup

u≤gy

Ru

}
,

is a pseudo-stopping time and P (ρ > t|Ft) =
s
(
supu≤t Ru

)

s (y)
∧ 1. Now, like-

wise Proposition 3.10, the following path decomposition holds for the diffu-
sion R:

Proposition 3.12. Let (Rt) be a diffusion process satisfying equation (3.8).
Then:

• The process
(
Rgy+t, t ≥ 0

)
is an

(
Fgy+t

)
diffusion, starting from y,

and is independent of Fgy . Its infinitesimal generator is given by:

L =
1

2

d2

dx2
+

(
c (x) +

s′ (x)

s (x) − s (y)

)
d

dx
.

• The random time ρ is a pseudo-stopping time and Rρ = Rgy follows

the same law as s−1 (s (y)U), where U follows the uniform law on
(0, 1), and is independent of the whole process

(
Rgy+t, t ≥ 0

)
.

• Conditionally on Rρ = m,
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(1) the process (Rt; t ≤ ρ) is a diffusion process, considered up to
Tm, the first time when it hits m, with the same infinitesimal
generator as R.

(2) the process (Rρ+t; t ≤ gy − ρ) is a (Fρ+t) diffusion process, started
from m, considered up to Ty, the first time when it hits y, and is
independent of (Rt; t ≤ ρ); its infinitesimal generator is given
by:

1

2

d2

dx2
+

(
c (x) + 1(x>y)

s′ (x)

s (x) − s (m)

)
d

dx
.

Proof. The proof follows exactly the same lines as the proof of Proposition
3.10 and so we will not give it. �
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