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ABSTRACT. We show that the Khovanov and Cooper–Krushkal models for colored sl2 ho-
mology are equivalent in the case of the unknot, when formulated in the quantum annular
Bar-Natan category. Again for the unknot, these two theories are shown to be equivalent to
a third colored homology theory, defined using the action of Jones–Wenzl projectors on the
quantum annular homology of cables. The proof is given by conceptualizing the properties
of all three models into a Chebyshev system and by proving its uniqueness. In addition, we
show that the classes of the Cooper–Hogancamp projectors in the quantum horizontal trace
coincide with those of the Cooper–Krushkal projectors on the passing through strands. As an
application, we compute the full quantum Hochschild homology of Khovanov’s arc algebras.
Finally, we state precise conjectures formalizing cabling operations and extending the above
results to all knots.

CONTENTS

1. Introduction 2
1.1. Generalized projectors 4
1.2. Colored knot homology as a functor 5
1.3. The space of colors as Hochschild homology 5
1.4. Organization 6
1.5. Acknowledgements 6
2. Preliminaries 6
2.1. Conventions 7
2.2. Complexes 7
2.3. Gradings on categories and bicategories 8
2.4. Temperley–Lieb category 9
2.5. Khovanov homology and Bar-Natan’s bicategory 9
2.6. Quantum horizontal trace 11
2.7. Cyclicity isomorphism 13
2.8. Quantum horizontal trace of C0 14
2.9. Connection with the quantum vertical trace 16
3. Homological toolkit 17
3.1. Homological perturbation 18
3.2. Op-well-ordered twisted complexes 21
3.3. Combing hairs 22
4. Chebyshev systems 24
4.1. The Jones–Wenzl system 26
4.2. The Khovanov system 27
4.3. The Cooper–Krushkal system 29
5. The categorical idempotent model 31

1

ar
X

iv
:2

30
5.

02
97

7v
1 

 [
m

at
h.

G
T

] 
 4

 M
ay

 2
02

3



2 ANNA BELIAKOVA, MATTHEW HOGANCAMP, KRZYSZTOF PUTYRA, AND STEPHAN WEHRLI

5.1. Setup 31
5.2. The 2-periodic model for Pn 32
5.3. The quantum trace of Pn 35
6. Quantum traces of generalized projectors 38
6.1. Idempotents in TL 39
6.2. The categorified central idempotents 42
6.3. The primitive categorified idempotents 43
6.4. The quantum annular trace of categorified idempotents 44
7. Quantum Hochschild homology of Hn 44
References 46

1. INTRODUCTION

At the beginning of our century knot theory was revolutionized by the Khovanov con-
struction of a chain complex [Kho00] whose graded Euler characteristic is the Jones polyno-
mial, and whose Poincaré polynomial is a new link invariant detecting the unknot [KM11].
Since then many modifications of this construction were introduced in the literature. The
most relevant for us is the quantum annular Khovanov homology constructed by three au-
thors of the present paper in [BPW19]. This is a triply graded homology theory for links
in a thickened annulus A equipped with a membrane. The differentials preserve the quan-
tum and annular gradings and are given by annular cobordisms considered up to isotopies
fixing the membrane, so that moving a cobordism S through the membrane contributes a
factor q±χ(S), where q is a quantum parameter and χ(S) is the Euler characteristic (see Fig-
ure 1). Such cobordisms form a category BNq(A). Setting q = 1 we recover the usual annular
Khovanov homology of Asaeda–Przytycki–Sikora [APS04].

= q = q−1

= q b = q−2 b

FIGURE 1. Membrane relations.

This paper aims to compare different approaches extending this construction to colored
knots. Let us recall that given a framed oriented knot K ⊂ S3, and an (n + 1)-dimensional
representation Vn of the quantum group Uq(sl2), the colored Jones polynomial J(K,Vn) can
be defined by inserting the Jones–Wenzl idempotent into a diagram representing n-cable of
K and by resolving the crossings with the Kauffman bracket skein relations. Alternatively,
the Reshetikhin–Turaev functor can be used to define J(K,Vn).

In the categorified setting there are three different approaches to define colored annular
Khovanov homology, or its quantization. To outline these constructions we will need some
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preparation. Let us denote by TL the Temperley–Lieb category, whose objects are natural
numbers and whose morphisms from n to m are flat (n,m)-tangles (or crossingless match-
ings of n + m points). The unknot considered as (0, 0) morphism in TL takes value q + q−1.
For generic q the Temperley–Lieb algebra TLn := TL(n, n) is semisimple equipped with a
family of idempotents {pε}, ε ∈ {−1, 1}n projecting onto simple components. The most fa-
mous among them pn corresponding to ε = (1, . . . , 1) is called the Jones–Wenzl projector.
There is a functor HH0 : TL S(A), to the skein algebra of the annulus, sending pn to its
braid closure [pn] satisfying the following Chebyshev recursion relation:

[pn][p1] = [pn+1] + [pn−1]

This relation also holds for classes [Vn] in the Grothendieck ring of the representation cate-
gory Rep(Uq(sl2)) or in the Hochschild homology of the latter, thus leading to an isomor-
phism between HH0(TL) and K0(Rep(Uq(sl2))).

The Bar-Natan 2-category BN categorifies TL by adding as 2-morphisms surfaces bounded
by flat tangles. We will denote by BN n the category BN(n, n). There is also a natural
categorification of the 0th Hochschild homology, called the horizontal trace of a 2-category.
We will work with the q-twisted, or quantum, version of the horizontal trace developed in
[BPW19], where it was shown that the quantum horizontal trace hTrq(BN⊕) is equivalent to
BNq(A)⊕. Here the symbol ⊕ indicates the additive closure.

Our first model for colored knot homology uses the Cooper–Krushkal categorification Pn
of the Jones–Wenzl idempotent pn ∈ TLn living in an appropriate completion of the cate-
gory of bounded complexes over the Bar-Natan category BNn. Let us denote by [Pn] the
class of Pn in hTrq(BN⊕). In the Coooper–Krushkal model the colored annular complex is
constructed by composing [Pn] with the quantum annular complex for the n cable of K.

The second approach is due to Khovanov and inspired by the following decomposition of
[Vn] ∈ K0(Rep(Uq(sl2)))

(1.1) [Vn] =

bn
2
c∑

k=0

(−1)k
(
n− k
k

)[
V
⊗(n−2k)

1

]
.

In [Kho05] Khovanov constructed a family of finite complexes Vn over the Temperley–Lieb
category TL whose Euler characteristics satisfies (1.1) where the binomial coefficients are
interpreted as grading shifts. Combining these complexes with those for the n cable of K we
get the n-colored quantum annular complex.

The third construction makes use of a functor

S1 × (−) : TL −→ BNq(A)

that sends an object n to a collection of n essential circles in A and a cap or cup to a band
between neighboring circles. More generally, this functor sends a flat tangle T to the surface
S1 × T ⊂ A × I . In [BPW19] it is shown that this functor induces an equivalence between
TL⊕ and BNq(A)⊕. This allows us to define the colored complex for a knot K by composing
S1 × pn ∈ BNq(A)⊕ with the quantum annular complex of the n cable of K.

To conclude, all three models associate with a pair (K,Vn) a (bounded above) chain com-
plex over the Karoubi envelope of TL⊕. We denote the category of such chain complexes by
Ch−(Kar(TL)⊕). Let us also fix a coefficient ring k, such that q is a fixed invertible element
of k and 1− qd is invertible for all integers d in (0, 2N ] for a big enough N .

Our main result establishes an equivalence of these three models for the n-colored unknot.
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Theorem A. The quantum annular complexes for the n-colored unknot in all three models are homo-
topy equivalent, meaning that

[Pn] ' im pn ' Vn ∈ Ch−(Kar(TL)⊕).

where im pn denotes the idempotent pn viewed as an object of Kar(TL).

We remark that the above theorem fails in the setting of the usual (untwisted) horizon-
tal trace, and in general the Cooper–Krushkal and Khovanov colored homologies are non-
isomorphic.

To prove Theorem A we formalize properties of all three models by introducing a Cheby-
shev system defined for any monoidal category (C,⊗,1) by the following data:

• a self-dual object V in C,
• a family of complexes V (n) ∈ Ch−(C) with V (0) = 1 and V (1) = V ,
• chain maps π(n) : V (n−1) ⊗ V V (n) for n > 1,

such that π(1) : 1⊗V V is the canonical isomorphism and there is a distinguished triangle

(1.2) V (n−2) −→ V (n−1) ⊗ V π(n)

−−−→ V (n) −→ V (n−2)[1]

in the homotopy category of bounded complexes over C (see Definition 4.6 for more details).
We prove that for a given V , a Chebyshev system in C is unique up to homotopy and show
that each of our there models defines a Chebyshev system in Ch−(Kar(TL)⊕), thus proving
the claim.

1.1. Generalized projectors. Notice that as an abelian group, the Hochschild homology
HH0(TLn) is free on the classes [pn]. To express a general endomorphism x ∈ TLn in this
basis, we use a complete collection of primitive orthogonal idempotents {pε ∈ TL}ε, labelled
by certain length n sequences of ±1. In particular, for any x ∈ TLn we decompose

x =
∑
ε

xpε or [x] =

[∑
ε

pεxpε

]
∈ HH0(TL).

Since each pε is a primitive idempotent, pεTLnpε is one-dimensional, hence pεxpε = Trε(x)pε
for some scalars Trε(x) and

[x] =
∑
ε

Trε(x)[pε].

Moreover, [pε] depends only on the integer |ε| (the maximal number of coming through
strands) and is characterized by im pε ∼= im p|ε| or equivalently, by [pε] = [p|ε|] in HH0(TLn),
where p|ε| is the Jones–Wenzl projector. We then have

[x] =
∑
ε

Trε(x)[p|ε|].

We conjecture that a categorified analogue of this statement holds as well.

Conjecture B. For a given X ∈ Ch−(BN n), there exist complexes hTrq,ε(X) ∈ Ch−(k−mod)
such that

[X] '
⊕
ε

hTrq,ε(X)⊗k [P|ε|].

where [Pε] is the class of Pε in the quantum horizontal trace and hTrq,ε(X) is characterized by

[X ? Pε] = hTrq,ε(X)⊗ [Pε]
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where Pε is the categorified Temperley–Lieb algebra idempotent constructed by the second author and
B. Cooper [CH15], and ? denotes the composition of 1-morphisms in BN.

We will not pursue this conjecture in this paper, but we will prove the following special
case.

Theorem C. For each ε with |ε| = k we have

[Pε] ' [Pk] ∈ Ch−(TL⊕).

The proof of this theorem and our construction of Pε is based on homological perturbation
theory and a general form of the combing hairs lemma, that may be of independent interest
for homotopy theorists.

As an application of Theorem C we show that the higher quantum Hochschild homology
groups of the Khovanov arc algebra Hn vanishes and the rank of the zeroth homology is
given by the nth Catalan number.

The results and tools developed in this paper form a part of our program aiming to in-
vestigate the behavior of Khovanov homology under cabling operations. Let us state two
further conjectures that we plan to address in the sequel.

1.2. Colored knot homology as a functor. Given a knot K, a complex semisimple Lie alge-
bra g, and a finite dimensional representation V of Uq(g), the Reshetikhin–Turaev construc-
tion produces a link invariant Pg(K,V ) ∈ Z[q, q−1]. The aim of categorified Reshetikhin-
Turaev invariants is to replace the Laurent polynomial Pg(K,V ) by a complex of vector
spaces Cg(K,V ) whose graded Euler characteristic is Pg(K,V ). As is well known, in fa-
vorable situtations Cg(K,V ) is functorial in K, with respect to framed oriented cobordisms.

It is also natural to wonder if such colored knot homology theories can be made functorial
in V . That is to say, if we fix K, we should expect the assignment V Cg(K,V ) to lift to a
functor

Rep(Uq(g))→ Ch(k−mod).

We plan to investigate the existence of such a functor in the case g = sl2. In this case,
Rep(Uq(g)) is equivalent to the Temperley–Lieb category Kar(TL)⊕.

In the sequel our aim will be to prove the following.

Conjecture D. Each framed oriented knot K determines a dg functor

C(K;−) : Ch−(Kar(TL)⊕)→ Ch−(k−mod)

with the following properties:
1) C(K;V ⊗n1 ) is the quantum annular complex associated to the n-cable of K.
2) C(K;Vn) is a quantum annular version of Khovanov’s colored sl2-homology.

1.3. The space of colors as Hochschild homology. Let K ⊂ S3 be a framed oriented knot.
Choose a presentation of K as the closure of a (1, 1)-tangle diagram D (equipped with the
blackboard framing), and consider the following construction. Suppose we are given an
element of the Temperley–Lieb algebra x ∈ TLn. Let Dn denote the n-cable of D, and let
〈Dn〉 ∈ TLn denote the Kauffman bracket. We can multiply 〈Dn〉x and then take the trace

P ′(K,x) := Tr(〈Dn〉x) ∈ k.
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This assignment does not depend on the choice of (1, 1)-tangle diagram D, and satisfies (by
isotopy invariance and the nature of traces)

P ′(K,xy) = P ′(K, yx).

In fact this identity remains true when xy ∈ TLn and yx ∈ TLm for m 6= n. Thus, we can
view the assignment x P ′(K,x) as a linear map

HH0(TL)→ k .

Since TLn is semisimple, its higher Hochschild homology groups vanish. Replacing the
Hochschild homology by its full categorification, which is a dg version of the horizontal
trace defined in [GHW22], we get the following conjecture.

Conjecture E. Each complex X ∈ Ch−(BN n) determines a colored complex

C ′(K,X) ∈ Ch−(k−mod).

The assignment X C ′(K,X) is functorial in X , in the sense that it factors through the dg quan-
tum horizontal trace [GHW22]. Furthermore, if Pn denotes the Cooper–Krushkal categorified Jones–
Wenzl idempotent, then C ′(K,Pn) is homotopy equivalent to the Vn-colored complex C(K,Vn) from
Conjecture D.

In particular, we expect that the Khovanov and Cooper–Krushkal models for the colored
quantum annular homology coincide for all knots. The results of this paper and the previous
one [Bel+19] will play a crucial role in the proof of these conjectures.

