
ar
X

iv
:m

at
h/

04
06

45
9v

2 
 [

m
at

h.
PR

] 
 1

5 
D

ec
 2

00
4

A DEFINITION AND SOME CHARACTERISTIC

PROPERTIES OF PSEUDO-STOPPING TIMES

ASHKAN NIKEGHBALI AND MARC YOR

Abstract. Recently, D. Williams [19] gave an explicit example of a
random time ρ associated with Brownian motion such that ρ is not a
stopping time but EMρ = EM0 for every bounded martingale M . The
aim of this paper is to give some characterizations for such random
times, which we call pseudo-stopping times, and to construct further
examples, using techniques of progressive enlargements of filtrations.

1. Introduction

Let
(
Ω,F , (Ft)t≥0 , P

)
be a filtered probability space, and ρ : (Ω,F) →

(R+,B (R+)) be a random time. We recall that the space H1 is the Banach
space of (càdlàg) (Ft)-martingales (Mt) such that

‖M‖H1 = E

[
sup
t≥0

|Mt|
]

< ∞.

Definition 1. We say that ρ is a (Ft) pseudo-stopping time if for every (Ft)-
martingale (Mt) in H1, we have

EMρ = EM0. (1.1)

Remark 1. It is equivalent to assume that (1.1) holds for bounded martin-
gales, since these are dense in H1.

We indicate immediately that a class of pseudo-stopping times with re-
spect to a filtration (Ft) which are not in general (Ft) stopping times may
be obtained by considering stopping times with respect to a larger filtration
(Gt) such that (Ft) is immersed in (Gt), i.e: every (Ft) martingale is a (Gt)
martingale. This situation is described in ([3]) and refered to there as the
(H) hypothesis. We shall discuss this situation in more details in Section
3. For now, we give an example. Let Bt =

(
B1

t , . . . , Bd
t

)
be a d-dimensional

Brownian motion, and Rt = |Bt|, t ≥ 0, its radial part; it is well known that

(Rt ≡ σ {Rs, s ≤ t} , t ≥ 0) ,
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the natural filtration of R, is immersed in (Bt ≡ σ {Bs, s ≤ t} , t ≥ 0), the
natural filtration of B. Thus an example of (Rt) pseudo-stopping time is:

T (1)
a = inf

{
t, B1

t > a
}

.

Recently, D. Williams [19] showed that with respect to the filtration
(Ft) generated by a one dimensional Brownian motion (Bt)t≥0, there ex-

ist pseudo-stopping times ρ which are not (Ft) stopping times. D. Williams’
example is the following: let

T1 = inf {t : Bt = 1} , σ = sup {t < T1 : Bt = 0} ;

then

ρ = sup {s < σ : Bs = Ss} , where Ss = sup
u≤s

Bu

is a (Ft) pseudo-stopping time. This paper has two main aims:

• to understand better the nature of pseudo-stopping times;
• to construct further examples of pseudo-stopping times;

In Section 2, with the help of the theory of progressive enlargements of
filtrations, we give some equivalent properties for ρ to be a pseudo-stopping
time. We also comment there on the difference between (1.1) and the prop-
erty

E [M∞ | Fρ] = Mρ (1.2)

for every uniformly integrable (Ft)-martingale (Mt), which was shown by
Knight and Maisonneuve [12] to be equivalent to ρ being a (Ft)-stopping
time.

In Section 3, we give some other examples of pseudo-stopping times. We
associate with the end L of a given (Ft) predictable set Γ, i.e

L = sup {t : (t, ω) ∈ Γ} ,

a pseudo-stopping time ρ < L in a manner which generalizes D. Williams’
example. We also link the pseudo-stopping times with randomized stopping
times.

In Section 4, we give a discrete time analogue of the Williams random time
ρ. This approach is based on the analogue of Williams’ path decomposition
obtained by Le Gall for the standard random walk [13].

2. Some characteristic properties of pseudo-stopping times

2.1. Basic facts about progressive enlargements. We recall here some
basic results about the progressive enlargement of a filtration (Ft) by a
random time ρ. All these results may be found in [11], [9], [20], [4] or [16].

We enlarge the initial filtration (Ft) with the process (ρ ∧ t)t≥0, so that

the new enlarged filtration (Fρ
t )t≥0 is the smallest filtration containing (Ft)
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and making ρ a stopping time. A few processes play a crucial role in our
discussion:

• the (Ft)-supermartingale

Z
ρ
t = P [ρ > t | Ft] (2.1)

chosen to be càdlàg, associated to ρ by Azéma (see [9] for detailed
references);

• the (Ft)-dual optional and predictable projections of the process
1{ρ≤t}, denoted respectively by A

ρ
t and a

ρ
t ;

• the càdlàg martingale

µ
ρ
t = E [Aρ

∞ | Ft] = A
ρ
t + Z

ρ
t

which is in BMO(Ft) (see [4] or [20]). We recall that the space of
BMO martingales (see [6] for more details and references) is the Ba-
nach space of (càdlàg) square integrable (Ft)-martingales (Yt) which
satisfy

‖Y ‖2
BMO = essupT E

[
(Y∞ − YT−)2 | FT

]
< ∞

where T ranges over all (Ft)-stopping times.

