Spin Topological Quantum Field Theories

Anna Beliakova
Institut de Recherche Mathématique Avancée
Université Louis Pasteur, Strasbourg

August 96

Abstract

Starting from the quantum group $U_{q}(\mathfrak{s l}(2, \mathbb{C}))$, we construct operator invariants of 3-cobordisms with spin structure, satisfying the requirements of a topological quantum field theory and refining the Reshetikhin-Turaev and Turaev-Viro models. We establish the relationship between these two refined models.

1 Introduction

This paper is devoted to the refinement of the quantum invariants of 3manifolds taking into account spin structures. The invariants of ReshetikhinTuraev type, corresponding to the quantum group $U_{q}(\mathfrak{s l}(2, \mathbb{C}))$ and determined by a spin structure on a closed 3-manifold, were first constructed by Blanchet [Bl], Kirby-Melvin [KM] and Turaev [Tu]. The idea of the construction was the following: Using a presentation of a closed 3-manifold M by surgery along a link L, one can identify a spin structure s on M with a characteristic sublink K of L (see section 3.2 for the definition). The Reshetikhin-Turaev invariant $\tau(M)$ is defined as a sum over all colourings (with some coefficients) of the coloured link invariant of L. The refined Reshetikhin-Turaev invariant $\tau(M, s)$ is defined analogously, where the sum is taken over odd colourings of K and even colourings of $L-K$ only. It turns out that

$$
\tau(M)=\sum_{s} \tau(M, s)
$$

A refinement of the Turaev-Viro invariant $Z(M)$ of a closed 3-manifold M was done in two steps. First, a state sum $Z(M, h)$ for $h \in H^{1}\left(M, \mathbb{Z}_{2}\right)$ was defined in [TV], such that

$$
Z(M)=\sum_{h} Z(M, h)
$$

Then Roberts $[\mathrm{R}]$ constructed an invariant $Z(M, s, h)$ of a closed oriented 3-manifold M equipped with a spin structure s and $h \in H^{1}\left(M, \mathbb{Z}_{2}\right)$, such that

$$
Z(M, h)=\sum_{s} Z(M, h, s) .
$$

As is well-known (see [Wi], [At]), a theory of quantum invariants of closed 3 -manifolds is a part of topological quantum field theory (TQFT), which associates vector spaces to closed surfaces and linear operators to 3 -cobordisms. In this article, topological quantum field theories extending the quantum invariants of closed 3-manifolds with spin structure will be referred to as 'spin' TQFT's.

The first spin TQFT was constructed by Blanchet and Masbaum in [BM]. They use an algebraic technique of [BHMV] in order to extend the invariants of $[\mathrm{Bl}],[\mathrm{KM}]$ and $[\mathrm{Tu}]$. Among the results of $[\mathrm{BM}]$ are the dimension formula for modules associated to closed connected surfaces with spin structure and the transfer map from the Reshetikhin-Turaev theory to the spin TQFT.

In this paper we give a different, geometric construction of a spin TQFT extending the refined Reshetikhin-Turaev invariants. Our construction is parallel to the one given in [T, Chapter 4]. Whence we briefly recall the construction of Turaev in section 3.1. We represent the vector space $V_{\left(\Sigma_{g}, \sigma\right)}$ associated to a closed oriented surface Σ_{g} of genus g with spin structure σ as a (subspace of a) vector space generated by 'special' colourings of some ribbon graph G^{g} (see Fig.1). The graph G^{g} is chosen in such a way that its regular neighborhood is a handlebody of genus g. 'Special' colourings is a subset of admissible colourings of G^{g}, depending on σ. We show that

$$
V_{\Sigma}=\oplus_{\sigma} V_{(\Sigma, \sigma)}
$$

where V_{Σ} is a vector space associated to Σ in the standard ReshetikhinTuraev TQFT.

We define the operator invariant $\tau(M, s)$ of the spin 3 -cobordism (M, s) as follows: First, to each connected component Σ_{j} of genus g_{j} of the boundary of M we glue a regular neighborhood of the graph $G^{g_{j}}$, containing this graph. This results in a closed 3 -manifold \tilde{M} with some ribbon graph, say G, sitting inside. The graph G is a disjoint union of the graphs inside the handlebodies. Using a surgery presentation of \tilde{M} along a link L, we show that there is a one-to-one correspondence between spin structures on M and characteristic sublinks of $L \cup G$ (see section 3.2 for the definition). Finally, we define $\tau(M, s)$ as a refined Reshetikhin-Turaev invariant of the pair (\tilde{M}, G), where one sums over odd colourings of the characteristic sublink (determined by s) and over even colourings of the other components of L. Note that $\tau(M, s)$ is an element of the vector space generated by the 'special' colourings of G. We study gluing properties of $\tau(M, s)$ and give an explicit formula for the projector

$$
\tau^{\sigma}: V_{\Sigma} \rightarrow V_{(\Sigma, \sigma)}
$$

In addition, we show, that for connected Σ, the dimension of $V_{(\Sigma, \sigma)}$ coincides with the dimension calculated in $[\mathrm{BM}]$. The Reshetikhin-Turaev invariant of a 3-cobordism M splits as a sum of the refined invariants, i.e.

$$
\tau(M)=\oplus_{\sigma} \sum_{s} \tau(M, s)
$$

where the sum is taken over s such that $\left.s\right|_{\partial M}=\sigma$.
In section 4 we construct a spin TQFT extending Roberts' invariants. In order to do this, we use a modified state sum operator $Z(M, G)$ of a 3cobordism M together with a 3 -valent graph G, which is a subcomplex of a triangulation of ∂M (see [KS], [BD1] and [BD2]). This operator is equal to the Turaev-Viro state sum of M with a triangulation of the boundary ∂M given by the graph dual to G. The advantage is that $Z(M, G)$ is a homotopy invariant of the graph G, which can be effectively calculated.

In $[\mathrm{BD} 2]$ an isomorphism was constructed between the vector space $V_{\Sigma_{g}}$ of Turaev-Viro TQFT and the vector space associated to the two copies of the graph G^{g}. Refining this construction, we define the vector space $V_{\Sigma_{g}}(\sigma, \mathrm{~h})$ associated to a closed oriented surface Σ_{g} with spin structure σ and first
cohomology class h, such that

$$
V\left(\Sigma_{g}\right)=\oplus_{\sigma, \mathrm{h}} \quad V_{\Sigma_{g}}(\sigma, \mathrm{~h}) .
$$

Then we construct the state sum operator $Z(M, s, h)$ of a spin 3-cobordism (M, s) with $h \in H^{1}\left(M, \mathbb{Z}_{2}\right)$.

Finally, we show that

$$
V_{\Sigma}(\sigma, \mathrm{h})=V_{(\Sigma, \sigma)} \otimes V_{(-\Sigma, \sigma+\mathrm{h})}
$$

and

$$
Z(M, s, h)=\tau(M, s) \otimes \tau(-M, s+h)
$$

where a negative sign means the orientation reversal. This proves that the operator $Z(M, s, h)$ gives rise to an (anomaly free non-degenerate) TQFT on compact oriented 3-cobordisms equipped with a spin structure and a first \mathbb{Z}_{2}-cohomology class.

2 Initial data and notation

In this section we define basic algebraic data, which will be used in the construction of invariants.

Let A be a primitive root of unity of order $4 r$, where $r \in \mathbb{N}$ and $r=0$ $(\bmod 4)$. Consider the set $I=\{0,1,2, \ldots, r-2\}$. For each $i \in I$, we fix complex numbers ω_{i} and q_{i}, such that

$$
\begin{equation*}
\omega_{i}^{2}=(-1)^{i}[i+1] \quad \text { and } \quad q_{i}^{2}=(-1)^{i} A^{i^{2}+2 i} \tag{2.1}
\end{equation*}
$$

where

$$
[n]=\frac{A^{2 n}-A^{-2 n}}{A^{2}-A^{-2}}, \quad \text { for } n \in \mathbb{N}
$$

Furthermore, we choose a complex number ω, such that

$$
\begin{equation*}
\omega^{2}=\sum_{i \in I} \omega_{i}^{4}=\frac{-2 r}{\left(A^{2}-A^{-2}\right)^{2}} \tag{2.2}
\end{equation*}
$$

These data come from the modular category provided by 'good' representations of the quantum group $U_{q}(\mathfrak{s l}(2, \mathbb{C}))$ (see $\left.[\mathrm{RT}]\right)$, where $A^{4}=q$. In this
article we enumerate irreducible representations of $U_{q}(\mathfrak{s l}(2, \mathbb{C}))$ by doubled spins $i \in I$. We recall that ω_{i}^{2} is equal to the quantum dimension of the $i^{\text {th }}$ representation and the ribbon graph invariant, defined in [RT], is multiplied by q_{i}^{-2} under one twist on an i-coloured ribbon:

$$
\left.\right|^{i}=\left.q_{i}^{-2}\right|^{i}
$$

A triple $(i, j, k) \in I^{3}$ is called admissible if $i+j+k$ is even and

$$
\begin{equation*}
i \leq j+k, \quad j \leq i+k, \quad k \leq i+j, \quad i+j+k \leq 2(r-2) \tag{2.3}
\end{equation*}
$$

We finish this section by collecting relations which will be of importance in the sequel. It was shown in $[R]$ that

$$
\begin{align*}
& \sum_{i=0, i \text { even }}^{r-2} \omega_{i}^{2}=\frac{\omega^{2}}{2}\left(\delta_{j, 0}+\delta_{j, r-2}\right), \tag{2.4}\\
& \sum_{i=1, i \text { odd }}^{r-2} \omega_{i}^{2}=\frac{\omega^{2}}{2}\left(\delta_{j, 0}-\delta_{j, r-2}\right) . \tag{2.5}
\end{align*}
$$

Moreover,

$$
\omega^{2}=2 \sum_{i=0, i \text { even }}^{r-2} \omega_{i}^{4}=2 \sum_{i=1, i \mathrm{odd}}^{r-2} \omega_{i}^{4}
$$

In addition, we have

$$
\begin{equation*}
q_{r-2-i}^{2}=(-1)^{i+1} q_{i}^{2}, \quad \omega_{r-2-i}^{2}=\omega_{i}^{2} \tag{2.6}
\end{equation*}
$$

It follows that

$$
\Delta=\sum_{i \in I} q_{i}^{2} \omega_{i}^{4}=\sum_{i \text { odd }} q_{i}^{2} \omega_{i}^{4}
$$

Finally,

$$
\begin{equation*}
\Delta \bar{\Delta}=\omega^{2} \tag{2.7}
\end{equation*}
$$

where $\bar{\Delta}=\sum_{i} q_{i}^{-2} \omega_{i}^{4}$.