1.4. Organization. The paper is organized as follows. In Section 2, we provide the necessary
background on categorical traces and shadows. We also introduce the main categories and
bicategories used in the paper. In Section 3, we discuss homological perturbation theory for
twisted complexes and prove a general version of the combing hairs lemma, needed for our
proofs. In Section 4, we define the notion of a Chebyshev system in a triangulated category,
and we prove a uniqueness result (Theorem 4.8). As examples of Chebyshev systems, we
consider the three models from Theorem A. In the fourth section, we prove Theorem 4.20,
which asserts that the Cooper–Krushkal model is indeed a Chebyshev system. To show this,
we establish a new 2-periodic model for the Cooper–Krushkal projector (Theorem 5.1). The
next section is devoted to the categorified idempotents Pε. We first give a new proof of their
existence and then establish Theorem C about the quantum horizontal trace of Pε. Finally,
we compute the quantum Hochschild homology of the Khovanov arc algebras.

1.5. Acknowledgements. AB and KP would like to thank NCCR SwissMAP of the Swiss
National Science Foundation (SNF). In addition, AB was partly supported by the SNF grants
200020 207374 and 200021 178767. SW was partially supported by a grant from the Simons
Foundation (#632059 Stephan Wehrli).

2. PRELIMINARIES

In this section, we will review the homological and categorical constructions that will be
used in the later sections of the paper. We will also give a self-contained proof of the fact that
for generic q, the Temperley–Lieb category is equivalent to the quantum horizontal trace of
the Bar-Natan bicategory (Theorem 2.2). We will start by fixing some conventions.
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2.1. Conventions. Throughout this paper, k will be a commutative unital ring and q ∈ k×
will be a fixed invertible element. We will assume that 1 − qd is invertible for all integers
d ∈ (0, 2n] and n sufficiently large.

We will write ? for the horizontal composition of 1- and 2-morphisms in a bicategory.
Similarly, we will use ◦ to denote the vertical composition of 2-morphisms, as well as the
ordinary composition of morphisms in a category. Moreover, the symbols ⊗ and t will be
used to denote the monoidal products in the Temperley–Lieb category and in the Bar-Natan
bicategory, respectively. Finally, the superscript ⊕ will refer to the additive closure. This
superscript will be omitted in the later sections of the paper, where it is understood implicitly
that categories are completed with respect to finite direct sums.

2.2. Complexes. If A is a k-linear category, we will let Ch(A) denote category of complexes
over A. Objects of this category are complexes (with the cohomological convention for dif-
ferentials)

· · · δ
k−1

−→ Xk δk−→ Xk+1 δk+1

−→ · · ·

in which each Xk ∈ A. Morphism spaces between objects X and Y in Ch(A) are complexes

Homk
Ch(A)(X,Y ) =

∏
i∈Z

HomA(Xi, Y i+k)

equipped with the differential

f δY ◦ f − (−1)|f |f ◦ δX =: [δ, f ]

where for f ∈ Homk
Ch(A)(X,Y ), |f | = k is the (cohomological) degree of f . In this way,

the category Ch(A) is a dg category, i.e. a category in which hom spaces are complexes of
k-modules, and for which composition of morphisms satisfies the appropriate version of the
Leibniz rule:

[δ, f ◦ g] = [δ, f ] ◦ g + (−1)|f |f ◦ [δ, g].

We use superscripts −,+, b to denote complexes which are bounded from the right, re-
spectively left, respectively both right and left.

The category Ch(A) is symmetric monoidal with the tensor product defined on objects by

(X ⊗ Y )k =
⊕
i+j=k

Xi ⊗ Y j , δX⊗Y = δX ⊗ idY + idX ⊗Y

and on morphisms f, g by (f ⊗ g)(x⊗ y) = (−1)|x||g|f(x)⊗ g(y) with braidings

cX,Y : X ⊗ Y Y ⊗X given by cX,Y (x⊗ y) = (−1)|x||y|y ⊗ x.

For any `, the translation t` shifts the complex X by ` steps to the right, i.e.

(t`X)k = Xk−` and δt`X = (−1)`δX .

A morphism f ∈ HomCh(A)(X,Y ) is said to be closed if [δ, f ] = 0 and null-homotopic if
f = [δ, h] for some h ∈ HomCh(A)(X,Y ). In the later case h is called a null-homotopy for
f . For f, g ∈ HomCh(A)(X,Y ), we write f ' g and say f and g are homotopic if f − g is
null-homotopic.
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We denote by K(A) the homotopy category of Ch(A) which has the same objects as Ch(A)
and whose morphisms are homotopy classes of degree zero closed morphisms in Ch(A), i.e.

HomK(A)(X,Y ) :=
{f ∈ Hom0

Ch(A)(X,Y ) | [δ, f ] = 0}

δ
(

Hom−1
Ch(A)(X,Y )

) .

An isomorphism f : X Y in K(A) is called a homotopy equivalence and in this case we
write X ' Y . If X ' 0, we say that X is contractible.

If f ∈ Hom1
Ch(A)(X,Y ) is a degree 1 closed morphism, the cone of f is the object Cone(f) :=

X ⊕Y in Ch(A) equipped with the differential
[
δX 0
f δY

]
. If instead f : X Y is a degree

0 closed morphism, then we replace f by a degree 1 closed morphism t−1X Y and then
apply the previous construction.

The construction of cones allows to translate statements about morphisms into statements
about objects. For example, a closed map f : X Y is a homotopy equivalence if and only
if Cone(f) ' 0.

2.3. Gradings on categories and bicategories. We will say that a k-linear is pregraded if its
morphism sets are endowed with Z-gradings which are additive under composition. A pre-
graded category is called graded if it comes with a “grading shift” automorphism q along
with a natural degree 1 isomorphism s : 1→ q from the identity functor to q.

A bicategory is called k-linear if its 2-morphism sets are equipped with a k-module struc-
tures such that both compositions are bilinear. Such a bicategory is pregraded if its morphism
categories are pregraded in such a way that gradings are additive under horizontal (and
vertical) composition. In the non-strict setting, it is also required that the associator and the
unitors have degree 0.

Finally, a pregraded bicategory is called graded its morphism categories are graded in such
a way that the grading shift functors and the natural degree 1 isomorphisms s : 1→ q behave
nicely under horizontal composition. By this, we mean that (qf) ? g = q(f ? g) = f ? (qg)
and correspondingly s ? 1 = s = 1 ? s for composable 1-morphisms f and g.

Note that while the grading shift functors in a graded bicategory take a 1-morphism f
to a “shifted” 1-morphism qf , they do not change the degrees of 2-morphisms. Indeed,
|qα| = |s ◦ α ◦ s−1| = |α|, where we write |α| ∈ Z for the degree of the 2-morphism α. In
general, any homogeneous 2-morphism α : f g in a graded bicategory corresponds to a
homogenous 2-morphism sm ◦ α ◦ s−n : qnf qmg of degree |α| + m − n for m,n ∈ Z. In
particular, the identity 2-morphism 1 : f → f corresponds to sf : f → qf .

Given a bicategory which is only pregraded but not already graded, we can extend it
to a graded bicategory with the same objects. The 1-morphisms in this graded bicategory
are given by pairs of the form qnf := (f, n), where f is a 1-morphism from the original
bicategory, and n is an integer, to be viewed as a formal grading shift. If qnf = (f, n) and
qmg = (g,m) are two such pairs, then the 2-morphisms qnf qmg are given by copies of
2-morphisms f g from the original bicategory, but with degrees raised by m− n.

In a similar way, a category which is only pregraded but not already graded can be ex-
tended to a graded category with objects of the form qnx := (x, n).

If C is a pregraded (possibly graded) bicategory, then we denote by C0 the bicategory
which contains the same objects and 1-morphisms, but only the 2-morphisms of C that have
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degree 0. Likewise, for a pregraded (possibly graded) category C, we denote by C0 the sub-
category which has the same objects but only the morphisms of degree 0.

Note that if C is graded, then every 2-morphism in C can be obtained from a 2-morphism
in C0 by pre- and post-composing with suitable powers of s. A similar remark applies to a
graded category C and its subcategory C0.

2.4. Temperley–Lieb category. As before, let k be a commutative ring and let q ∈ k× be
a fixed invertible element. The Temperley–Lieb category is the k-linear category TL whose
objects are nonnegative integers and whose morphisms sets are generated by isotopy classes
of flat tangles modulo the relation

T ∪© = (q + q−1)T

for any circular component ©. By a flat tangle, we here mean an unoriented compact 1-
manifold T ⊂ I2 with n bottom endpoints on I × {0} and m top endpoints on I × {1} for
some n,m ≥ 0.

The composition in TL is given by vertical stacking of tangles, so that T ◦ T ′ denotes the
result of placing the tangle T on top of the tangle T ′ and rescaling vertically. There is also
a horizontal composition of tangles, given by placing tangles side-by-side, which induces a
monoidal structure on TL. For technical reasons, we will sometimes assume that the objects
in TL come with formal grading shifts, defined as in [BN05, Section 6].

The endomorphism algebra TLn := TL(n, n) is known as the Temperley–Lieb algebra. If the
quantum integers [k] := qk−1 + qk−3 + . . . + q1−k are invertible for 1 < k ≤ n, then TLn
contains a distinguished idempotent pn called the Jones–Wenzl idempotent. The idempotents
pn can be defined recursively by p0 := id0, p1 := id1, and

(2.1) n = n− 1 − [n− 1]

[n]
n− 1

n− 1

for n > 1, where each box represents a Jones–Wenzl idempotent.

2.5. Khovanov homology and Bar-Natan’s bicategory. Given an oriented link diagram, we
can resolve each of its crossings by applying the Kauffman bracket skein relation

= q(3ε−1)/2
(
− q

)
where ε ∈ {±1} is the sign of the crossing. Replacing circles in the resulting terms by factors
of q + q−1, we obtain the Jones polynomial of the link. The same algorithm associates with a
tangle a morphism in TL.

In [Kho00] Khovanov categorified this construction by adding morphisms between res-
olutions in form of saddle cobordisms. Arranging the crossing resolutions as the vertices
of a hypercube and the saddle cobordisms as its edges, Khovanov assigned to a link dia-
gram a commutative diagram in the category of 2-dimensional cobordisms. By applying a
TQFT functor corresponding to the Frobenius algebra k[x]/x2, he then defined a chain com-
plex whose homology is a link invariant, called Khovanov homology. The Jones polynomial
is recovered as the graded Euler characteristic of Khovanov homology. This construction
extends to tangles in surfaces [APS04] and is (projectively) functorial with respect to tangle
cobordisms.
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It was observed by Bar-Natan that most of Khovanov’s construction can be performed
formally on the level of a complex JT K called the formal Khovanov bracket of T ⊂ F [BN05].
Here F can be any smooth oriented surface with boundary and it is assumed that ∂T = B
for a set B ⊂ ∂F . The complex JT K is constructed in the additive closure of the Bar-Natan
category BN (F,B), the graded k-linear category whose objects are flat tangles in F with
boundary B and with grading shifts, and whose morphism sets are generated by compact
surfaces in F × I decorated by dots. Such surfaces are required to have boundaries of the
form ∂S = (T × {0}) ∪ (B × I) ∪ (T ′ × {1}) and are considered up to isotopy and up to the
following local relations:

• sphere evaluations:

(2.2) = 0 = 1

• neck cutting relation:

(2.3) = +

• dot reduction:

(2.4) = 0

We define the (unshifted) degree of a cobordism S ⊂ F × I by

|S| := −χ(S) +
#{corners in S}

2
+ 2#{dots on S}

Note that the relations are degree preserving, and that the neck cutting relation evaluates
a handle attached to a plane as a dot scaled by 2. Because of that, it is common to think of
a dot as ,,half” of a handle, even when 2 is not an invertible scalar.

We will denote by BN (A) := BN (A, ∅) the Bar-Natan category of the annulus. Moreover,
we will denote by BN the graded bicategory whose objects correspond to nonnegative in-
tegers, and whose morphism categories are given by the Bar-Natan categories BN (I2, Bn,m)
where Bn,m ⊂ ∂I2 consists of n points on the bottom boundary of the square I2 and of
m points on the top boundary. Note that the horizontal composition in BN is induced
by the composition of tangles, and that BN has a monoidal structure corresponding to the
monoidal structure on the category of flat tangles.

The formal Khovanov bracket is projectively functorial [BN05]. Indeed, there is a way
of associating a chain map with each Reidemeister move and with any cobordism contain-
ing a unique critical point. One constructs a chain map for any smooth tangle cobordism
by decomposing the cobordism into a sequence of the above elementary pieces and com-
posing the associated maps; choosing a different decomposition may at most changes the
map within its homotopy class, or changes the global sign of the map. This global sign can
be fixed by using the explicit equivalence between Uq(gl2)-foams and BN constructed in
[Bel+19]. Hence, there is a well-defined bifunctor

J−K : Tan K(BN⊕),
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where Tan denotes the bicategory whose 1-morphisms are oriented tangle diagrams in I2

(possibly with crossings) and whose 2-morphisms are smooth tangle cobordisms in R4, up
to isotopy.

2.6. Quantum horizontal trace. There is a functorial construction, called the twisted hori-
zontal trace, sending suitable tangles in F × I to links in a surface bundle over a circle with
fiber F and monodromy σ ∈ Diff (F ). This construction works more generally for any bicat-
egory C equipped with an endofunctor Σ: C→ C. Let us recall its definition from [BPW19].

Definition 2.1. The Σ-twisted horizontal trace of C is the category hTr(C,Σ), whose objects
are 1-morphisms f : Σx x in C and morphisms from f ∈ C(Σx, x) to g ∈ C(Σy, y) are
equivalence classes [p, α] of squares

Σx x

Σy y

f

g

Σp p
α

where α : p ? f g ? Σp is a 2-morphism in C, modulo the relation

(2.5)

Σx x

Σy y

f

g

Σp
Σp′

p
α

Στ ∼

Σx x

Σy y

f

g

p
p′Σp′ α τ

for 1-morphisms p, p′ : x y, and 2-morphisms α : p ? f g ? Σp′ and τ : p′ p. Here
[1x,1f ] the identity on f and the composition

(2.6) [q, β] ◦ [p, α] := [q ? p, (β ? 1Σp) ◦ (1q ? α)]

can be visualized as stacking squares one on top of the other:

(2.7)

Σy y

Σz z

g

h

Σq q
β ◦

Σx x

Σy y

f

g

Σp p
α

:=

Σx x

Σy y

Σz z

f

g

h

Σp p

Σq q

α

β

Unitarity and associativity follows from (2.5) with an appropriate composition of associators
and unitors as τ .

When C is k-linear and Σ: C→ C is given by linear maps on 2-morphism sets, we modify
the definition of the twisted horizontal trace by allowing formal k-linear combinations of
squares as morphisms. Such linear combinations are taken modulo relation (2.5) and modulo
the relation [p, aα + β] = a[p, α] + [p, β] for a ∈ k. This definition ensures that hTr(C,Σ) is
itself a k-linear category.

