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Abstract

We categorify the Casimir element of the idempotented form of quantum sl(2).
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1 Introduction

The Witten-Reshetikhin-Turaev invariant |20, 21] of a 3-manifold presented by surgery
along a framed link is given by summing over labellings of the components of the link by
irreducible representations of the quantum group U, (sly), then evaluating the corresponding
coloured Jones polynomial at a root of unity. Crane and Frenkel [6] conjectured that
quantum 3-manifold invariants could be categorified using the categorified representation
theory of U,(slz). While the Jones polynomial and coloured Jones polynomial have been
categorified [3],[T1], the problem of categorification at a root of unity has seen little progress.

A universal invariant of knots taking values in (an appropriate completion of) the center
of the quantum U,(sly) was constructed by Lawrence [16, [I7]. This universal invariant
dominates all coloured Jones polynomials. The center of U,(sly) as a Z[q, ¢ ']-algebra is
freely generated by the Casimir element C'. For p > 0, let us introduce

p

o = H (02 _ (q2z’ +924+ q—2i))

1=1

which are monic polynomials of degree p in C2. The universal invariant Jx of a knot K
can be written [8, Theorem 4.5] as

Jk = Zap(K)ap.

p=>0

The coefficients a,(K) € Z[q,q7'], p € N, determine the Witten-Reshetikhin-Turaev in-
variant of any integral homology 3—sphere obtained by surgery on the knot K. Therefore
it is natural to seek a categorification of this universal invariant within the context of
categorified representation theory of U,(sly). Here we take a first step in this ambitious
program by categorifying the quantum Casimir element for U, (sls).

Igor Frenkel conjectured [7] the existence of a categorification of the integral idempo-
tented version 4U of the quantum enveloping algebra of sly at generic g. The algebra 4U is
the Z[q, g~']-subalgebra of the algebra U defined by Beilinson, Lusztig and MacPherson [2]
and generalized to arbitrary types by Lusztig [18]. In U the identity element 1 € U,(sl,)
is replaced by a collection of orthogonal idempotents 1,, indexed by the weight lattice for
sly. We recall the definition of Uy(sly) in Section 2T and U in Section 23

In [15] the third author introduced a categorification U of 4U given by the idempotent
completion of an additive 2-category U whose objects n € 7Z are parameterized by the
integral weight lattice of sly. The 1-morphisms from n to m are given by direct sums
of 1-morphisms £.1,{t} = &, ...&,1.{t} where ¢ = &1...& with &1,...,¢e, € {+,—},
m—n=2 Zle gl,E, =&, = Fandt € Z. The 1-morphisms £ and F can be thought
of as categorifications of the generators £ and F' of quantum sl;. The 2-morphisms are
given by k-linear combinations of certain planar diagrams modulo local relations. In [15]
it was shown that the split Grothendieck ring of ¢/ is isomorphic to AU,

Ko(U) = 4U, (1.1)



when the ground ring is a field k. In [13] this result was proven with k replaced by the
integers.
The quantum Casimir element for U,(sly) has the form

(1.2)

This element is central and is preserved by various (anti)linear (anti)involutions defined on
U,(sly). In this paper we category the integral idempotent version of the Casimir element
obtained from (L2) by clearing denominators by multiplying by (¢ — ¢~!)? and projecting
via 1,. We also multiply by —1 for convenience and obtain the integral idempotented
Casimir element C' for U:

¢ = J]cu., (1.3)

nez
C1, C = (- +2—-q¢2EF1,— (" "+ ¢"™1,, (1.4)
= (—*+2—q*FEL, — (" + ¢ 17)1,. (1.5)

This element belongs to the center, defined in Section 222, of the idempotented ring U.

To categorify the component C'1,, of the idempotented Casimir element of U in the form
given in (L4) we must lift elements ¢* EF'1,, and ¢°1,, to 1-morphisms £F1,{a} and 1,,{b}.
We follow the now standard procedure of lifting powers of ¢ to grading shifts and using
complexes whenever minus signs are present. This requires us to work with the 2-category
K om(Z/{ ) of bounded complexes over the 2-category U whose objects are integers n € Z,
l-morphisms are bounded complexes of 1-morphisms in U, and 2-morphisms are chain
maps constructed from the 2-morphisms in &. We also consider the 2-category Com(U)
which has the same objects and 1-morphisms as Kom(U), and whose 2-morphisms are
chain maps up to homotopy.

We are looking for a complex with four copies of £F1,, and two copies of 1, with
grading shifts:

EF1,{-2}, €&F1,, EF1,, EFL{2}, 1,{1-—-n}, 1,{n—1}

The minus signs in (L4) indicate that the terms EF1,{—2}, EF1,{2}, 1,{1—n}, 1,,{n—1}
should live in odd homological degrees, and the remaining two copies of £F1,, in even
degrees.

The positioning of these terms in the complex is naturally dictated by the ¢-degrees of
the possible maps between them. Negative degree endomorphisms of £F1,, exist only for
n > 1, while there are obvious degree two endomorphisms given by placing a dot on one
of two vertical lines in the diagram of the identity map: ;\L and T i (see Section [B1] for
a review of the 2-category U). We can arrange the above four copies of £F1,, with the



appropriate shifts and cohomological degrees into a complex just using these maps

EF1L,

/_J

gfln{2 gfln{_2}

7N
N\

It ™em,

where the exact position of the minus sign is unimportant. To find the room for the two
shifted copies of 1,, we observe that clockwise cup and cap 2-morphisms have degree 1 —n,
perfectly matching the difference in degrees of these 1,, and those of the middle £F1,, in
the complex, leading to a commutative square

Ny

U

These two commutative squares can be glued into a single complex C1,, centered in homo-
logical degree zero:

/

1,{n -1}

\

EFL,
EF1,
L T

EF1,{2} >
i M
Cl,= D &y, (1.6)
o ¢+l

1,{1 —n} sEF1, >»1,{n —1}
A _
M

>»EF1,{—2}

We call the above complex the Casimir complex. The image of this complex in the

Grothendieck ring of Com(U) is C'1,, expressed in the form given by the right hand side of

equation (L4).

Starting with the form of the idempotented Casimir element given in (IL5]) we obtain a



different complex:

) Ny ¢

FEL,{2}

> FE1,{—2}

C'1,:= & SY > (1.7)
S K;

1,{1+n} > FEL, >1,{—n—1}
\ 7 _
A

However, we will show that the complex C’1,, is homotopy equivalent to C1,. These
two complexes behave well under certain symmetry 2-functors ¢, w, o defined for the 2-
category U in [I5], and extended here in Section B3 to the 2-categories Kom(l) and
Com(U). 1In particular, C'1, = o(C1_,). These symmetry 2-functors categorify cer-
tain (anti)linear (anti)involutions on the algebras U with the various (anti)linearity and
(anti)involution properties being reflected in the (contravariant)covariant behaviour of the
2-functors. Just as one can go between the two forms of the Casimir in (I4]) and (L5
using these (anti)involutions on the algebras U, we relate the complexes above together
with their alternative versions obtained by moving the minus signs and reordering the dot
2-morphisms via these categorified symmetries of U.

Our results can be summarized as follows:
Theorem 1.1.

a) There are canonical mutually-inverse isomorphisms

0’:C1, — (C'1,, 0°:C'1, — C1, (1.8)

in Com(U). If n < 0 the complex C1,, is indecomposable in Kom(U), and complex C'1,,
is isomorphic to a direct sum of C1,, and a contractible complex. If n > 0 the complex
C'1, is indecomposable in Kom(U), and complex C1,, is isomorphic to a direct sum of
C'1, and a contractible complex. If n = 0 complexes C1,, and C’'1,, are isomorphic in

Kom(U).

b) Under the isomorphism KoU) = Ko(Com(U)) =2 4U we have [C1,] = C1,, so that the
complex C1,, in Com(U) descends to the component C1,, of the Casimir element C' of
U after passing to the Grothendieck ring.

¢) The complex C1,, is invariant under the symmetries ¢ and wo of Kom(U). Symmetry
o takes C1,, = ([L.6) to the complex C'1_,, given by (L.7)) for —n.

d) Commutativity: There exists a collection of invertible 2-morphisms of complexes

Kx: XC—)CX, (19)

bt



with inverses

Ry: CX — XC, (1.10)
for all X in Com(U).

Naturality: The collection of invertible chain maps xx is natural in the sense that for
any 2-morphism f: X — Y the squares

ye—2scy cy s ve
fe cf cf fe (1.11)

commute in Com(U). By construction these invertible chain maps are compatible with
composition in Com(u ) given by the tensor product of complexes and juxtaposition
of diagrams. That is, for complexes ¥ =1,Y1, and X = 1,,X1,,, with CXY1, =
1,.C1,,X1,Y1,, we have a commutative diagram

CXY1l, —= 5 XYC1,

N, A

Xevi, (1.12)
in Com(U).

Parts a) and d) are difficult, while parts b) and c¢) are obvious. The indecomposability
of the Casimir and the resulting simplifications are discussed in section [4.3l The rest of
part a) and part ¢) of the Theorem can be found in Proposition @Il The construction of
the commutativity chain isomorphisms is given in Section [4.2], while the naturality of these
maps is proven in Section

As explained in [12, Section 3.7] an additive 2-category can be viewed as an idempo-
tented monoidal category by regarding 1-morphisms as objects of the monoidal category.
The 2-morphisms in the 2-category become 1-morphisms in the monoidal category. The
composition operation for 1-morphisms and the horizontal composition for 2-morphisms
in the original 2-category gives rise to the monoidal structure, allowing objects and mor-
phisms to be tensored together. It is sometimes convenient to view Kom(U) and Com(U)
as idempotented additive monoidal categories in this way.

The commutativity and naturality statements in the third property above imply that
the complex C1, is in the (Drinfeld) center of the additive monoidal category Com(if)
[9, [19L 5]. The collection of chain maps kx define an invertible natural transformation of
functors k: —®C = C® —, where —®C and C ® — are the endofunctors of Com(U) given
by tensoring on the right, respectively left, with the complex C1,, for appropriate n.

The categorification of the Casimir element for quantum sl; presented here demon-
strates the increase in combinatorial complexity that arises when lifting structures to the



categorical level: the Casimir complex only commutes with other complexes up to chain
homotopies, which are rather involved. By appealing extensively to the graphical calculus
for categorified U and its symmetries, we are able to study the Casimir complex and con-
struct explicit chain maps giving commutativity of the Casimir up to chain homotopy. This
paper presents new identities that are used for simplifying 2-morphisms in categorified sls.
We hope that the calculations in this paper will serve to further illustrate how complex
computations can be performed in the graphical calculus for U.

