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A PROOF OF DUNFIELD–GUKOV–RASMUSSEN CONJECTURE

ANNA BELIAKOVA, KRZYSZTOF K. PUTYRA, LOUIS-HADRIEN ROBERT, AND EMMANUEL WAGNER

Abstract. In 2005 Dunfield, Gukov and Rasmussen conjectured an existence of a spectral sequence
from the reduced triply graded Khovanov–Rozansky homology of a knot to its knot Floer homology
constructed by Ozsváth and Szabó. The main result of this paper is a proof of this conjecture.
For this purpose we construct a bigraded spectral sequence from the gl0 homology constructed by
the last two authors to the knot Floer homology. Using the fact that the gl0 homology comes
with a spectral sequence from the reduced triply graded homology, we obtain our main result.
The first spectral sequence is of Bockstein type and arises from a subtle manipulation of coefficients.
The main tools are quantum traces of foams and of singular Soergel bimodules and a Z-valued cube
of resolutions model for knot Floer homology, originally constructed by Ozsváth–Szabó over the field
of two elements. As an application we deduce that both the gl0 homology and the reduced triply
graded Khovanov–Rozansky homology detect the unknot, the two trefoils, the figure eight knot and
the cinquefoil.
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1. Introduction

The discovery of the Alexander polynomial ∆K(q) in 1929 marked the birth of knot theory, mani-
fested in the transition from conjectures to proofs. In the 1970s Conway found a first diagrammatic
algorithm to compute ∆K(q) using the so-called skein relation:

(1) − = (q− q−1) ,

where the three pictures represent link diagrams that coincide outside of the small regions depicted
above.

In the 1980s the second big player in knot theory was introduced by Jones and later extended
to the two variable HOMFLY-PT polynomial PK(a, q) with the skein relation

(2) a − a−1 = (q− q−1) .

It specializes to the Alexander polynomial for a = 1 and to the Jones polynomial for a = q2. Setting
a = qN recovers the slN polynomial of the knot K. Introducing webs, oriented planar trivalent
graphs, we can rewrite (2) as

(3) a = − q−1 and a−1 = − q ,

where the second diagram in both equations represents a singular crossing.
At the beginning of this century Jones and HOMFLY-PT polynomials were moved one categorical

level higher by Khovanov and Khovanov–Rozansky [Kho00, KR08a, KR08b]. These new theories
associate with a link diagram graded chain complexes, the homology of which yield new powerful
link invariants. The polynomials can be reconstructed by taking the graded Euler characteristics of
these chain complexes. One powerful aspect of these new invariants is that link cobordisms induce
maps on homology, but not on the Euler characteristics.

After presenting a knot K as a closure of a braid β with n crossings, the Khovanov–Rozansky
chain complex is defined by resolving each crossing of β in two ways as suggested by (3) and then
by assigning to each such resolution, which is a web, a Soergel bimodule. Webs are then organized
as vertices of an n-dimensional cube. The differentials assigned to the edges of the cube are given
by bimodule maps induced by singular 2-dimensional cobordisms called foams. This construction
is secretly based on a functor of bicategories

(4) B : Foam → sSBim
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discussed in Section 2. Closing up the braid is achieved by taking the horizontal trace of B,
which is realized by assigning to a closed web the Hochschild homology of the associated Soergel
bimodule. The homology HHH of the resulting cube complex is a triply graded link invariant
that categorifies PK(a, q). By putting a basepoint on the diagram and killing the corresponding
variable in the Soergel bimodule, we obtain the so-called reduced homology HHH red, which in case
of knots does not depend on the position of the basepoint. The quantum horizontal trace of (4),
the quantum Hochschild homology as well as the quantum annular link homology were constructed
in [BPW19]. Note that the quantum horizontal trace of Foam is the category of quantum annular
foams constituted by annular foams together with a membrane, subject to additional relations in-
volving the membrane and a quantum parameter q. All mentioned constructions admit algorithmic
computations.

Parallel to these developments, the Alexander polynomial was categorified by Ozsváth and Szabó
using completely different, geometric techniques. Here chain complexes are generated by Lagrangian
intersections in a symmetric product of (pointed) Heegaard diagrams and the differential counts
holomorphic discs. The resulting homology, known as Heegaard Floer knot homology or simply

knot Floer homology, is denoted by ĤFK . This homology has important topological applications:
it detects the braid index, the genus and fiberedness of a knot [Ni07]. The list of knots it detects is
constantly growing. However, this theory is essentially non-local and hard to compute in general.