If Σ = 1, we recover the horizontal trace from [Bel+17], and in this case we will omit Σ
from the notation. For example,

hTr(BN) ' BN (A),
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where the equivalence sends a flat tangle T ⊂ I2 to its annular closure T̂ ⊂ A.
In case C is pregraded, we can define the quantum endofunctor, which acts as the identity on

objects and 1-morphisms and which satisfies Σα = q−|α|α for any homogeneous 2-morphism
α and for a fixed invertible element q ∈ k×. The horizontal trace twisted by this endofunctor
is called quantum horizontal trace and will be denoted by hTrq(C).

We will denote the quantum horizontal trace of BN by

BNq(A) := hTrq(BN)

and call it the quantum annular Bar-Natan category. This category admits the following graph-
ical description. Choose a radial arc µ ⊂ A connecting the two components of ∂A, and let
M ⊂ A × I be the membrane M := µ × I . The category BNq(A) can be defined in the same
way as BN (A), except that objects are required to be transverse to µ and cobordisms in A× I
are required to be transverse to M . Isotopic cobordisms are identified if the ambient isotopy
fixes the membrane setwise. Otherwise, we rescale the target cobordism as shown in Fig-
ure 1, where the coorientation of the membrane is induced by the orientation of the core of
the annulus.

There is a natural functor

S1 × (−) : TL −→ BNq(A)

that sends an object n to a collection of n essential circles in A and a cap or cup to a band
between neighboring circles. More generally, this functor sends a flat tangle T to the surface
S1×T ⊂ A× I , which corresponds to the morphism [T,1T ] in the quantum horizontal trace.

The following result first appeared in [BPW19].

Theorem 2.2. Suppose 1 − qd is invertible for all d 6= 0. Then the functor S1 × (−) induces an
equivalence of categories

TL⊕ ' hTrq(BN)⊕ ∼= BNq(A)⊕,

where objects in the involved categories are assumed to come with formal grading shifts.

A proof of this proposition will be given in Subsection 2.9. Note that the assumption on q
implies that in BNq(A), dots on essential components of a cobordism S ⊂ A× I are equal to
zero. Indeed, moving such a dot through the membrane, we see that (1 − q2) times the dot
has to be equal to zero. This is a special case of the following result, in which α : p p in a
2-endomorphism in a pregraded (and possibly graded) bicategory C:

Lemma 2.3. Suppose 1− qd is invertible in k. If |α| = d, then the square

x x

y y

1x

1y

p p
α

is zero in hTrq(C).
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Proof. We have

x x

y y

1x

1y

p p
α

=

x x

y y

1x

1y

p
p

p
1p

α ∼ qd ·

x x

y y

1x

1y

p
pp

1p α
= qd ·

x x

y y

1x

1y

p p
α

which implies that the square from the lemma is annihilated by 1 − qd. The result follows
because 1− qd is invertible in k �

In the graded setting, the lemma admits a generalization in which 1x and 1y are replaced
by shifted copies qn1x and qm1y. For the lemma to remain true, d must be the degree of α
viewed as a 2-morphism between the unshifted 1-morphisms p ? 1x = p and 1y ? p = p. To
see this, consider a 2-morphism α : p ? (qn1x) (qm1y) ? p, and apply the original version
of the lemma to the 2-morphism s−m ◦ α ◦ sn : p ? 1x 1y ? p.

In Subsection 2.9, we will reinterpret the lemma in terms of the vertical quantum trace.

Remark 2.4. An argument similar to the one used in the proof of the lemma shows that if the
commutative ring k is equipped with a nontrivial grading and if a ∈ k has degree |a| = d,
then (1− qd)a annihilates all morphisms in the quantum horizontal trace.

2.7. Cyclicity isomorphism. For a bicategory with left and right duals, the twisted hori-
zontal trace can be seen as the target category of a universal twisted shadow (see [BPW19]).
In particular, this means that hTr(C,Σ) comes with the following extra structure: for each
object x ∈ C, there is a functor [−]x : C(Σx, x) hTr(C,Σ) given by

[f ]x := f, [α]x := [1x, α].

Likewise, for each pair of 1-morphisms Σx
f

y
g

x in C, there is a cyclicity morphism
θg,f : [f ? Σg]y → [g ? f ]x given by an identity 2-morphism (or by an associator in the non-
strict setting):

θg,f :=

Σy Σx y

Σx y x

Σg

f

f

g

Σg g1Σx 1y

When C has appropriate duals (which is the case for the bicategories considered in this
paper), then the morphism θg,f turns out to be an isomorphism. Moreover, θg,f is natural in
the sense that the following diagram commutes

[f ? Σg]y [g ? f ]x

[f ′ ? Σg′]y [g′ ? f ′]x

θg,f

θg′,f ′

[α?Σβ]y [β?α]x

for 2-morphisms α : f f ′ and β : g g′.
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When Σ is the quantum endofunctor of a pregraded bicategory C, we drop the subscript
[f ]x referring to the object x and instead write [f ] for [f ]x ∈ hTrq(C) = hTr(C,Σ). In this
case, the naturality property of θ can be stated as saying that

[f ? g] [g ? f ]

[f ′ ? g′] [g′ ? f ′]

θg,f

θg′,f ′

[α?β] q|β|[β?α]

commutes in hTrq(C) for any 2-morphism α : f f ′ and any homogeneous 2-morphism
β : g g′. More generally, we have a similar commutative diagram in which [α ? β] is re-
placed by [α1 ? β1] + . . .+ [αn ? βn] and q|β|[β ? α] is replaced by

q|β1|[β1 ? α1] + . . .+ q|βn|[βn ? αn]

for any 2-morphisms αi : f f ′ and homogeneous 2-morphisms βi : g g′.
The cyclicity morphism θg,f depends not just on the 1-morphism g ? f , but on the factor-

ization of this 1-morphism into f and g. This point is important when working in a graded
setting because a 1-morphism of the form qd(f ? g) can be factored as (qd−nf) ? (qng) for
any integer n ∈ Z. The corresponding cyclicity morphism in the quantum horizontal trace
depends on the chosen n, but using relation (2.9) from the next subsection, one can see that

(2.8) θqng,qd−nf = qn−mθqmg,qd−mf

for all m,n ∈ Z. Thus, changing the chosen n only rescales the cyclicity morphism by an
overall power of q.

We conclude this subsection by noting that the functor

[−] : C(x, x) −→ hTrq(C)

is linear and thus induces a functor

[−] : Ch(C(x, x)) −→ Ch(hTrq(C))

between the corresponding categories of chain complexes and their associated homotopy
categories. Applying this functor to the formal Bar-Natan bracket of an (n, n) tangle di-
agram, we get a chain complex in the quantum annular Bar-Natan category. For generic q,
this complex can be viewed as a complex in TL⊕ ⊂ Rep(Uq(sl2)) or, after forgetting the quan-
tum group action, as a complex of k-modules. As such, it generalizes the annular Khovanov
complex defined in [APS].

2.8. Quantum horizontal trace of C0. In this paper, we will usually work with the full Bar-
Natan bicategory BN. However, most of our results could also be formulated using the bicat-
egory BN0 ⊂ BN in which 1-morphisms still have formal grading shifts, but 2-morphisms
are required to have degree 0 (after taking into account these formal grading shifts). For our
results to remain true for BN0, we have to make a minor modification in our definition of
the quantum horizontal trace.

Thus, let C be a graded bicategory and let C0 ⊂ C be the bicategory which has the same
objects and 1-morphisms but only 2-morphisms of degree 0. In the quantum horizontal trace
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of C, the relation

(2.9)

x x

y y

f

g

qp qp
qα ∼ q ·

x x

y y

f

g

p p
α

is satisfied because

(2.10)

x x

y y

f

g

qp
p

qp
α◦s−1

p

Σsp ∼

x x

y y

f

g

qp
pp

α◦s−1
p sp

where Σ denotes the quantum endofunctor, and s is the natural degree 1 isomorphism be-
tween the identity functor and the grading shift functor q.

However, relation (2.9) is a priori not longer true in hTrq(C0) because the 2-morphism sp
in (2.10) has nonzero degree.

Since (2.9) is important for our purposes, we therefore redefine hTrq(C0) by imposing (2.9)
as an extra relation, which is required to hold in addition to the usual horizontal trace relation.
It is then easy to see that

(2.11) hTrq(C0) ∼= hTrq(C)0

where hTrq(C)0 denotes the subcategory of hTrq(C) that contains only degree 0 morphisms,
and where the degree of a morphism in hTrq(C) is defined by |[p, α]| := |α|.

The extra relation (2.9) (or the resulting isomorphism (2.11)) also ensures that equation (2.8)
still holds in hTrq(C0). A further consequence of (2.11) is that the naturality condition

q|β|[β ? α] = θg′,f ′ ◦ [α ? β] ◦ θ−1
g,f

still holds in hTrq(C0) whenever |α?β| = 0. This can also be seen directly as follows: suppose
α has degree |α| =: n (so that |β| = −n), and let α̃ : f q−nf ′ and β̃ : g qng′ be the 2-
morphisms α̃ := s−n ◦ α and β̃ := sn ◦ β, so that α̃ ? β̃ = α ? β and β̃ ? α̃ = β ? α. Since α̃ and
β̃ have degree 0, we then have

[β̃ ? α̃] = θqng′,q−nf ′ ◦ [α̃ ? β̃] ◦ θ−1
g,f

in hTrq(C0), and since (2.8) still holds in hTrq(C0), this implies the desired result.
Returning to the quantum horizontal trace of the full bicategory C, we note that hTrq(C)

is pregraded via the definition |[p, α]| := |α| mentioned earlier. We can turn hTrq(C) into a
graded category by setting

(2.12) q[f ] := [qf ], q[p, α] := [p,qα], s[f ] := [1, sf ].

Note that the automorphism q : hTrq(C) → hTrq(C) sends the subcategory hTrq(C)0 ⊂
hTrq(C) to itself, and that every morphism in hTrq(C) can be obtained from a morphism in
hTrq(C)0 by pre- and post-composing with suitable powers of s.
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2.9. Connection with the quantum vertical trace. Let C be a pregraded bicategory and
q ∈ k× be a fixed invertible element. The quantum vertical trace of C is the category obtained
from C by replacing each morphism category C(x, y) by its quantum trace Trq(C(x, y))
(see [BPW19]). Equivalently:

Definition 2.5. The quantum vertical trace of C is the k-linear category vTrq(C) with the
same objects as C, and whose morphism are given by formal k-linear combinations of 2-
endomorphisms in C, subject to the relation α◦β ∼ q|α|β ◦α for 2-morphisms α : p p′ and
β : p′ p. Composition in vTrq(C) is induced by the horizontal composition in C.

If C is graded, then we modify the definition of vTrq(C0) by also imposing the relation
qα ∼ qα for all 2-endomorphisms α in C0. This is to ensure that

(2.13) vTrq(C0) ∼= vTrq(C)0.

In general, the quantum vertical trace admits a fully faithful embedding vTrq(C)→ hTrq(C)
given by sending each object x to its identity 1-morphism 1x and each α : p p to the square
from Lemma 2.3. This embedding can be used to reestablish the result from Lemma 2.3.
Indeed, in vTrq(C), we have

α ∼ α ◦ 1 ∼ qd(1 ◦ α) ∼ qdα

for any homogeneous 2-endomorphism α of degree |α| = d, and thus α is annihilated by
1− qd. When 1− qd is invertible, this implies the lemma. Moreover, if 1− qd is invertible for
all d 6= 0, then it follows that

(2.14) vTrq(C) = vTrq(C)0

because in this case there are no nonzero morphisms of nonzero degree. In particular, the
quantum vertical trace is usually only pregraded, with all morphisms supported in degree
0.

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. Ignoring grading shifts, every object in BNq(A) can be viewed as a
closed 1-manifold C embedded in the annuluar A. By applying an ambient isotopy to C,
we can move trivial components in C away from the arc µ ⊂ A and straighten essential com-
ponents so that they become concentric circles. The resulting 1-manifold C ′ ⊂ A is a closure
of an identity tangle with some trivial circles. Moreover, the isotopy from C to C ′ can be
realized as a composition of cyclicity isomorphisms in hTrq(BN) and isotopies in I2.

In hTrq(BN)⊕, we also have a “delooping isomorphism” © ∼= q∅ ⊕ q−1∅ given by the
matrix

[
S• S

]t where S is a cap cobordism and S• denotes S with a dot. Applying this
isomorphism to each trivial circle in C ′, we can reduce C ′ to a direct sum of shifted copies of
a closure of an identity tangle.

We conclude that hTrq(BN)⊕ is obtained from image of vTrq(BN) → hTrq(BN) by al-
lowing grading shifts and direct sums. Since 1 − qd is invertible for all d 6= 0, we also have
vTrq(BN) = vTrq(BN)0

∼= vTrq(BN0) by (2.14) and (2.13), where the latter isomorphism
uses that we have imposed the additional relation qα ∼ qα in the definition of vTrq(BN0).

It remains to show that vTrq(BN0) ' TL. This was essentially shown by Bar-Natan
in [BN05, Prop. 10.10], but we will prove the result using a slightly different argument. For
this, let

ϕ : TL −→ vTrq(BN0)
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denote the functor which sends each object of TL to the corresponding object of BN0, and
each flat tangle T to the class of its identity 2-endomorphism in vTrq(BN0).

To see that ϕ is compatible with isotopy of tangles and with the relation © = q + q−1,
recall from [BPW19] that the assignment T 1T induces a well-defined map from the split
Grothendieck group of BN0(n,m)⊕ to the quantum trace

Trq(BN0(n,m)⊕) = Trq(BN0(n,m)⊕) = vTrq(BN0)(n,m).

Since isotopic tangles are isomorphic as objects of BN0(n,m), it follows that their identity
2-morphisms are equal in the vertical trace. Likewise, the “delooping isomorphism” implies
1© ∼ q1∅ + q−11∅ ∼ q1∅ + q−11∅ in vTrq(BN0), which corresponds to© = q + q−1.

It is clear that ϕ is bijective on objects, so the theorem will follow if we can prove that
ϕ is full and faithful. For this, we can focus on a single morphism category BN0(n,m).
Using the “delooping isomorphism” and the invariance of the quantum trace under graded
equivalences and under additive closures, we can further restrict our attention to the full
subcategory T ⊂ BN0(n,m) generated by tangles without closed components. That is, we
only need to consider 2-morphisms of the form α : qiT qjT ′ where T and T ′ are flat
tangles without closed components.