Acknowledgments: A.B. would like to acknowledge the Swiss National Science Foundation
for support via grant PP002-119088. M.K. is grateful to the NSF for partially supporting
him via grants DMS-0706924 and DMS-0739392. A.L. was partially supported by the NSF
grants DMS-0739392 and DMS-0855713 and would like to thank the MSRI for support in
Spring 2010 when this work was almost completed.

2 Casimir element and idempotented form of quan-
tum sl

2.1 Quantum sl, and the Casimir element

The quantum group U, (sly) is the associative algebra (with unit) over (3(q) with generators
E, F, K, K~! and relations

KK'= 1 =K'K, (2.1)

KE = ¢FK, (2.2)

KF = ¢ *FK, (2.3)
-1

pp-rp = B8 (2.4)
q—qt

For simplicity the algebra U,(sly) is written U. For more details on quantum groups see
[10].
For a > 0 we put [a] = =1+, [a]! = [a]la —1]...[1] and E@ = %, F@ = % We

further define the integral form 4U to be the Z[q, ¢~ ']-subalgebra of U generated by

—a

{E@ F@ K+ qe 7). (2.5)

There are several Z[q, q~']-(anti)linear (anti)automorphisms that will be used in this

paper. Let ~ be the Q-linear involution of ©Q(q) which maps ¢ to ¢~1.

e The Q(g)-antilinear algebra involution ¢: U — U is given by

Y(E)=E, Y(F)=F ¢E)=K" o¢(fz)=f¢(z) for f€ Q) and z € U.
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e The Q(¢)-linear algebra involution w: U — U is given by

wE)=F, w/F)=E  wK)=K",
(x), for f e Q(g) and z € U,
(y), forx,yeU.

e The Q(g)-linear algebra antiinvolution ¢: U — U is given by

o(E)=E, oF)=F  oK)=K"
(x), for fe Q(g) andx € U,
(x), forz,yeU.

The (anti)linear (anti)involutions pairwise commute and generate the group G = (Z,)?
of (anti)linear (anti)automorphisms acting on U. Throughout the paper we will also use
the index two subgroup G = {1,v¢,wo, Ywo} of G and the coset G\ G; = {w, 0, Yw, Vo }.

The Casimir element for U is given by -

—1K K—l K —1K—1
¢ KAgRT o aR g K
(a—q7Y) (¢q—q)

It is easy to verify that Ec = cE, Fc = c¢F and K¢ = cK. Moreover, ¢ generates the center
of U, and

c:=FEF+ (2.6)

Z(U) = Q(q)d. (2.7)
We will be most interested in the element
C:=—(q— q_1)2c = (—q2 +2— q_Q)EF — q_lK — qK_l, (2.8)
= (—~*+2—-q¢HFE —qK — ¢ 'K (2.9)
Of course,
Z(U) = Q(g)[C]. (2.10)

The element C' belongs to the integral form 4U of U, and we call C' the Casimir element.
The symmetries in G preserve the Casimir element:

Y(C) =w(C) =a(C)=C. (2.11)

Notice that the involutions 9, wo, Ywa in Gy preserve the form of the Casimir in (2.8) and
([23), while the involutions w, o, Yw, Yo in G'\ G; map one form of the Casimir element

in (2.8) and (29) to the other.

All of these symmetries preserve the integral form 4U of U.
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2.2 Idempotented rings and their centers

An idempotented ring A is a not necessarily unital associative ring equipped with a family
of mutually-orthogonal idempotents 1;, indexed by elements i of a set I, such that

A= P 1AL (2.12)

ijel
The center Z(A) of A is a subspace of Hie ; 1;Al; consisting of elements Hie ; % such that
2T = Xz (2.13)

for any 4,j € I and z € 1;Al;. Z(A) is a commutative ring isomorphic to the center of the
category of idempotented A-modules, i.e. A-modules M such that

M= LM (2.14)

iel
An idempotented ring A has a unit element if and only if the set I is finite, in which case
1=) 1. (2.15)

iel

For unital A, the center of A defined as above coincides with the usual center of A.

2.3 BLM U

The Belinson-Lusztig-MacPherson [2] algebra U is the @Q(q)-algebra obtained by modifying
U by replacing the unit element with a collection of orthogonal idempotents 1,, for n € 7Z,

11 = Onmln, (2.16)
indexed by the weight lattice of sly, such that
Kl1,=1,K=4q"1,, FEl,=1,F=1,,F1, Fl,=1,.F=1,,.F1,.  (2.17)

Similarly, the Z[q, ¢~']-subalgebra AU of U is obtained from 4U by replacing the unit
element by a collection of orthogonal idempotents (2.16]), such that

K1, = 1,K=1,K1, = q¢"1,, (2.18)
EWL, = 1y B = 142, B91,,
FO1, = 1,5, =1, 5, F®.

The diagram below illustrates the various algebras considered so far

AU——U (2.19)

{ {
L

< <

AU—1,

9



BLM U 10

where the rightward pointing arrows are the inclusions of subalgebras, and the squiggly
arrows denote passing to the idempotent form of the algebra. See [I§] and the references
therein for more details on the algebra U.

There are direct sum decompositions

U= P 1.U1, AU= P 1.(u0)1

nmeZ nmeZ

with 1m(AU)1n the Z[q, ¢~']-submodule spanned by 1, E®F®1, and 1, F®E@1, for
a,b € Z (these elements are zero unless m = n + 2a — 2b).

The algebra U does not have the unit since the infinite sum Y nez
to U; instead, the system of idempotents {1,|n € Z} serves as a substitute for 1. Lusztig’s
basis B of U consists of the following elements of U:

1,, does not belong

(i) E@F®1, forabeZi,ncZ n<b—a,
(ii) FOE@1, forab€Z,.,n€Z, n>0b—a,

where E@F®1,_, = FOE®1,_,. '
The (anti)involutions ¥, w, and ¢ all naturally extend to U if we set

(1) =1 w(ly) =1 (1) =1

Taking direct sums of the induced maps on each summand 1,,U1, allows these maps to
be extended to U and 4U. These Zlq, q~']-(anti)linear (anti)algebra homomorphisms are
recorded below on some elements of 4U:

w : L, EYF®1, 1 FYE®L_ (2.20)
o : ¢L,EYF"1, 1, FOE®1_ (2.21)
v 1, EYF®1, g1, EYF®, (2.22)

where m = n + 2a — 2b. The group G acts on both U and AU.

There is a natural homomorphism from the center of U to the center of its idempo-
tented form U that sends © € Z(U) to [[,cy lnal,. It is not hard to check that this
homomorphism is, in fact, an isomorphism. Denote by

¢=]Juc (2.23)

nez

the image of C in U under this homomorphism. Let C"ev = Hn62Z 1,C and Cod =
Hn€2Z+1 1,C. Then C = C,, + C., and

Z(U) = Q(q)[Cer] x Qq)[Cod]. (2.24)

10
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We call C'1,, components or terms of the Casimir element C'. They are given by

1,0 =Cl, = (= +2—q)EF1, — (" " +¢"™1,, (2.25)
= (- +2—-q¢AFEL, — ("™ + ¢ )1, (2.26)

Components are preserved by the symmetries in G; = {1,v, wa, Yow}:
¢(C1,) =C1, (2.27)
for any g € G1. They are interchanged by the elements in the coset G\G| = {0, w, Yo, Yw}:
9'(C1,) =C1_, (2.28)

for any ¢’ € G\ G;. In addition to sending 1,, to 1_,, the involutions in G \ G; map one
form of the Casimir in (2.25]) and (2.26) to the other form.

3 Brief review of sl(2)-calculus

3.1 The 2-category U
3.1.1 Definition of U

Fix a field k. Here we recall the definition of the k-linear 2-category U = U(sl) introduced
in [15], see also [14] [12].

Definition 3.1. The 2-category U is the additive 2-category consisting of
e objects: n for n € Z.
The hom U(n,n’) between two objects n, n’ is an additive k-linear category:

e objects of U(n,n’): for a signed sequence £ = (e1,€9,...,&m,), Where e1,...,6,, €
{+,—}, define
E=E.E,...&

where £, := £ and £_ := F. An object of U(n,n’), called a 1-morphism in U, is a
formal finite direct sum of 1-morphisms

m

E1{t} =1,&1,{t}
for any t € Z and signed sequence ¢ such that n’ =n + Z;nzl ;2.

e morphisms of U(n,n’): given objects &.1,{t},Es1,{t'} € U(n,n'), the hom sets
UEL,{t}, E41,{t'}) of U(n,n') are k-vector spaces given by linear combinations of
diagrams with degree ¢ — ¢, modulo certain relations, built from composites of:

11



The 2-category U 12

i) Degree zero identity 2-morphisms 1, for each 1-morphism z in U; the identity
2-morphisms 1gy, {t} and 177, {t} are represented graphically by

Lew, (1} Lri.qt
n+2 | n n—24n
deg 0 deg 0
and more generally, for a signed sequence £ = (g1,€9,...,&,), the identity

le.1,{y 2-morphism is represented as

&, &, &

Em

where the strand labelled & is oriented up if ¢, = + and oriented down if
€o = —. We will often omit labels from the strands since the labels can be
deduced from the orientation of a strand.

ii) For each n € X the 2-morphisms

2-morphism: n+2# " " ¢n+2 ><n ><n

Degree: 2 2 -2 -2

2-morphism:

Degree: 1+n 1—n 1+n 1—n ‘

such that the following identities hold:
e cups and caps are biadjointness morphisms up to grading shifts:

n 4+ 2 n+21|n n n |n+2

n n+ 2

12



The 2-category U 13

n n+ 2
= = (3.2)
n+2 n+2|n n n |n+2

e NilHecke relations hold:

(3.4)

e All 2-morphisms are cycli with respect to the above biadjoint structure. This is

ensured by the relations:
m T ﬁ .
n
@ S @ (3'6)

The cyclic condition on 2-morphisms expressed by ([B.0) and (B.6]) ensures that iso-
topic diagrams represent the same 2-morphism in U.

It will be convenient to introduce degree zero 2-morphisms:

- M" (37)

S

(3.8)

1See [15] and the references therein for the definition of a cyclic 2-morphism with respect to a biadjoint
structure.