3 Spin Reshetikhin-Turaev TQFT

We begin this section by recalling the standard construction of a TQFT given by Reshetikhin and Turaev ([RT] and [T, Chapter 4]). After a brief review on spin structures, we discuss a refinement of this construction determined by a spin structure on a 3 -cobordism.

3.1 Standard model

Consider a compact oriented 3-cobordism M with boundary $\partial M=\left(-\partial_{-} M\right) \cup$ $\partial_{+} M$, where $\partial_{-} M$ and $\partial_{+} M$ are the bottom and top bases of M, respectively, and minus means the orientation reversal. Assume that the boundary of M is parametrized, i.e., each connected component $\Sigma \subset \partial M$ is supplied with an orientation preserving homeomorphism $\phi: \Sigma_{g} \rightarrow \Sigma \subset \partial_{+} M$ or $-\phi:-\Sigma_{g} \rightarrow-\Sigma \subset \partial_{-} M$, where Σ_{g} and $-\Sigma_{g}$ are the boundaries of a standard oriented handlebody $\left(H_{g}^{+}, G^{g}\right)$ and an oppositely oriented handlebody ($\left.H_{g}^{-}, \bar{G}^{g}\right)$, respectively.

The handlebody $\left(H_{g}^{+}, G^{g}\right)$ is defined as a regular neighborhood in \mathbb{R}^{3} of the graph G^{g}, depicted in Fig.1, together with the graph itself sitting inside.

Fig. 1 The 3-valent graph G^{g}
The mirror image of $\left(H_{g}^{+}, G^{g}\right)$ with respect to a horizontal plane in \mathbb{R}^{3} defines the oppositely oriented handlebody $\left(H_{g}^{-}, \bar{G}^{g}\right)$.

By an admissible colouring $e=\left\{e_{1}, e_{2}, \ldots, e_{3 g-3}\right\}$ of G^{g}, we mean an assignment of a colour (from I) to each line of G^{g}, so that the three colours of lines, meeting in a 3 -vertex, form an admissible triple in the sense of Section 2 . We will denote the e-coloured 3 -valent graph by G_{e}^{g}.

Fig. 2 The coloured 3-valent graph G_{e}^{g}
We note that the admissible colourings of G^{g} provide a basis of the vector space V_{Σ} associated by the Reshetikhin-Turaev TQFT to a closed parametrized surface Σ of genus g. Their number is equal to the dimension of V_{Σ} given by the Verlinde formula. To a non-connected surface one associates the tensor product of the vector spaces belonging to connected components.

The construction of a 3-cobordism invariant is as follows: To each connected component of $\partial_{-} M$ of genus g one glues a copy of $\left(H_{g}^{+}, G^{g}\right)$ along the given parametrization and analogously one glues the oppositely oriented handlebody to each connected component of $\partial_{+} M$. The result is a closed 3 -manifold \tilde{M} with a ribbon graph, say $G^{+} \cup G^{-}$, sitting inside. The graph $G^{+} \cup G^{-}$is the disjoint union of graphs \bar{G}^{g} and G^{g} inside the standard handlebodies. Now the invariant of the 3 -cobordism M is defined as an invariant of the pair $\left(\tilde{M}, G^{+} \cup G^{-}\right)$. More precisely, this invariant in the basis, given by the admissible colourings of $G^{+} \cup G^{-}$, can be written as follows:

$$
\begin{equation*}
\tau(M)_{e e^{\prime}}=\left(\Delta \omega^{-1}\right)^{\sigma(L)} \omega^{-m-1+\frac{\chi\left(\partial_{+} M\right)}{2}} \omega_{e} \omega_{e^{\prime}} \sum_{c} \omega_{c}^{2} Z\left(L_{c} \cup G_{e}^{+} \cup G_{e^{\prime}}^{-}\right) \tag{3.1}
\end{equation*}
$$

where

$$
\omega_{e}=\prod_{i} \omega_{e_{i}}
$$

$e\left(\right.$ resp. $\left.e^{\prime}\right)$ is a colouring of G^{+}(resp. $\left.G^{-}\right), L \subset S^{3}$ is an m-component surgery link for $\tilde{M}, c=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\} \in I^{m}$ is a colouring of $L, \sigma(L)$ is
the signature of the linking matrix, χ is the Euler characteristic and $Z\left(G_{e}\right)$ denotes the invariant of a coloured ribbon graph G_{e} in S^{3} as defined in [RT].

We set

$$
\begin{equation*}
\tau(M)=\oplus_{e e^{\prime}} \tau(M)_{e e^{\prime}}: V_{\partial_{-} M} \rightarrow V_{\partial_{+} M} . \tag{3.2}
\end{equation*}
$$

It was shown in $[\mathrm{T}]$ that the linear operator $\tau(M)$ determines a TQFT. In particular, this means that gluing of cobordisms is described by composing operators and that

$$
\tau(\Sigma \times[0,1])=i d_{V_{\Sigma}}
$$

This construction can be naturally generalized to 3 -cobordisms between punctured surfaces. The only significant modification requires the notion of a standard handlebody.

Consider the handlebody $H_{g}^{+}(p)$, whose boundary is an oriented surface Σ_{g} with a set $p=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ of distinguished points (punctures). Attach to each puncture a colour from the set $a=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and embed the graph $G^{g}(a)$ depicted below

Fig. 3 The graph $G^{g}(a)$
in $H_{g}^{+}(p)$, so that its 1 -vertices lie on Σ_{g} and coincide with the punctures p and the remainder of the graph forms a deformation retract of H_{g}^{+}. The resulting pair $\left(H_{g}^{+}(p), G^{g}(a)\right)$ is a punctured standard handlebody. A construction of a TQFT is quite analogous to the one described above and will not be repeated here. We mention only that the vector space associated by this TQFT to the punctured surface $\Sigma_{g}(p)$ is generated by colourings of the graph $G^{g}(a)$.

3.2 Spin structures on manifolds

A spin structure on an n-dimensional manifold N is a homotopy class of a trivialization of the tangent bundle of N over the 1 -skeleton which extends
over the 2-skeleton (see [Ki]). The number of different spin structures on N (if it is not zero) is equal to the number of elements in $H_{1}(N)$. Moreover, the whole set of spin structures on N (if it is not empty) is obtained by adding elements of $H^{1}(N)$ to any fixed spin structure.

There exist two spin structures on a circle: the bounding spin structure (which extends over a disc) and the non-bounding or Lie spin structure. A spin structure σ on a connected surface Σ defines a quadratic form q_{σ} : $H_{1}(\Sigma) \rightarrow \mathbb{Z}_{2}$, such that for any embedded closed curve $\gamma, q_{\sigma}(\gamma)=0$, if $\left.\sigma\right|_{\gamma}$ is bounding, and $q_{\sigma}(\gamma)=1$ otherwise (see [Jo]). To determine a spin structure on a surface, it is sufficient to say which simple closed curves in a canonical homology basis (as in Fig.4) are spin bounding and which are not.

One can also think of a spin structure on a manifold M as being a first cohomology class of an oriented frame bundle $F(M)$, whose restriction to each fibre is non-trivial. If M is 3 -dimensional, this class can be evaluated on a framed knot in M, representing a 1-cycle in $F(M)$ (the rest of a true frame can be reconstructed using the orientation of M). This cohomology class is equal to 1 on a trivial knot in M with zero framing.

Let us denote by $\operatorname{Spin}(M)$ a set of spin structures on a 3-manifold M. Suppose that M is obtained by surgery on a framed m-component link L. Denote by $S^{3} \backslash L$ the 3 -sphere S^{3} with a regular neighborhood of L removed. Then one can identify $\operatorname{Spin}(M)$ with a subset of $\operatorname{Spin}\left(S^{3} \backslash L\right)$, consisting of all spin structures which are equal to 1 on each component L_{i} of L.

Taking into account that

$$
\operatorname{Spin}\left(S^{3} \backslash L\right)=s_{0}+H^{1}\left(S^{3} \backslash L\right)
$$

where s_{0} is a spin structure on $S^{3} \backslash L$, induced by the unique spin structure on S^{3}, we observe that any spin structure on $S^{3} \backslash L$ is completely determined by its values on the meridians $\left\{m_{i}\right\}_{i=1}^{m}$ of the regular neighborhood of L. One can evaluate a cohomology class $s \in \operatorname{Spin}\left(S^{3} \backslash L\right)$ on a framed knot γ in $S^{3} \backslash L$ as follows:

$$
s(\gamma)=1+\gamma \cdot \gamma+\sum_{j=1}^{m}\left(\gamma \cdot L_{j}\right)\left(1+s\left(m_{j}\right)\right)
$$

[^0]where $\gamma \cdot L_{j}=\operatorname{lk}\left(\gamma, L_{j}\right)$ is the linking number and $\gamma \cdot \gamma$ is the framing on γ. Imposing the condition
$$
s\left(L_{i}\right)=1 \quad \text { for } \quad i=1,2, \ldots, m
$$
we obtain that any spin structure $s \in \operatorname{Spin}(M)$ defines a sublink $K \subset L$, such that for any component L_{i} of L
\[

$$
\begin{equation*}
L_{i} \cdot K=L_{i} \cdot L_{i} \tag{3.3}
\end{equation*}
$$

\]

The sublink K satisfying (3.3) is called a characteristic sublink of L. It consists of all the components L_{i} of L, such that s is non-bounding on the meridian m_{i} of L_{i} or, in other words, $s\left(m_{i}\right)=0$. We define a characteristic coefficient $c_{i} \in \mathbb{Z}_{2}$ of the component L_{i} of L equal to one if $L_{i} \in K$ and zero otherwise.