Let S : T T ′ be a dotted cobordism representing such an α. We first claim that the
unshifted degree of S must satisfy |S| ≥ 0, and |S| = 0 if and only if S is isotopic to a scalar
multiple of an identity cobordism. To see this, note that the surface S ⊂ I3 can be obtained
from a cobordism S′ ⊂ I3 with only disk components by adding tubes, dots, and closed
components. Using that undotted spheres are equal to to zero and that T and T ′ have no
closed components, it is easy to see that |S| ≥ |S′| ≥ 0. The second part of the claim follows
because closed components evaluate to scalars.

We conclude that any 2-endomorphism α : qiT qiT in T ⊂ BN0(n,m) must be a scalar
multiple of an identity 2-morphism, which proves that ϕ is full.

To see that ϕ is faithful, consider a relation of the form α ◦ β ∼ q|α|β ◦ α for 2-morphisms
α : qiT qjT ′ and β : qjT ′ qiT in T . We can drop the factor of q|α| because |α| = 0, and
we can further assume that the 2-morphisms α and β are represented by dotted cobordisms
S : T T ′ and S′ : T ′ T . Since |S|+ |S′| = |S ◦S′| = |α ◦ β| = 0 and since |S| and |S′| are
nonnegative, it follows that |S| = |S′| = 0. However, this implies that S and S′ are isotopic
to scalar multiples of identity cobordisms, and that i = j.

In summary, the relation α ◦ β ∼ q|α|β ◦ α only has the effect of identifying the identity
2-morphisms qi1T ′ and qi1T of isotopic tangles in T . By applying Khovanov’s universal
TQFT, one can further see that c1T is nonzero in T for any c 6= 0 (for this to make sense,
regard 1T ⊂ I3 as a cobordism from the empty 1-manifold to ∂1T ).

We conclude that ϕ is faithful, which completes the proof of the theorem. �

3. HOMOLOGICAL TOOLKIT

In this section we discuss the dg notions of twisting, splicing, and homological pertur-
bation. The tools introduced here will be indispensable when discussing models for the
Cooper–Krushkal projector.

We discuss the notion of twisting, and we do so first in an abstract setting. So let A be a
k-linear category, and consider the dg category Ch(A) of complexes.

If (X, δX) is a complex over A, then any complex of the form (X, δX + α) will be referred
to as a twist of X , written twα(X). If X is equipped with a direct sum decomposition X =
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i∈I Xi (in which the differential on X is the direct sum of differentials on Xi) then α can be

expressed in terms of its components αij ∈ Hom1
Ch(A)(Xj , Xi), and the condition that δX + α

be a differential on X can be expressed componentwise as

(δXi ◦ αij + αij ◦ δXj ) +
∑
k

αik ◦ αkj = 0.

for all i, j ∈ I . The twist twα(X) is one-sided if there is a direct sum decomposition X ∼=⊕
i∈I Xi where the indexing set I is equipped with a partial order with respect to which the

matrix representing α is strictly lower triangular (i.e., αij = 0 unless i > j). Expressions of
the form twα(

⊕
iXi) are also called one-sided twisted complexes.

We will denote one-sided twisted complexes of the form twα(
⊕

i∈I Xi) diagrammatically,
as in the following examples:

(3.1a) tw[ 0 0
α 0 ] (X ⊕ Y ) =:

(
X Y

α
)

(3.1b) tw[
0 0 0
α 0 0
γ β 0

] (X ⊕ Y ⊕ Z) =:

 X Y Z
α β

γ


In particular the mapping cone of a degree zero chain map f : X → Y will be expressed
as

Cone(f) =
(
t−1X

f−→ Y
)
.

Here, as always, we abuse notation by regarding the degree zero morphism f : X → Y also
as a degree 1 morphism t−1X → Y .

3.1. Homological perturbation. If X ' Y then a given twist twα(X) may or may not be
homotopy equivalent to a corresponding twist of Y . For instance if X is any nonzero but
contractible complex and Y = 0, then there certainly exist twists of X which are not con-
tractible (and therefore not homotopy equivalent to any twist of Y ).

Homological perturbation concerns the problem twisting a homotopy equivalence X ' Y
to a homotopy equivalence twα(X) ' twβ(Y ), provided that certain conditions are met.

Lemma 3.1. Let I be a partially ordered set satisfying the following ascending chain condition:
for each i ∈ I there are finitely many j ∈ I with j ≥ i. Suppose we have a one-sided twist
twα(

⊕
iXi), and complexes Yi ' Xi for all i. Then there exists a one-sided twist twβ(

⊕
i∈I Yi)

such that twβ(
⊕

i∈I Yi) ' twα(
⊕

iXi).
In more details, if fi ∈ Hom0(Xi, Yi) and gi ∈ Hom0(Yi, Xi) are inverse homotopy equivalences

with hi ∈ End−1(Xi) satisfying [δXi , hi] = IdXi − gi ◦ fi, then the twist β is given in terms of
components by

βkl = fk ◦ αkl ◦ gl −
∑

k>i1>l

fk ◦ αk,i1 ◦ hi1 ◦ αi1,l ◦ gl

+
∑

k>i1>i2>l

fk ◦ αk,i1 ◦ hi1 ◦ αi1,i2 ◦ hi2 ◦ αi2,l ◦ gl + · · ·
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if k > l and βkl = 0 otherwise, and the homotopy equivalence F : twα(X) → twβ(Y ) is given in
terms of components by Fkk = fk and

Fkl = −fk ◦ αk,l ◦ hl +
∑

k>i1>l

fk ◦ αk,i1 ◦ hi1 ◦ αi1,l ◦ hl

−
∑

k>i1>i2>l

fk ◦ αk,i1 ◦ hi1 ◦ αi1,i2 ◦ hi2 ◦ αi2,l ◦ hl + · · ·

if k > l, and Fkl = 0 otherwise.

Proof. See [Mar01, Theorems 2 and 3, and Subs. 8.6]. �

Remark 3.2. In particular, if indices k < l ∈ I are “adjacent”, meaning there are no indices
i ∈ I with k < i < l, then the component βkl equals gk ◦ αkl ◦ fl.

Remark 3.3. The assumption that I satisfies the ascending chain condition can be weakened
as follows. For each k ∈ Z, let Ik ⊂ I be the subset consisting of those i ∈ I for which the
chain group (Xi)

k is nonzero. The statement of Lemma 3.1 is true under the assumption that
Ik satisfies the ascending chain condition for all k. We may refer to this as the local ascending
chain condition relative to X .

Remark 3.4. As a special case of Lemma 3.1, if each complex Xi is contractible then any
one-sided twist twα(

⊕
i∈I Xi) is also contractible, provided that the partially ordered set I

satisfies the ascending chain condition.

Remark 3.5. There is a version of Lemma 3.1 in which the ascending chain condition is
replaced by the descending chain condition and the direct sum is replaced by direct product.

3.1.1. Splicing. If we have twisted complexes (mapping cones)

X1 =
(
A E

α
)
, X2 =

(
t−1E B

β
)
,

then the result of splicing X1 and X2 is the twisted complex

Z =

(
A B

β ◦ α
)
.

The spliced complex Z is homotopy equivalent to the mapping cone:

Z '
(
X1 X2

−π
)

where π is the projection-followed-by-inclusion of the E summand; this has homological
degree 1, given that E appears in X2 with shift t−1.

The operation of splicing can be performed for “longer” one-sided twisted complexes. For
instance the result of splicing together twisted complexes

X1 =

 A B E
δBA α

α′
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and

X2 =

 t−1E C D
β δDC

β′
 ,

is the twisted complex

(3.2) Z =

 A B C D
δBA δCB δDC

δDA

δCA δDB

 ,

where
δCB = β ◦ α, δCA = β ◦ α′, δDB := β′ ◦ α, δDA = β′ ◦ α′.

We may iterate the operation of splicing, even countably infinitely many times. For in-
stance, suppose we have a collection of twisted complexes of the form

Xi =

 t−1Ei+1 Ci Ei

αi βi

γi
 ,

where Ci and Ei are some complexes (i = 0, 1, 2, . . .). Let πi ∈ Hom1(Xi, Xi+1) be the degree
1 chain map which projects onto then includes the Ei+1 term. Then πi+1 ◦ πi = 0 and we
have a complex of the form

Y =

(
X0 X1 X2 · · ·

−π0 −π1 −π2
)
.

Strictly speaking we can express this complex as Y = twα(
⊕

i≥0Xi) where the twist α is
given in terms of components by −πi. One can also express Y as the total complex of a
bicomplex.

We will call Y the pre-spliced complex constructed from the complexes Xi. The following
lemma shows that Y is homotopy equivalent to a spliced complex.

Lemma 3.6. Retain notation as in the paragraph above. Then Y is homotopy equivalent to a twisted
complex of the form

Y '

 · · · C1 C0 E0


,
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in which we have not drawn all of the (countably many) components of the differential, but all of them
point rightward.

Proof. We can write Y as a twisted complex of the form

t−1E1 C0 E0

t−1E2 C1 E1

· · · E2

α0 β0

γ0

α1 β1

γ1

β2

− id

− id


This can be rearranged into a twisted complex of the form · · · C2 (t−1E2 → E2) C1 (t−1E1 → E1) C0 E0


Apply Lemma 3.1 to cancel the contractible terms (t−1Ei

− id−→ Ei). Even though there are
infinitely many such terms, this cancelation is valid since the differential respects a partial
order (satisfying the accending chain condition) on the terms. �

3.2. Op-well-ordered twisted complexes.

Definition 3.7. A partially ordered set I is op-well-ordered if every non-empty subset S ⊂ I
has a unique maximum element.

Note that if I is op-well-ordered, then the partial order is a total order: every pair of
elements i, j is comparable since {i, j} has a maximum. Moreover, every op-well-ordered
set satisfies the ascending chain condition: any increasing sequence i0 ≤ i1 ≤ · · · eventually
stabilizes to the maximum element of {i0, i1, . . .}.

Example 3.8. Suppose r : E → B is a map of sets so that the base B is op-well-ordered and
the fibers r−1(b) are op-well-ordered for all b. Then E has an op-well-ordering given by
e ≤ e′ if r(e) < r(e′) in B or r(e) = r(e′) =: b and e ≤ e′ in r−1(b).

Corollary 3.9. If I and J are op-well-ordered then so is I×J with the lexicographic ordering (i, j) ≤
(i′, j′) if i < i′ or i = i′ and j ≤ j′. �

Op-well-ordered sets arise as sets which index iterated one-sided twisted complexes.

Definition 3.10. Suppose A is an additive category. An op-well-ordered twisted complex in
Ch−(A) is a one-sided twisted complex twδ(

⊕
i∈I t

aiXi) where I is op-well-ordered, and the
shifts ai are bounded above.
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If X is a collection of complexes in Ch−(A), we let 〈X 〉 denote full subcategory of Ch−(A)
consisting of op-well ordered twisted complexes whose terms are finite direct sums of shifts
of direct summands of objects in X .

Definition 3.11. If X is a collection of complexes in Ch−(A), then we let X denote the closure
of X with respect to homotopy equivalences.

Lemma 3.12. Let X ,Y ⊂ Ch−(A) be some collection of complexes such that each N ∈ X is homo-
topy equivalent to a complex in 〈Y〉. Then 〈X 〉 ⊂ 〈Y〉.

Proof. Suppose X = twδ(
⊕

i∈I Xi) with Xi ∈ X and I op-well-ordered, and suppose each
Xi is homotopy equivalent to twε(i)(

⊕
j∈Ji Yi,j) with Ji op-well-ordered for all i ∈ I , and

Yi,j ∈ Y . Let E denote the set of pairs (i, j) with j ∈ Ji, and let r : E → I be the projection
map (i, j) i. Then E has the structure of an op-well-ordered set via (i, j) ≤ (i′, j′) if i < i′

or i = i′ and j < j′.
Since I satisfies the ascending chain condition, the homological perturbation lemma ap-

plies, so

twδ

(⊕
i∈I

Xi

)
' twδ′

⊕
i∈I

twεi

⊕
j∈Ji

Yi,j

 ∼= twδ′+ε

 ⊕
(i,j)∈E

Yi,j

 .

where δ′ strictly increases the index i and ε =
∑

i ε(i) is a sum of terms which fix the index
i but strictly increase j. Thus, the twist δ′ + ε is strictly increasing with respect to the partial
order on E, and this last complex is in 〈Y〉. �

Corollary 3.13. The category 〈X 〉 ⊂ Ch−(A) is closed under taking op-well-ordered twisted com-
plexes. �

Remark 3.14. This corollary would be false if we had only allowed Z≤0-indexed one-sided
twisted complexes in the definition of 〈X 〉.

3.3. Combing hairs. We use the phrase “combing hairs” to refer to the construction of iso-
morphisms of the form twδ(

⊕
i∈I Xi) ∼= twδ′(

⊕
i∈I′ Xi) in which I is an op-well-ordered-set

and I ′ = I with a coarser partial order ≤′. Being coarser means that the condition i ≤′ j is
more restrictive than i ≤ j. Here are some instances where we wish to apply such ideas (we
will expand on these momentarily):

1) Suppose X is a collection of complexes such that Hom(N,M) has no cohomology in
positive degrees for all N,M ∈ X , and X = twδ(

⊕
i∈I t

aiNi) is an op-well-ordered
twisted complex with Ni ∈ X . Let I ′ = I with the partial order given by i <′ j if
i < j and ai < aj . Combing hairs in such situations amounts to the elimination of
components of the twist taiNi → tajNj which have positive cohomological degree
when regarded as elements of Hom(Ni, Nj).

2) Suppose (Ω,�) is a partially ordered set and Xω ⊂ Ch−(A) is a collection of com-
plexes indexed by ω ∈ Ω such that if N ∈ Xω and M ∈ Xν then Hom(N,M) ' 0
unless ω�ν. SupposeX = twδ(

⊕
i∈I Xi) is an op-well-ordered twisted complex with

Xi ∈ Xω(i). Let I ′ = I with the partial order given by i ≤′ j if i ≤ j and ω(i) � ω(j).
Combing hairs in such situations amounts to the elimination of components of the
twist Xi → Xj in which ω(j) is lower or incomparable to ω(i).
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Our main lemma will combine both of the above notions. For technical reasons we will
need some boundedness and compactness assumptions on our complexes in Xω. To this
end, fix an additive category A, suppose (Ω,�) is a partially ordered set, and for each ω ∈ Ω
suppose we have a collection of complexes Xω such that:

1) Each complex in Xω is supported in non-positive cohomological degrees.
2) If N ∈ Xω and M ∈ Xν then the chain objects Nk (zero unless k ≤ 0) satisfy

Hom(Nk,M) ' 0

if ω 6� ν or ω = ν and k < 0.