We also consider the Doob-Meyer decomposition of (2.1):

Z
ρ
t = m

ρ
t − a

ρ
t

If ρ avoids any (Ft)-stopping time, that is to say P [ρ = T > 0] = 0 for any
stopping time T , then A

ρ
t = a

ρ
t is continuous.

Finally, we recall that every (Ft)-local martingale (Mt), stopped at ρ, is
a (Fρ

t ) semimartingale, with canonical decomposition:

Mt∧ρ = M̃t +

∫ t∧ρ

0

d < M,µρ >s

Z
ρ
s−

(2.2)

where
(
M̃t

)
is an (Fρ

t )-local martingale.

Remark 2. We also recall that in a filtration (Ft) where all martingales
are continuous, A

ρ
t = a

ρ
t since optional processes are predictable (see [17],

chapter IV).

2.2. A characterization of pseudo-stopping times. We now discuss
some characteristic properties of pseudo-stopping times. We assume through-
out that P [ρ = ∞] = 0.

Theorem 1. The following four properties are equivalent:

(1) ρ is a (Ft) pseudo-stopping time, i.e (1.1) is satisfied;
(2) µ

ρ
t ≡ 1, a.s

(3) A
ρ
∞ ≡ 1, a.s
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(4) every (Ft) local martingale (Mt) satisfies

(Mt∧ρ)t≥0 is a local (Fρ
t ) martingale.

If, furthermore, all (Ft) martingales are continuous, then each of
the preceding properties is equivalent to

(5)

(Zρ
t )t≥0 is a decreasing (Ft) predictable process

Proof. (1) =⇒ (2) For every square integrable (Ft) martingale (Mt), we
have

E [Mρ] = E

[∫ ∞

0
MsdAρ

s

]
= E [M∞Aρ

∞] = E [M∞µρ
∞] .

Since EMρ = EM0 = EM∞, we have

E [M∞] = E [M∞Aρ
∞] = E [M∞µρ

∞] .

Consequently, µ
ρ
∞ ≡ 1, a.s, hence µ

ρ
t ≡ 1, a.s which is equivalent to: A

ρ
∞ ≡

1, a.s. Hence, 2. and 3. are equivalent.
(2) =⇒ (4) . This is a consequence of the decomposition formula (2.2).
(4) =⇒ (1) . It suffices to consider any H1-martingale (Mt), which, as-

suming 4., satisfies: (Mt∧ρ)t≥0 is a martingale in the enlarged filtration, for
which ρ is a stopping time. Then as a consequence of the optional stopping
theorem applied in (Fρ

t ) at time ρ, we get

E [Mρ] = E [M0] ,

hence ρ is a pseudo-stopping time.
Finally, in the case where all (Ft) martingales are continuous, we show:
a) (2) ⇒ (5) If ρ is a pseudo-stopping time, then Z

ρ
t decomposes as

Z
ρ
t = 1 − A

ρ
t .

As all (Ft) martingales are continuous, optional processes are in fact pre-
dictable, and so (Zρ

t ) is a predictable decreasing process.
b) (5) ⇒ (2) Conversely, if (Zρ

t ) is a predictable decreasing process, then
from the unicity in the Doob-Meyer decomposition, the martingale part µ

ρ
t

is constant, i.e. µ
ρ
t ≡ 1, a.s. Thus, (2) is satisfied. �

In the next proposition, we deal with uniformly integrable martingales
(Mt) instead of martingales in H1 (or H2, . . .).

Proposition 1. The following properties are equivalent:

(1) ρ is a (Ft) pseudo-stopping time;
(2) for every uniformly integrable martingale

E [|Mρ|] ≤ E [|M∞|] .
Remark 3. In fact, we shall further show in the next proof, that for ρ a
pseudo-stopping time and for (Mt) a uniformly integrable martingale:

E [|Mρ|] < ∞, and E [Mρ] = E [M∞] .
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Proof. (1) ⇒ (2) If (Mt) is uniformly integrable, it may be decomposed as:

Mt = M
(+)
t − M

(−)
t (2.3)

where

M
(+)
t = E

[
M+

∞ | Ft

]
and M

(−)
t = E

[
M−

∞ | Ft

]
.

(Note that M±
∞ indicates the positive and negative parts of M∞, whereas(

M
(±)
t

)
are the martingales with terminal values M±

∞). Thus to prove (2)

it suffices to prove

E [Mρ] = E [M∞] ,

under the further assumption that M ≥ 0. In this latter case, we have
Mt = E [M∞ | Ft], with M∞ ≥ 0. Now let

M
(n)
t = E [(M∞ ∧ n) | Ft] .

(
M

(n)
t

)
is a bounded martingale, hence we have

E

[
M (n)

∞

]
= E

[
M (n)

ρ

]
.