For a 3-cobordism M with parametrized boundary, one can identify $\operatorname{Spin}(M)$ with a subset of

$$
\operatorname{Spin}\left(S^{3} \backslash\left(L \cup G^{+} \cup G^{-}\right)\right)=s_{0}+H^{1}\left(S^{3} \backslash\left(L \cup G^{+} \cup G^{-}\right)\right),
$$

consisting of all spin structures which are equal to 1 on L (see Section 3.1 for the definition of $\left.G^{+} \cup G^{-}\right)$. A basis in $H_{1}\left(S^{3} \backslash\left(L \cup G^{+} \cup G^{-}\right)\right)$is given by meridians $\left\{m_{i}\right\}$ of L together with meridians $\left\{b_{i}\right\}$ of (a regular neighborhood of) $G^{+} \cup G^{-}$. Denoting by $\left\{a_{i}\right\}$ the longitudes of $G^{+} \cup G^{-}$, we have that

$$
s\left(L_{i}\right)=1+L_{i} \cdot L_{i}+\sum_{j}\left(L_{i} \cdot L_{j}\right)\left(1+s\left(m_{j}\right)\right)+\sum_{j}\left(L_{i} \cdot a_{j}\right)\left(1+s\left(b_{j}\right)\right),
$$

where $s \in \operatorname{Spin}\left(S^{3} \backslash\left(L \cup G^{+} \cup G^{-}\right)\right)$. It follows that there exists a one-to-one correspondence between the solutions of the following equations

$$
L_{i} \cdot(K+A)=L_{i} \cdot L_{i}, \quad 1 \leq i \leq m
$$

where $K \subset L$ and $A \subset \cup_{i} a_{i}$, and spin structures on a 3-cobordism M, which do not extend over the meridians of K and A. We will call K a characteristic sublink of $L \cup G^{+} \cup G^{-}$.

3.3 Spin Reshetikhin-Turaev model

In this section we construct a spin TQFT by refining the model described in section 3.1.

Definition of invariants

We start by modifying the notion of a standard handlebody.
Consider the handlebody H_{g}^{+}with the boundary $\partial H_{g}^{+}=\Sigma_{g}$ as depicted below.

Fig. 4 The canonical homology basis on Σ_{g}
Associate to each meridian b_{i} of Σ_{g} a number $\mathfrak{s}_{i} \in \mathbb{Z}_{2}$ and denote by \mathfrak{s} the sequence of these numbers, i.e.

$$
\mathfrak{s}=\left\{\mathfrak{s}_{1}, \mathfrak{s}_{2}, \ldots, \mathfrak{s}_{g}\right\} \in \mathbb{Z}_{2}^{g}
$$

Then we embed the graph G^{g} (see Fig.1) in H_{g}^{+}as its deformation retract. The resulting triple $\left(H_{g}^{+}, G^{g}, \mathfrak{s}\right)$ will be called a standard handlebody. The oppositely oriented handlebody $\left(H_{g}^{-}, \bar{G}^{g}, \mathfrak{s}\right)$ is defined by a mirror image of $\left(H_{g}^{+}, G^{g}, \mathfrak{s}\right)$.

Let $E_{\mathfrak{s}}$ be a subset of admissible colourings of the graph G^{g} subject to the following relation:

- a colour $e_{i} \in I, 1 \leq i \leq g$, is even, if $\mathfrak{s}_{i}=0$, and odd otherwise.

In the sequel we will call the elements of E_{s} special colourings of the graph G^{g}.

By a parametrized surface (Σ, \mathfrak{s}) of genus g we understand an oriented closed connected surface of genus g supplied with an orientation preserving homeomorphism

$$
\phi: \Sigma_{g} \rightarrow \Sigma
$$

and a sequence \mathfrak{s} of \mathbb{Z}_{2}-numbers associated to $\phi\left(b_{i}\right), 1 \leq i \leq g$. We denote by $V_{(\Sigma, \mathfrak{s})}$ the vector space associated to the parametrized surface (Σ, \mathfrak{s}), which is generated by the special colourings E_{s} of the graph G^{g}. Clearly,

$$
V_{\Sigma}=\oplus_{\mathfrak{s}} V_{(\Sigma, \mathfrak{s})}
$$

where V_{Σ} denotes as before the vector space associated to Σ in the standard Reshetikhin-Turaev model and the direct sum is taken over 2^{g} possible choices of \mathfrak{s}. To disjoint unions of surfaces we associate the tensor product of vector spaces.

Consider a spin 3 -cobordism (M, s) with parametrized boundary $\partial M=$ $\left(-\partial_{-} M\right) \cup \partial_{+} M$, where s is a spin structure on M. Let us enumerate the connected components of ∂M by an index $j, 1 \leq j \leq n$. Suppose that the first l of them belong to $\partial_{-} M$ and the remaining to $\partial_{+} M$. Choose a sequence \mathfrak{s}_{j} of \mathbb{Z}_{2}-numbers associated to the $j^{\text {th }}$ connected component Σ_{j} of ∂M in such a way, that

$$
\left(\mathfrak{s}_{j}\right)_{i}=q_{\left.s\right|_{\Sigma_{j}}}\left(\phi_{j}\left(b_{i}\right)\right), \quad 1 \leq i \leq g_{j}
$$

where $\phi_{j}: \Sigma_{g_{j}} \rightarrow \Sigma_{j}$ is the parametrization homeomorphism.
After gluing (along the parametrizations) of $\left(H_{g_{j}}^{+}, G^{g_{j}}, \mathfrak{s}_{j}\right), 1 \leq j \leq l$, and $\left(H_{g_{j}}^{-}, \bar{G}^{g_{j}}, \mathfrak{s}_{j}\right), l<j \leq n$, to connected components of $\partial_{-} M$ and $\partial_{+} M$, respectively, we obtain a closed manifold \tilde{M} with the graph, say $G^{+} \cup G^{-}$, sitting inside. Denote by L an m-component surgery link for \tilde{M}. In general, the spin structure s does not extend over \tilde{M}, but it determines a spin structure on $S^{3} \backslash\left(L \cup G^{+} \cup G^{-}\right)$. Now we choose a characteristic sublink K of $L \cup G^{+} \cup G^{-}$, consisting of all the components L_{i} of L, such that s is non-bounding on the corresponding meridians. Set

$$
\begin{gather*}
\tau(M, s)_{e e^{\prime}}=\left(\Delta \omega^{-1}\right)^{\sigma(L)} \omega^{-m-1+\frac{\chi\left(\partial_{+} M\right)}{2}} \omega_{e} \omega_{e^{\prime}} \\
\sum_{c \text { odd }} \omega_{c}^{2} \sum_{b \text { even }} \omega_{b}^{2} Z\left(K_{c} \cup(L-K)_{b} \cup G_{e}^{+} \cup G_{e^{\prime}}^{-}\right), \tag{3.4}
\end{gather*}
$$

where $e \in E_{\mathfrak{s}_{+}}$and $e^{\prime} \in E_{\mathfrak{s}_{-}}$are special colourings of G^{+}and G^{-}, respectively. Here

$$
\mathfrak{s}_{+}=\cup_{j=l+1^{\mathfrak{s}_{j}},}^{n}, \quad \mathfrak{s}_{-}=\cup_{j=1}^{l} \mathfrak{s}_{j}
$$

and we denote by c and b the colourings of K and $L-K$, respectively. A colouring is called even (resp. odd), if all its values are even (resp. odd).

We define the linear operator

$$
\tau(M, s): V_{\left(\partial_{-} M, \mathfrak{s}_{-}\right)} \rightarrow V_{\left(\partial_{+} M, \mathfrak{s}_{+}\right)}
$$

corresponding to the spin cobordism (M, s) by taking a direct sum over all special colourings of G^{+}and G^{-}, i.e.,

$$
\begin{equation*}
\tau(M, s)=\oplus_{e e^{\prime}} \tau(M, s)_{e e^{\prime}}, \quad e \in E_{\mathfrak{s}_{+}}, \quad e^{\prime} \in E_{\mathfrak{s}_{-}} . \tag{3.5}
\end{equation*}
$$

Theorem $1 \tau(M, s)$ is a topological invariant of a compact spin 3-cobordism (M, s) with parametrized boundary.

We say that two spin cobordisms (M, s) and $\left(M^{\prime}, s^{\prime}\right)$ with parametrized boundary are spin homeomorphic if there exists a spin homeomorphism f : $(M, s) \rightarrow\left(M^{\prime}, s^{\prime}\right)$ which preserves the parametrized bases (or, in other words, whose restriction to the boundary commutes with the parametrizations).

Lemma 2 Two spin cobordisms (M, s) and $\left(M^{\prime}, s^{\prime}\right)$ with parametrized boundary are spin homeomorphic if and only if $\left(L, K, G^{+} \cup G^{-}\right)$and $\left(L^{\prime}, K^{\prime}, G^{\prime+} \cup\right.$ $G^{\prime-}$) can be related by (a sequence of) the following refined Kirby move(s).