Lemma 3.15. Retain the setup from the previous paragraph. Suppose I is an op-well-ordered set and
we have a mapping I → Ω × Z, (i (ω(i), a(i))) and a twisted complex X = twδ(

⊕
i∈I t

a(i)Xi)

with Xi ∈ Xω(i). Assume that the mapping a : I → Z has finite preimages and a−1(k) = 0 for
k � 0. Let I ′ = I with the partial order i <′ j if i < j and (ω(i), a(i)) < (ω(j), a(j)) in the
lexicographic order (ω(i) � ω(j) or ω(i) = ω(j) and a(i) < a(j)). Then X ∼= twδ′(

⊕
i∈I′ t

a(i)Xi)
where the twist δ′ respects the partial order <′.

Proof. Let’s introduce some terminology and notation for the proof. We denote by 0 the
unique maximum element of I . We may assume that I has a unique minimum element
−∞ ∈ I (if not, then we may replace I by {−∞} t I and set X−∞ = 0). Recall, a subset
K ⊂ I is convex if k ≤ i ≤ k′ and k, k′ ∈ K implies i ∈ K. Given i ≤ j in I we have the
interval [i, j] := {k ∈ I | i ≤ k ≤ j}, and (i, j] = [i, j] \ {i} (and so on). Note that intervals are
convex.

If K ⊂ I is convex then XK := twδK (
⊕

i∈K t
a(i)Xi) is a well-defined one-sided twisted

complex, where the twist δK is obtained from δ by restriction. A combing of XK is a pair
(YK , ϕK) where YK is a one-sided twisted complex of the form in the statement (with respect
to the coarse partial order) and ϕK is an isomorphism XK

∼=→ YK which preserves the fine
partial order on K.

We wish to show thatX = X[−∞,0] can be combed. Our plan is to show that eachX[i,0] can
be combed, by transfinite induction. In the base case, we observe that (X{0}, id) is a combing
of X{0}, trivially.

Now, fix i and assume by induction that we have constructed combings (Y[j,0], ϕ[j,0]) of
X[j,0], for all j > i, and assume that these combings are compatible in the sense that if j < j′

then ϕ[j′,0] is obtained from ϕ[j,0] by restriction. Then we have a combing (Y(i,0], ϕ(i,0]) of
X(i,0] by taking the union of combings (Y[j,0], ϕ[j,0]) for j > i.

To complete the proof we must construct a combing of X[i,0]. Note that

(3.3) X[i,0]
∼= (ta(i)Xi

∂→ X(i,0]) ∼= (ta(i)Xi
∂′→ Y(i,0]),

where the second isomorphism is
[

id 0
0 ϕ(i,0]

]
. Let us decompose (i, 0] into subsets J1 t J2 t J3

as follows. Let J3 consist of those j > i with ω(i) � ω(j) or ω(i) = ω(j) and a(i) < a(j). Let
J2 consist of those j > i with ω(i) = ω(j) and a(i) ≥ a(j). Let J1 consist of those j > i with
ω(i) 6�ω(j).

Note that each Jl is convex with respect to the coarse partial order so the combed Y(i,0] can
be written as

Y(i,0] = (YJ1 → YJ2 → YJ3)
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(with a long arrow connecting YJ1 to YJ3) where YJl contains those direct summands ta(j)Xj

with j ∈ Jl.
We claim that Hom(Xi, YJ1) ' 0. To prove this claim, consider the chain objects (Xi)

k of
Xi. We have Hom((Xi)

k, Xj) ' 0 for all j ∈ J1 since ω(i) 6�ω(j). Since (Xi)
k is an object of

A, it is compact when regarded as an object of Ch−(A). Thus

Hom((Xi)
k,
⊕
j∈J1

Xj) =
⊕
j∈J1

Hom((Xi)
k, Xj) ' 0.

Now, homological perturbation tells us Hom((Xi)
k, YJ1) ' 0; this applies since the index-

ing set J1 satisfies the ascending chain condition. Finally, Hom(Xi, YJ1) is a one-sided twist
(indexed by Z≥0 with the opposite partial order) of

∏
k≥0 Hom((Xi)

−k, YJ1), which is con-
tractible by another application of homological perturbation.

Next, we claim that Hom(ta(i)Xi, YJ2) has no homology in degree 1. Indeed, for each k < 0
the chain group (Xi)

k satisfies Hom((Xi)
k, Xj) ' 0 by hypothesis. It follows that

Hom(ta(i)Xi, t
a(j)Xj) ∼= ta(j)−a(i)Hom(Xi, Xj) ' ta(j)−a(i)Hom((Xi)

0, Xj),

which is supported in cohomological degrees ≤ 0 since a(i) ≤ a(j) from the way J2 is de-
fined. Two applications of homological perturbation tell us that Hom(ta(i)Xi, YJ2) is homo-
topy equivalent to a complex supported in cohomological degrees ≤ 0. In particular, there is
no homology in degree 1.

Combining the above two paragraphs, we obtain that the inclusion YJ3 ↪→ Y(i,0] induces
an isomorphism H1(Hom(ta(i)Xi, YJ3)) → H1(Hom(ta(i)Xi, Y(i,0])). It follows that the con-
necting differential ∂′ in (3.3) is homotopic to an element ∂′′ = ∂′ + d(h) which has compo-
nents Xi → Xj only if j ∈ J3 (i.e. j is greater than i in the coarse partial order). Therefore

ϕ[i,0] :=
[

id 0
h id

]
◦
[

id 0
0 ϕ(i,0]

]
gives an isomorphism

X[i,0] = (ta(i)Xi
∂→ X[i,0])→ (ta(i)Xi

∂′′→ Y(i,0]) =: Y[i,0].

This defines the desired combing of X[i,0] and completes the inductive proof that X can be
combed. �

4. CHEBYSHEV SYSTEMS

Definition 4.1. Let R be a ring. We say that a family of elements vk ∈ R (k ∈ Z≥0) satisfies the
Chebyshev II recursion if v0 = 1 and vn−1v1 = vn + vn−2 for n ≥ 2.

Remark 4.2. In such a family, the element v1 determines all of the elements v2, v3, . . ..

The Chebyshev II recursion is intimately tied with the representation theory of quantum
sl2, as illustrated in the following examples.

Example 4.3. IfR = Z[q, q−1] then vn := [n] := qn−1+qn−3+· · ·+q1−n satisfies the Chebyshev
II recursion.

Example 4.4. If R = K0(TL) then the classes of simple objects vn := [Vn] satisfy the Cheby-
shev II recursion because of the Clebsch-Gordan rule:

Vn−1 ⊗ V1
∼= Vn ⊕ Vn−2.
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We now turn our attention to a categorical analogue of the Chebyshev II recursion. So we
let (C,⊗, I) be a monoidal category. Naively, we might say that a collection of objects Vn ∈
(n ∈ Z≥0) satisfies the categorified Chebyshev II recursion if V0

∼= 1 and Vn−1 ⊗ V ∼= Vn ⊕ Vn−2

for n ≥ 2. However this is much too naive; it is much better to have knowledge of the
maps involved in such an isomorphism, and include them as part of the structure. This is
accomplished in Definition 4.6 below.

Definition 4.5. Let (C,⊗, I) be a monoidal category. A self-dual object (or self-biadjoint) in V is
a triple (V, ev, coev) where V ∈ C is an object and coev : 1↔ V ⊗ V : ev are maps satisfying

(idV ⊗ev) ◦ (coev ⊗ idV ) = idV = (ev ⊗ idV ) ◦ (idV ⊗coev).

Definition 4.6. Let (C,⊗, I) be a monoidal category. A Chebyshev system in C is the data of:
• a self-dual object (V, ev, coev) in C,
• a family of complexes V (n) ∈ Ch−(C) with V (0) = 1 and V (1) = V ,
• chain maps π(n) : V (n−1) ⊗ V V (n) for n > 1,

such that π(1) : 1⊗V V is the canonical isomorphism and there is a distinguished triangle

(4.1) V (n−2) ι(n−2)

−−−−−→ V (n−1) ⊗ V π(n)

−−−→ V (n) −→ V (n−2)[1]

in the homotopy category K−(C), where ι(n−2) is defined by commutativity of the triangle

(4.2)

V (n−2) V (n−2) ⊗ V ⊗ V

V (n−1) ⊗ V

id⊗coev

π(n−1)⊗id
ι(n−2)

Remark 4.7. Our interest in Chebyshev systems stems from their expected relation to colored
sl2 link homology. Specifically we regard Chebyshev systems as models for colored sl2 link
homology of the unknot. Under an appropriate cabling functor, one hopes to obtain models
for colored sl2 link homology of other knots as well.

The following result shows Chebyshev systems are determined up to homotopy equiva-
lence by V (1).

Theorem 4.8. Let (V (n), π(n)) and (V ′ (n), π′ (n)) be two Chebyshev systems in a category C, with
V (1) ∼= V ′ (1) as self-dual objects. Then there are homotopy equivalences θ(n) : V (n) '−−→ V ′ (n) that
form isomorphisms of distinguished triangles

(4.3)

V (n−2) V (n−1) ⊗ V V (n) V (n−2)[1]

V ′ (n−2) V ′ (n−1) ⊗ V V ′ (n) V ′ (n−2)[1]

ι(n−2) π(n)

ι′ (n−2) π′ (n)

θ(n−2) θ(n−1)⊗id θ(n) θ(n−2)[1]

Proof. We prove the thesis by induction on n. Since V (0) = V ′ (0) = 1, we take θ(0) = id1. Set
V := V (1) and V ′ := V ′ (1). We denote by coev and coev′ the coevaluation morphisms for V
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and V ′. Let θ(1) : V V ′ be an isomorphism of self-dual objects, so in particular

(θ(1) ⊗ θ(1)) ◦ coev = coev′.

Thus, for n = 2 the left square in (4.3) commutes (in this case, ι(0) = coev and ι′ (0) = coev′.
It follows (by properties of distinguished triangles) that there is a map θ(2) which completes
θ(0) and θ(1) ⊗ θ(1) to a morphism of triangles. By the five lemma for triangulated categories,
θ(2) is a homotopy equivalence.

Now, let n ≥ 3 be given and assume by induction that θ(k) is constructed for k < n. Note
that if there exists θ(n) which fits into a morphism of distinguished triangles (4.3), then θ(n)

is automatically a homotopy equivalence, again by the five lemma. To prove the existence
of θ(n) we have to show that the left square of (4.3) commutes up to homotopy. To see this,
consider the following diagram:

V (n−2) V (n−2) ⊗ V ⊗ V V (n−1) ⊗ V

V ′ (n−2) V ′ (n−2) ⊗ V ′ ⊗ V ′ V ′ (n−1) ⊗ V ′

id⊗coev π(n−1)⊗id

id⊗coev′ π′ (n−1)⊗id

θ(n−2) θ(n−2)⊗θ(1)⊗θ(1) θ(n−1)⊗θ(1)

The left square commutes since θ(1) is a morphism of self-dual objects, and the right square
commutes by commutativity of the middle square in (4.3) with n lowered by 1. The compo-
sition of the horizontal arrows are ι(n−2) and ι′ (n−2). This proves that the left square in (4.3)
commutes, which gives us existence of θ(n). �

Remark 4.9. There is a notion of a dual Chebyshev system, obtained from the one in Def-
inition 4.6 by reversing the direction of all arrows and by replacing Ch− with Ch+. Note
that if {V (n), π(n)} is a Chebyshev system in a rigid category then {(V (n))∨, (π(n))∨} is a dual
Chebyshev system , where (−)∨ denotes the dualization functor. Explicitly, (−)∨ : Ch−(C)→
Ch+(C) negates the homological grading and transforms differentials into their duals.

In what follows we discuss several Chebyshev systems, in TL and related categories. By
Theorem 4.8 these systems are all equivalent in Ch−(Kar(TL)).

4.1. The Jones–Wenzl system. In this section we take C := Kar(TL), the idempotent com-
pletion of the Temperley–Lieb category TL. Recall that TL contains the Jones–Wenzl projec-
tors pn, each representing a projection of V ⊗n1 onto its simple (n + 1)-dimensional quotient
Vn. We shall abuse notation and denote by V also the object 1 ∈ TL. Because the Jones–Wenzl
projectors satisfy the identity

pn ◦ (pn−1 ⊗ idV ) = pn = (pn−1 ⊗ idV ) ◦ pn,
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im pn

Cone(ι(n−2))

(
0 im pn

)

(
im pn−2 im pn−1 ⊗ V

)
=

=

ϕ(n) ρ(n)ϕ̄(n)
π(n)0

0

d=ι(n−2)

h=κ(n−2)

FIGURE 2. The homotopy equivalences between im pn+2 and Cone(ι(n)).

we have well-defined morphisms in Kar(TL)

im pn−1 ⊗ V im pn

π(n) = n

ρ(n) = n

im pn−2 im pn−1 ⊗ V
ι(n−2) = n− 1

κ(n−2) =
[n−1]

[n] n− 1

Theorem 4.10. The data {im pn, π
(n)}n≥0 is a Chebyshev system. in Kar(TL).

Proof. We must construct a homotopy equivalence ϕ(n) : im pn Cone(ι(n−2)), such that
ϕ(n) ◦ π(n) is homotopic to the canonical inclusion im pn−1 ⊗ V → Cone(ι(n−2)). For that
consider Figure 2. Clearly, the composition ϕ̄(n) ◦ϕ(n) is the identity on im pn+2. We compute

dh =
[n− 1]

[n]
n− 1

n− 1

= n− 1 − n = idim pn−1⊗V −ρ(n) ◦ π(n),

hd =
[n− 1]

[n]
n− 1 =

[n− 1]

[n]

(
n− 2 − [n− 2]

[n− 1]
n− 2

)

=
[n− 1][2]− [n− 2]

[n]
n− 2 = n− 2 = idim pn−2 .

Hence, h is a homotopy between ϕ(n) ◦ ϕ̄(n) and the identity on the cone complex. Note that
the above computation shows also that h is a homotopy between ϕ(n)◦π(n) and the canonical
inclusion of im pn−1 ⊗ V into the cone complex. �

4.2. The Khovanov system. In this section we take C := Kb(TL), the bounded homotopy
category of complexes over the Temperley–Lieb category. Inside C we shall construct a
Chebyshev system which is suggested by Khovanov’s categorification of the colored Jones
polynomial.
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For that let us review the complex Vn assigned to the unknot colored by the simple (n+1)-
dimensional representation Vn, which we shall interpret as an object of Ch−(TL).