13



The 2-category U 14

where the second equality in (3.7) and (B8] follow from (B.6]). We also write

«

o

to denote the a-fold vertical composite of a dot with itself.

e All dotted bubbles of negative degree are zero. That is,

n n
’Q:O ifao<n—1, 620 ifa<—-n-—1 (3.9)

for all & € Z,. A dotted bubble of degree zero equals 1:

n n

@:1 forn > 1, O =1 forn< -1

n—1 —n—1

It is often convenient to express dotted bubbles using a notation introduced in [13]
that emphasizes the degree:

n n n n
g - q-
Mo (n—1)+a Ao (—n=1)+a
so that n i
o (@) C o de (@) .
LA LR

The value of & depends on the orientation, # = n — 1 for clockwise oriented bubbles
and & = —n — 1 for counter-clockwise oriented bubbles. Notice that for some values
of n it is possible that #+« is a negative number even though o > 0. While vertically
composing a generator with itself a negative number of times does not make sense,
having these symbols around greatly simplifies the calculus. For each & + o < 0,

where n n
deg(@)ZO deg(@)ZO,

Ao L RN

we introduce formal symbols, called fake bubbles, inductively defined by the equation

A+0 A+ A0 L R

(@n+@7zt+”.+{iﬂ+..,> <@n+...+@"tu...> 1

(3.10)

14



The 2-category U 15

and the additional condition
n n
{0 = ) =1
a0 a0

Equation (3.10) is called the infinite Grassmannian relation. It remains valid even
in high degree when most of the bubbles involved are not fake bubbles. See [15] for
more details.

e For the following relations we employ the convention that all summations are increas-
ing, so that ) 7 is zero if a < 0.

n
gi1+g2=n O

M f2 A+g2

n Vit
- e Y Q
fitfotfs , AEP

S SR
n A

g1
n
n noo_ gg Y {) (3.12)
g1+g2+g3 75 A+g2
=t e )

for all n € Z. In equations (B.11)) and (8.12) whenever the summations are nonzero
they utilize fake bubbles.

(3.11)

e the additive composition functor U(n,n’) x U(n',n") — U(n,n") is given on 1-
morphisms of U by
EoLy{t'} x E1,{t} = Eo 1, {t +1'} (3.13)

forn’ =n+ Z;n:l €;2, and on 2-morphisms of U by juxtaposition of diagrams

] . Q)
Hw n/ , " %{ /;zgn

15
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3.1.2 Relations in U/

In this section we collect some relations that follow from the definition of /. These relations
were proven in [15].

T A S R o L T

fit+fe=a—-1

For all n € Z the following equation holds

U 3 f2 92 g\l'j‘ .
¢ + ) (3.15)
f1+f2+f3+f4 *+fs f3 N gi4+got+gs+ga 93 Mg,
s G L

where the first sum is over all fi, fo, f3, f4+ > 0 with f; + fo + f3 + f1 = n and the second
sum is over all g1, g2, 93, g4 > 0 with g; + g2+ 93+ g1 = —n — 2. Recall that all summations
in this paper are increasing, so that the first summation is zero if n < 0 and the second is
zero when —2 < n. By rotating this equation and shifting n we also have

5 g2
2 fp@ n \\“j;h n
YA
f1+f2+f3+f4 f3 Mtfa g1+92+93+94 ‘+g4 g3
=n-2 RS et s

(3.16)
Dotted curl relations:
n fl n n g1
ftfa=an N fo 1+g2 v g2
(3.17)

One can also show the relations:

fi
n
R LIt e S SRS
“ Y Ji+fo+f3 Mo
=zr+y+n—1 ffn
n (et

g1
n
nl |n _ _yﬁ? oy ) (3.18)
z 4 g1+92+93 A+g2
=z+y+-—n—1 gm

16
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Bubble slide equations:

n n n n
2
Q-0 l=qQ i Qi w
LR a(—2) M(5—-1) )
Ot -t =g -1qQ e
Nt a(—2) M-(j-1) L 2]
n n+2
. Jj=f
O = g:o(jJrl—f)O (3.21)
A+j LAY
n
" | i1
Q — 20(9' +1—f) Q (3.22)
At atf
Below we collect a few additional identities that have not appeared in the literature
previously.

The following relation together with its image under the various symmetries of the
2-category U will be used extensively in the paper.

Proposition 3.2.

n \J
no_ no_ noy " + "= 0. (3.23)
VA

The proof utilizes the nilHecke relations to slide dots as well as (3.16)).
Proposition 3.3 (Step functions).

— ifn <0
= " (3.24)

L 0 otherwise.

— ifn>0
= £ (3.25)

L 0 otherwise.

ot
4

17
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Proof. This proposition follows immediately from the Dotted Curl Relations (317). O
Proposition 3.4.

0
n
/Q if n=0,
0 otherwise.

Proof. This proposition follows from the Curl relations in U together with the positivity
of bubbles axiom. O

3.2 The 2-categories U, Kom(U), and Com(U)
3.2.1 Additive categories, homotopy categories, and Karoubi envelopes

For an additive category M we write Kom(M) for the category of bounded complexes in
M. An object (X, d) of Kom(M) is a collection of objects X* of M together with maps
di
d . di—1 . d; . dit1
ey il s iy il s (327)
such that d;1d; = 0 and only finitely many objects are nonzero. A morphisms f: (X,d) —
(Y,d) in Kom(M) is a collection of morphisms f;: X* — Y such that

fill fil fi+1J/

...Hyi—l HYZHYZ—H—)
d di—1 d; dit1

commutes.

Given a pair of morphisms f, g: (X,d) — (Y,d) in Kom(M), we say that f is homotopic
to g if there exists morphisms h’: X* — Y*~! such that f; — ¢; = h**'d; 4 d;_ h* for all 3.
A morphism of complexes is said to be null-homotopic if it is homotopic to the zero map.

Definition 3.5. The homotopy category Com(M) has the same objects as Kom(M), and
morphisms are morphisms in Kom(M) modulo null-homotopic morphisms.

The Karoubi envelope Kar(M) of a category M is an enlargement of M in which all
idempotents split. An idempotent e: b — b in a category M is said to split if there exist
morphisms

b—L5 1~ b
such that e = hg and gh = Idy. More precisely, the Karoubi envelope Kar(M) is a

category whose objects are pairs (b, e) where e: b — b is an idempotent of M and whose
morphisms are triples of the form

(e, f,e): (be) = (V,¢€)

18
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where f: b — b in M making the diagram

by (3.29)

1N

b—rrlf

commute. Thus, f must satisfy f = €’ fe, which is equivalent to f = ¢ f = fe. Composition
is induced from the composition in M, and the identity morphism is (e, e, e): (b, e) — (b, e).
When M is an additive category, the splitting of idempotents allows us to write (b, e) €
Kar(M) as im e, and we have b = im e & im (Id, — e).

The identity map Id,: b — b is an idempotent, and this gives rise to a fully faithful
functor M — Kar(M). In Kar(M) all idempotents of M split and this functor is
universal with respect to functors which split idempotents in M. When M is additive the
inclusion M — Kar(M) is an additive functor (see [15, Section 9] and references therein).

Proposition 3.6. For any additive category M there exists a canonical equivalence
Kom (Kar(M)) = Kar (Kom(M)). (3.30)
Proof. Define the functor
pm: Kom(Kar(M)) — Kar(Kom(M)) (3.31)
as follows. An object of Kom(Kar(M)) has the form

di_ . ’ . d;
(X,e) = - 225 (X7 &)~y (X ey p) —25

(3.32)
where e? = ¢;, diy1d; = 0, and d; = e;11d;e;. Here ¢;: X' — X' is an idempotent and
di: X* — X1 The functor ppq takes this object to the pair in Kar(Kom(M)) consisting

of the complex

X = .. b i =%y it Gy (3.33)

and the idempotent chain map (...,e;€;11,...). A morphism f: (X,e) — (X',€) in
Kom(Kar(M)) is a collection of maps f;: X" — (X’)" such that the squares

Xi—2 sy xi (3.34)

fzi lf i1

(X)) > (X7

Z

commute, and f; = € f;e;. The functor pp takes the morphism f to the “same” morphism
{fi} of complexes equipped with idempotents (..., e;, €i41,...) and (..., €}, e; ,...).

19
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It is easy to see that ppq is fully-faithful. To show pyq is essentially surjective note
that any object Y of Kar(Kom(M)) is isomorphic to pap(Y) for some object Y of
Kom(Kar(M)). The object Y consists of a complex

di—1 d;

Y= By G i B (3.35)

in Kom(M) together with idempotents e;: Y — Y such that

ei—l-ldi = dze, (336)
Let Y be the object
di—1e;-1 (Yi, 62‘) die; (YHI, €i+1) ditieit1 o (3.37)

in Kom(Kar(M)). We can define morphisms ¢;: Y — pm(Y) and po: pp(Y) — Y in
Kar(Kom(M)) that are both given on Y as multiplication by e;. Then wop1 = Idy

and @192 = Id, 5, showing that ¥ and pm(Y) are isomorphic. Together with fully-
faithfulness of pj, this completes the proof that pu is an equivalence of categories. O

Proposition 3.7. For any additive k-linear category M with finite dimensional hom spaces
there exists a canonical equivalence

Com (Kar(M)) = Kar (Com(M)) . (3.38)
Proof. The functor pr descends to a functor
P Com(Kar(M)) = Kar(Com(M)). (3.39)

Given an object X of Com(Kar(M)) we can view it as an object of Kom(Kar(M)).
By the idempotent-lifting property for finite-dimensional algebras |4, Chapter 1] an idem-
potent of Com(Kar(M)) lifts to an idempotent in Kom(Kar(M)), and the latter cat-
egory is idempotent-complete by the previous proposition. Therefore, Com(Kar(M)) is
idempotent-complete as well, allowing us to define a functor

pm: Kar(Com(M)) — Kar(Com(Kar(M))) ~ Com(Kar(M)) (3.40)

such that pfpum = Idgarcomnm)), PP = Idcom(kar(m)), showing that pf, is an equiva-
lence. O

Alternatively, the result follows from [I, Corollary 2.12].

20
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3.2.2 Karoubian envelope of U

Definition 3.8. Define the additive 2-category U to have the same objects as U and
hom additive categories given by U(n,m) = Kar (U(n,m)). The fully-faithful additive
functors U(n, m) — U(n, m) combine to form an additive 2-functor & — U universal with
respect to splitting idempotents in the hom categories U (n,m). The composition functor
U(n,n')xU(n',n") — U(n,n") is induced by the universal property of the Karoubi envelope
from the composition functor for &. The 2-category U has graded 2-homs given by

HOMy, (z,y) := @D Homy, (z{t}, y). (3.41)

Theorem 3.9 (Theorem 9.1.3 [I5]). There is an isomorphism
v: Uy — KoUh), (3.42)
where Ky(U) is the split Grothendieck ring of U.