Add to L an unknotted component L_{i} with framing $\varepsilon= \pm 1$ and characteristic coefficient

$$
\begin{equation*}
c_{i}=1+\operatorname{lk}\left(L_{i}, K\right)+\mathrm{lk}_{\mathrm{odd}}\left(L_{i}, G^{+} \cup G^{-}\right) \tag{3.6}
\end{equation*}
$$

and change simultaneously the part of $L \cup G^{+} \cup G^{-}$, lying in a regular neighborhood of a disc bounded by L_{i}, by giving a twist (right or left handed, depending on the sign of ε). The last term in (3.6) denotes the linking number of L_{i} with the odd coloured lines of the graph $G^{+} \cup G^{-}$.

Proof of Theorem 1: One have to show that (3.4) is invariant under the refined Kirby move. It is not difficult to verify by direct calculation (see also $[\mathrm{KM}]$ or $[\mathrm{Bl}])$ that adding of an odd (resp. even) coloured unknotted ε framed component to L, linked with even (resp. odd) number of odd coloured
strings ${ }^{2}$, and twisting of these strings, will multiply the second line in (3.4) by Δ (if $\varepsilon=-1$) or by $\bar{\Delta}$ (if $\varepsilon=1$) and the first line by Δ^{-1} (if $\varepsilon=-1$) or by $\omega^{-2} \Delta$ (if $\varepsilon=1$). The claim follows now from (2.7).

The construction described above can be straightforwardly generalized to the case, when the surfaces $\partial_{ \pm} M$ are provided with punctures coloured by $a_{ \pm}$. The corresponding operator invariant is denoted by $\tau\left(a_{+}, M, s, a_{-}\right)$.

Presentation of spin cobordisms by special ribbon graphs

In (3.4) we represented a spin 3-cobordism (M, s) by some special ribbon graph $K \cup(L-K) \cup G^{+} \cup G^{-}$in S^{3}. We recall that K is the odd coloured, characteristic sublink of $L \cup G^{+} \cup G^{-}$and the colourings of G^{+}and G^{-}are determined by \mathfrak{s}_{+}and \mathfrak{s}_{-}, respectively. It turns out that this construction is invertible. This means that each such special ribbon graph gives rise to a 3-cobordism M with certain spin structure s. Starting from the special ribbon graph, one can construct (M, s) as follows:

One removes tubular neighborhoods of G^{+}and G^{-}from S^{3}. This results in a 3 -cobordism E with bottom base Σ^{-}and top base Σ^{+}. We provide E with orientation induced by right-handed orientation in S^{3} and bases with orientations, such that $\partial E=\left(-\Sigma^{-}\right) \cup \Sigma^{+}$. We choose the parametrizations, which send the a-cycles of Σ_{g} to the loops on $\Sigma^{ \pm}$homotopic to the circles of the graphs $G^{ \pm}$. Now remove from E a regular neighborhood of L. Choose a spin structure s on $E \backslash L$, which is non-bounding on the meridians of K and on the meridians of the odd coloured lines of $G^{+} \cup G^{-}$. Glue solid tori back to $E \backslash L$ along the homeomorphisms determined by framing. This results in an oriented 3 -cobordism, say M, with spin structure s and parametrized boundary.

Gluing properties

We will show that the operator $\tau(M, s)$ defines a non-degenerate spin TQFT.

Theorem 3 If the spin 3-cobordism (M, s) is obtained from $\left(M_{1}, s_{1}\right)$ and $\left(M_{2}, s_{2}\right)$ by gluing along a homeomorphism $f: \Sigma \rightarrow \Sigma^{\prime}$ which preserves spin

[^1]structures and commutes with parametrizations, then
\[

$$
\begin{equation*}
\tau(M, s)_{e e^{\prime}}=k \sum_{e^{\prime \prime} \in E_{s}} \tau\left(M_{2}, s_{2}\right)_{e e^{\prime \prime}} \tau\left(M_{1}, s_{1}\right)_{e^{\prime \prime} e^{\prime}} \tag{3.7}
\end{equation*}
$$

\]

where $\Sigma=\partial_{+} M_{1}, \Sigma^{\prime}=\partial_{-} M_{2}$ are parametrized connected surfaces and $k=$ $\left(\Delta \omega^{-1}\right)^{\sigma(L)-\sigma\left(L_{1}\right)-\sigma\left(L_{2}\right)}$ is an anomaly factor.

Proof: We can represent M_{1} and M_{2} by special ribbon graphs $K_{1} \cup\left(L_{1}-\right.$ $\left.K_{1}\right) \cup \bar{G}^{g} \cup G_{1}^{-}$and $K_{2} \cup\left(L_{2}-K_{2}\right) \cup G_{2}^{+} \cup G^{g}$, respectively, where g is the genus of Σ. Putting the special ribbon graph representing M_{2} on the top of the graph for M_{1} and summing over $e_{i}^{\prime \prime}\left(e^{\prime \prime} \in E_{\mathfrak{s}}\right)$ with $i>g$, we obtain a special ribbon graph

$$
\begin{equation*}
K_{2} \cup K_{1} \cup\left(L_{2}-K_{2}\right) \cup\left(L_{1}-K_{1}\right) \cup \Omega \cup G_{2}^{+} \cup G_{1}^{-} \tag{3.8}
\end{equation*}
$$

where by Ω we denote the g annuli, which remain of G^{g} and \bar{G}^{g} after the summation. The graph (3.8) is, in fact, a special ribbon graph representing M (see [T, p.175] for more details). Its characteristic sublink consists of $K_{1} \cup K_{2}$ together with the odd coloured annuli of Ω.

Remark: Theorem 3 can be straightforwardly generalized to the case, when $\Sigma \subset \partial_{+} M_{1}, \Sigma^{\prime} \subset \partial_{-} M_{2}$.

If we glue 3 -cobordisms along non-connected surfaces, the situation becomes more complicated, because a spin structure on the resulting manifold is not uniquely determined by the spin structure on 3 -cobordisms glued together. In this case we have the following theorem:

Theorem 4 If the spin 3-cobordism (M, s) is obtained from $\left(M_{1}, s_{1}\right)$ and $\left(M_{2}, s_{2}\right)$ by gluing along a homeomorphism $f: \partial_{+} M_{1} \rightarrow \partial_{-} M_{2}$ which preserves spin structures and commutes with parametrizations, then

$$
\begin{equation*}
\sum_{s} \tau(M, s)_{e e^{\prime}}=k \sum_{e^{\prime \prime}} \tau\left(M_{2}, s_{2}\right)_{e e^{\prime \prime}} \tau\left(M_{1}, s_{1}\right)_{e^{\prime \prime} e^{\prime}} \tag{3.9}
\end{equation*}
$$

where the sum on the left hand side is taken over spin structures such that $\left.s\right|_{M_{1}}=s_{1}$ and $\left.s\right|_{M_{2}}=s_{2}$.

Proof: Assume that $\partial_{+} M_{1}$ consists of n connected components of genera g_{1}, g_{2}, \ldots and g_{n}. Now the special ribbon graph representing M can be obtained from (3.8) by replacing Ω with a family of $\Omega_{i}, 1 \leq i \leq n$, where by Ω_{i} we denote g_{i} annuli, and then by encircling $\Omega_{i}, 1 \leq i \leq n-1$, by an unknotted annulus (see [T, p.177] for more details). Using fusion rules, (2.4) and (2.5) one can split this graph for M into two parts. The first one consists of a disjoint union of the special ribbon graphs representing M_{1} and M_{2}. The second part contains terms where the special ribbon graph for M_{1} and M_{2} are connected by $(r-2)$-coloured lines. The sign of these terms depends on the choice of a spin structure s on M, whose restrictions to M_{1} and M_{2} are equal to s_{1} and s_{2}, respectively. Taking the sum over all 2^{n-1} such s, we obtain (3.9).

In the next lemma we calculate the invariant of a spin 3-manifold obtained from two other spin manifolds by gluing along a non-connected surface.

Lemma 5 Let $\left(M, s_{i}\right), i \in \mathbb{Z}_{2}$, be spin 3-cobordisms obtained from $\left(M_{1}, s_{1}\right)$ and $\left(M_{2}, s_{2}\right)$ by gluing along a homeomorphism $f: \partial_{+} M_{1} \rightarrow \partial_{-} M_{2}$ which preserves spin structures and commutes with parametrizations. Here $\partial_{+} M=$ $\Sigma_{1} \cup \Sigma_{2},\left.s_{i}\right|_{M_{1}}=s_{1},\left.s_{i}\right|_{M_{2}}=s_{2}, s_{0}$ is bounding and s_{1} is not bounding on the additional cycle, which appears after gluing along a non-connected surface. Then

$$
\begin{gather*}
\tau\left(M, s_{i}\right)_{e e^{\prime}}=k / 2\left[\sum_{e^{\prime \prime}} \tau\left(M_{2}, s_{2}\right)_{e e^{\prime \prime}} \tau\left(M_{1}, s_{1}\right)_{e^{\prime \prime} e^{\prime}}+\right. \\
\left.+(-1)^{i} \sum_{e^{\prime \prime}} \tau\left(M_{2}, s_{2}, r-2, r-2\right)_{e e^{\prime \prime}} \tau\left(r-2, r-2, M_{1}, s_{1}\right)_{e^{\prime \prime} e^{\prime}}\right] \tag{3.10}
\end{gather*}
$$

where, in the second term, Σ_{1} and Σ_{2} are supposed to have an (r-2)-coloured puncture.