Recall that

[Vn] =

bn
2
c∑

k=0

(−1)k
(
n− k
k

)[
V
⊗(n−2k)

1

]
,

in the Grothendieck group of the representation category of quantum sl2. Following Kho-
vanov, we will construct a family of complexes Vn ∈ Ch−(TL) whose Euler characteristics
satisfy the same relation as above.

The binomial coefficient
(
n−k
k

)
counts the number of ways of selecting k disjoint pairs of

neighbored dots from n dots placed on a horizontal line. We call such choices k-pairings and
we denote by Ik,n the set of all such k-pairings. Each s ∈ Ik,n represents an object Vs ∈ TL
that consists of n− 2k dots.

Let Γn be a graph, the vertices of which are k-pairings of n dots for all k ≥ 0. Two vertices
of Γn are connected by a directed edge if s = s′ ∪{p} for a single pair p. We decorate a vertex
s with the object Vs and an edge s→ s′ with the morphism

∪s′,s :=

1 ··· i

,

where i counts unpaired dots in s that lie to the left of the pairing that does not belong to s′.
An example for n = 4 is shown in Figure 3. Note that Γn is a commuting diagram in TL. In

V−2
4 V−1

4 V0
4

−

∂ ∂

FIGURE 3. The graph Γ4 and the complex V4.

order to make all squares anticommute, scale ∪s′,s by (−1)(s,s′), where (s, s′) is the number
of pairs in s that lie to the right of the unique pair in s \ s′. The complex Vn is the result of
collapsing the graph by taking direct sums of k-pairings with the same k:

V−kn :=
⊕
s∈Ik,n

Vs
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and the differential δ−k : V−kn → V−k+1
n is given by the matrix with entries

δ−ks′,s :=

{
(−1)(s,s′)∪s′,s if there is an edge s→ s′, and
0 otherwise.

We may identify Vn ⊗ V with the subcomplex of Vn+1 spanned by those k-pairings in
which the right most dot does not belong to a pair.

Theorem 4.11. The data {Vn, π(n)}n≥0 is a Chebyshev system inKb(TL), where π(n) : Vn−1⊗V →
Vn is the inclusion of a subcomplex.

Proof. The graph Γn has two types of vertices, corresponding to two types of pairings: those
in which the rightmost dot belongs to a pair, and those for which it does not. Vertices of
the second type generate the subcomplex Vn−1⊗V , whereas vertices of the first type generate
a quotient complex that is isomorphic to t−1Vn−2. We can thus write Vn as a mapping cone

Vn = Cone (Vn−2 → Vn−1 ⊗ V ) ,

where the chain map in the cone is induced by all morphisms ∪s′,s that correspond to edges
in Γn connecting vertices of the two different types—each is given by the diagram with a cup
on its right edge. Explicitly, this chain map can be written as idVn−2 ⊗coevV (with codomain
restricted to Vn−1 ⊗ V ) and it coincides with (π(n−1) ⊗ idV ) ◦ (idVn−2 ⊗coevV ). This shows
that Vn−2, Vn, and Vn−1 ⊗ V are related by a distinguished triangle as in Definition 4.6. �

4.3. The Cooper–Krushkal system. One of the main goals of this paper is to show how the
Cooper–Krushkal categorified Jones–Wenzl idempotents yield a Chebyshev system.

Definition 4.12. Recall that the width of a flat tangle T is the minimal number of points on
a horizontal section of T . In other words, the width of an (m,n)-tangle T is the minimal k
such that T can be written T = T ′ ◦ T ′′ with T ′ an (m, k)-tangle and T ′′ a (k, n)-tangle.

If X ∈ Ch−(BNm,n) then we say that X has width ≤ k up to homotopy if X is homotopy
equivalent to a complex Y ∈ Ch−(BNm,n) whose chain groups consist of sums of tangles
with width ≤ k.

Hereafter fix a natural number n and the following tangles

1n =

1 ······ n

∪i =

1 ··· i ··· n

∩i =

1 ··· i ··· n

Bi =

1 ··· i ··· n
for i = 1, . . . , n − 1. We say that a complex X ∈ Ch−(BNn,n) kills turnbacks if ∩i ? X ' 0 '
X ? ∪i for all 1 ≤ i ≤ n− 1.

Theorem 4.13 ([CK12]). There exists a complex Pn ∈ Ch−(BNn,n) and a chain map η : 1n → Pn
satisfying the following properties:

(P1) Pn kills turnbacks.
(P2) Cone(η) has width < n up to homotopy.

These properties determine the pair (Pn, η) uniquely up to homotopy.

Remark 4.14. In fact, it can be shown [Hog12, Cor. 5.13] that for any X ∈ Ch−(BN) we have
X ? ∪i ' 0 for all 1 ≤ i ≤ n− 1 if and only if ∩i ? X ' 0 for all 1 ≤ i ≤ n− 1. Thus, to show
Pn kills turnbacks it suffices to show that Pn kills turnbacks from the right (Pn ? ∪i ' 0 for
1 ≤ i ≤ n− 1) or from the left (∩i ? Pn ' 0 for 1 ≤ i ≤ n− 1).
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Definition 4.15. A Cooper–Krushkal projector on n strands is any pair (Pn, η) satisfying axioms
(P1) and (P2) of Theorem 4.13.

Proposition 4.16. If X ∈ Ch−(BNm,n) and Y ∈ Ch−(BNn,m) have width < n up to homotopy
then

X ? Pn ' 0 ' Pn ? Y.

Proof. This follows immediately from the definitions and from homological perturbation the-
ory. �

Remark 4.17. In practice, axiom (P2) is typically realized in the following way. Suppose Pn
can be expressed as a chain complex of the form

· · · → P−3
n → P−2

n → P−1
n → 1n,

where each P kn for k < 0 is spanned by tangles of width smaller than n, and let η : 1n → Pn
be the inclusion of the degree zero chain object. Then

Cone(η) ' · · · → P−3
n → P−2

n → P−1
n → 0

and axiom (P2) is satisfied.

The axioms imply that Pn absorbs Pn−1 in the following sense.

Lemma 4.18. Let (Pn−1, ηn−1) be a Cooper–Krushkal projector on n− 1 strands. Then the map

Pn ∼= 1n ? Pn
(ηn−1tid11 )?idPn−−−−−−−−−−−→ (Pn−1 t 11) ? Pn

is a homotopy equivalence.

Proof. Recall that a chain map f is a homotopy equivalence if and only if Cone(f) is con-
tractible. The cone of the map in the statement is isomorphic to (Cone(ηn−1)t11)?Pn which
is contractible since Cone(ηn−1) has width < n up to homotopy and Pn kills turnbacks. See
[CK12, Prop. 3.3] for details. �

Proposition 4.19. There is a unique map ν : Pn−1t11 → Pn up to homotopy with the property that
ν ◦ ηn−1 ' ηn.

Proof. For existence we may define ν to be the composition of chain maps

Pn−1 t 11
∼= (Pn−1 t 11) ? 1n

id ?ηn−−−→ (Pn−1 t 11) ? Pn ' Pn
(we leave it as an exercise to show ν ◦ ηn−1 ' ηn). Uniqueness and other properties of ν
follow from general facts about categorical idempotents [Hog17, Thm. 1.6]. �

Theorem 4.20. Given X ∈ Ch−(BNn,n), let [X] ∈ Ch−(hTrq(BN)) denote the quantum hori-
zontal trace of X . There is a Chebyshev system {[Pn], π(n)}n≥0, where

π(n) = [ν] : [Pn−1 t 11] −→ [Pn]

and ν is as in Proposition 4.19.

In this theorem, it is assumed that 1− qd is invertible for all integers d > 0. We will prove
Theorem 4.20 in the next section by using the following lemma:

Lemma 4.21. Let f : Pn → Pn be an endomorphism of quantum degree d, and suppose 1 − qd is
invertible. Then the induced endomorphism [f ] : [Pn]→ [Pn] is null-homotopic.
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Proof. Let
θ : [Pn ? Pn] −→ [Pn ? Pn]

be the chain isomorphism whose components are given by sums of cyclicity isomorphisms
θ
P jn,P in

: [P in ? P
j
n]→ [P jn ? P in]. Then the naturality of the cyclicity isomorphisms implies

[id ?f ] = θ ◦ [f ? id] ◦ θ−1 ' θ ◦ [id ?f ] ◦ θ−1 = qd[f ? id] ' qd[id ?f ]

where we have used that id ?f ' f ? id for any endomorphism f : Pn → Pn (this is a general
fact about unital categorical idempotents, see [BD14, Lemma 3.18]). Hence (1−qd)[id ?f ] ' 0,
and so [id ?f ] ' 0. This also implies [f ] ' 0 because (ηn ? id)◦f = (id ?f)◦ (ηn ? id) and ηn ? id
is a homotopy equivalence. �

5. THE CATEGORICAL IDEMPOTENT MODEL

The purpose of this section is to prove Theorem 4.20. To this, we must carefully choose
our preferred model for Pn. We begin with some setup in §5.1. Then in §5.2 we establish our
model for Pn which manifests a sort of 2-periodicity similar to that of P2.

5.1. Setup. It will be beneficial to set up some notation which will be used throughout.
Firstly, let

s :

n− 1

n− 1

n− 1

?2

s∗ : n− 1

?2

n− 1

n− 1

denote degree q chain maps induced by saddle cobordisms. By abuse we will also regard
s, s∗ as morphisms

n− 1

n− 1

↔ n− 1

(via the homotopy equivalence (Pn−1 t 11)?2 ' Pn−1 t 11). Note that since

s∗ ◦ s :

n− 1

n− 1

n− 1

n− 1

is a sum of dots on the “cup” and “cap”.
Recall also that in [Hog14] distinguished endomorphisms u1, . . . , un ∈ EndCh−(BNn)(Pn)

were constructed. The endomorphism uk generates the k-module of endomorphisms of Pn
of degree t2−2kq2k modulo homotopy, and is uniquely characterized up to homotopy and
invertible scalar by this fact.

Finally, let

utop
n−1 , u

bot
n−1 :

n− 1

n− 1

n− 1

n− 1
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denote the degree t4−2nq2n−2 morphisms given by the action of applying un−1 on the top or
bottom factors of Pn−1, respectively.

5.2. The 2-periodic model for Pn. Our proof of Theorem 4.20 uses the following description
of Pn.

Theorem 5.1. There is a model for Pn of the form
(5.1)· · · utop

n−1−ubot
n−1−−−−−−−→ t−3a3

n− 1

n− 1

s∗◦s−−→ t−2a2

n− 1

n− 1
utop
n−1−ubot

n−1−−−−−−−→ t−1a1

n− 1

n− 1

s−→ n− 1


(where we are omitting longer arrows which point to the right) in which the shifts satisfy:

a1 := q a2k = t4−2nq2n−2a2k−1 a2k+1 = q2a2k

for all k ≥ 1. Moreover, with respect to this expression, the endomorphism un acts as

(5.2) n− 1

n− 1

n− 1

n− 1

n− 1

· · ·

n− 1

n− 1

n− 1

n− 1

n− 1

n− 1

n− 1

n− 1

n− 1

· · ·

s

s

s
idid

together with arrows pointing strictly to the right.

Remark 5.2. The expression (5.1) categorifies the right-hand side of the recursion (2.1) for
the Jones–Wenzl idempotent.

This theorem will be a consequence of the following.

Lemma 5.3. There is a complex of the form

(5.3) Qn =


n− 1t−1a1

n− 1

n− 1

t−2a2

n− 1

n− 1

t−3a3 n− 1
s∗ utopn−1 − ubotn−1 s

γ

hk


for the appropriate shifts ai. Specifically a1 = q, a2 = t4−2nq2n−1, a3 = t4−2nq2n. This complex
kills turnbacks.



ON UNIFICATION OF COLORED ANNULAR sl2 KNOT HOMOLOGY 33

Compare (5.3) with the expression (4.10) in [Hog18].

Proof. The existence of h and k will follow from the vanishing of s◦(utop
n−1−ubot

n−1) and (utop
n−1−

ubot
n−1) ◦ s∗ up to homotopy. We prove only the first of these, since the second is similar.

Consider the diagram

n− 1

n− 1

n− 1

?2

n− 1

?2

n− 1

n− 1

n− 1

?2

n− 1

?2

utopn−1 − ubotn−1 utopn−1 − ubotn−1 0

s id

s id

The first square obviously commutes, and the second square commutes since f ? id ' id ?f
as endomorphisms of Pn−1 ? Pn−1 for any endomorphism f of Pn−1 (this is a general fact
about unital categorical idempotents, see [BD14, Lemma 3.18]). This implies that s ◦ (utop

n−1 −
ubot
n−1) ' 0, which gives us the existence of h. A similar argument gives us the existence

of k. Finally, the obstruction to constructing γ is an endomorphism of Pn−1 t 11 of degree
t3−2nq2n. Any such obstruction vanishes up to homotopy by an argument identical to that
in [Hog18, Lemma 4.34]. This completes the construction of Qn. �

Using this Qn we construct our 2-periodic model for Pn.

Proof of Theorem 5.1. It is clear that splicing together infinitely many copies of Qn will result
in a complex of the form (5.1). In more details, Qn comes equipped with an endomorphism
∂ of degree t1−2nq2n which projects onto the left-most term of (5.3) and includes this as the
right-most term. The pre-spliced complex is given by

(5.4)
(
Qn t2−2nq2nQn t4−4nq4nQn · · ·

)
which obviously carries an endomorphism U ′ of degree t2−2nq2n which just shifts the above
expression one unit to the right. By construction, Cone(U ′) ' Qn. After cancelling con-
tractible terms we obtain the honest spliced complex (5.1) with a chain endomorphism U of
the form (5.2) (this is an easy exercise in Gaussian elimination, but also note that the homo-
topy equivalence Cone(U) ' Cone(U ′) ' Qn puts serious restrictions on U ). Let us denote
this spliced complex by P ′n. Once we show that P ′n ' Pn, the fact that U is a model for ±un
will follow for degree reasons.

It is clear that P ′n satisfies axiom (P2) from Theorem 4.13, so to complete the proof we must
show that P ′n kills turnbacks, say, from the right. The one-sided twisted complex (5.4) satis-
fies a local ascending chain condition because Qn is bounded from above, so by homologial
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n− 1

n− 1

n− 1

n− 1

...

n− 1

n− 1

n− 1

n− 1

...

n− 1

n− 1

...

n− 1

n− 1

...

− id

−s

FIGURE 4. The complex Qn after expanding the lower projector.

perturbation, P ′n kills turnbacks if and only ifQn does. We assume by induction that we have
already established P ′n−1 ' Pn−1.