We also have

P

[
sup
t≥0

(
Mt − M

(n)
t

)
> ε

]
≤ 1

ε
E

[
M∞ − M (n)

∞

]
,

so that
(
M

(n)
ρ

)
converges to (Mρ) in probability; but the sequence

(
M

(n)
ρ

)

is increasing, so it in fact converges almost surely. Hence the monotone
convergence theorem yields

E [M∞] = E [Mρ] .

Finally, going back to (2.3) in the general case, we obtain:

E [|Mρ|] ≤ E

[
M (+)

ρ + M (−)
ρ

]

= E
[
M+

∞ + M−
∞

]

= E [|M∞|] .
Hence (2) holds. Further, we may now write:

E [Mρ] = E

[
M (+)

ρ − M (−)
ρ

]

= E
[
M+

∞ − M−
∞

]

= E [M∞] .

(2) ⇒ (1) We need only apply property (2) to any martingale (Mt) taking
values in [0, 1]. Thus:

E [Mρ] ≤ E [M∞]

E [1 − Mρ] ≤ E [1 − M∞] .
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But, since the sums on both sides add up to 1, we must have:

E [Mρ] = E [M∞]

Hence, ρ is a (Ft) pseudo-stopping time. �

As an application of the theorem, we can check that in D. Williams’
example, his time ρ associated with a Brownian motion is a pseudo-stopping
time. Indeed, the dual predictable (=optional) projection A

ρ
t of 1{ρ≤t} is

maxs≤t∧T1
Bs ([19], [18]) and A

ρ
∞ ≡ 1.

2.3. Around the result of Knight and Maisonneuve. We now com-
ment on the statement of the fourth property in Theorem 1.

For the properties of the different sigma fields Fρ, Fρ+, Fρ−, associated
with a general random time ρ, the reader can consult [18] or [20]. Here, we
just recall the definitions:

Definition 2. Three classical σ-fields associated with a filtration (Ft) and
any random time ρ are:





Fρ+ = σ {zρ, (zt) any (Ft) progressively measurable process} ;
Fρ = σ {zρ, (zt) any (Ft) optional process} ;
Fρ− = σ {zρ, (zt) any (Ft) predictable process} ;

The result of Knight and Maisonneuve which was recalled in the intro-
duction may be stated as follows:

Theorem 2. If for all uniformly integrable (Ft)-martingales (Mt), one has

E [M∞ | Fρ] = Mρ, on {ρ < ∞} ,

then ρ is a (Ft)-stopping time (the converse is Doob’s optional stopping
theorem).

Refining slightly the argument in [12], we obtain the following:

Theorem 3. If for all bounded (Ft)-martingales (Mt), one has

E [M∞ | σ {Mρ, ρ}] = Mρ, on {ρ < ∞} ,

then ρ is a (Ft)-stopping time.

Proof. For t ≥ 0 we have

E
[
M∞1(ρ≤t)

]
= E

[
Mρ1(ρ≤t)

]
= E

[∫ t

0
MsdAρ

s

]
= E [M∞A

ρ
t ] .

Comparing the two extreme terms, we get

1(ρ≤t) = A
ρ
t ,

i.e ρ is a (Ft)-stopping time. �
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An interesting open question in view of what has been proved for pseudo-
stopping times is whether E [M∞ | Mρ] = Mρ, on {ρ < ∞} is equivalent to
ρ being a stopping time.

To illustrate the result of Knight and Maisonneuve, we show explicitly
how, in the framework of D. Williams’ example, Mρ and E [M∞ | Fρ] differ,
for

Mt = exp

(
λBt∧T1

− λ2

2
(t ∧ T1)

)
, λ > 0.

We write

M∞ = exp

(
λ − λ2

2
T1

)

= exp (λ) exp

(
−λ2

2
(ρ + (σ − ρ) + (T1 − σ))

)

and we compute:

E [M∞ | Fρ] = (2.4)

exp

(
λ − λ2

2
ρ

)
E

[
exp

(
−λ2

2
(σ − ρ)

)
| Fρ

]
E

[
exp

(
−λ2

2
(T1 − σ)

)]
,

(2.5)

since (T1 − σ) is independent from Fσ , (and consequently from Fρ, since
Fρ ⊂ Fσ).

We now recall D. Williams’ path decomposition results for (Bu)u≤T1
on

the intervals (0, ρ), (ρ, σ), (σ, T1):

• (Bσ+u)u≤T1−σ is a BES(3) process, independent of Fσ ; hence we
have

E

[
exp

(
−λ2

2
(T1 − σ)

)]
=

λ

sinh (λ)
.

• Sρ, where Ss = supu≤s Bu, is uniformly distributed on (0, 1);
• Conditionally on Sρ = h, the processes (Bu)u≤ρ and (Bσ−u)u≤σ−ρ

are two independent Brownian motions considered up to their first
hitting time of h. Consequently, we have:

E

[
exp

(
−λ2

2
(σ − ρ)

)
| Fρ

]
= exp (−λSρ) .