Proof: As explained in the proof of theorem 4, the special ribbon graph representing M looks as follows:

where the rectangles designate the remainder of the ribbon graph. The circle is odd coloured for s_{1} and even for s_{0}. Using fusion rules, one can change this graph in the following way:

where one takes a sum over colourings of the new lines with quantum dimensions as coefficients. It follows from (2.4) or (2.5) that the colour a could be either 0 or $r-2$. If $a=0$ (resp. $a=r-2$), b should be equal to 0 (resp. $r-2$) too, and we get the first (resp. second) term in (3.10).

Vector spaces associated to surfaces with spin structure

Due to Theorem 3, for a spin 3-cobordism (M, s) whose boundary $\partial M=$ Σ is a parametrized surface of genus g with spin structure $\sigma=\left.s\right|_{\Sigma}$,

$$
\begin{equation*}
\tau(M, s)_{e}=\sum_{e^{\prime} \in E_{\mathrm{s}}} \tau(\Sigma \times[0,1], \sigma \cup \sigma)_{e e^{\prime}} \tau(M, s)_{e^{\prime}} \tag{3.11}
\end{equation*}
$$

One can now define the vector space $V_{(\Sigma, \sigma)}$, associated by the spin TQFT to the surface Σ with spin structure σ, as the support of the projector

$$
\tau(\Sigma \times[0,1], \sigma \cup \sigma): V_{(\Sigma, \mathfrak{s})} \rightarrow V_{(\Sigma, \mathfrak{s})}
$$

Assume (without loss of generality) that the parametrization of Σ in the cylinder is given by the identity homeomorphism. Then the special ribbon graph in Fig. 5

Fig. 5 The special ribbon graph corresponding to a cylinder
represents the 3 -cobordism $\Sigma \times[0,1]$ (see [T, p.173] for more details). It consists of two copies of the graph G^{g} linked with g annuli $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{g}$. A special colouring of G^{g} is determined by $q_{\sigma}\left(b_{i}\right), 1 \leq i \leq g$, and the parity of colours on Γ_{i} by $q_{\sigma}\left(a_{i}\right)$. Using (2.4), (2.5) and fusion rules one can calculate that
$\tau(\Sigma \times[0,1], \sigma \cup \sigma)_{e e^{\prime}}=\frac{1}{2^{g}}\left(\delta_{e_{1} e_{1}^{\prime}}+(-1)^{c_{1}} \delta_{e_{1} \hat{e}_{1}^{\prime}}\right) \ldots\left(\delta_{e_{g} e_{g}^{\prime}}+(-1)^{c_{g}} \delta_{e_{g} \hat{e}_{g}^{\prime}}\right) \prod_{i>g} \delta_{e_{i} e_{i}^{\prime}}$,
where $c_{i}=q_{\sigma}\left(a_{i}\right)$ and $\hat{e}_{i}=r-2-e_{i}$. For simplicity we will write τ^{σ} for $\tau(\Sigma \times[0,1], \sigma \cup \sigma)$ in what follows.

One can easily establish that the operators τ^{σ} form a family of 4^{g} orthogonal projectors on the vector spaces $V_{(\Sigma, \sigma)}$, i.e.

$$
\sum_{e^{\prime}} \tau_{e e^{\prime}}^{\sigma_{1}} \tau_{e^{\prime} e^{\prime \prime}}^{\sigma_{2}}= \begin{cases}0, & \text { if } \sigma_{1} \neq \sigma_{2} \\ \tau_{e e^{\prime \prime}}^{\sigma_{1}}, & \text { if } \sigma_{1}=\sigma_{2}\end{cases}
$$

and

$$
\begin{equation*}
V_{\Sigma}=\oplus_{i=1}^{4^{g}} V_{\left(\Sigma, \sigma_{i}\right)} . \tag{3.13}
\end{equation*}
$$

As usual, we associate the tensor product of vector spaces to the disjoint union of surfaces.

Clearly,

$$
\tau(M, s): V_{\left(\partial_{-} M, s_{-}\right)} \rightarrow V_{\left(\partial_{+} M, s_{+}\right)}
$$

where $s_{ \pm}=\left.s\right|_{\partial_{ \pm} M}$.
Lemma 6 The Reshetikhin-Turaev invariant of a 3-cobordism M with parametrized boundary splits as a sum of the refined invariants corresponding to different spin structures, i.e.

$$
\begin{equation*}
\tau(M)=\oplus_{s_{ \pm}} \sum_{s} \tau(M, s), \tag{3.14}
\end{equation*}
$$

where the sum is over all spin structures s on M such that $\left.s\right|_{\partial_{ \pm} M}=s_{ \pm}$.
Proof: The claim follows from the fact that the contribution to $\tau(M)$ from odd coloured, non-characteristic sublinks of $L \cup G^{+} \cup G^{-}$is equal to zero. The explicit computations are quite analogous to the one given in [Bl] or $[\mathrm{KM}]$, and they will not be repeated here.

Dimension of vector spaces

The Reshetikhin-Turaev TQFT yields a representation of the mapping class group (MCG). The matrix elements for generators of MCG are listed, e.g., in [KSV]. In the spin TQFT, the MCG generates transformations between vector spaces associated to different spin structures with the same Arfinvariant. We recall that the Arf-invariant of a quadratic form q_{σ} (corresponding to spin structure σ on Σ_{g}) is defined as follows:

$$
\operatorname{Arf}(\sigma)=\sum_{i=1}^{g} q_{\sigma}\left(a_{i}\right) q_{\sigma}\left(b_{i}\right)
$$

where a_{i}, b_{i} is the symplectic homology basis depicted in Fig.4.
As a result, the dimension of $V_{(\Sigma, \sigma)}$ depends only on the Arf-invariant of σ, but not on σ itself. On Σ there exist $2^{g-1}\left(2^{g}+1\right)$ spin structures with Arf-invariant equal to zero and $2^{g-1}\left(2^{g}-1\right)$ with Arf-invariant equal to one.

Theorem 7 For a closed surface Σ of genus g with spin structure σ,

$$
\begin{align*}
& \operatorname{dim} V_{(\Sigma, \sigma)}=\frac{1}{4^{g}}\left[\operatorname{dim} V_{\Sigma}+(r / 2)^{g-1}\left(2^{g}-1\right)\right], \text { if } \operatorname{Arf}(\sigma)=0 \tag{3.15}\\
& \operatorname{dim} V_{(\Sigma, \sigma)}=\frac{1}{4^{g}}\left[\operatorname{dim} V_{\Sigma}-(r / 2)^{g-1}\left(2^{g}+1\right)\right], \text { if } \operatorname{Arf}(\sigma)=1 \tag{3.16}
\end{align*}
$$

where $\operatorname{dim} V_{\Sigma}$ is given by the Verlinde formula.
The dimensions of spin modules were first calculated in [BHMV] using a rather developed algebraic technique. Here we will use simple geometric arguments, which refine Lickorish's calculations in [Li].

Proof: The dimension of the vector space $V_{(\Sigma, \sigma)}$ can be calculated as follows

$$
\begin{equation*}
\operatorname{dim} V_{(\Sigma, \sigma)}=\operatorname{tr} \tau(\Sigma \times[0,1], \sigma \cup \sigma) \tag{3.17}
\end{equation*}
$$

Theorem 4 implies that

$$
\begin{equation*}
\operatorname{tr} \tau(\Sigma \times[0,1], \sigma \cup \sigma)=\tau\left(S^{1} \times \Sigma, s_{0}\right)+\tau\left(S^{1} \times \Sigma, s_{1}\right) \tag{3.18}
\end{equation*}
$$

where $\left.s_{i}\right|_{\Sigma}=\sigma, s_{0}$ is bounding and s_{1} is not bounding on S^{1}. A surgery diagram for $S^{1} \times \Sigma$ can be obtained by taking g copies of the annulus containing a link, which is depicted below,

threading un unknotted closed curve l though the annuli and finally taking the resultant link of $2 g+1$ components.

Denote a colour of l by a. Then the invariant $\tau\left(S^{1} \times \Sigma, s_{i}\right)$ can be calculated in the following way: One takes g times expression (3.20),

closes an a-coloured line, sums over a with ω_{a}^{2} as coefficients, (note that a is even for s_{0} and odd for s_{1}) and multiplies by $\omega^{-2 g-2}$.

Consider at first the case when $\operatorname{Arf}(\sigma)=0$. Then one can suppose that all colours (except of a) are even. Applying fusion rules, (2.4) and the following formula

$$
\left|\begin{array}{lll}
r / 2-1 & r-2 & r / 2-1 \\
r / 2-1 & r-2 & r / 2-1
\end{array}\right|=-\omega_{r / 2-1}^{-2}
$$

(see (4.5) in [BD1] for the graphic and [TV] for the analytic definition of 6 j -symbols), one can reduce (3.20) to the a-coloured line multiplied by

$$
\frac{\omega^{4}}{4 \omega_{a}^{4}}\left(1+\delta_{a, r / 2-1}\right)
$$

where the last term contributes to $\tau\left(S^{1} \times \Sigma, s_{1}\right)$ only, because $r / 2-1$ is odd. Taking into account all coefficients, we obtain that

$$
\begin{gathered}
\tau\left(S^{1} \times \Sigma, s_{0}\right)=\frac{\omega^{2 g-2}}{4^{g}} \sum_{a \text { even }} \omega_{a}^{4-4 g}, \\
\tau\left(S^{1} \times \Sigma, s_{1}\right)=\frac{\omega^{2 g-2}}{4^{g}}\left(\sum_{a \text { odd }} \omega_{a}^{4-4 g}+\frac{2^{g}-1}{\omega_{r / 2-1}^{4 g-4}}\right),
\end{gathered}
$$

which after substituting in (3.18) and using (2.1) and (2.2) implies (3.15).
The dimension of $V_{(\Sigma, \sigma)}$ with $\operatorname{Arf}(\sigma)=1$ can be calculated analogously or determined from the formula:

$$
\operatorname{dim} V_{\Sigma}=2^{g-1}\left(2^{g}+1\right) \operatorname{dim} V_{\left(\Sigma, \sigma_{0}\right)}+2^{g-1}\left(2^{g}-1\right) \operatorname{dim} V_{\left(\Sigma, \sigma_{1}\right)},
$$

where $\operatorname{Arf}\left(\sigma_{0}\right)=0$ and $\operatorname{Arf}\left(\sigma_{1}\right)=1$.