Consider the expression (5.3) for Qn. This complex annihilates Bk for 1 ≤ k ≤ n − 2
because Pn−1 t11 does. So we must show that Bn−1 annihilates Qn. For this it will be useful
to find a “six-term” expression for Qn. We expand the lower projector Pn−1 on the right
in (5.3), according to the recursion (5.1) for Pn−1, obtaining the expression for Qn shown in
Figure 4.

In this figure, we have omitted longer arrows including arrows pointing strictly to the top
right. The arrows labeled −s and − id come from the expansion of −ubotn−1, while the arrows
corresponding to utopn−1 would point to the top right.

For the purpose of this proof, the arrows coming form the maps h and γ in Qn are irrele-
vant, but it will be important to make sure that all arrows in the expansion of the map k point
(non-strictly) to the top right. This can be achieved by combing hairs, or directly as follows.
From the proof of Lemma 5.3, we know that k = s∗ ◦ k′ where s∗ is a saddle cobordism and
k′ is a null-homotopy for the endomorphism u := utop

n−1 − ubot
n−1 of P ?2n−1 t 11. If we now ex-

pand the lower projector in P ?2n−1t11, we obtain the one-sided twisted complex shown in the
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leftmost column of Figure 4. In this complex, all terms beyond the first one are contractible.
Using homological perturbation theory, we thus get a homotopy equivalence, denoted F ,
from this twisted complex to its leading term. The inverse homotopy equivalence, denoted
G, is given by inclusion, and there is a homotopy H between the identity map of P ?2n−1 t 11

and GF such that no arrows in H point downwards. In the definition of k, we can now
replace k′ by a pair of homotopies u ' GFu ' 0 given by Hu and GFk′. This yields a new
map k, whose components point (non-strictly) to the top right.

With this in mind, we can now cancel the contractible terms in Figure 4 that lie below the
dashed line. After absorbing (Pn−1 t 11) ? (Pn−2 t 12) ' Pn−1 t 11, this yields a homotopy
equivalence

Qn '

 n− 1 n− 1 n− 1 n− 1 n− 1 n− 1


in which all length one maps are saddle maps except for the map in the middle which is
utop
n−2 − ubot

n−2 (here we use that the components of k point to the top right). The left half and
right half each are killed by − ? Bn−1 (see for example [CK12, Subs. 7.1.1], so Qn is killed by
− ? Bn−1 as well. This completes the proof. �

5.3. The quantum trace of Pn. In this section, we use the complex [Qn] to show that [Pn] is
homotopy equivalent to Vn := im pn. In particular, this will lead to a proof of Theorem 4.20.

Lemma 5.4. We have

[Qn] '

 [
n− 1

][
n− 1

][
n− 1

][
n− 1

]
a[un−1]c


where we are omitting longer arrows, and where a and c are both induced by cyclicity isomorphisms
and saddles.

Proof. We first observe that we have the following diagram which commutes up to homo-
topy: 

n− 1

n− 1




n− 1

n− 1




n− 1

n− 1




n− 1

n− 1




n− 1

n− 1




n− 1

n− 1



[
n− 1

]

[
n− 1

]
[utopn−1 − ubotn−1] [ubotn−1 − q2n−2u

top
n−1] [utopn−1 − q2n−2u

top
n−1] [(1− q2n−2)un−1]

∼=
θ

id '

∼=
θ

id '
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The composition of horizontal maps gives a homotopy equivalence
n− 1

n− 1

 '
[

n− 1

]

Applying this homotopy equivalence to the two middle terms in [Qn], we get

[Qn] '

 [
n− 1

][
n− 1

][
n− 1

][
n− 1

]
afc


where f = (1 − q2n−2)[un−1]. The lemma now follows because 1 − q2n−2 is assumed to be
invertible. �

We are now ready to prove:

Lemma 5.5. [Pn] ' Vn

Proof. By Theorem 5.1, we have an expansion

n− 1 '

 · · · s


in which the right-hand side is homotopic to

(5.5) n− 2n− 2n− 2n− 2n− 2· · · id ⊕

We now replace the middle terms in the complex from Lemma 5.4 by the above expansion.
This yields the expression for [Qn] shown in Figure 5.

As indicated by the dashed lines, the complex from Figure 5 can be viewed as a one-sided
twisted complex of the form

C B A

whereB and the bottom part of C are contractible. After collapsing these contractible pieces,
this twisted complex becomes

(5.6)
[

n− 1

][
n− 2

][
n− 2

][
n− 1

]
a′

We now use induction on n to replace the remaining copies of [Pn−1 t 11] and [Pn−2] by
Vn−1 ⊗ V1 and Vn−2. Taking into account the shifts of the cohomological grading (but not of
the quantum grading), this yields

(5.7) [Qn] '
(

Vn−1 ⊗ V1t−1Vn−2t2−2nVn−2t1−2nVn−1 ⊗ V1

)
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On the other hand, the proof of Theorem 5.1 shows that

(5.8) [Qn] '

(
[Pn][t1−2nPn]

[un]
)
'
(

[Pn][t1−2nPn]
0

)
= [t1−2nPn] ⊕ [Pn]

where the second homotopy equivalence follows from Lemma 4.21 because un has nonzero
quantum degree.

Taking into account grading shifts, it is now easy to see that (5.8) can only hold if both
arrows in (5.7) are nonzero and [Pn] ' Vn. Indeed, we have Vn−1 ⊗ V1

∼= Vn ⊕ Vn−2, and the
two middle terms in (5.7) cannot be connected by an arrow for grading reasons (here we can
assume n > 2 because the n = 2 case is straightforward). �

Remark 5.6. The map a in Lemma 5.4 is induced by the composition s◦ θ−1 where s is a sad-
dle and θ is a chain isomorphism given by cyclicity isomorphisms. From this, one can easily
see that the map a′ in (5.6) and in Figure 5 is induced by an annulus [Pn−2]→ [Pn−2t12]. On
the other hand, the leftmost map in (5.6) is more difficult to describe because it potentially
depends on longer arrows connecting the leftmost term in Figure 5 to the rightmost column
of C. As a consequence, it is not clear whether this map is nonzero, although this follows
indirectly from the proof of Lemma 5.5.

Although Theorem 4.20 follows implicitly from Lemma 5.5 and its proof, we will now give
a concrete proof of this theorem by showing explicitly that [Pn] deformation retracts to the
complex A from Figure 5. Note, however, that a part of this proof relies on Lemma 5.5.

Proof of Theorem 4.20. By using an analogue of Lemma 5.4, we can write the trace of Pn as

[Pn] '

 [
n− 1

][
n− 1

][
n− 1

][
n− 1

]
· · · a[un−1]b[un−1]


where b is given by a dot placed on the looped strand. In this expansion of [Pn], we now
replace each term (beyond the first) by the expansion from (5.5). This yields the expression
for [Pn] shown in Figure 6.

Note that the complexes A and B in Figure 6 are identical with the ones from Figure 5.
While the complex B is obviously contractible, it is not clear whether D is contractible be-
cause there could be longer arrows connecting the leftmost term inD to its rightmost column.

However, a simple grading argument shows that A becomes a direct summand of [Pn] if
one replaces [Pn−2] and [Pn−1 t 11] by Vn−2 and Vn−1 ⊗ V1. Because the resulting complex
Vn−2 → Vn−1 ⊗ V1 necessarily contains Vn as a direct summand, and because [Pn] ' Vn by
Lemma 5.5, it then follows that the complex . . . → D → B → D → B in the expansion of
[Pn] must be contractible. Hence [Pn] deformation retracts to the complex

A =

 [
n− 1

][
n− 2

]
a′


where a′ is as described in Remark 5.6. The theorem now follows from the definition of a
model. �
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[
n− 1

][
n− 2

][
n− 2

]

[
n− 2

]

[
n− 2

]

[
n− 2

]

[
n− 2

]

...

[
n− 2

] [
n− 2

]

[
n− 2

]

[
n− 2

]

...

[
n− 1

]
⊕

⊕

id

id

id

id

id

a′

ABC

FIGURE 5. Expansion of [Qn] without longer arrows.

6. QUANTUM TRACES OF GENERALIZED PROJECTORS

In [CH15], B. Cooper and the second author introduced a family of complexes Pε ∈
Ch−(BN n) which categorify the indecomposable idempotents in TL. In this section, we
give a new and streamlined proof of the existence of these complexes. We then show that
the class of Pε in the quantum horizontal trace depends only on the through-degree of Pε
(Theorem C). As in the previous sections, we need to assume that 1 − qd is invertible for
d > 0.
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[
n− 1

][
n− 2

][
n− 2

]

[
n− 2

]

[
n− 2

]

[
n− 2

]

[
n− 2

]

...

[
n− 2

] [
n− 2

]

[
n− 2

]

[
n− 2

]

...

[
n− 2

][
n− 2

]

[
n− 2

]

[
n− 2

]

...

[
n− 2

] [
n− 2

]

...

· · · ⊕

⊕ ⊕

⊕

id

idid

id

id id id

id

id id

a′

ABDBD

FIGURE 6. Expansion of [Pn] without longer arrows.

6.1. Idempotents in TL. Recall the Karoubi envelope of a k-linear category C is the category
Kar(C) whose objects are formal expressions im e, where e is an idempotent endomorphism
in C. If e, e′ are idempotent endomorphisms in C, then any morphism in C of the form e◦f ◦e′
is regarded as a morphism im e← im e′ in Kar(C).

Recall the Temperley–Lieb category TL. This category has identity maps idn indexed by
n ∈ Z≥0, and the space of morphisms im idn ← im idm is the Temperley–Lieb space of (n,m)
tangles, denoted TLn,m. We also denote TLn := TLn,n.

We also have the Jones–Wenzl idempotents pn = idn ◦pn ◦ idn.
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Proposition 6.1. There is a monoidal functor from Kar(TL) to the category of finite dimensional
Uq(sl2) representations sending

im idn V ⊗n1 , im pn Vn,

where Vn denotes the n + 1 dimensional simple representation of Uq(sl2). This functor is an equiva-
lence of categories.

As is well known

(6.1) Vn ⊗ V1
∼= Vn+1 ⊕ Vn−1

for n ≥ 1, and
V0 ⊗ V1

∼= V1.

Since the summands on the right-hand side above are distinct simples there is a unique pair
of complementary idempotent endomorphisms of Vn ⊗ V1 which project onto summands
isomorphic to Vn±1.

Iterating (6.1) allows us to obtain a preferred collection of idempotent endomorphisms
which project V ⊗n1 onto its simple direct summands. The goal of this section is to arrive at
such idempotent decompositions inside TL, by means which are amenable to categorifica-
tion. We begin by introducing the central idempotents pn,k ∈ TLn, which under the functor
to Uq(sl2) representations become the projections of V ⊗n onto its Vk-isotypic summand.

Proposition 6.2. There exist a unique family of elements pn,k ∈ TLn indexed by integers 0 ≤ k ≤ n
with k ≡ n (mod 2) such that

1) idn =
∑

k pn,k.
2) pn,k is a sum of elements factoring through pk ∈ TLk.

Proof. The proof of existence is by induction on n. In the base cases we have p0,0 = id0 and
p1,1 = id1. So assume that pn,k have been constructed as in the statement. By hypothesis, pn,k
can be written as

pn,k =
∑
i

xn,k,ipkyn,k,i

for some elements xn,k,i ∈ TLn,k and yn,k,i ∈ TLk,n. Adding a strand yields

pn,k t id1 =
∑
k

(xn,k,i t id1)(pk t id1)(yn,k,i t id1).

The recursion satisfied by the Jones–Wenzl idempotents tells us that pk t id1 is a sum of
pk+1 plus terms which factor through pk−1. It follows that pn,k t id1 can be written as a sum
of terms factoring through pk+1 or pk−1, hence by induction that idn+1 can be written as a
sum of terms factoring through pl for various l, which completes the inductive proof on the
existence of {pn,k}n,k.

We make some observations. If f ∈ TLn,m factors through pk, then l 6= k implies fpn,l = 0,
hence

f = f
∑
l

pn,l = fpn,k.

A similar argument shows that f = pm,kf . Now, suppose that f ∈ TLn is a sum of terms
factoring through pk, and idn−f is a sum of terms factoring through pl for various l 6= k.
Then pn,kf = f and pn,k(idn−f) = 0. In other words,

f = pn,kf = pn,k.



ON UNIFICATION OF COLORED ANNULAR sl2 KNOT HOMOLOGY 41

This proves the uniqueness of pn,k. �

Additional properties of the pn,k are recorded below.

Corollary 6.3. The pn,k are a complete collection of mutually orthogonal idempotents in TLn, with
pn,n = pn. �

Corollary 6.4. The pn,k are central, in the sense that pn,kf = fpm,k for all f ∈ TLn,m (interpreted
as zero if n < k or m < k).

Proof. If f factors through pk for some k then f = pn,kf = fpm,k. Any f ∈ TLn,m is a sum of
terms factoring through some pk, which completes the proof. �

Corollary 6.5. We have (pn−1,k t id1)pn,l = 0 unless l = k + 1 or l = k − 1.

Proof. We have seen that pn−1,k t id1 is a sum of terms factoring through pk+1 or pk−l; the
corollary follows. �

We remark that the pn,k are not primitive idempotents. To construct a complete collection
of primitive idempotents in TLn we use the following.

Definition 6.6. A sequence ε ∈ {1,−1}n will be called admissible if ε1 + · · · + εi ≥ 0 for all
1 ≤ i ≤ n. For each admissible ε ∈ {1,−1} define an element pε ∈ TLn by the formula

pε =
n∏
i=1

(pi,ε1+···+εi t idn−i)

Proposition 6.7. The set {pε | ε ∈ {1,−1}n is admissible} is a complete collection of orthogonal
idempotents in TLn. Morover, im pε ∼= im p|ε| in Kar(TL); in particular the idempotents pε are
primitive.

Proof. We multiply together our idempotent decompositions of idn:

idn =

n∏
m=1

(∑
k

pm,k t idn−m

)
=

∑
k1,...,kn

p′1,k1
p′2,k2

· · · p′n,kn ,

where we are abbreviating by writing p′m,k := pm,k t 1n−m, and the sum on the right is
indexed by sequences (k1, . . . , kn) with 0 ≤ km ≤ m and km ≡ m (mod 2). Observe that
all of the factors p′m,k commute with one another, hence the p′1,k1

p′2,k2
· · · p′n,kn are orthogonal

idempotents. Corollary 6.5 says that p′1,k1
p′2,k2

· · · p′n,kn is zero unless km = km−1 ± 1 for all
2 ≤ m ≤ n. We obtain an idempotent decomposition

idn =
∑
ε

pε

indexed by admissible sequences ε ∈ {1,−1}n as claimed.
To see that im pε ∼= im p|ε| in Kar(TL), we argue by induction on n. The statement is trivial

for n = 0 or n = 1, since in these cases pε = pn = idn. Assume by induction that im pε ∼= im pk,
where k = |ε|. The decomposition pε t id1 = p(ε,1) + p(ε,−1) yields an isomorphism

im(pε)⊗ im(id1) ∼= im(p(ε,1))⊕ im(p(ε,−1)).