In the analogy to slN link homology, Dunfield, Gukov and Rasmussen conjectured the existence of

a spectral sequence between HHH red and ĤFK as a lift of the relation ∆K(q) = PK(1, q) [DGR06].

Even if in [OS09] Ozsváth and Szabó constructed the cube of resolutions model for ĤFK , similar
in spirit to the definition of HHH , the problem of constructing a spectral sequence remained open
for more than 15 years. The goal of this paper is to prove Dunfield–Gukov–Rasmussen conjecture.

An important ingredient of our proof is a new knot homology theory Hgl0 that categorifies
the Alexander polynomial and that was constructed by the last two authors of the present paper.
Moreover, they exhibited a spectral sequence from HHH red to Hgl0 over Q. Let us stress that even

if Hgl0 and ĤFK categorify the same polynomial invariant, there is a priori no reason to assume

that these homologies are isomorphic. In fact, we will prove here that Hgl0 and ĤFK are different.

Our idea is to construct a spectral sequence from Hgl0 to ĤFK using the cube of resolutions

model for ĤFK and then to combine it with the already established spectral sequence from HHH red

to Hgl0 . There are two main obstacles that we have to overcome to realize this plan. First, the cube

of resolutions model for ĤFK is defined with coefficients in F, the field of two elements. However,
the spectral sequence from of HHH red to Hgl0 requires a field of characteristic zero. The second

problem is that the cube of resolutions model for ĤFK is constructed with coefficients in F[q−1, q]],
a ring of power series in q. This coefficient ring does not admit a specialization at q = 1 that is
required to obtain Hgl0 .

Let us mention that the Ozsváth and Szabó cube construction was reformulated in algebraic terms
by Gilmore [Gil16], untwisted (sending q to 1) by Manolescu in [Man14] and extensively studied
by Dowlin in [Dow17, Dow18], where in the last two unpublished papers the cube construction was
assumed to work with integral coefficients.

1.1. Main results. To overcome the first obstacle we provide an algebraic model that computes

ĤFK over Z[q−1, q]] via the cube of resolutions. For this represent a knot K as a braid closure β̂

and associate with it a complex CAG(β̂) of Z[t, t−1]-modules, such that

(5) H•(C
AG(β̂)⊗ Z[t−1, t]]) ∼= ĤFK (K)⊗ Z[t−1, t]].

The first complex satisfying (5) with F instead of Z was constructed by Alison Gilmore in [Gil16].
With vertices of the cube she associated quotients of polynomial rings by local and non-local
relations.
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On the geometric side, the proof of (5) requires a choice of a coherent system of orientations for
moduli spaces of holomorphic disks in a multipointed Heegaard diagram and to track signs in all
proofs of [OS09]. Let us mention that even though the results of [OSS09] and [OS09] were stated
over F, these papers contain the expected signs. This makes the comparison easier. The main
ingredients of our proof are the result of [AE15] about the existence and properties of coherent
systems of orientations, Theorem 4.20 establishing the skein exact triangle over Z, as well as
Proposition 4.22 and Theorem 5.10 that allow to identify the algebras assigned to vertices of
the cube.

On the algebraic side, we extend Gilmore’s construction to all annular webs and interpret it in
terms of Soergel bimodules. Here we work over an arbitrary commutative ring k with a fixed invert-
ible element q. The space A(ω) that we assign to an annular web ω is a quotient of the quantum
Hochschild homology [BPW19] of the Soergel bimodule associated with the web by (renormal-
ized) non-local relations. In the case of a resolution of a braid this quotient is identified with
the Gilmore’s algebra after renormalizing her variables: we check that Gilmore’s local relations
coincide with the Soergel relations, whereas non-local relations with those defined for webs.

Combining previous results with the general theory of quantum traces [BPW19] we obtain a new
conceptual interpretation of the Gilmore construction, opening the floor for its further generaliza-
tions. Recall that similarly to the non-quantized setting, the quantum horizontal trace induces
a functor from quantum annular foams to the quantum Hochschild homology of Soergel bimodules.
In Proposition 5.5 we prove that the non-local relations are preserved by this functor. Hence, we
obtain a new functorial evaluation of quantum annular foams by using the quotient of the quantum
Hochschild homology by the non-local relations. This quotient can be used to generalize Gilmore’s
construction and to define new homology theories.