4 Refined Turaev-Viro TQFT

The aim of this section is to refine the construction of Turaev-Viro 3-cobordism invariants as given in [BD1], [BD2] and define the state sum operator $Z(M, s, h)$, satisfying the requirements of a TQFT, where s is a spin structure on M and $h \in H^{1}(M)$. We start by recalling the construction of [BD1,2].

4.1 Standard model

The Turaev-Viro state sum is defined for any compact triangulated 3-manifold M as follows: One puts colours on 1 -simplexes of M and associates 6 j -symbols to coloured tetrahedra. Then the Turaev-Viro invariant is given by a sum over all colourings of 1 -simplexes in the interior of M of the product of 6 j symbols (with some coefficients). The vector space $V(\Sigma)$ associated to a triangulated surface Σ is defined as a direct sum over all colourings of the tensor product of vector spaces belonging to coloured triangles of Σ modulo some equivalence relation.

As was already mentioned in the introduction, we will use a modified state sum operator $Z(M, G)$, where G is a 3 -valent ribbon graph on ∂M.

The operator $Z(M, G)$ was defined in [BD1] (see also [KS]) in such a way, that it is equal to the Turaev-Viro state sum for M, where the triangulation of ∂M is given by the graph dual to $G\lceil$. Moreover, $Z(M, G)$ is a homotopy invariant of the graph G. In [BD2] an isomorphism was constructed between $V(\Sigma)$ and the vector space generated by colourings of two copies of the graph, depicted in Fig.1.

The cobordism M_{g}^{+}providing this isomorphism we will call a standard handlebody. M_{g}^{+}is a cylinder $\Sigma_{g} \times[0,1]$, where Σ_{g} is a closed oriented surface of genus g standardly embedded in \mathbb{R}^{3}. Furthermore, M_{g}^{+}contains an arbitrary 3 -valent graph \mathcal{G}^{g}, sitting on $\Sigma_{g}=\Sigma_{g} \times\{1\}$, and the coloured graph $G_{e}^{g} \cup \bar{G}_{f}^{g} \cup m_{x}$, depicted below, on $-\Sigma_{g}=\Sigma_{g} \times\{0\}$,

where $m=\left\{m_{1}, \ldots, m_{3 g-3}\right\}$ is the ordered set of meridians coloured by $x=\left\{x_{1}, \ldots, x_{3 g-3}\right\}$ and $e=\left\{e_{1}, \ldots, e_{3 g-3}\right\}, f=\left\{f_{1}, \ldots, f_{3 g-3}\right\}$ are admissible colourings of G^{g} and \bar{G}^{g}, respectively. We note that the f-coloured graph is drawn on the backward side of Σ_{g}.

[^2]The state sum $K_{e f}$ of the standard handlebody is given by the formula:

$$
\begin{equation*}
K_{e f}=\omega^{g-1} \omega_{e} \omega_{f} \sum_{x} \prod_{i=1}^{3 g-3} \frac{\omega_{x_{i}}^{2}}{\omega^{2}} Z\left(M_{g}^{+}, G_{e}^{g} \cup \bar{G}_{f}^{g} \cup m_{x} \cup \mathcal{G}^{g}\right), \tag{4.2}
\end{equation*}
$$

where the sum is over colourings of the meridians. This state sum defines a linear operator

$$
K_{e f}: V_{g}^{L}(e) \otimes V_{g}^{R}(f) \rightarrow V\left(\Sigma_{g}\right)
$$

where $V_{g}^{L}(e) \otimes V_{g}^{R}(f)$ is the vector space associated to the graph $G_{e}^{g} \cup \bar{G}_{f}^{g}$. It turns out, that the mirror image M_{g}^{-}of M_{g}^{+}yields an inverse operator

$$
L_{e f}: V\left(\Sigma_{g}\right) \rightarrow V_{g}^{L}(e) \otimes V_{g}^{R}(f)
$$

which satisfies the following equation (see [BD2] for more details):

$$
L_{e^{\prime} f^{\prime}} K_{e f}=\delta_{e, e^{\prime}} \delta_{f, f^{\prime}} \mathbb{1}_{V_{g}^{L}(e) \otimes V_{g}^{R}(f)}
$$

Taking into account that the dimensions of $\oplus_{e f}\left\{V_{g}^{L}(e) \otimes V_{g}^{R}(f)\right\}$ and $V\left(\Sigma_{g}\right)$ coincide, we obtain that

$$
K=\oplus_{e f} K_{e f}
$$

is an isomorphism and admissible colourings of $G_{e}^{g} \cup \bar{G}_{f}^{g}$ provide a basis of $V\left(\Sigma_{g}\right)$.

From now on we fix the standard handlebodies M_{g}^{+}and M_{g}^{-}together with the graphs on their boundaries. We say that an oriented triangulated surface Σ is parametrized, if it is supplied with a simplicial map $\phi:\left(\mathcal{G}^{g}\right)^{*} \rightarrow X$, where by $\left(\mathcal{G}^{g}\right)^{*}$ we denote the triangulation of Σ_{g}, given by the graph dual to \mathcal{G}^{g}, and X is a triangulation of Σ. The parametrization of $-\Sigma$ is given by the map $-\phi:\left(\overline{\mathcal{G}}^{g}\right)^{*} \rightarrow-X$.

Consider a 3-cobordism M with parametrized boundary $\partial M=\left(-\partial_{-} M\right) \cup$ $\partial_{+} M$. Let us glue the standard handlebodies to the connected components of $\partial_{ \pm} M$ along the parametrizations. The state sum of the resulting manifold with a 3 -valent graph on the boundary defines an invariant of the 3 -cobordism M in the basis mentioned above. More precisely,
$Z(M)_{e f, e^{\prime} f^{\prime}}=\omega^{\frac{-\chi(\partial M)}{2}} \omega_{e} \omega_{f} \omega_{e^{\prime}} \omega_{f^{\prime}} \sum_{x y} \prod_{i j} \frac{\omega_{x_{i}}^{2} \omega_{y_{j}}^{2}}{\omega^{2} \omega^{2}} Z\left(M, G_{e f}^{+} \cup G_{e^{\prime} f^{\prime}}^{-} \cup m_{x} \cup m_{y}\right)$,
where $G_{e f}^{+}=G_{e}^{+} \cup \bar{G}_{f}^{+}$and $G_{e f}^{-}=G_{e}^{-} \cup \bar{G}_{f}^{-}$are the disjoint unions of the graphs $\bar{G}_{e}^{g} \cup G_{f}^{g}$ and $G_{e}^{g} \cup \bar{G}_{f}^{g}$, sitting on the boundaries of the standard handlebodies M_{g}^{-}and M_{g}^{+}, respectively. Representing M by surgery on an m-component link L and using the technique developed in [BD1] and [BD2], one can rewrite (4.3) in terms of the link invariants:

$$
\begin{gather*}
Z(M)_{e f, e^{\prime} f^{\prime}}=\frac{\omega_{e} \omega_{e^{\prime}}}{\omega^{m+1-\chi\left(\partial_{+} M\right) / 2}} \sum_{c} \omega_{c}^{2} Z\left(L_{c} \cup G_{e}^{+} \cup G_{e^{\prime}}^{-}\right) \times \\
\quad \times \frac{\omega_{f} \omega_{f^{\prime}}}{\omega^{m+1-\chi\left(\partial_{-} M\right) / 2}} \sum_{b} \omega_{b}^{2} Z\left(\bar{L}_{b} \cup \bar{G}_{f}^{+} \cup \bar{G}_{f^{\prime}}^{-}\right) \tag{4.4}
\end{gather*}
$$

or

$$
\begin{equation*}
Z(M)_{e f, e^{\prime} f^{\prime}}=\tau(M)_{e e^{\prime}} \tau(-M)_{f^{\prime} f} . \tag{4.5}
\end{equation*}
$$

Example: Consider a solid torus $D^{2} \times S^{1}$. Due to (4.4) the corresponding state sum can be written as follows:

$$
\begin{equation*}
Z_{i j}\left(D^{2} \times S^{1}\right)=\frac{\omega_{i}}{\omega^{2}} \sum_{a} \omega_{a}^{2} Z(i \quad a) \frac{\omega_{j}}{\omega^{2}} \sum_{b} \omega_{b}^{2} Z(j \tag{4.6}
\end{equation*}
$$

Recall that Euler characteristic of an empty set is equal to zero.
We split the sums in (4.6) into the sums over even and odd colours, i.e.

$$
\begin{align*}
Z_{i j}\left(D^{2}\right. & \left.\times S^{1}\right)=Z_{i j}\left(D^{2} \times S^{1}, s_{0}, 0\right)+Z_{i j}\left(D^{2} \times S^{1}, s_{1}, 0\right)+ \\
& +Z_{i j}\left(D^{2} \times S^{1}, s_{0}, h\right)+Z_{i j}\left(D^{2} \times S^{1}, s_{1}, h\right) \tag{4.7}
\end{align*}
$$

where the first (resp. second) term corresponds in (4.6) to the case, when both a and b are even (resp. odd), in the third term a is even and b odd, and inversely in the forth term. Using (2.4) and (2.5) one can calculate

$$
\begin{aligned}
Z_{i j}\left(D^{2} \times S^{1}, s_{0}, 0\right) & =\frac{1}{4}\left(\delta_{i, 0}+\delta_{i, r-2}\right)\left(\delta_{j, 0}+\delta_{j, r-2}\right), \\
Z_{i j}\left(D^{2} \times S^{1}, s_{1}, 0\right) & =\frac{1}{4}\left(\delta_{i, 0}-\delta_{i, r-2}\right)\left(\delta_{j, 0}-\delta_{j, r-2}\right), \\
Z_{i j}\left(D^{2} \times S^{1}, s_{0}, h\right) & =\frac{1}{4}\left(\delta_{i, 0}+\delta_{i, r-2}\right)\left(\delta_{j, 0}-\delta_{j, r-2}\right), \\
Z_{i j}\left(D^{2} \times S^{1}, s_{1}, h\right) & =\frac{1}{4}\left(\delta_{i, 0}-\delta_{i, r-2}\right)\left(\delta_{j, 0}+\delta_{j, r-2}\right) .
\end{aligned}
$$

Finally, we have

$$
Z_{i j}\left(D^{2} \times S^{1}\right)=\delta_{i, 0} \delta_{j, 0}
$$

4.2 Refined Turaev-Viro model

In this section we refine the construction of [BD2].