Plugging these informations in (2.4), we obtain:

E [M∞ | Fρ] = exp

(
λ (1 − Bρ) −

λ2

2
ρ

)(
λ

sinh (λ)

)
,

whilst

Mρ = exp

(
λBρ −

λ2

2
ρ

)
(2.6)

and these two quantities are obviously different.
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2.4. Further properties of pseudo-stopping times. Besides the as-
sumption that ρ is a (Ft) pseudo-stopping time, we also make the hypothesis
that ρ avoids all (Ft)-stopping times. We saw that in this case

a
ρ
t = A

ρ
t = 1 − Z

ρ
t

is continuous.
For simplicity, we shall write (Zu) instead of (Zρ

u).

Proposition 2. Under the previous hypotheses, for all uniformly integrable
(Ft) martingales (Mt), and all bounded Borel measurable functions f , one
has:

E [Mρf (Zρ)] = E [M0]

∫ 1

0
f (x) dx = E [Mρ]

∫ 1

0
f (x) dx.

Remark 4. On the other hand it is not true that

E [M∞f (Zρ)] = E [Mρf (Zρ)] , (2.7)

for every bounded Borel function f . Indeed, from Proposition 2, the right
hand side of (2.7) is equal to:

E

[
M∞

∫ 1

0
f (x) dx

]
.

Thus, our hypothesis (2.7) would imply the absurd equality between f (Zρ)

and
∫ 1
0 f (x) dx.

Proof. (of Proposition 2) Under our assumptions, we have

E [Mρf (Zρ)] = E

[∫ ∞

0
Muf (Zu) dAρ

u

]

= E

[∫ ∞

0
Muf (1 − Aρ

u) dAρ
u

]

= E

[
M∞

∫ ∞

0
f (1 − Aρ

u) dAρ
u

]

= E

[
M∞

∫ 1

0
f (1 − x) dx

]

= E

[
M∞

∫ 1

0
f (x) dx

]
.

�

Taking Mt ≡ 1, we find that (Zρ) is uniformly distributed on (0, 1), which
is already known ([11], [20]) since (recalling that Zu is decreasing)

Zρ = inf
u≤ρ

Zu.

In fact we have a stronger result: under all changes of probability on Fρ, of
the form

dQ = MρdP
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where (Mt) is a positive uniformly integrable (Ft)-martingale such that
E [M0] = 1, the law of Zρ (is unchanged and) is uniform.

Corollary 1. Under the assumptions of Proposition 2, we have

E [Mρ | Zρ] = E [Mρ] = E [M0]

On the other hand, the quantity E [M∞ | Zρ] is not easy to evaluate, as is
seen with D. Williams’ example, and is different from E [Mρ | Zρ]. Indeed,
in this framework and with the already used notations:

E [M∞ | Zρ] = exp (λ) E

[
exp

(
−λ2

2
T1

)
| Bρ

]
.

Decomposing again T1 as T1 = ρ+(σ − ρ)+(T1 − σ), and using D. Williams”
path decomposition, we obtain:

E [M∞ | Zρ] = exp (λ)

(
λ

sinh (λ)

)
exp (−λBρ) E

[
exp

(
−λ2

2
ρ

)
| Bρ

]

=

(
2λ

1 − exp (−2λ)

)
exp (−2λBρ) .

Corollary 2. The family {Mρ; M uniformly integrable (Ft) -martingale}
is not dense in L1 (Fρ).

Proof. From Proposition 2, the variable
(
f (Zρ) −

∫ 1
0 f (x) dx

)
is orthogonal

to Mρ. �

This negative result led us to look for some representation of the generic
element of L1 (Fρ) in terms of (Ft)-martingales taken at time ρ on one hand,
and the variable Zρ, on the other hand.

Proposition 3. (i) . Let K : [0, 1]×R+×Ω → R+, be a B[0,1]⊗P (F•) mea-
surable process, where P (F•) denotes the (Ft) predictable σ-field on R+×Ω.
Then:

E [K (1 − Zρ, ρ)] = E

[∫ 1

0
dyK (y, αy)

]
(2.8)

where
αy = inf {u : Aρ

u > y} .

(ii) . Let (Hu, u ≥ 0) be a bounded predictable process.
Define a measurable family (My

t )t≥0 of martingales through their terminal
values:

My
∞ = Hαy .

Then
Hρ = M

1−Zρ
ρ , a.s.

Proof. (i) . This follows from the monotone class theorem, once we have
shown:

E [f (1 − Zρ)Hρ] = E

[∫ 1

0
dyf (y)Hαy

]
(2.9)
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for every bounded predictable process H and every Borel bounded function
f . But, this identity follows from the fact that: 1 − Zρ = Aρ; and so:

E [f (Aρ)Hρ] = E

[∫ ∞

0
dAuf (Au)Hu

]

= E

[∫ 1

0
dyf (y)Hαy

]
.

We shall prove the second statement by showing that for every bounded (ku)
predictable process

E [kρHρ] = E
[
kρM

1−Zρ
ρ

]
.