In particular, we modify A(ω) by killing q-torsion. Namely, given a web ω we consider the map

(6) Qω : A(ω,Z[q−1, q]) −→ A(ω;Z[q−1, q]])

induced by the inclusion of coefficient rings. In general the map Qω is not injective. Dividing
the previous construction by the kernel of Qω and tensoring it with k over Z[q−1, q] produces
a new functorial assignment of a k-algebra qAG(w) to a quantum annular web ω. By inserting

these algebras into a cube of resolutions for a knot K = β̂ we obtain our main player—a new

chain complex1 qAG(β̂), the homology of which we denote by qAGH (β̂). Since qAG is defined
over polynomials, it can be specialized at q = 1, which resolves the second obstacle. We denote

these specializations at q = 1 by AG(β̂) and AGH (β̂) respectively. As we shall see, this new
chain complex interpolates between the algebraic and geometric settings previously discussed in
the following way.

Proposition A. The homology theories AGH and Hgl0 coincide. Hence, AGH is a knot invariant
if k is a field.

We expect the following to be true.

Conjecture 1. If k is a field of characteristic 0, then qAGH is a knot invariant for any q.

In the next step we analyse the Bockstein spectral sequence associated with the specialization
of qAGH at q = 1. Note that this spectral sequence preserves the Alexander grading. To be more
precise, we fix an arbitrary field K and work over the principal ideal domain K[q, q−1]. Thanks to
Proposition A we can identify the first page of our spectral sequence with Hgl0 and by (5) the last

page, which is the free part of qAGH ⊗ K, is isomorphic to ĤFK (compare this with Proposition
A.7).

1The name of the new complex is motivated by the fact that it interpolates the Algebraic categorification of
the last two authors and the Geometric categorification of Ozsváth and Szabó.
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Theorem B. Assume that K is a field and K is a knot represented by a braid closure β̂. Then

the (q 7→ 1) Bockstein spectral sequence applied to qAG(β̂;K[q, q−1]) has Hgl0(K;K) as its first
page and converges after finitely many steps. The last page is (non-canonically) isomorphic to

ĤFK (K;K).

Recall that in [RW19] a spectral sequence from HHH red to Hgl0 was constructed over Q.

Theorem ([RW19]). There exists a differential d0 of (a, q, t)-degree (−2, 0, 1) on the Hochschild
homology of reduced Soergel bimodules over any field of characteristic 0 that induces a spectral
sequence from HHH red to Hgl0 .

The above theorem uses the following convention for gradings: the Koszul differential dK is of
(a, q, t)-degree (−2, 2, 1), whereas the degree of the hypercube differential dtop is (0, 0, 1).

Combining this spectral sequence with the one just constructed we get the main result of this
paper.

Theorem C (Dunfield–Gukov–Rasmussen Conjecture). For any knot K, there exists a spectral

sequence from HHH red to ĤFK with coefficients in any field of characteristic 0.

The conjectural degree of the first higher term of this spectral sequence was expected to be
(a, q, t) = (2, 0, 1) and (2i, 0, 1) in general. This degree is precisely the degree of the differential on
the complex of the filtered spectral sequence formed by computing d0 and then dtop (after homology
with respect to dK is taken and ascending filtration associated to the a-grading). Notice that the
combination of the two spectral sequence guarantees that higher differentials are always of degree
1 with respect to the t-grading and hence are compatible with the conjectural degrees.

To investigate the question whether our spectral sequence collapses at the first step we compute
the homology Hgl0 . Over Q this question can be handled using the known computations for HHH red

and the spectral sequence between HHH red and Hgl0 .
Consider the first case of interest, namely the T (3, 4)-torus knot. The Poincaré polynomial of

the reduced triply graded link homology of this knot is

P (t, a, q) = a−6q−6t6 ++a−8q−4t5 + a−6(q−2t4 + a−8q−2 + a−8q0)t3

+(a−6q0 + a−6q2 + a−10q0)t2 + (a−8q2 + a−8q4)t1 + a−6q6t0.

On one hand, a direct investigation using the degree of the differential d0 shows that the total
dimension of the Hgl0 [RW19] is at least 9: the only terms that can cancel out are a−8q0t3 and

a−6q0t2. On the other hand, the total dimension of ĤFK for the same knot is 5, with three pairs
that should cancel out:

a−10q0t2 ↔ a−8q0t3, a−8q2t1 ↔ a−6q2t2, and a−8q−2t3 ↔ a−6q−2t4.

A direct consequence is that Hgl0 and ĤFK do not coincide over Q. Hence, the spectral sequence
of Theorem C does not always degenerate.