Definition of invariants

We start by modifying the notion of a standard handlebody. As before, consider the cylinder $\Sigma_{g} \times[0,1]$ with the graph $\mathcal{G}^{g} \in \Sigma_{g}$ and the graph (4.1) on $-\Sigma_{g}$. Denote by b_{i} a closed 1-dimensional subcomplex of the graph \mathcal{G}^{g}, representing the $i^{\text {th }}$ meridian of $\Sigma_{g}, 1 \leq i \leq g$. We recall that the graph dual to \mathcal{G}^{g} provides a triangulation of Σ_{g}. Associate a \mathbb{Z}_{2}-number to the meridian b_{i} of $\Sigma_{g}, 1 \leq i \leq g$, and denote by \mathfrak{s} a sequence of these numbers. Let \mathfrak{h} be a fixed subset of $\left\{b_{i}\right\}$. These data define a standard handlebody $\left(M_{g}^{+}, \mathfrak{s}, \mathfrak{h}\right)$.

We say that (e, f) is a special colouring of the graph $G^{g} \cup \bar{G}^{g}$, if the following conditions are satisfied:

- colours e_{i} and $f_{i}, 1 \leq i \leq g$, are even, if $b_{i} \notin \mathfrak{h}$ and $\mathfrak{s}_{i}=0$;
- colours e_{i} and $f_{i}, 1 \leq i \leq g$, are odd, if $b_{i} \notin \mathfrak{h}$ and $\mathfrak{s}_{i}=1$;
- a colour e_{i} is even and f_{i} is odd, $1 \leq i \leq g$, if $b_{i} \in \mathfrak{h}$ and $\mathfrak{s}_{i}=0$;
- a colour e_{i} is odd and f_{i} is even, $1 \leq i \leq g$, if $b_{i} \in \mathfrak{h}$ and $\mathfrak{s}_{i}=1$.

We denote the set of all special colourings by $E(\mathfrak{s}, \mathfrak{h})$. The state sum for the standard handlebody is given by the formula:

$$
\begin{equation*}
K_{e f}(\mathfrak{s}, \mathfrak{h})=\omega^{g-1} \omega_{e} \omega_{f} \sum_{x} \prod_{i=1}^{3 g-3} \frac{\omega_{x_{i}}^{2}}{\omega^{2}} Z\left(M_{g}^{+}, G_{e}^{g} \cup \bar{G}_{f}^{g} \cup m_{x} \cup \mathcal{G}^{g}\right), \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
K(\mathfrak{s}, \mathfrak{h})=\oplus_{e f} K_{e f}(\mathfrak{s}, \mathfrak{h}), \quad(e, f) \in E(\mathfrak{s}, \mathfrak{h}) . \tag{4.9}
\end{equation*}
$$

This defines an inclusion

$$
K(\mathfrak{s}, \mathfrak{h}): V_{\Sigma_{g}}(\mathfrak{s}, \mathfrak{h}) \rightarrow V\left(\Sigma_{g}\right),
$$

where

$$
V_{\Sigma_{g}}(\mathfrak{s}, \mathfrak{h})=\oplus_{e f}\left\{V_{g}^{L}(e) \otimes V_{g}^{R}(f)\right\}, \quad(e, f) \in E(\mathfrak{s}, \mathfrak{h}) .
$$

The oppositely oriented handlebody is given in the usual way as the mirror image of $\left(M_{g}^{+}, \mathfrak{s}, \mathfrak{h}\right)$. The corresponding state sum $L(\mathfrak{s}, \mathfrak{h})$ yields a projector

$$
L(\mathfrak{s}, \mathfrak{h}): V\left(\Sigma_{g}\right) \rightarrow V_{\Sigma_{g}}(\mathfrak{s}, \mathfrak{h}) .
$$

It is not difficult to verify by direct calculation that

$$
L\left(\mathfrak{s}^{\prime}, \mathfrak{h}^{\prime}\right) K(\mathfrak{s}, \mathfrak{h})= \begin{cases}0, & \text { if } \mathfrak{s}^{\prime} \neq \mathfrak{s} \text { and } \mathfrak{h}^{\prime} \neq \mathfrak{h} ; \tag{4.10}\\ i d_{V_{\Sigma_{g}}(\mathfrak{s}, \mathfrak{h})}, & \text { if } \mathfrak{s}^{\prime}=\mathfrak{s} \text { and } \mathfrak{h}^{\prime}=\mathfrak{h} .\end{cases}
$$

By a parametrized triangulated surface $(\Sigma, \mathfrak{s}, \mathfrak{h})$ of genus g we mean a parametrized oriented surface Σ with triangulation X provided with a sequence \mathfrak{s} of \mathbb{Z}_{2}-numbers associated to the meridians $\phi\left(b_{i}\right), 1 \leq i \leq g$, and a fixed subset $\phi(\mathfrak{h})$ of the meridians, where $\phi:\left(\mathcal{G}^{g}\right)^{*} \rightarrow X$ is the parametrization of Σ. To the parametrized surface $(\Sigma, \mathfrak{s}, \mathfrak{h})$ we associate a vector space $V_{\Sigma}(\mathfrak{s}, \mathfrak{h})$, generated by special colourings $E(\mathfrak{s}, \mathfrak{h})$ of the graph $G^{g} \cup \bar{G}^{g}$.

Consider a 3 -cobordism (M, s, h) with parametrized boundary $\partial M=$ $\left(-\partial_{-} M\right) \cup \partial_{+} M$, where s is a spin structure on M and $h \in H^{1}(M)$. Let us enumerate the connected components of ∂M by an index $j, 1 \leq j \leq$ n. Suppose that the first l of them belong to $\partial_{-} M$ and the remaining to $\partial_{+} M$. Choose a sequence \mathfrak{s}_{j} of \mathbb{Z}_{2}-numbers and a set \mathfrak{h}_{j} on the $j^{\text {th }}$ connected component Σ_{j} of ∂M, such that

$$
\begin{equation*}
\left(\mathfrak{s}_{j}\right)_{i}=q_{\left.s\right|_{\Sigma_{j}}}\left(\phi_{j}\left(b_{i}\right)\right), \quad 1 \leq i \leq g_{j} \tag{4.11}
\end{equation*}
$$

and \mathfrak{h}_{j} consists of the meridians b_{i}, such that h is non-trivial on the homology class $\left[\phi_{j}\left(b_{i}\right)\right] \in H_{1}(M)$. Here ϕ_{j} is the parametrization of Σ_{j}.

One glues (along the parametrizations) $\left(M_{g_{j}}^{+}, \mathfrak{s}_{j}, \mathfrak{h}_{j}\right), 1 \leq j \leq l$, and $\left(M_{g_{j}}^{-}, \mathfrak{s}_{j}, \mathfrak{h}_{j}\right), l<j \leq n$, to the connected components of $\partial_{-} M$ and $\partial_{+} M$, respectively. The resulting manifold can be represented by surgery on S^{3} with n handlebodies removed and with a graph (given by the image of (4.1) under parametrization) sitting on the boundary of each handlebody (see [BD2] for more details). We set

$$
Z(M, s, h)_{e f, e^{\prime} f^{\prime}}=\omega^{-\chi(\partial M) / 2} \omega_{e} \omega_{f} \omega_{e^{\prime}} \omega_{f^{\prime}} \sum_{x y z} \prod_{i j, k} \frac{\omega_{x_{i}}^{2} \omega_{y_{j}}^{2} \omega_{z_{k}}^{2}}{\omega^{2} \omega^{2} \omega^{2}}
$$

$$
\begin{equation*}
\sum_{a b a^{\prime} b^{\prime}} Z\left(\tilde{S}^{3}, L_{a b} \cup m_{z} \cup G_{e f}^{+} \cup G_{e^{\prime} f^{\prime}}^{-} \cup m_{x} \cup m_{y}\right) \prod_{i=1}^{m} S_{a_{i} a_{i}^{\prime}} S_{b_{i} b_{i}^{\prime}} Z_{a_{i}^{\prime} b_{i}^{\prime}}\left(D^{2} \times S^{1}, s_{i}, h_{i}\right), \tag{4.12}
\end{equation*}
$$

where

$$
(e, f) \in E(\mathfrak{s}, \mathfrak{h}), \quad\left(e^{\prime}, f^{\prime}\right) \in E\left(\mathfrak{s}^{\prime}, \mathfrak{h}^{\prime}\right),
$$

L is an m-component surgery link; \tilde{S}^{3} is S^{3} with neighborhoods of L, G^{+} and G^{-}removed; $L_{a b} \cup m_{z}$ is the coloured graph on the boundary of a neighborhood of L; $S_{i j}$ is an invariant of the Hopf link (normalized by ω^{-1}), or equivalently, an element of MCG interchanging cycles in the canonical homology basis of a torus; s_{i} and h_{i} are the restrictions of s and h on the neighborhood of L_{i}. The state sums of a solid torus with additional structures are listed in the example of section 4.1 , where s_{0} (resp. s_{1}) denotes the spin structure, which is (not) bounding on S^{1}.