From (2.8), we deduce:

E

[
kρM

1−Zρ
ρ

]
= E

[∫ 1

0
dyMy

αy
kαy

]

(a)
=

∫ 1

0
dyE

[
My

∞kαy

]

(b)
=

∫ 1

0
dyE

[
Hαykαy

]

(c)
= E [kρHρ] .

((a) follows from the optional stopping theorem for (My
t ); (b) follows from

the definition of M
y
∞; (c) is another consequence of (2.8)). Comparing the

extreme terms in the above, we get

Hρ = M
1−Zρ
ρ .

�

3. Some systematic constructions and some examples of
pseudo-stopping times

3.1. First constructions. Here we discuss some combinations of several
pseudo-stopping times which yield a pseudo-stopping time. Here is a first
easy result:

Proposition 4. Let ρ be a (Ft)-pseudo-stopping time and let τ be a (Fρ
t )-

stopping time. Then ρ ∧ τ is a (Ft) pseudo-stopping time.

Proof. Let M be any uniformly integrable (Ft)-martingale. We know that
Mt∧ρ is a uniformly integrable martingale in the enlarged filtration (Fρ

t ) and
ρ is a stopping time in this filtration. If τ is also a (Fρ

t )-stopping time, then
so is ρ ∧ τ . Hence EMρ∧τ = EM0. �

Example 1. Let ρ be as in D. Williams’ example. Let 0 < a < 1, and Ta =
inf {t > 0 : Bt = a}. Then

ρa = ρ ∧ Ta, 0 < a < 1,

is an increasing family of pseudo-stopping times.
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Remark 5. From the previous proposition, it is easy to see that for any
uniformly integrable (Ft)-martingale, we have

E [MT∧ρ] = E [M0]

for any (Ft) stopping time T .

Remark 6. As a further comment about Proposition 4, we remark that
pseudo-stopping times do not inherit all the ”nice” properties of stopping
times. As an example, a pseudo-stopping time of a given filtration does not
remain in general a pseudo-stopping time in a larger filtration, whereas a
stopping time does. Indeed, let us keep the same notation as in section 2.3
and look at the pseudo-stopping time ρ in the larger filtration (Fσ

t ). Using
the computations we have already done in section 2.3 and the projections
formula (see [4] p.186), we get:

P [ρ > t | Fσ
t ] =

1 − maxs≤t∧T1
Bs

1 − B+
t∧T1

1{σ>t},

which is not decreasing. In fact, any end of predictable set that avoids stop-
ping times is not a pseudo-stopping time, as we shall see in the next subsec-
tion.

3.2. A generalization of D. Williams’ example. To keep the discus-
sion as simple as possible, we assume that we are working with an original
filtration (Ft) such that:

• all (Ft)-martingales are continuous (e.g: (Ft) is the Brownian filtra-
tion).

• Moreover, we consider L, the end of a (Ft) predictable set, such that
for every (Ft) stopping time T , P [L = T ] = 0.

Under these two conditions, the supermartingale Zt = P [L > t | Ft] as-
sociated with L is a.s. continuous, and satisfies ZL = 1. Then we let,

ρ = sup

{
t < L : Zt = inf

u≤L
Zu

}
.

The following holds:

Proposition 5. (i) IL = infu≤L Zu is uniformly distributed on [0, 1]; (see
[20])

(ii) The supermartingale Z
ρ
t = P [ρ > t | Ft] associated with ρ is given by

Z
ρ
t = inf

u≤t
Zu.

As a consequence, ρ is a (Ft) pseudo-stopping time.

Proof. (i) Let
Tb = inf {t, Zt ≤ b} , 0 < b < 1,

then
P [IL ≤ b] = P [Tb < L] = E [ZTb

] = b.
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(ii) Note that for every (Ft) stopping time T , we have

{T < ρ} =
{
T

′

< L
}

where

T
′

= inf

{
t > T, Zt ≤ inf

s≤T
Zs

}
.

Consequently, we have

E
[
Z

ρ
T

]
= P [T < ρ] = P

[
T

′

< L
]

= E
[
ZT

′

]
= E

[
inf
u≤T

Zu

]
.

We deduce the desired result from the equality between the two extreme
terms for every (Ft)-stopping time T , and the optional section theorem. �

In the literature about enlargements of filtrations ([9], [11], [20], etc.), a
number of explicit computations of supermartingales associated to various
L′s have been given. We shall use some of these computations to produce
some examples of pseudo-stopping times, with the help of the proposition.

(1) First let us check again that we recover the example of D. Williams
from the Proposition 5. With the notations of the introduction
(L = σ), it is not hard to see that (see [18])

Zt = 1 − B+
t∧T1

.

Hence

ρ = sup {s < σ : Bs = Ss} .

(2) Consider (Rt)t≥0 a three dimensional Bessel process, starting from

zero, its filtration (Ft), and

L = L1 = sup {t : Rt = 1} .