On the other hand,

im(pε)⊗ im(id1) ∼= im(pk)⊗ im(id1) ∼= im(pk+1)⊕ im(pk−1)
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Since p(ε,±1) factors through pk±1, the only possibility is that im(p(ε,±1)) ∼= im(pk±1). This
completes the proof. �

6.2. The categorified central idempotents. In this section we describe the categorical ana-
logues of the idempotent decompositions from §6.1. As discussed in §4.3, the Cooper–
Krushkal projectors Pn ∈ Ch−(BNn) are categorical analogues of the Jones–Wenzl idem-
potents pn ∈ TLn.

Definition 6.8. Given integers 0 ≤ k ≤ nwith k ≡ n (mod 2), we letXn,k denote the collection
of complexes which are direct sums of q-shifts of complexes of the form T ?Pk?T

′, where T, T ′

are objects of BNn,k and BNk,n, respectively. We say that X ∈ Ch−(BNn) factors through Pk
if X ' X ′ with X ′ ∈ 〈Xn,k〉.

Note that we do not allow cohomological shifts in the definition, so each complex in Xn,k
is supported in cohomological degrees ≤ 0.

Lemma 6.9. If X ∈ Ch−(BNn) factors through Pk then X t 11 ∈ Ch−(BNn+1) is homotopy
equivalent to a complex factoring through Pk+1 and Pk−1.

Proof. The recursion satisfied by Cooper-Krushkal projectors ensures that if X = T ? Pk ? T
′

then X t 11 = (T t 11) ? (Pk t 11) ? (T ′ t 11) is homotopy equivalent to a complex in
〈Xn+1,k+1 ∪ Xn+1,k−1〉. Then Lemma 3.12 completes the proof. �

Lemma 6.10. Suppose we have X ∈ Xn,k and Y ∈ Xn,l. We have:
1) if k < l then each chain object Xm satisfies Hom(Xm, Y ) ' 0.
2) if k = l and m < 0, then Hom(Xm, Y ) ' 0.

Proof. We use the duality isomorphism Hom(Xm, Y ) ∼= Hom(1n, (X
m)∨ ? Y ) together with

the fact that the through degree of Xm is ≤ k, with equality if and only if m = 0. Since Y
factors through Pl, Xm ? Y is contractible if the through degree of Xm is strictly less than l,
which will occur if k < l or k = l and m < 0. �

Theorem 6.11. There exist a unique family of complexes Pn,k ∈ Ch−(BNn) such that
1) 1n '

(
Pn,n → Pn,n−2 → · · · → Pn,0 or 1

)
.

2) Pn,k factors through Pk.

Proof. Fix n, and let Ω = {k | 0 ≤ k ≤ n, k ≡ n (mod 2)} with order k � l if k > l (note the
reversal of order). Iterating Lemma 6.9 we see that 1n is homotopy equivalent to a complex
E ∈ 〈Xn,k | k ∈ Ω〉. The rest of the construction is achieved by combing hairs.

To be precise, note that the collections of complexes Xn,k (indexed by k ∈ Ω) satisfy the
hypotheses of Lemma 3.15 by Lemma 6.10. Combing hairs results in a complex E′ ' 1n

which can be written as E = twδ′(
⊕

i∈I′ t
a(i)Xi) in which I is a partially ordered set, Xi ∈

Xω(i), such i ≤ j implies ω(i) � ω(j) or ω(i) = ω(j) and a(i) < a(j). We may collect terms
according to the through degree k and the cohomological shift a, obtaining

1n ' twδ+ε

⊕
k∈Ω

⊕
a≤0

E′k,a


where the twist δ maps E′k,a to E′l,b only if k� l and the twist ε maps E′k,a to E′l,b only if k = l

and a ≤ b. Then the complexes Pn,k = twε(
⊕

a≤0E
′
k,a) are as in the statement. �
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Proposition 6.12. Given X ∈ Ch−(BNn,m) we have Pn,k ? X ' X ? Pm,k, naturally in X up to
homotopy.

Proof. Define complexes

Pn,≤k = (Pn,k → Pn,k−2 → · · · → Pn,0 or 1),

Pn,≥k = (Pn,n → Pn,n−2 → · · · → Pn,k).

Then Pn,k ' Pn,≥k ? Pn,≤k. So it suffices to show that Pn,≥k and Pn,≤k are central, as in the
statement. The centrality of these complexes follows from [Hog17, Theorem 4.24]. �

The following is straightforward.

Lemma 6.13. Suppose X ∈ Ch−(BNn) factors through Pk. Then Pn,l ? X ' 0 if l 6= k, and
Pn,k ? X ' X . with l 6= k, then Pn,k ? X ' 0.

Proof. Suppose X,Y ∈ Ch−(BNn) are complexes such that X factors through Pk and Y
factors through Pl. Then X ? Y ' 0. In particular, Pn,l ? X ' 0. Using the idempotent
decomposition of 1n into central idempotents, we obtain:

X ' twδ

(⊕
k

Pn,k

)
? X ∼= twδ

(⊕
k

Pn,k ? X

)
' Pn,k ? X,

where in the last step we contracted the contractible complexes Pn,l ? X (l 6= k) using homo-
logical perturbation. �

6.3. The primitive categorified idempotents. The following defines the categorical ana-
logues of the idempotent elements pε ∈ TLn from Definition 6.6.

Definition 6.14. For each admissible ε ∈ {1,−1} define Pε ∈ Ch−(BNn) by the formula

Pε = ?ni=1(Pi,ε1+···+εi t 1n−i).

Proposition 6.15. We have Pε ? Pν ' 0 if ε 6= ν, and 1n ' twδ(
⊕

ε Pε) in which the twist δ
strictly decreases the partial order (ε1, . . . , εn)T ≥ (ν1, . . . , νn) if ε1 + · · · + εi ≥ ν1 + · · · + νi for
all i = 1, . . . , n.

Proof. This is analagous to Proposition 6.7, and we leave many details to the reader. We
tensor together our idempotent decompositions of 1n = 1m t 1n−m for 1 ≤ m ≤ n:

idn ' ?nm=1

(∑
k

Pm,k t idn−m

)
=

⊕
k1,...,kn

P ′1,k1
P ′2,k2

· · ·P ′n,kn ,

with a twist that decreases one or more indices ki, where we are abbreviating by writing
P ′m,k := Pm,k t1n−m, and the sum on the right is indexed by sequences (k1, . . . , kn) with 0 ≤
km ≤ m and km ≡ m (mod 2). Observe that all of the factors P ′m,k commute with one another
up to homotopy, hence the P ′1,k1

P ′2,k2
· · ·P ′n,kn are orthogonal idempotents up to homotopy.

Lemma 6.13 and Lemma 6.9 tell us that P ′1,k1
P ′2,k2

· · ·P ′n,kn is contractible unless km = km−1±
1 for all 2 ≤ m ≤ n. Homological perturbation gives an idempotent decomposition

1n ' twδ

(⊕
ε

Pε

)
in which the twist decreases one or more indices ki. �
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6.4. The quantum annular trace of categorified idempotents.

Theorem C. For every admissible ε ∈ {1,−1}n we have [Pε] ' V|ε| in Ch−(Kar(BNq(A))).

Proof. Induction on n. In the base case n = 0 there is nothing to prove. Assume by induc-
tion that [Pε] ' Vk, where k = |ε|. Then [Pε t 11] ' Vk+1 ⊕ Vk−1. But also [Pε t 11] '
([P(ε,1)] → [P(ε,−1)]), by construction. Computations in the trace tell us that P(ε,±1) is ho-
motopy equivalent to a complex built from copies of [Pk±1] ' Vk±1. The only possibility is
[P(ε,±1)] ' Vk±1. �

Corollary 6.16. We have [Pn,k] ' V
⊕Cn,k
k

∼= im(pn,k) where Cn,k is the number of admissible
ε ∈ {1,−1}n with |ε| = k. Explicitly, Cn,k = k+1

m+1

(
n
m

)
where m = (n+ k)/2.

Proof. It follows from Proposition 6.15 thatPn,k is homotopy equivalent to a one-sided twisted
complex built from idempotents Pε with |ε| = k. Because of Theorem C, this implies that
[Pn,k] is a one-sided twisted complex built from copies of Vk, and since all of these copies are
in cohomological degree zero, there can be no differentials between them.

The explicit formula for Cn,k can obtained from the hook length formula by identifying
admissible sequences ε ∈ {1,−1}n with |ε| = k with standard Young tableaux of shape
λ = (m,n−m). Specifically, an admissible sequence ε ∈ {1,−1}n corresponds to a standard
two-row Young tableau whose first row contains the indices iwith εi = 1, and whose second
row contains the indices i with εi = −1. �

7. QUANTUM HOCHSCHILD HOMOLOGY OF Hn

As an application of the results from the previous section, we will now compute the full
quantum Hochschild homology of Khovanov’s arc ring Hn [Kho02]. We will first recall the
definition of Hn.

Let Bn denote the set of all isotopy classes of flat tangles without closed components,
and with 2n upper endpoints and no lower endpoints. Given a, b ∈ Bn, let a∨ denote the
reflection of a along a horizontal line, and a∨b := a∨ ? b denote the vertical composition of a∨

and b. Note that a∨b is a disjoint collection of closed components in the plane R2.
By applying Khovanov’s functor from [Kho00, Subs. 2.3] (for c = 0), we can assign to each

pair of elements a, b ∈ Bn a graded k-module

aH
n
b := qnF(a∨b).

Since F is naturally isomorphic to HomBN0,0(∅,−) [BN05, Subs 9.1], this k-module can also
be viewed as the morphism set

qnHomBN0,0(∅, a∨b) ∼= HomBN2n,2n(a, b).

As a graded k-module, Khovanov’s arc algebra Hn can now be defined as the direct sum

Hn :=
⊕
a,b

aH
n
b

for a, b ∈ Bn. The algebra multiplication is induced by cobordism maps

aH
n
b ⊗k bH

n
c −→ aH

n
c ,

or equivalently, by the composition in BN2n,2n.
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The algebra Hn comes with a distinguished collection of orthogonal idempotents (a) ∈
Hn, one for each a ∈ Bn, which are given by labeling each circle in a∨?a by the generator 1 of
Khovanov’s Frobenius algebra k[x]/(x2). Correspondingly, there are projective left modules

Hn
a := Hn(a) =

⊕
b

bH
n
a

and projective right modules

aH
n := (a)Hn =

⊕
b

aH
n
b .

Khovanov’s construction further gives rise to a functor

Fn : BN2n,2n −→ Hn−Bimod

which sends a flat (2n, 2n) tangle T to a sweet graded Hn-bimodule Fn(T ), in the sense
of [Kho02, Def. 1]. As a k-module, this bimodule decomposes as

Fn(T ) :=
⊕
a,b

aF(T )b

for a, b ∈ Bn, where

aF(T )b := qnF(a∨ ? T ? b).

Moreover, Khovanov proved that the functors Fn extend to a bifunctor

F : BNeven −→ Bimod,

where Bimod denotes the bicategory of sweet graded bimodules, and BNeven ⊂ BN de-
notes the bicategory whose objects are given by even integers 2n ≥ 0, and whose 1-morphism
categories are identical with the ones in BN.

Before proceeding, let us also recall that the 0th quantum Hochschild homology of a graded
bimodule M over a graded algebra A =

⊕
dAd is given by the quantum space of coinvariants

coInvq(M) := M/[A,M ]q,

where
[A,M ]q := Spank{am− qdma | a ∈ Ad,m ∈M}.

More generally, the full quantum Hochschild homology of M can be computed as the homology
of the complex coInvq(P) where P → M is a projective resolution of the graded bimodule
M .

It was observed in [BPW19] that the assignment M coInvq(M) extends to a quantum
shadow on the bicategory Bimod. Since this bicategory has left and right duals, Theorem 3.5
from [BPW19] implies that this quantum shadow factors through a functor

coInvq : hTrq(Bimod) −→ k−mod.

We can now prove the following theorem, which holds under the assumption that 1 − qd
is invertible for all integers d in (0, 4n].

Theorem 7.1. The higher quantum Hochschild homology of Hn vanishes and the 0th quantum
Hochschild homology of Hn is isomorphic to k⊕C2n,0 where C2n,0 = |Bn| is the nth Catalan number.
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Proof. By Proposition 6.15, we have a homotopy equivalence

12n '
(
P2n,2n −→ P2n,2n−2 −→ . . . −→ P2n,0

)
and applying Fn gives

(7.1) Hn '
(
P2n,2n −→ P2n,2n−2 −→ . . . −→ P2n,0

)
where P2n,k := Fn(P2n,k).

Now observe that, as a complex of k-modules, P2n,k is built from complexes of the form

aFn(T ? Pk ? T
′)b = F(a∨ ? T ? Pk ? T

′ ? b)

for a, b ∈ Bn. In particular, P2n,k is acyclic for k > 0 because Pk kills turnbacks.
On the other hand, P2n,0 is built from flat tangles with through-degree 0, and after remov-

ing closed components, every such tangle can be written as a ? (b∨) for a, b ∈ Bn. Since
closed components in a flat tangle T don’t affect the bimodule multiplication on Fn(T ), this
shows that P2n,0 is built from projective bimodules of the form Fn(a ? (b∨)) = Hn

a ⊗k bH
n for

a, b ∈ Bn.
In summary, we see that the inclusion of the subcomplex P2n,0 into the right-hand side of

(7.1) defines a quasi-isomorphism P2n,0 → Hn, and hence P2n,0 is a projective resolution of
Hn. By the remarks preceding this proof, we can therefore compute the quantum Hochschild
homology of Hn from the complex

coInvq(P2n,0) = coInvq([P2n,0]) = coInvq ◦F([P2n,0])

The theorem now follows from Corollary 6.16 for k = 0. �

Remark 7.2. An analogous result for the Chen–Khovanov algebrasAn was shown in [BPW19,
Prop. 6.6]. Unlike Theorem 7.1, the latter result holds without any restrictions on q.

Remark 7.3. Explicitly, the 0th quantum Hochschild homology of Hn is spanned by the
idempotents (a) for a ∈ Bn. Indeed, these idempotents remain linearly independent in
coInvq(H

n) because they are mutually orthogonal and span the degree 0 part of the positively
graded algebra Hn.
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