Taking into account that

$$
\begin{aligned}
& \sum_{a^{\prime}} S_{a a^{\prime}}\left(\delta_{a^{\prime}, 0}+\delta_{a^{\prime}, r-2}\right)= \begin{cases}\omega^{-1} \omega_{a}^{2}, & \text { if } a \text { is even } \\
0, & \text { if } a \text { is odd }\end{cases} \\
& \sum_{a^{\prime}} S_{a a^{\prime}}\left(\delta_{a^{\prime}, 0}-\delta_{a^{\prime}, r-2}\right)= \begin{cases}0, & \text { if } a \text { is even } \\
\omega^{-1} \omega_{a}^{2}, & \text { if } a \text { is odd }\end{cases}
\end{aligned}
$$

and repeating the computation given in the proof of Theorem 2 in $[\mathrm{BD} 2]$, one obtains that

$$
\begin{equation*}
Z(M, s, h)_{e f, e^{\prime} f^{\prime}}=\tau(M, s)_{e e^{\prime}} \tau(-M, s+h)_{f^{\prime} f} . \tag{4.13}
\end{equation*}
$$

As a result, the operator $Z(M, s, h)$, defined by (4.12), extends the Roberts' invariant to an anomaly free non-degenerate TQFT.

Gluing property

Corollary 8 If the 3-cobordism (M, s, h) is obtained from $\left(M_{1}, s_{1}, h_{1}\right)$ and $\left(M_{2}, s_{2}, h_{2}\right)$ by gluing along a homeomorphism $f: \partial_{+} M_{1} \rightarrow \partial_{-} M_{2}$ which

[^3]preserves structure and commutes with parametrizations, then
$$
\sum_{s, h} Z(M, s, h)_{e f, e^{\prime} f^{\prime}}=\sum_{e^{\prime \prime} f^{\prime \prime}} Z\left(M_{2}, s_{2}, h_{2}\right)_{e f, e^{\prime \prime} f^{\prime \prime}} Z\left(M_{1}, s_{1}, h_{1}\right)_{e^{\prime \prime} f^{\prime \prime}, e^{\prime} f^{\prime}}
$$
where the sum on the left hand side is taken over all s and h, such that $\left.s\right|_{M_{1}}=s_{1},\left.s\right|_{M_{2}}=s_{2}$ and $\left.h\right|_{M_{1}}=h_{1},\left.h\right|_{M_{2}}=h_{2}$.

Vector spaces associated to surfaces with structure

Due to (4.13), for a closed connected surface Σ with spin structure σ and $\mathrm{h} \in H^{1}(\Sigma)$,

$$
Z\left(\Sigma \times[0,1], \sigma \cup \sigma^{\prime}, \mathrm{h} \cup \mathrm{~h}^{\prime}\right)_{e f, e^{\prime} f^{\prime}}= \begin{cases}0, & \text { if } \sigma \neq \sigma^{\prime} \text { and } \mathrm{h} \neq \mathrm{h}^{\prime} \\ \tau_{e e^{\prime}}^{\sigma} \tau_{f^{\prime} f}^{\sigma+\mathrm{h}}, & \text { if } \sigma=\sigma^{\prime} \text { and } \mathrm{h}=\mathrm{h}^{\prime}\end{cases}
$$

Taking a direct sum over all special colourings we obtain an operator $Z(\Sigma \times$ $[0,1], \sigma, \mathrm{h})$. We define the vector space $V_{\Sigma}(\sigma, \mathrm{h})$ to be the support of this operator. This vector space is associated by the spin TQFT of Turaev-Viro type to the closed oriented connected surface Σ provided with spin structure σ and first cohomology class h. Clearly,

$$
\begin{gathered}
V(\Sigma)=\oplus_{\sigma, \mathrm{h}} V_{\Sigma}(\sigma, \mathrm{h}) \\
\operatorname{dim} V_{\Sigma}(\sigma, \mathrm{h})=\operatorname{dim} V_{(\Sigma, \sigma)} \operatorname{dim} V_{(\Sigma, \sigma+\mathrm{h})}
\end{gathered}
$$

and

$$
Z(M, s, h): V_{\partial_{-} M}\left(s_{-}, \mathrm{h}_{-}\right) \rightarrow V_{\partial_{+} M}\left(s_{+}, \mathrm{h}_{+}\right),
$$

where $s_{ \pm}=\left.s\right|_{\partial_{ \pm} M}$ and $\mathrm{h}_{ \pm}=\left.h\right|_{\partial_{ \pm} M}$.
It follows from the results of Section 3.3, that

$$
Z(M)=\oplus_{s_{ \pm}, h_{ \pm}} \sum_{s, h} Z(M, s, h),
$$

where the sum is over s and h, such that $\left.s\right|_{\partial_{ \pm} M}=s_{ \pm}$and $\left.h\right|_{\partial_{ \pm} M}=\mathrm{h}_{ \pm}$. Moreover,

$$
Z(M, h)=\oplus_{s_{ \pm}} \sum_{s} Z(M, s, h)
$$

is an invariant of a 3 -cobordism M with first cohomology class h, which can be defined as follows (see [TV]): Let us introduce a function $a: I \rightarrow \mathbb{Z}_{2}$, such that

$$
a(i)=i \quad(\bmod 2) .
$$

Then for any admissible triple (i, j, k)

$$
a(i)+a(j)+a(k)=0 .
$$

Therefore, each colouring of a triangulated 3-manifold M composed with a is a 1-cocycle of M. For any $h \in H^{1}(M), Z(M, h)$ is equal to the TuraevViro invariant, where one sums over all colourings which induce cocycles representing h.

5 Concluding remarks

In this article we restrict our attention to the case $r=0 \quad(\bmod 4)$, because it corresponds to the invariants with the richest topological structure. The case $r=2 \quad(\bmod 4)$ can be treated by quite similar methods, but it leads to invariants of 3 -cobordisms with a first \mathbb{Z}_{2}-cohomology class only. For odd r so far no refined invariants are known.

It would be interesting to find out whether refined quantum invariants determined by additional topological structures on 3-manifolds could be defined for higher quantum groups. We leave this question for future investigation.

Acknowledgements

I would like to thank Vladimir Turaev for many stimulating discussions and reading of the manuscript.

References

[At] Atiyah M.: Topological quantum field theories. Publ. Math. I.H.E.S. 68,175 (1989)
[BD1] Beliakova A., Durhuus B.: Topological quantum field theory and invariants of graphs for quantum groups. Commun. Math. Phys. 167, 395 (1995)
[BD2] Beliakova A., Durhuus B.: On the relation between two quantum group invariants of 3-cobordisms. Preprint No. 11 University of Copenhagen (1995), to appear in J. Geom. Phys.
[BHMV] Blanchet C., Habegger N., Masbaum G., Vogel P.: Topological quantum field theories derived from the Kauffman bracket. Preprint Nantes (1992), to appear in Topology
[B1] Blanchet C.: Invariants of three-manifolds with spin structure. Comment. Math. Helv. 67, 406, (1992)
[BM] Blanchet C., Masbaum G.: Topological quantum field theories for surfaces with spin structure. Preprint Nantes (1994)
[Jo] Jonson D.: Spin structures and quadratic forms on surfaces. J. London Math. Soc. (2), 22, 365 (1980)
[Ki] Kirby R.: The topology of 4-manifolds. Lect. Notes in Math., Springer Verlag.
[KM] Kirby R., Melvin P.: The 3-manifolds invariants of Witten and Reshetikhin-Turaev for $s l(2, \mathbb{C})$. Inv. Math. 105, 473 (1991)
[KS] Karowski M., Schrader R.: A combinatorial approach to topological quantum field theories and invariants of graphs. Commun. Math. Phys. 151, 355 (1993)
[KSV] Karowski M., Schrader R., Vogt E.: Invariants of 3-manifolds, unitary representations of the mapping class group and numerical calculations (in preparation)
[Li] Lickorish W.B.: The skein method for three-manifold invariants. J. Knot Theory and Its Ramif. 2, No. 2, 171 (1993)
[R] Roberts J.: Refined state-sum invariants of 3- and 4-manifolds. Preprint, Cambrige (1994)
[RT] Reshetikhin N., Turaev V.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103, 547 (1991)
[T] Turaev V.: Quantum invariants of knots and 3-manifolds. Walter de Gruyter Studies in Mathematics. 1994
[Tu] Turaev V.: State sum models in low dimensional topology. Proc. ICM Kyoto, 1, 689 (1990)
[TV] Turaev V., Viro O.: State sum invariants of 3-manifolds and quantum 6j-symbols. Topology 31, 865 (1992)
[Wi] Witten E.: Quantum field theory and the Jones polynomials. Commun. Math. Phys. 121, 351 (1989)

[^0]: ${ }^{1}$ Throughout this paper all (co)homology groups will have \mathbb{Z}_{2}-coefficients.

[^1]: ${ }^{2}$ Fusion preserves the parity of colours.

[^2]: ${ }^{3}$ In this article we suppose that the graph G is large enough in order that its dual defines a triangulation of ∂M.

[^3]: ${ }^{4}$ More precisely, $L_{a b} \cup m_{z}=\cup_{i=1}^{m}\left(L_{a_{i} b_{i}} \cup m_{z_{i}}\right)$, where $L_{a_{i} b_{i}}$ consists of two ($a_{i^{-}}$and b_{i}-coloured) lines homotopic to L_{i}, where one of them overcrosses and the other one undercrosses meridian $m_{z_{i}}$.