In [I3 Corollary 5.14] this result is proven when the ground field k is replaced by the
commutative ring 7Z.

3.2.3 Karoubian envelopes of Kom(U) and Com(U)

Definition 3.10. Define Kom(U) to be the additive 2-category with objects n € Z and
additive hom categories Kom(U)(n,m) := Kom (U (n,m)). The additive composition
functor Kom (U(n',n")) x Kom (U(n,n’)) — Kom(U(n,n")) is given by the tensor prod-
uct of complexes using the additive composition functor on i/ to tensor 1-morphisms via
composition.

Definition 3.11. Define Com(U) to be the additive 2-category with the same objects
and 1-morphisms as Kom(U) and 2-morphisms given by identifying homotopy equivalent
2-morphisms in Kom(U).
Recall that U = K ar(U). By Propositions and [3.7] there are equivalences
Kar(Kom(U)) = Kom(U), Kar(Com(U)) = Com(U). (3.43)
The 2-categories we consider fit into the following table where the horizontal arrows de-
note passage to the Karoubian envelope and vertical arrows stand for passage to complexes
and modding out by null-homotopic maps.

U »U = Kar(U)

~ e

Kom(U) ——— Kom(U) = Kar(Kom(U)) (3.44)

~ -

Com(U) ——— Com(U) = f}ar(Com(u))

21



Symmetry 2-functors 22

3.3 Symmetry 2-functors

A covariant /contravariant functor a: M — M’ extends canonically to a functor
Kar(a): Kar(M) — Kar(M').

An additive covariant/contravariant functor a: M — M’ between additive categories
extends canonically to an additive functor

Kom(a): Kom(M) — Kom(M’)

and an exact functor Com(a): Com(M) — Com(M') between triangulated categories.
Given an exact endofunctor a: M — M these extensions respect the equivalence pg
in (3.31)), in the sense that the diagrams

Kom(Kar(M)) —2— Kar(Kom(M))

Kom(Kar(a))\[ J/Kar(Kom(a)) (345)

Kom(Kar(M)) ———— Kar(Kom(M))

Com(Kar(M)) —2— Kar(Com(M))

C’om(Kar(oe))J/ JKar(C’om(a)) (346)

Com(Kar(M)) —— Kar(Com(M))

commute.

In this section we recall several 2-functor involutions w, 1, o on the 2-category U defined
in [15] and extend them to 2-functors on all the 2-categories in (B.44]). We use the same
notation for these extended 2-functors.

Denote by UP the 2-category with the same objects as & but the 1-morphisms re-
versed. The direction of the 2-morphisms remain fixed. The 2-category U has the same
objects and 1-morphism as U, but the directions of the 2-morphisms is reversed. That is,
U*°(xz,y) = U(y,z) for 1-morphisms = and y. Finally, P denotes the 2-category with
the same objects as U, but the directions of the 1-morphisms and 2-morphisms have been
reversed.

Using the symmetries of the diagrammatic relations imposed on U 2-functors were
defined in [I5] that categorify various Z[q, ¢ ']-(anti)linear (anti)automorphisms of the
algebra U. The various forms of contravariant behaviour for 2-functors on U translate into
properties of the corresponding homomorphism in U as the following table summarizes:

22



Symmetry 2-functors 23

‘ 2-functors ‘ Algebra maps

U—u Z|q, ¢~ ']-linear homomorphisms

U — Uur Z[q, ¢ ']-linear antihomomorphisms
U— U Z|q, ¢ ']-antilinear homomorphisms

U — UP | Z[q, ¢ ']-antilinear antihomomorphisms

Rescale, invert the orientation, and send n — —n: Consider the operation on
the diagrammatic calculus that rescales the crossing 5{‘ = — 5{‘ , inverts the
orientation of each strand and sends n +— —n:

2]

This gives a strict invertible 2-functor w: U — U

w:d - U
n = —-n

1, EMFER . % FPL,{s} — 1_,FUENF.. . Frel1_{s}.  (347)
This 2-functor extends to a 2-endofunctor

w: Kom(U) — Kom(U),

n — -n
(X,d) — -~-Hw(Xi_l)Mw(Xi)%w(X”l)H“-
fir X =Y = w(fi): wX)—=wl), (3.48)
and a 2-endofunctor on all the other 2-categories in (3.44]).
Rescale, reflect across the vertical axis, and send n +— —n:  The operation on
diagrams that rescales the crossing '><‘ = — '}{‘ , reflects a diagram across the

vertical axis, and sends n to —n leaves invariant the relations on the 2-morphisms of .
This operation

[ae)- =l

23
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is contravariant for composition of 1-morphisms, covariant for composition of 2-morphisms,
and preserves the degree of a diagram. This symmetry gives an invertible 2-functor

o:U — U,
n — —n
1, EMFHE . g% FPL, {s} + 1_,FEWwFh—r. . Fhgmy s}

that acts on 2-morphisms via the symmetry described above. This 2-functor extends to a
2-functor

o: Kom(U) — Kom(U)
n = -n
(X,d) — ..._>O.(Xz'—1)MU()@)%U()@H)_}...
fi: X—=Y — o(fi):0(X)— oY), (3.49)

and, likewise, a 2-endofunctor on all the other 2-categories from (3.44).

Reflect across the x-axis and invert orientation: Here we are careful to keep track
of what happens to the shifts of sources and targets

{t'} {-t}

. Ql_"raxn’”

{t} {=t'}

Shift reversals on the right hand side are required for this transformation to preserve the
degree of a diagram. This gives an invertible 2-functor

VU = U,
n — n

1,EMFRge. . g FY (s}  1,EMFRE™...e%Ff1, {—s}  (3.50)

and on 2-morphisms v reflects the diagrams across the z-axis and inverts the orientation.
Since 1) is contravariant on 2-morphisms in U, this 2-functor extends to a 2-functor

v: Kom(U) — Kom(U),

= n
(X,d) — ---—Mb(X”l)M)qﬁ(X")M)w(Xi_l)H-“
fi: X =Y = o(f): v(Y) = ¢(X), (3.51)

24
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and, likewise, a 2-endofunctor on all 2-categories in (3.44]). Notice that 1) inverts the
homological degree so that ¢ acts on a complex (X, d) in Kom(U) by (vX)" = (X 7).

These 2-functors are involutive and commute with each other ‘on-the-nose’:
Wwo = woa, o = o, W) = Yuw, (3.52)
generating a group G = (Z,)® of 2-functors acting on all the 2-categories in (B.24)). Equiv-

alences in table (3.44]) respect this action. On the Grothendieck group of U the 2-functors
¥, w, o descend to (anti)involutions ¢, w, and ¢ on 4U.

4 The Casimir complex

4.1 The Casimir complex and its symmetries

We sometimes represent the Casimir complex ([L.G) using the notation

C1, := L -1t 4]

Tt ™ N TN

EFL{2}®1,{1—n} > EF1LnBEF 1y > EF 1 {—2}D1,{n—1}.

or

1, = [ -Te 4.
o EF1, - EF1,{-2}
< EF1.{2} ) Tt X < ) N N ( )

1,{1-n} EF1n 1,{n—1}

(4.1)
We will interchange freely between these methods of depicting the complex C1,,.
The placement of minus signs in the above complex is arbitrary as long as each square
anticommutes. In fact, we get different placements of the minus signs and dots using the
symmetry 2-functors defined in Section [3.3t

- T
s (1) A ) ()

1,{1-n} EFLy, 1,{n—1}

(4.2)

25



The Casimir complex and its symmetries 26

Tt ™ -t T¢
™ EF1n, - EF1.{-2}
) il ()i o | )

1,{1-n} EF1n 1,{n—1}

wier) = (

(4.3)

-4 v Tt tl
_ Y L eria)
571n{2}> Tt ( ) 2 < )

1,{1-n} EF1n 1,{n—1}

ow(C1,) = (
(4.4)

It is trivial to check (see also Proposition 4] below) that these complexes are all isomorphic
to the Casimir complex C1,. We will write G; = {Id, ¥, wo,wo} for the subgroup of
symmetry 2-functors in G = (Z,)? that preserve the Casimir complex.

Just as the symmetries in G\ G; = {w, g, Yw, Yo} interchange between the two forms
of the Casimir element -

G\G1

/\

(—¢*+2—-q?)EF —q7'K —qK™! (—¢*+2—q)FE—qK —q 'K,

\/

G\G1
we can write down a categorification of the idempotented Casimir element in the form
(—¢*+2=q*)FEL, — (¢ + 4", (4.5)
by applying symmetry 2-functors in G\ G; = {w, 0, Yw, 1w} to the Casimir complex C1_,,.

Depending on which 2-functor in G\ G; is chosen, we will get a different placement of minus
signs and dots:

K -7 13
U Fe1, - Fe1a(-2)
o(C1_,) = ( FE1,{2) ) ] > ( ) O YaNA ( )

1,{14+n} FEln 1,{-n—1}

26
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it v -1t e
7 &1y - FE1{-2}
FE1{2) ) K] ( F ) N 2N < )

1o{14n} FEL, "\ 1a{en-1)

W(C1_y) = (
(4.7)

- Y K]
- \r re, -
FE1n{2} ) l? ( ) AN { ( )

1,{1+n} FEln 1,{-n—1}

suier) = (

(4.8)

-t v AN
- \r 1, FE1,(-2)
FE1n{2} ) iT ( F ) AN { ( )

1,{1+n} FEly 1,{-n—1}

wip(Cl_,) = (
(4.9)

The first complex is identical to the complex C'1,, in (L). The four complexes above are

isomorphic to one another in Kom(U). In Proposition A ] below we will show that they
are homotopy equivalent to the complex C1,,.

Proposition 4.1.

a) For any ¢ € G; and ¢’ € G\ G there are chain isomorphisms C1, ~ ¢(C1,) and
homotopy equivalences C1,, ~ ¢’(C1_,) given by chain maps

a(e¥)
o(C1_,) op(C1_,)
= B
ch O.(gaw) w(@o)
o bo (@) (4.10)
C1, 1,
1 W(Cla) (@)
w1, S wp(C1_,)
A "J(Qd)) =
07 $(@)
w(@) gl e”)
ow(Cl,) s owi(C1,,)
ow(e¥)
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where the solid lines represent chain isomorphisms and the dotted lines represent chain
homotopy equivalences. We denote the inverse of a map o9 by @Y for g € G.

b) The triangles on the left and right in (£10) commute and the four remaining squares
anticommute.

c) Complexes C1,, and C'1,, are homotopy equivalent.