Then

ρ = sup

{
t < L : Rt = sup

u≤L

Ru

}
, (3.1)

is a (Ft) pseudo-stopping time. This follows from the fact that

ZL
t = 1 ∧ 1

Rt
,

hence (3.1) is equivalent to:

ρ = sup

{
t < L : ZL

t = inf
u≤L

ZL
u

}
,

and from the above proposition:

Z
ρ
t = 1 ∧




1

sup
u≤t

Ru


 .
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We can generalize further this example by noticing that for n > 2,

we have for (Rt)t≥0 a BES(n), ZL
t = 1 ∧

(
1

Rt

)n−2
.

(3) Consider (Bu)u≥0 a one dimensional Brownian motion, (Ft) its fil-
tration, and

gt = sup {s < t : Bs = 0} ,

then

ρt = sup

{
s < gt :

|Bs|√
t − s

= sup
u<gt

|Bu|√
t − u

}
(3.2)

is a Ft pseudo-stopping time. Again, this follows from the fact that
ρt is in fact defined from gt (= L) as in the framework preceding the
proposition, since:

Zgt
u ≡ Φ

( |Bu|√
t − u

)
,

with Φ (x) = P (|N | ≥ x), where N is a standard Gaussian.
(4) We can reinterpret the previous example via a deterministic time-

change. We remark that we can write:

Bu√
1 − u

= Ylog 1

1−u
,

where (Ys)s≥0, is an Ornstein-Uhlenbeck process satisfying

Ys = βs +
1

2

∫ s

0
duYu.

We then deduce from example 3 that

ρ
′

= sup

{
s < L

′

0 : |Ys| = sup
u≤L

′

0

|Yu|
}

is a
(
F ′

t

)
pseudo-stopping time, where

L
′

0 ≡ log

(
1

1 − g1

)
= sup {s > 0, Ys = 0}

and
(
F ′

t

)
is the natural filtration of (Yt).

(5) Let us consider the case of a transient diffusion Xt. Let s be a scale
function such that s (−∞) = 0 and s (x) > 0. Let

La = sup {t; Xt = a} ,

the last passage at the level a. We have (see [15]):

ZLa
t = 1 ∧ s (Xt)

s (a)
.
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Thus

ρa = sup

{
t < La : s (Xt) = inf

u≤La

s (Xu)

}

is a pseudo-stopping time in the filtration of (Xt). For example, let
us consider the case of a brownian motion with a negative drift:

Xt ≡ x + µt + σBt, µ < 0.

In this case, the scale function is

s (x) = exp

(
−2µx

σ2

)
.

Hence

ρa = sup

{
t < La : µt + σBt = inf

u≤La

(µu + σBu)

}

is a pseudo-stopping time in the filtration of (Bt).

As for D. Williams’ example, none of these pseudo-stopping times remains
a pseudo-stopping time in the larger filtration

(
FL

t

)
.This is a consequence

of a result of Azéma ([1]).

Proposition 6. Let L be the end of a predictable set such that P [L = T ] = 0.
Then L is not a pseudo-stopping time.

Proof. From a result of Azéma ([1]), as AL
t = aL

t is continuous, the law
of AL

∞ is the exponential law of parameter 1, whilst for pseudo-stopping
times, the law of AL

∞ is δ1, the Dirac mass at one. Hence L cannot be a
pseudo-stopping time. �

3.3. Another generalization. We now give a generalization of the previ-
ous construction. We make the same assumptions about the filtration (Ft)
and the time L, with the extra assumption that P [L = ∞] = 0. Let (∆t) be
a nonincreasing, continuous and adapted process such that

∆0 = 1 (3.3)

∆∞ = 0. (3.4)

Let us define ρ by

ρ ≡ sup {t < L; Zt = ∆t} .

Again, for every (Ft) stopping time T , we have

{T < ρ} =
{
T

′

< L
}

where

T
′

= inf {t > T, Zt ≤ ∆T}
Thus

E
[
Z

ρ
T

]
= P [T < ρ] = P

[
T

′

< L
]

= E
[
ZT

′

]
= E [∆T ] ,
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and with the optional section theorem we can conclude that

Z
ρ
t = ∆t, t ≥ 0.

It follows from Theorem 1 that ρ is a pseudo-stopping time. Hence we have
proved the following:

Proposition 7. Let (∆t) be a nonincreasing, continuous and adapted pro-
cess such that:

∆0 = 1

∆∞ = 0.

Then, under the assumptions made above, there always exists a pseudo-
stopping time ρ such that Z

ρ
t = ∆t, for t ≥ 0.

So we can associate a pseudo-stopping time to any continuous, nonincreas-
ing adapted process (∆t) which satisfies (3.3). But there is not uniqueness
since we can use different Z ′s associated to different L′s to construct ρ. In
other words, every continuous, nonincreasing adapted process (∆t) satis-
fying (3.3) is the dual predictable projection of some 1{ρ≤t}, where ρ is a
pseudo-stopping time.