To finish let us mention that the previous discussion is compatible with the degree of the differ-

ential from HHH red to ĤFK expected by Dunfield, Gukov and Rasmussen. Indeed all the (higher)
differentials of this spectral sequence had conjectural (a, q, t)-degree (2k, 0, 1) with k ≥ 1. The
spectral sequence in [RW19] respects the t-gradings and the (higher) differentials of the Bockstein
spectral sequence as well.

In the example of T (3, 4), the term a−8q0t3 cancels out with either a−10q0t2 or a−6q0t2. It
is unclear, though, with which one and in which of the two spectral sequences this cancellation
happens.
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1.2. Applications. As it was already noticed by Manolescu [Man15], the existence of a spectral

sequence from the reduced triply graded homology HHH red to knot Floer homology ĤFK yields
a couple of detection results for HHH red. In this section we establish these detection results for
both HHH red and Hgl0 with Q-coefficients.

Recall that in [OS04a] it was proven that ĤFK detects the Seifert genus of the knot and hence
the unknot, which is the only knot of genus 0. The statement was originally formulated for k = Z.
However, as noticed by many authors (see for instance [BVV18, BM20]), it remains true over any
field. Theorems C and B allow us to extend this result to HHH red and Hgl0 .

Corollary D. The gl0 homology and the reduced triply graded homology (both with Q-coefficients)
detect the unknot.

If Conjecture 1 holds, then the same is true for qAGH at any q.

Proof. Suppose K has the same gl0 homology as the unknot, that is Hgl0(K) = Q concentrated

in bidegree (0, 0). Nothing can happen in the spectral sequence from Hgl0 to ĤFK , so that

ĤFK (K,Q) = Q in bidegree (0, 0) and K is therefore the unknot. The argument for HHH red

is the same. �

By the results of Ghiggini [Ghi08] and Ni [Ni07], ĤFK detects fiberedness of the knot and
the only fibered knots of genus 1 are the two trefoils and the figure-eight knot. The knot Floer

homologies of these knots appear to be different. Hence, ĤFK detects these knots too. In addition,
it was proven more recently that knot Floer homology detects the cinquefoil [FRW22]. Applying
Theorems C and B we deduce that all these knots are also detected by HHH red and Hgl0 . Note
that gl0 and reduced triply graded homology groups for these knots are given in Appendix C.

Corollary E. The gl0 homology and the reduced triply graded homology (both with Q-coefficients)
detect the two trefoils, the figure-eight knot and the cinquefoil.

Proof. The argument is exactly the same for both homology theories and all knots: by degree
reasons there are no cancellations in the spectral sequences. Let us provide a detailed proof for
gl0 homology. Suppose that the Poincaré polynomial of the gl0 homology of a knot is equal to
the one of the cinquefoil, q4 + q2t1 + t2 + q−2t3 + q−4t4. Because the (q 7→ 1) Bockstein spectral
sequence preserves the q-degree, this knot has the same knot Floer homology as the cinquefoil.
Hence, by [FRW22], it is the cinquefoil. Exactly the same argument works for both trefoils. In
case of the figure-eight knot, the homology in the (q, t)-degree (0, 0) has rank 3. However, since
the differential in the (q 7→ 1) Bockstein spectral sequence has (q, t)-degree (0, 1), there is again no
cancellation. To conclude the result for HHH red we check that the Poincare polynomials listed in
Appendix C have no cancelling pairs with respect to differentials of (a, q, t)-degree (2k, 0, 1). �

Let us mention that similar detection results are also valid for Khovanov homology [KM11,
BS22, BHS21, BDLLS21], where the last two papers are based on the Dowlin spectral sequence
[Dow18] that uses an intergral version of [OS09]. Recently, in [BS22] Baldwin and Sivek again
used the Dowlin spectral sequence to prove that HHH red detects an infinite family of pretzel knots
P (−3, 3, 2n + 1), n ∈ Z, that are all not fibered. Combined with our Z-valued cube of resolutions

model for ĤFK , these results are fully justified.

1.3. Outline. Besides Introduction, this paper is divided in four sections. The first section is
devoted to algebraic preliminaries: we recall classical facts and introduce notations concerning
symmetric polynomials, Soergel bimodules and quantum Hochschild homology. Then we discuss
webs and foams and finally we apply the technology of quantum traces [BPW19] to webs and
foams. We define the functor B from (4) and discuss its quantum horizontal trace. Furthermore,
we show that the higher quantum Hochschild homology of a singular Soergel bimodule for generic
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quantum parameters vanishes (Theorem 2.34). In Section 3 we review the general cube of resolutions
construction and three different combinatorial link homologies based on it:

(1) the triply graded Khovanov–Rozansky link homology,
(2) the symmetric gl1 link homology based on the Robert–Wagner foam evaluation formula,
(3) the gl0-homology introduced by the two last authors in [RW19].