Proof. We define explicit chain isomorphisms

/’*Z) ow
/é%\ /QN
lz) ‘/\_/

g i

as well as a homotopy equivalence

s
C1, o(C1,).
f—

o’

While the maps o¥ and ¢° are rather uninteresting, it is convenient to fix them.
Define ¢¥: C1,, — ¢(C1,) and its inverse o¥: ¥(C1,) — C1, by

= () @ (5 ) @ (T ) en
@) . ::<—0Tl (1J) @), _<Tl ‘OTl) @)., ;:<T0l _01) (4.12)

where C1,, and ¥(C1,) are given in (41]) and (£.8]). The map ¢°“: C1,, — ow(C1,) and its
inverse 9°“: ow(C1,) — C1,, are given by the chain maps

_ < Tol 2) ("), (H H) (7)., = < _OH _01 ) (4.13)
_ ( Tol (1)) @) <Tl Tl) @), = ( ‘OH _01) (4.14)

with ow(C1,) given by ([A3). We sometimes express chain maps using cube-like diagrams.
For example, the (rather obvious) chain maps ¢°*: C1,, — ow(C1,) and 9°“: ow(C1,) —

28



The Casimir complex and its symmetries 29

C1,, can be depicted as

T¢ -

EFL,{2} s EF1, s EF1,{—2}
o, -
w
1,{1—n}
o7 07¢
03* 03¢
EF1,{2} I

1n{1 - n}
where
O = 05 = o = 08 = lgr1, o = —0f" = 1dy,, (4.16)
and
01" =03 =07 = —03° =ldper,  03° = —0g" = Idy,. (4.17)

The interesting maps here are ¢ : C1,, — 0(C1_,,) and its homotopy inverse ¢”: ¢(C1_,) —
C1,, given by the diagram

EF1,{2)

T > EF1,{—2}
e

¥
s EF1,

94 Q4 0g 0%
FEL{2) SIS N “oy &
O A
W
1%
1,{1+n} > s FE1,

29
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where

ag ag ag ag ag o %

01 =05 =0 = 07 = ><: e = T/ % =~ Z Q
fi+f2 +fo
=—n—1

QZZ—Q ng—zpﬂa 05 = —\J 9‘{02{2
- fit+f2 1m o
=n—1

-0 -0 -0 -~ a2 0 /&jfz

fi+f2 +fo
=n—1
§Z=—Q 2 = —JJ %Z—Z]:QHQ QIOZQ
o f1+f21 h "
=—n—

The chain homotopies p70” — Id ~ 0, 970’ — Id ~ 0 are given by
hi

/_\ _
EF1,{2} A2 >»EF1, rii >EF1,{-2}

T4
1,{1 —n} oy ,5}"1”\_/>1n{n—1}
/\hq —
FE1,{2} L > FEL, ) > FE1,{—2}
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where

T T M 0 PR s
2 f1+f2 +fo

f1-_i-f2+f3 f3 Ji1+f% m h
(4. 20)
VA / o r
hy=hs = — Z Q+gz hy = — Z J;Q—l-fz hy = Q
EHD g Skl P Sl A
(4.21)
One can verify the following equations
0°0° —1d = hd+ dh, (4.22)
0°0° —1d = h'd+dhn. (4.23)
The chain maps just defined satisfy
o(¢”) =70, o(¢”) = ¢, (4.24)
¥(e”) = —0", ¥(@”) = —o", (4.25)
w(e™) = o(2™), w(@™) = o(0”). (4.26)

To prove part [b] of the proposition one can check by direct computation that the front
square in (LI0) anticommutes. The back solid square is just o applied to the front solid
square so it also anticommutes. The leftmost square commutes on the nose and we define
maps
0 =0(0°%) 0o’ 0¥ =0" oo(p”), (4.27)
using these commutative squares. The rightmost square is just ¢ applied to the leftmost
square so it also commutes on the nose. The top square can be shown to anticommute.
After observing that ¥w(9”) = Ywo(g”) and w(p”) = wo(e?) the anticommutativity of the
bottom square follows since it is just wo applied to the top square.

Part @ follows immediately from part @ since C'1,, = 0(C1_,,). O

Theorem and the results in section 3.2l imply that
Ko (Kar (Kom(U))) = Ko (Kom (KarU))) = Ko (Kar(U)) = Ko(U) = 4U.  (4.28)

Under this isomorphism

[C1,] = C1,. (4.29)
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4.2 Commutativity of the Casimir complex

4.2.1 Commutativity chain maps £~ and E—
Definition 4.2. Define chain maps £~ = ¢-1,,: FC1, — CF1, and £~ = £-1,,: CF1, —
FC1,, as follows:

Ll »EFF1, k= EFF1,{-2}

EFF1,{2}

— ‘LTi> FEF1,{-2}

I

F1,{1 —n} FEFL, Fl,{n—1}
v -l
(4.30)
where
AR AR Y
Jit+fa+fa+fa (JL ) Atfatfsd %3
[ 1</
5‘9’_}{1 m / "’ 54_}“ >[4
f1+£2+_fs+f4 fll/ fli‘f2_+f (&

&= X |- st
i m }{1 f1-%-fs &Q

=n—1

fi Q - fi
KR B TRE v 2 g
f1+f2+f3 fitfo=n LR

=n—1 1Sfl
1<f1

oy ee[goel)

32



Commutativity of the Casimir complex 33

The map E ~1,, is defined via £71,, using symmetry 2-functors:

£1, = Fo¥ oh(£71,) 0 oV F. (4.31)
More explicitly,
f — _
RS E NG v}
f1+f2+f3 2 f1+f2
IZ;l IZfl

_ U '
& = _\L% + 51%1\[ . & = >®@ + 5n,lJ/ Ql
o/
f3 _ f3
Fé%l F{;i ﬁ+h+h {92 ><:l ﬁ;%;h ffggz

=n—1 =n—1

6{ 6{ fﬁ@
f1+f2+f3+f4 LA

=n—2

\ \ %,

f2 . ~_
SR NS R ¢S o
ﬁ+h+h+h At fa Ftfotfsd &5

=n—2 =n—1

1<f3 1<fs
Remark 4.3. Note that when n < 0 all terms involving bubbles are zero.

Proposition 4.4. The maps £~ and E ~ defined above are mutually-inverse chain homotopy
equivalences between FC1,, and CF1,,.

Proof. To check that the maps £~ and E ~ are chain maps it suffices to verify this claim for
the map £~ since f is defined from ¢~ via (£.31]). This is proven by dlrect computation.

Below we give explicit chain homotopies Id — &~ f ~ = hd+dh and Id — 5 § =h'd+dn
showing that £~ and 5 are mutually-inverse homotopy equivalences.
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Commutativity of the Casimir complex 34

>y EFF1,{—2}
Tl

Y b

o 3

hy = T x + > . ) (4.34)
f1+f2+f§+f4 LRt

=n—

f2
fi+fe+f3 : A1s

=n—2
fi 1
X B 2 e
f1+1i2+f§+f4/‘l/ f2 f11-f2-2f3 /2

e/
fi
W, =hy = —}{jv hy = —hl = }{jv— > Lﬁ sz (4.37)
f1-:i-7]:2_-5f3 M
n n
B, = - n = Om-1) - Y f1Qf2 (4.38)
VA A L e 2
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hy = — + Z fr MFF = - Z af (4.39)

O fitfAds | 9 nipl o
1<f1
\ A ey,
hy, = — + Z le = - Z (4.40)
f1-_Ff2-iif3 'S il‘f‘fi AT S
ISfl -
u n \j\ Uf:s
hy = — + n = O(n-—1) — Z fIG
n fli‘fQ'iifB Atrfo N

(4.41)
The rather nontrivial computation that these maps are the required homotopies is
omitted from the paper.

0
4.2.2 Commutativity chain maps ¢ and £*
Definition 4.5. We introduce chain maps
EF=¢T1, =07 owa(£71,) 0 0™ E: CEL, — EC1, (4.42)
and L R
£ =¢"1, == “Eowa (€ 1,) 0 071 ECL, — CEL,,. (4.43)

The diagrams

cel, —— S Lecn, gel, — e,

QW{ }z)w &WJ T@Ma : (4.44)

ow(C1,)E1, ?&Iw(Cln)ln Eow(Cl1,)1, —— ow(C1,)E1,

wo(£7)
commute by definition.

Proposition 4.6. The maps ' and E * defined above are mutually-inverse chain homotopy
equivalences between £C1,, and C&1,,.

Proof. The Proposition follows at once from (£42]), (£.43]), and Proposition 4.4l O
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4.3 Indecomposability
4.3.1 Indecomposability of Casimir complexes

Since 1, is indecomposable for all n, morphisms 1,{1 —n}, 1,{n — 1} are as well. The
l-morphisms £F1,{-2}, EF1,, and EF1,{2} appearing in various direct summands of
the complex C1,, are indecomposable when n < 0. Assuming n < 0 each of the eight maps
describing the differential in C1,, belongs to the graded Jacobson radical of the category

U(n,n). This implies that C1,, does not contain any contractible summands if n < 0.

Proposition 4.7. The complex C1,, given by (L)) is indecomposable in Kom(U) if n < 0.

Proof. Assume n < 0 so that C1,, consists of 6 terms, all indecomposable. Those terms
belong to the category U (n,n), which is Krull-Schmidt with finite dimensional hom spaces.

There are no homs (of degree zero) 1,{1 —n} — £F1,{2} for any n. The degree zero
hom space £F1,{2} — 1,,{1 —n} (for n < 0) is nontrivial only when n = 0, and then it is
spanned by the diagram . Consequently, (C1,)™' = EF1,{2} ®1,{1 —n} has only one
possible direct sum decomposition for n < 0, and a one-parameter family of direct sum

decompositions for n = 0
(C1l)™! = X @ 1o{1}, (4.45)

where X = £EF10{2} is the image of EF1o{2} in (C1p)~" under the homomorphism
[or )
“
for a € k. Any direct sum decomposition of (C1,)° = £F1, ® EF1, is determined
by a 2 x 2 invertible matrix with coefficients in k. There are no homs (of degree zero)
EF1,{-2} — 1,{n — 1}, and the degree zero hom space 1,{n — 1} — EF1,{-2} is
nontrivial only when n = 0, and then it is spanned by Y. Therefore, for n < 0 direct sum

decomposition of (C1,)! is unique, and for n = 0 any direct sum decomposition in (0, 0)
of (C1p)! = EF19{—2} ® 1o{—1} has the form

(Cly)' ~ EF1 {2} Y (4.47)
where Y =~ 1o{n — 1} is the image of 1p{—1} in (C1¢)" under the homomorphism

(")

for some b € k.