As an example, we can take

∆t = exp (−St)

with the already used notations. Then,

ρ = sup
{
t < σ; 1 − B+

t = exp (−St)
}

is a pseudo-stopping time in the filtration of the Brownian motion (Bt). We
could as well take

∆t = exp (−Lt) ,

where Lt is the Brownian local time at level zero. In that case,

ρ = sup
{
t < σ; 1 − B+

t = exp (−Lt)
}

is a pseudo-stopping time.
We can also notice that if we take some deterministic ∆, this construction

allows us to construct a pseudo-stopping time with a given distribution. For
example,

ρ = sup
{
t < σ; 1 − B+

t = exp (−λt)
}

,

where λ > 0. Then ρ follows an exponential law of parameter λ.
In the following section, we will see that we can drop the continuity as-

sumption but we will have to enlarge the initial probability space.

3.4. Further examples. In this section, we shall link pseudo-stopping
times with other random times that appear in the literature. In particu-
lar, we will see that the random times allowing the (H) hypothesis (see [7])
to hold are special cases of pseudo-stopping times.
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3.4.1. The hypothesis (H). First, we give the following obvious result:

Proposition 8. If ρ is a random time that is independent from F∞, then
it is a pseudo-stopping time.

Example 2. If ρ is an exponential time of parameter λ that is independent
from F∞, then it is a pseudo-stopping time.

Example 3. Another example is given by what D. Williams ([19]) calls a
”silly” time:

ρ =
1

1 + |B2 − B1|
,

which is independent from F1.

Now suppose that our probability space supports a uniform random vari-
able Θ on (0, 1) that is independent of the sigma field F∞. Assume we are
given an (Ft)-adapted increasing and continuous process satisfying A0 = 0
and A∞ = 1 . Let us consider the random time defined by:

ρ = inf {t; At > Θ} .

It is not difficult to check that

P [ρ > t | Ft] = 1 − At. (3.5)

We have thus constructed a pseudo-stopping time associated with a given
continuous process (At). This construction is well known, see [8] for more
details and references. But this construction is not always possible (for ex-
ample when F∞ = F), which explains why our construction in the previous
section is more general.

But the pseudo-stopping times that are constructed in the way of (3.5)
enjoy the following noticeable property ([8], [5]):

P [ρ > t | Ft] = P [ρ > t | F∞] . (3.6)

Random times with this property are often used in the literature on default
modelling (see [8], [7]) and were studied in [5], [3]. There are several equiv-
alent formulations for (3.6). Before we mention them, let us notice that any
random time satisfying (3.6) is a pseudo-stopping time. In fact, we have a
stronger result: every (Ft) martingale is an (Fρ

t ) martingale (see [5]). Thus
the fourth statement in Theorem 1 is satisfied.

Now let us consider the (H) hypothesis in our framework of progressive
enlargement with a random time ρ: every (Ft)-square integrable martingale
is an (Fρ

t )-square integrable martingale. This hypothesis was studied by
Dellacherie and Meyer [5], Brémaud and Yor [3]. It is equivalent to one of
the following hypothesis (see [7] for more references):

(1) ∀t, the σ-algebras F∞ and Fρ
t are conditionally independent given

Ft.
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(2) For all bounded F∞-measurable random variables F and all bounded
Fρ

t -measurable random variables Gt, we have

E [FGt | Ft] = E [F | Ft] E [Gt | Ft] .

(3) For all bounded Fρ
t -measurable random variables Gt:

E [Gt | F∞] = E [Gt | Ft] .

(4) For all bounded F∞-measurable random variables F,

E [F | Fρ
t ] = E [F | Ft] .

(5) For all s ≤ t,

P [ρ ≤ s | Ft] = P [ρ ≤ s | F∞] .

Thus, pseudo-stopping times may be considered as a generalized or a
weakened form of the (H) hypothesis since then local martingales in the
initial filtration remain local martingales in the enlarged one up to time ρ.
Moreover, for most of the examples we have considered, such as D. Williams’,
(3.6) is not satisfied.

3.4.2. Randomized stopping times and Föllmer measures. Now we give a
relation between pseudo-stopping times and randomized stopping times as
presented in [14]. First we give some definitions. We always consider a given

probability space
(
Ω,F , (Ft)t≥0 , P

)
.

Definition 3. A randomized random variable on (Ω,F , P) is a probability
measure µ on ([0,∞] × Ω,B ([0,∞]) ⊗F) such that its projection on Ω is
equal to P.

For example, let ρ be a random time; then µρ defined by

µρ (X) = E [Xρ] ,

for all bounded measurable processes (Xt) is a randomized random variable.

We know from a result of Föllmer (see [6]) that there exists an increasing
càdlàg process (At) such that A0 = 0 and

µ (X) = E

[∫ ∞

0
XsdAs

]
,

for all nonnegative process (Xt). The fact that the projection on Ω is equal
to P means that A∞ = 1, a.s.

Definition 4. If the process (At) associated with µ on ([0,∞] × Ω,B ([0,∞]) ⊗F)
is adapted, then we say that µ is a randomized stopping time.
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By considering the new space Ω = [0, 1] × Ω endowed with the σ-fields
F=B ([0, 1]) ⊗F , F t=B ([0, 1]) ⊗ Ft (augmented in the usual way) and the
probability measure P = λ ⊗ P, it is possible to show that for every ran-
domized stopping time µ, there exists a stopping time ρ in this new filtered
space such that

µ (X) = E [Xρ] ,

for all bounded measurable process (Xt) on ([0,∞] × Ω,B ([0,∞]) ⊗F). We
take the convention that a random variable H on Ω can be considered as
the random variable on Ω: (u, ω) → H (ω). Conversely to every stopping
time of F t corresponds a randomized stopping time.