Suppose that for some n < 0 there exists a nontrivial direct sum decomposition C1,, >~
C; @ Cy in Kom(U). Then, from the above discussion, we know that the summand 1,,{1 —
n} C (C1,)~! must be either in C; or C;. We can assume it belongs to C;. Applying the
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differential in C1,, and the classification of direct sum decompositions of (C1,)° we see that
C; must contain the diagonal summand of (C1,)°, the image of

(1)

EF1, s EF1, ®EFL,, (4.49)

Further application of the differential and very few available direct sum decompositions of
(C1,)" tell us that C; must contain the summand £F1,{-2} of (C1,)*.

If (Co)~! # 0, then (Cy)~! = X, described above, for some a € k. Then dX must lie
inside a summand of (C1,)° isomorphic to £F1,. A simple computation shows that this is
impossible. Therefore, (C3)™! = 0 and (C_;) = (C1,)~". Applying the differential to (C;)™*
we quickly conclude that (C;)° = (C1,)° and then (C;)' = (C1,)!. Hence C; = 0 supplying
a contradiction. O

Corollary 4.8. The complex C'1,, = ¢(C1_,,) is indecomposable in Kom(U) if n > 0.

Assume n < 0. Since C1,, and C'l,, are isomorphic in Com(U) by Proposition [4.1], and

FEL1, = EF1, @, 1, we conclude that C'1, is isomorphic in Kom(U) to the direct sum
of C1,,, contractible complexes

0—s 1 fn—1-20+2y 11, {n—1-2042}—0, 0<l<n—1 (450)
concentrated in cohomological degrees -1 and 0, and contractible complexes
0—s 1, {fn—-1-20—2y 1, {n—-1-20-2}—s0, 0<l<n—1 (451)

concentrated in cohomological degrees 0 and 1. When n = 0 complexes C1,, and C'1,, are
isomorphic in Kom(U) via Proposition B}

When n > 0 there is a similar isomorphism in Kom(U) between C1,, and the direct
sum of C'1,, and contractible complexes.

In the complex C'1, = o(C1_,) the 1-morphisms 1,{1 4+ n}, 1,{—n — 1}, FE1,{-2},
F&1,, and FE1,{2} in the direct summands are all indecomposable when n > 0. In
this way, the symmetry 2-functor ¢ plays an important role allowing us to switch between
complexes C1,, and C'1,,.

The commutativity chain maps studied above reduce drastically when we work with
the indecomposable version of the Casimir complex. Below we collect these maps for later

convenience.

4.3.2 Chain maps ¢~ and E— in indecomposable case

When n < 0 the maps in Definition simplify to

£;=£5=%—% 55:@1 54_:><l
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— e _ - - -
R RLT I P P
_ I VR
n
SN T R
In the diagrams above we have omitted the label n on the far right region of each diagram

for simplicity. We will sometimes make use of this convention in the following sections
when the labelling of each region is clear from the context.

4.3.3 Chain maps ¢+ and ¢+ in indecomposable case

For n < 0 the chain maps £1: C€1,, — £C1,, and EJF: EC1,, — C&1,, defined in (£42) and
({43) can be written as

T4,

EEF1,{2} EEFL, mINE EEFL{-2)
T T
TT¢
T’U
& &
EFEL{2} > EFEL, 5?51n{ 2}
M - T
E1,{n+1} EFEL, »E1,{n — 1}

(4.52)

ff:f;:?@—?&‘ nga 5:=T><
5;:5;:@—?&‘ gizﬁggz ~1
c-a- T8 6=V & --f

X EeE- LR @Z-Tu
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~

4.3.4 Chain maps ¢({") and 0({7) in indecomposable case

When n > 0 it is useful to work with the indecomposable in Kom(U) complex o(C1_,)
instead of C1,,. For n > 0 the maps

&1, = 0(E 1 p0): Fo(Cl_,) = 0(Cl_pi0)F1, (4.53)
&1, :=0(E 1 ,40): 0(Cl_py0)F1l, = Fo(C1l_,) (4.54)
simplify to the form
FFEL{2} Y s FFEL, — iﬁ > FFEL{—2}
1Y A
1e7
> Wt
F1,{1+n} & { FFEL, —— LA
€| [En (65)3 (€2 )s
(&5 )2 E )2 (€5)3 ;
5 (& )s
FEF1,{2} 11l . FEF1, LT ey gy @
-
417 & +
F1,{—-1+n} > FEF1, > Fl,{—n+1}
7l -l

(4.55)
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4.3.5 Chain maps o(¢t) and o(¢4) in indecomposable case

For n > 0 the chain maps

E1, = 0(EY1_,5): 0(Cl_,_5)EL, — E0(C1_,,) (4.56)
£, =0("1_,5): E0(C1_,) = o(C1_, 2)E1, (4.57)

simplify to the form

147 41T

FEEL{2} > FEEL, sy FEE1,{—2}
7 N
41T
£1,{3+n} — T Y E1,{—n — 3}
(23] (€h)s E)s| |(E)s
(E5)2 (E)s &) ~
—~ (50 )7
(& )s
EFEL {2} ST, erey gy €
17 7 o
E1,{1+n SEFEL, Y€1, {—n—1
{1+n} T oy { 1
(4.58)
where

—@n =8-3R @ -TY @ - -]
@ =X T @e=@» -0 - T @nr--Y]
(o= (6 % % ()2 :QT (&)s XT
€n=s = La -y @ = - @ = ] A
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4.4 Symmetries of the commutativity chain maps

Given a 2-morphism « and a 1-morphism x in U we write ar in place of the composite
al, whenever this composite makes sense, likewise for xa.

The following Propositions gives several alternative characterizations of the various
commutativity chain maps.

Proposition 4.9. For all n € Z the equalities in Kom(U)

£ 1, = Fo¥ ob(£1,) 0 o F (4.59)
£1, = 0?Fo(E1,) 0 Fo? (4.60)
£11, = E0¥ 0 h(ET1,) 0 0¥E (4.61)
£F1, = Y€ o h(£T1,) 0 Eg¥ (4.62)

hold.

Proof. Note that (4.59)) is how the map ¢~ was defined. Equation (4.60]) follows from the
strictly commutative square

FC1, i s CF1,
—1d —Id
Fot FCl,———CF1, F (4.63)
/ Y(e")F
Fip(a¥)
Fu(C)1, - sy (C)F1,
¥(C) = ¥(C)

where the triangles commute since (o%) = —o%, ¥(¥) = —o¥, and ¢¥ has inverse g% by
Proposition L1l The bottom square is ¢ applied to (£59).
To prove (A.61]) consider the diagram:

CEl, & yEC1,
thj Eo v T
ow(C)EL, — ) L esu(0)t,
ovE Uw(}'gw)\[ Taw(@"]—') Eo¥ (464)
0)El, s &how(O,
V0w(C)E 1y —————— EGow(C)
4 —p(07v)E —EP(07%)
0)EL, _ s EY(C)1,
v(0) — v(©)
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The bottom square commutes on the nose since it is ¢ applied to the definition of §+ in
(#43) with two minus signs distributed through the map. The top square is the definition
of &7 in ([@42)). The center square is ow applied to ([£.59). Noting that

ow(Fo¥) = ow(o")E (4.65)
ow(o¥F) = ow(p")E (4.66)

the left and right squares commute since
P(07) 0 0 = —ow(e”) 0 0™, P(¢™) 08" = —ow(d") 0 07 (4.67)
by Proposition 1] part (bl). Equation (£62) follows from (Z61]) by applying ¢ and arguing
as in the proof that (A59) implies (4.60) above. O

Just as the maps {1 and §A+ are defined from {~ and §A ~ using the symmetry ow, the
following proposition characterizes £~ and £~ in terms of £ and £ via the symmetry ow.

Proposition 4.10. For all n € Z the equalities in Kom(U)
£1, =0""Fowo(£F1,) o Fo™ (4.68)
1, = Fo™ owo(ET1,) 0 o°“F (4.69)
hold.
Proof. The first equation follows from the commutative square

e

FC1, >CF1,
K %
Fore Fci, = ,CF1, Fore (4.70)
%5):&@@@ crw(E@"‘*’):crw%
Fow(C)1, = »ow(C)F1,

where the bottom square commutes on the nose since it is cw applied to the definition of £*.
The left and right triangles commute on the nose since ow(0’) = p° and ow(0"*) = 7
and ¢ has inverse ¢”* by Proposition .1l The second claim in the Proposition is proven
similarly using the definition of £*. O

Notice that there are four equations in Proposition [£.9but only two in Proposition [4.10
The missing equalities are definitions (4.42]) and (£43)).

Proposition 4.11. For all n € Z the equalities (=) and homotopy equivalences (~) hold.
€1, =T F 00(E 1onsa) 0 Fo° (471)
E 1, = FP 00(E 1opio) 00" F (4.72)
£, = E° 0 o(ET1_,_5) 0 € (4.73)
£, = FE00(E" ) 0 & (4.74)
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Proof. We need to show the equality of two chain maps in equation (LT1)). Each is given
by three two-by-two matrices and we check the equality of coefficients one by one. That
is twelve equations to check. Here we prove just one of the more complicated equalities of
matrix entries. For example, the equality for the upper left term of the first matrix is

E7 1, =0T F 00(E; 1 nya) 0 Fof + 5 F 0 0(E5 1 npa) 0 Fof
+ E?F o U(fs_l—nJrz) o ]:Qg + ng o U(le_l—n+2) o ]:Qg- (4~75)

One can check that

R n n % n
O F 0 o(E71 pin) 0 Fof = — DR R N ()
f1_+f2::_-{3

1<f1

where the summation term is zero by the dotted curl relation (B.I7) since

SN = % Z%n (4.78)

f3 n
fit+fa+fs fitfe+fs  g1t+g2
=—n+1 =—n+1 =n—2+f3
1<f1 1<f1

and the for both summations to be nonzero we must have —n+1>0and fs+n—22>0
which is impossible since f3 < —n + 1. Similarly,

ugl
~ n
BGF ool pm)oFe] = — Y Y ng , =0 @
1
A i K
1<f1

since the summation indices can never both be non-negative.
We also have

S A
- n
0 F00(é51 pa) o Fo§ = - > Qg2 " (4.80)
g1+g2
- =n—2 I
and
ugl
BFooElw)oFd = — 3 S8,/ " (4.81)
g1+g2
=n=3 L M
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Hence, equation ({75) amounts to proving the equality

n n /6 ey
M% _E%é */”_2@2 " s
~ 25 LA

Using the nilHecke relation (8.4]) and cancelling terms we can write

R -

Now we can apply ([B.15) to both terms on the right-hand side, sliding the bottom right
crossing in each diagram through the diagonal line. Note that after applying (BI5]) the
location of the dots above produce some terms that cancel leaving only

— g1+l gga g1 g4+1 4.84
n n T {Q n ) (4.84)
g1 +92+93 91 +g2+93 g2 93
tg4a=—n tga=—n

where the last two terms can be shown to be zero by simplifying the dotted curl and
arguing as above. Therefore,

R -

Mfl
@ T M-
1-_i-f2+f3 ER 1i-f2+f3
(4.87)

Now plug this into the right-hand side of (£.82), use the identity decomposition equation
(B12) on the last three terms above and note that the additional bubble terms arising from
the application of (BI2]) vanish by considering the conditions on the summation indices
as above. After reordering the non-vanishing terms of the right-hand side of (4.82)) we are
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left with
N

e
_%+%_ 3 ) 3 Q2 - 2992 (4.88)
R L ST VY T RN

By rescalling the third term and simplifying the last two terms, the above becomes

- 3 "
VAR YA ED VIR CY AR SR ) (4.89)
fli-gz_-;fé f.é f1-_i-£2-gfs /'i
1</ 1<fs

But by sliding the bubbles using a rotated version of ([B2I]) we can simplify the last two
terms

] f1 _é ) ; ;&J
g1+1
> Qz -y Qg BN N (ot+1l-g) Q

! / 3 ‘
TIPS MR Saf PR fo
1<fs 1<f4 1<f3

f’ﬁj

- Z Zf2+1—92 Qﬁ

f1+f2+f3 91+92
=n—2 =f2
1<f]

- Q (4.90)
ﬁ+h+@+h 4

1<f3

proving equation (4.75]). The rest of the proof of (£.71]) follows by many more computations
analogous to the one above.

Equations (A72)—(ZT4) follow by applying various symmetries to (LT71)). The left and
right hand sides of (L72) constitute the perimeter of the following diagram

CF1, >FC1,
\ y'
o’ F CF1, = FC1, 4 (4.91)
AFU(@" )F 0(§°F)=F%
o(C)F1, — > Fo(C)
0(§1-nt2)
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Since o(9%) = 07 and 0(0”) = ¢ the left and right triangles commute up to homotopy by
Proposition @1l The bottom square is o applied to (A7) with parameter —n + 2.
Equation (4.73)) follows from the commutativity of the diagram

§+
C&1, > EC1,
K”S e T
ow(€™)
ow(C)€1, »Eow(C)1,,
7€ w(e?F) w(Fe7) €07 (4.92)
w(C)€1, — >»Ew(C)1,
w(€7)
1 %)e:oww so@m:&r%\
o(C)¢é1,, — »Eo(C)1,,
©) — ©

Here w(¢”F) = w(p”)€ and w(Fo”) = Ew(0”), the left and right squares commute on the
nose since

0¥ oa(g”) 0 0% = p°¢ (4.93)
by Proposition 1] part (b). The center square commutes since it is w applied to (7).
The bottom square is o applied to the definition of §+, where we used that 02 = Id. The
top square commutes by definition of £*.

A similar homotopy commutative square to (4.91]) shows that (4.74]) follows from (A.73)).
U

QUJ7O'UJ OO_(QO'UJ) o QU — QO'UJ’

Proposition 4.12. For all n € Z the equalities (=) and homotopy equivalences (~) hold.

¢ 1, =" Fow(1_,) o0 Fo” (4.94)
1, ~ Fo ow(T1_,) 0 o*F (4.95)
1, = E¥ ow(E1_,) 0 0*E (4.96)
£, ~ *Eow(E71_,) 0 Eo” (4.97)

Proof. The proof follows from Proposition ILIT and the definitions of ¢+ and &+. For
example, the first two equations are proven by the diagrams

CF1, £ in s FC1, FC1, ¢ In »CF1,
N v N v
o’ F O'(C).Fln ﬁ O'(C).Fln Fo¥ Fo¥ .FU(C)ln ﬁ O'(C).Fln v F
o —n+2 g —n+2
/w(ﬂ)f fw@mx %ww) w@mx
w(C)F1, o s Fw(C)l, Fw(C)1, o >w(C)F1L,
(4.98)
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The top squares commute by Proposition LTIl The bottom squares are w applied to the
definitions of {7 and £T, respectively. Note that w(g?) = o(°%) and w(0”*) = o(”).
The left and right triangles in both squares commute on the nose since

o(07) 0 0" = ¢, 0”oo(0) =170". (4.99)

Using Proposition .10 similar arguments as the above prove the last two equations in
the Proposition. 0

5 Naturality of the Casimir complex

In the previous section we have shown that the Casimir complex commutes with generating
l-morphisms £1,,, F1,, in Com(U). In this section we show that this commutativity is
natural with respect to 2-morphisms.

5.1 Natural transformations x and &

Throughout this section we will find it convenient to view Kom(U) and Com(U) as idempo-
tented additive monoidal categories as explained in the introduction. Consider the complex

c = Pcu,. (5.1)

nez
In this section we show that the functor
—®C: Com(U) — Com(U), (5.2)
is naturally isomorphic to the functor
C®—: Com(U) = Com(U) (5.3)
via an invertible natural transformation
ki —®C=C® - (5.4)
with inverse
R:C®—=—-®C. (5.5)

Recall that the tensor product of complexes and juxtaposition of diagrams gives the compo-
sition operation in categories Com(U) and Com(U). Here we will use composition notation
rather than the tensor notation.

Defining the natural transformation x and its inverse k amounts to specifying for any
complex X in Com(U) a chain map

kx: XC — CX, kx: CX — XC, (5.6)
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such that for any chain map f: X — Y the squares

ye—" ey cy — s ye
fc cf cf fe (5.7)

commute (up to chain homotopy).
On generating 1-morphisms we define

kr1, =& FCL, — CF1, Rr1, =& CF1, — FC1, (5.8)
kei, i=ET: ECL, — CEL, Rer, 1= E&T: CEL, — ECL,,. (5.9)

For an arbitrary complex X in Com(U) the chain maps kx and Kx are determined from
the assignments above. For example, if X = EFF1,{t} then

- - &t
iy = EFFCL Y Y erer1, 1y 20 corr, iy ST Y ce F L ).
(5.10)
This definition of kx produces a commutative diagram
cxXvy1, —* s XvcCi,
kxY XKy
XCY1l, (5.11)

in Com(U) for complexes Y = 1,,Y1,, and X = 1,,X1,,, withCXY1, =1,,C1,»X1,Y1,.
Proposition 5.1. Equations (5.7) hold for all 2-morphisms in Com(U).

Proof. It is enough to check naturality squares (5.7]) on generating 2-morphisms (dots,
crossing, cups, and caps) in U. This will be done in Section [5.2 a

It is clear from the definitions in (5.8]) and (59) of k and % and the results in section
that
k\X"{X = Idcx, Iﬁxk\X = Idxc (512)
in Com(U), so that x and K are inverse.
Naturality of x and K and the universality of the Karoubian envelope allow us to extend
k and K to isomorphisms between functors

—®C : Kar(Com(U)) — Kar(Com(U)) (5.13)

and
C®—: Kar(Com(U)) — Kar(Com(U)). (5.14)

The equivalence Kar(Com(U)) = Com(U) allows us to treat x and K as isomorphisms
ki —@C=C®— and K:C®—-—=-&C

between endofunctors on Com(U) concluding the proof of Theorem [L11
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5.2 Naturality with respect to 2-morphisms

It is immediate from the axioms of a 2-category and will be used throughout this section
that for any g € G the chain maps ¢?: C — ¢(C) induce natural transformations between
functors

FAR—CR®—=9(C)® —, —®: —’C=-g(C). (5.15)

5.2.1 Naturality of x for dot 2-morphism
We will show that the diagram

Fcl, e F1, Fc1, S cr,
icT Tei = icT /I\ci (5.16)
FCl, —— CFL, FC1,—CF1,

commutes up to homotopy (commutes in Com(U)). Let
() =& o(3C)—(Ce)o¢. (5.17)

We construct a chain homotopy (£7)" ~ 0.

(AR -Tel  #l
o EFF1n - EFF1,{-2}
< eF L) ) Tel VY ( ) Nl -l >< )

.7-'17L{1+n} 8]:]:1'” .7:17L{n—3}

(e 1o ()P o Gk
( FEF1.{2} ) . ( FEF1, ) . ( FEF1.{-2} )
o )T oy e L Ly e

[Ts ™ In ~In

where, after simplifying the map (£7)’, we have

€= % - Xt (€ )i =0 (5.19)

(5/_)21 = J - \{ (5/_)2_21 =0 (5~20)
V) O
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(€)= >< l - >< i (5.21)
(7)1 =0 (5.22)
(€7 ) = - ? 71{1 (5.23)

8 }< l >< i fi+fatf /‘foQ Stk
(€7 )5 = - ?u 71 (5.24)
N >< l }< l fitith f‘x@ ’ fitiatfy /‘foQ
(€)= — ?/ 7# (5.25)
B }< l :>< \L Ji+fo+f3 &Qﬁ fit+fo+fs /‘LQh
g T
(€)1 = n h (5.26)
12 flgfjc: n Q 2 flf%:" sz
(€7 ) =(7)n=0 (5.27)
and the chain homotopy is given by
_ _ . f
(ho)ll - (h0)12 - >< l f1+f2+f37fz{;2 (5~28)
(h0)21 - _(h0)22 - J (5.29)
N

(hl)ll - :>< f1+f2+f57/‘/¥@ ’

=n—1

1<f1
B h MY =0
( ) 21 fl %ZHT\Q . ( )22

1<f1

=n—1
1<f1

>< . n (5.30)
f1+f2+f57/‘/¥Q ’

(5.31)

The naturality square for the map kgy, = EJF follows from the naturality square in
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(6.16):

. EI 5
L]

C&1,

E*
where the middle square is the image of (5.16]) under the 2-functor w. The left and right
squares commute by the naturality of ¢ and g, and the top and bottom squares commutes
by Proposition [4.12l

5.2.2 Naturality of ¥ for dot 2-morphism

We will show that the diagram

CFl, — T s FC1, cFl, s Fe1,
c 1\ T c = c 1\ /I\ c (5.33)
CF1,——— FCl, CFL, — FCl,

commutes up to homotopy. To see this apply cw to the diagram (5.32]), and use the
naturality of ¢ and 9%, and Proposition to see that each of the five small squares

in (5.34) commutes.