This construction is always carried on the enlarged space Ω. The third
statement in Theorem 1 allows us to use pseudo-stopping times to construct
randomized stopping times without enlarging the initial space.

Proposition 9. Let ρ be a pseudo-stopping time and A
ρ
t the (Ft) dual op-

tional projection of the process 1{ρ≤t}. Then the Föellmer measure µ asso-

ciated with A
ρ
t is a randomized stopping time. Moreover, for every bounded

or nonnegative (Ft) optional process (Xt):

µ (X) = E [Xρ] .

3.4.3. Randomized stopping times and families of stopping times.

Proposition 10. Let (Tu)u≥0 be a family of (Ft) stopping times and S a

positive random variable, independent of the family (F∞). Then

ρ = TS

is a (Ft) pseudo-stopping time.

Proof. Let (Mt) be a bounded (Ft) martingale;

E [MTS
] = E [E [MTs | S = s]]

= E [E [M0] | S = s]

= E [M0] .

�

The previous proposition shows that any independently time changed
family of stopping times is a pseudo-stopping time. In fact, this proposition
admits a converse: every pseudo-stopping time is, in law, a time changed
family of stopping times. More precisely:

Proposition 11. Let ρ be a (Ft) pseudo-stopping time, which avoids all
(Ft)-stopping times, and Zt = P [ρ > t | Ft] its associated supermartingale.
Set

αu ≡ inf {t ≥ 0, (1 − Zt) > u, 0 ≤ u ≤ 1} ,
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the right-continuous generalized inverse of the increasing continuous process
(1 − Zt). Then (αu)0≤u≤1 is a family of (Ft) stopping times and

ρ
law
= αU ,

where U is a random variable with uniform law, independent of (F∞).

Proof. The fact αu is a stopping time, for all u, follows from

{αu ≤ t} = {u ≤ (1 − Zt)} , ∀t ≥ 0.

From (2.9), we also have

E [g (ρ)] = E

[∫ 1

0
g (αu) du

]
,

for all bounded Borel function g. This establishes
(
ρ

law
= αU

)
. �

4. A discrete analogue: the coin-tossing case

Let (Xn)n≥1 be the standard random walk with Bernoulli increments. In

his paper [13], Le Gall proved an analogue of Williams’ path decomposition
for (Xn). To fix ideas, we shall consider the canonical space Ω = ZN endowed
with the product σ-field. (Xn) will be the coordinate process and (Px)x∈Z

the family of probability laws which make (Xn) the standard random walk
with Bernoulli increments. We also denote by (Qx)x∈N the unique family of
probability measures such that (Xn, Qx) is a Markov chain with transition
probabilities:

Q0 [X1 = 1] = 1

if x ≥ 1, Qx [X1 = x + 1] =
1

2

(
1 +

1

x

)
; Qx [X1 = x − 1] =

1

2

(
1 − 1

x

)
.

Now let p ≥ 1 and define:

σp = inf {k; Xk = p} ,

η = sup {k ≤ σp : Xk = 0} ,

m = sup {Xk, k ≤ η} ,

γ = inf {k ≥ 0; Xk = m} .

Then, Le Gall’s statement is that under P0:

(1) The processes (Xk)0≤k≤η and (Xη+k)0≤k≤σp−η
are independent, with

the second being distributed as (Xk)0≤k≤σp
under Q0;

(2) m is uniformly distributed on {0, 1, . . . , p − 1};
(3) Conditionally on {m = j}, the processes (Xk)0≤k≤γ and (Xη−k)0≤k≤η−γ

are independent, the first being distributed as (Xk)0≤k≤σj
under P0,

and the second as (Xk)0≤k≤σj+1−1 under Q0.
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Proposition 12. If (Mn)n∈N
is a bounded martingale, then

E0 [Mγ ] = E0 [M0] .

Thus γ is a pseudo-stopping time.

Proof. The discrete time setup allows us to give an elementary argument,
based in part on the fact that Mn, as every Fn measurable variable, may be
written as:

Mn = fn (X1,X2, . . . ,Xn) ,

where fn is a bounded function depending on n variables.
Now, for any bounded function g:

E0 [Mγg (m)] = E0 [E0 [Mγ | m] g (m)] .

But, from (3) in Le Gall’s satatement:

E0 [Mγ | m = j] = E0

[
fσj

(
X1,X2, . . . ,Xσj

)]

= E0

[
Mσj

]
= E0 [M0] .

Thus, we have obtained:

E0 [Mγg (m)] = E0 [Mγ ] E0 [g (m)]

= E0 [M∞] E0 [g (m)] ,

which is the discrete analogue of Proposition 2, and shows a fortiori that γ

is a pseudo-stopping time. �
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