CF1, FC1,
[ g7 T
ow(E)
ow(C)F1, > Fow(C)1,,
Ci Uw(C)i /l\iaw(C) iC (534)
ow(C)F1, = > Fow(C)1,,
Qawf f‘/g\aw
CF1, = FCl,
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The naturality square

cEl, — S s ec1, cel, Sy e,
c 1\ T c = c 1\ /I\ c (5.35)
ce1, ——£C1, CEL, —EC1,

can similarly be shown to commute by applying ow to the square (5.10) and appealing to
Proposition [£.10l

5.2.3 Naturality of x and k for crossing 2-morphisms

We will show that the diagram

Frel, s cFrFl, Fre1, =5 rer1, 25 crF L,
x C/I\ /I\C x = x C/I\ /I\C x (5.36)
FFCL, 7> CFFL, FFCL, — > FCFL, —— CFFL,

commutes for all n € Z by treating the cases n < 0 and n > 0 separately. For n < 0
consider the map

=(C X )o o (FE&)— (& F)o o (X 0). (5.37)

One can check that the map Z is identically zero, so that the diagram (5.36]) commutes on
the nose for n <0 (i.e. commutes in Kom(U)).
For n > 0 we deduce commutativity from the commutativity of the diagram

F&~ EF

FFC1, FFC1, >»CFF1,

/\\FFQU ‘F@\UV Y@U‘F bva/\

FFo(C)1, 255 Fo(0) F1, <4 Fo(0)F1, <5 o(C) FF1,,

X e Tx o(C) (C) KT c X, (5.38)

FFo(C)1, —>fa . —% Fo(C)F1, HU(C).F.F]%
/:]:QU \ / Fo’F Z)\”}"}"\N
FFC1, FCF1, - >»CFF1,
Fe- & F
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where the center rectangle

FFo(C)l, —22 Fo(C)F1, —22 o(C)FF1,

X U(C)T Pc) X (5.39)

FFo(C)1, —— Fo(C)F1, ——o(C)FF1,

o 50’

commutes on the nose since the map (of complexes)

Z" = (a(C) X ) o (& F) o (F&) — (& F) o (F& ) o (X 0(C)). (5.40)

is already zero in Kom(U) for n > 0. The triangles commute up to homotopy since o’
is the homotopy inverse of ¢” by Proposition L1l The left and right squares follow from
the naturality of o7, and the commutativity up to homotopy of the remaining squares is
implied by (.TT]).

For all n € Z the naturality square for kggp, and the crossing is proven as follows

get &g

EECL, >ECEL, >CEEL,
T \59 V \ o€ @57*\
£€w(0)1, X ew(0)e1, s eu()EL, LE B w(e)es,
e T w(C) w(C)YT N (5.41)
EEw(C)1, %&u )EL, — > Ew(C %w 1EET,
£€Cl, >ECE1, — f(,’é’é’ln
ger etre

where the center rectangle is the image of (5.30) under w. Each of the two triangles
commutes up to homotopy since ¢* is the homotopy inverse of g*. The squares on the left
and right commute by the naturality of ¢* and p¥. The remaining squares commute by
equation (£97) in Proposition

The naturality of K and the crossing is established by applying the symmetry 2-functor
1) to the above arguments.
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5.2.4 Naturality of « for cap 2-morphisms
We show that the naturality square

c1, —sc1, c1, »C1,
EFCL, ——sCEFL, EFCL, —— ECF1, ——CEFL,
1n & v

commutes up to homotopy by considering the cases n > 0 and n < 0 separately.
For n < 0 the complex C1,, is indecomposable. In this case, let

z=(c A )o(8F) o)~ ((AC). (5.43)

We will specify a homotopy Z ~ 0.

(A -Ty ¢#l
™~ EFLn - EF1n{~2}
< EF1.{2) ) Ts ( ) N N ( )

1,{1-n} EF1n 1,{n—1}

(2)! " (2)° - (2)!

( EFEF1.{2} EFEFL, EFEF1n{—2) )

) e oy e ) (e
IR Mn -Tla

where, after simplifying, Z is given by terms

n n n Jon
BN
A (A
(2)

(5.44)

5 =0 (5.46)

(Z)o = — (5.47)
o

(Z)y = — (5.48)
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N N [+
(2)}, = &\f - &\n (5.50)

(Z)3 =0 (5.51)

AN o
[y

B A
Y Y
), :T f " (5.54)

(Z)51 =0 (5.55)

(Z)p = — (5.56)

&X > 9} ot l (5.57)
91+g2+gs gf\ n
(5.58)
&\f > %ng f (5.59)
91192:;95 IN
m (5.60)
N
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(hl)n: - K% - Z /{\ng i‘“ (5.61)
g1+g2+gs| P28 n

=—n

(n"),, = —T ' (5.62)

L

(h1)21: - /;/Zlil - 2 gl}\ggjfl (5.63)

(h0)22 = 0. (564)

It remains to prove the homotopy commutativity of (5.42) in the case n > 0. This follows
from the commutativity of the diagram

C
C1, >C1,
T A
o(C) o
a(C)1, »o(C)1,
AC O }(C) ~ (5.65)
/ gﬁfl \
EFo” EF

EFCL, — ECF1, — >CEF1,
€€ e F

The left and right squares commute (up to homotopy) by definition. The top square
commutes up to homotopy by Proposition LIl The bottom two squares commute by
Proposition 11l Hence, naturality follows from the commutativity of the diagram below:

»o(C)1,

QU(C)/I\ TU(C) N (5.66)
177/ ~ + n
when n > 0.

To prove the homotopy commutativity of (5.60]) let

7 = (U(C) m) o (EFF) o (55;) —( Qo—((z)). (5.67)
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We will show that Z’ is homotopic to zero

v R A
<mn{2}) (iT UJ (mn) ( )

A FE1,{-2}
1,{1+n} 1,{—n—1}

(Z/)l/l\ ho (Z/)O/l\ \ (Z,)l)[

( EFFEL{2) EFFEL, EFFEL -2} )

i) ( (IR )< )( STLT L )<
TLT LY o -Tla

where the chain map Z’ is given by

(20 = ?1 - KZ4 Tn (5.69)

(5.68)

(2 = (25 = (25 = 0. (5.70)
(2% = 04 } - KZ< Tn (5.71)
(232 =0 (5.72)

(2, = —(2)0, = 04 P - @% T " (5.73)
(Zn = %n -~ /\24 Tn (5.74)

(2012 = (2= (211 = 0 (5.75)

and the chain homotopy is given by

(ho)n - _(h0)12 - /24 T ' (5.76)

(ho)zl = (ho)zz = 0 (5.77)
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(hl)n - (hl)zl - 04 Tn (5.78)

(h'), = (h'),, = 0. (5.79)

and

Naturality of the other cup follows from the homotopy commutative diagram below:

c
C1, »C1,
A w(C) 4
w(C)1, >w(C)1,
O C O w(C) w(C)\[\/I\ C\[\
FEw(C)1, T)]-"w n 7 Fw(C)EL, ﬁw((})}"ﬁln
/ FEo® FQW\ /]—' o FE \
FéEC1, — FCEL, CFE&L,
Fet £ €

(5.80)
The center rectangle follows by applying the symmetry w to the homotopy commutative
square (0.42]) and replacing n by —n. The two squares on the left and right commute by
naturality of ¢, 0*. The top square and the bottom middle triangle are commutative since
0“ is the homotopy inverse of g as shown in Proposition 1l The bottom two squares
follow from equations (4.94) and (A.97) in Proposition 4121

5.2.5 Naturality of k¥ for cap 2-morphisms
We show that the squares

c1, — " se1, c1, — " _ye1,
c QT Tmc C\;\]\ ][\ c (5.81)
CEF1,——EFCL, CFEL,—— FECI,
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commute up to homotopy. To show that the first square is homotopy commutative consider
the diagram below:

C
Cc1, >C1,
/\YW /\/\
0w (C) i
ow(C)1 ow(C)1,
¢ C QCT ~C  (56.82)
(C)EFL, Té’aw 14 gow(C)F1, —>5faw(C)
/ QTUEF \ Avwf SI@W\
CEFL, >»ECF1, — »EFCL,
ErF EE-

The center rectangle is obtained by applying ocw to the homotopy commutative square
(542). The triangle commutes since ¢’ has inverse p°@ by Proposition 4.1l The bottom
two squares were shown to commute in Proposition [£.10l The remaining squares commute
up to homotopy by the naturality of ¢ and Propositions [4.1l

The second naturality square in (B.81]) can be shown to commute by applying ow to
(580) and arguing as above.

5.2.6 Naturality of « for the cup 2-morphisms

We must show that the squares

EFC, %csn FEcu, %Cfﬂ
e I ¢ T (5.83)
€1, ——C1, €1, ———C1,
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commute up to homotopy. The proof is given by the following diagrams:

e~ &F

gFCl, s ECF1, s CEF1,
T \Iafgw 551&7‘ \\Slgw]-' GvEF /‘A
eFu()1, 22 ep(0)F1, 4 gu0)FL, Y% wo)e F1,
e oy w(C)/wT o (5.84)
Y(C)1, Y(C)1,
¥(©)
c1, >C1,,
C
Fecu, 7 . FCE1, i L CFEL,
T \]"89’/’ F@”‘Z’V \/7—'9” £ oV FE /"
FEu(OL, ZXE) Fp0)e1, —4 Fo0)e1, M5 yo) Fe,
e TUW) () UT ¢\ (5.85)
Y(C)1, Y(C)1,
¥(©)
A AN
Cc1, >C1,,

c

The center rectangles commute up to homotopy since they are obtained from the homotopy
commutative squares in (0.81]). The triangles and the left, bottom and right squares in
both diagrams above commute since ¢¥ is inverse g¥ by Proposition {1l The remaining
squares commute by Proposition
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5.2.7 Naturality of ¥ for the cup 2-morphisms

The naturality for one cap is given by the commutative diagram in Com/(U)

et &F

CEF, >ECF1, >EFCL,,
T OVEF v F T 5?57 T
H(C)EFL, L7 ey F1, S e Fu ()1,
CU w(c)wT Y P(C) U C (586)
P(C)1, > 9(C)1,
o¥ P(C)
/ %
C1, >C1,,
c

where the middle square commutes up to homotopy by applying ¢ to the homotopy com-
mutative diagram (5.42). The left and right squares commute by the naturality of ¢¥ and
0%. The top square commutes on the nose since o¥ has inverse g¥.The bottom two squares
commute by Proposition .9l

Naturality for & with respect to the other cap is proven similarly.
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