In Section 4 we review the construction of the twisted Heegaard Floer homology for singular links
and systematically upgrade coefficients to Z. Then we construct skein exact triangles and compute
homology over Z for planar singular knots. Section 5 is the heart of the paper: here we finish
the construction of the cube of resolutions over Z, define the algebra A(ω) for any annular web,
prove (5) and finally introduce the complex qAGH , the homology of which interpolates between
gl0-homology and knot Floer homology. By applying the Bockstein spectral sequence we prove main
results of this paper—Theorems B and C. Finally, Appendix A provides a self-contained account on
spectral sequences, Appendix B contains a technical lemma about quantum Hochschild homology
and Appendix C includes computation of Hgl0 needed for the detection results.

1.4. Acknowledgements. The authors would like to thank John Baldwin, Paolo Ghiggini and
Ciprian Manolescu for helpful conversations, as well as Peter Ozsváth and Zoltan Szabó for the clar-
ification of details in their cube construction. AB and KP are supported by NCCR SwissMAP of
the Swiss National Science Foundation. LHR is supported by the Luxembourg National Research
Fund PRIDE17/1224660/GPS. EW is partially supported by the ANR projects AlMaRe (ANR-
19-CE40-0001-01), AHA (JCJC ANR-18-CE40-0001) and CHARMES (ANR-19-CE40-0017).

2. Preliminaries

2.1. Conventions. In this paper we work over a fixed commutative unital ring k with no further
restrictions and we pick an invertible q ∈ k. An unadorned tensor product means a tensor product
over k.

The bold letter q is used for a shift functor in a graded category. In particular, qdM is a graded
module M shifted upwards by d, so that (qdM)i = Mi−d. More generally, if p(q) =

∑
i∈Z aiq

i is
a Laurent polynomial in q with positive integral coefficients, then

p(q)M :=
⊕

i

qiM⊕ai

We often use quantum integers, quantum factorials, and quantum binomials, defines respectively as

[k] =
qk − q−k

q − q−1
, [k]! =

k∏

i=1

[i] and

[
n
k

]
=

[n]!

[k]![n − k]!

for any integers 0 6 k 6 n.
Complexes have differentials of degree +1, with the only exception of the Hochschild homology

(Section 2.3). We use t for the standard homological shift, so that (taC)i = Ci+a and the mapping
cone complex C(f) of a chain map f : C → D is modeled on tC ⊕D.

Finally, braids and webs are drawn and read from left to right, whereas foams are drawn and
read from bottom to top. Other notation used through the paper:

• β is a braid (diagram) and β̂ is its braid closure;
• X denotes the set of crossings in the diagram;
• n+, n−, n× are the numbers of positive, negative and singular crossings, respectively.

2.2. Symmetric polynomials and Soergel bimodules. In this section we summarize some use-
ful facts about symmetric polynomials and Soergel bimodules. We refer to [Mac15] and [EMTW20]
for a detailed account.
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Notation 2.1. The number of boxes of a given Young diagram λ is denoted by |λ|. We write
T (a, b) for the set of Young diagrams with at most a columns and at most b rows. The maximal
diagram, a rectangle of width a and height b, is hereafter denoted by box(a, b). Given a Young
diagram λ ∈ T (a, b) we construct its

• complement λc ∈ T (a, b) by rotating by 180 degrees the set of boxes from box(a, b) that are
not in λ,

• transpose λt ∈ T (b, a) by exchanging rows with columns in λ,

• dual λ̂ ∈ T (b, a) as the diagram (λt)c = (λc)t.

λ in T (7, 5) λc in T (7, 5)λt in T (5, 7) λ̂ in T (5, 7)

Figure 1. Pictorial definition of λc, λt and λ̂.

Fix a positive number N > 0 and recall that k is a fixed commutative unital ring. Consider
the polynomial ring R := k[x1, . . . , xN ] with an action of the symmetric group SN that permutes
the variables. Endow R with a grading by declaring that all xi are homogeneous of degree 2. It is
a standard fact that the ring of invariant polynomials

SymN := RSN

is freely generated by elementary symmetric functions

ek(x1, . . . , xN ) =
∑

i1<···<ik

xi1 · · · xik

for k = 1, . . . , N. A linear basis of SymN is given by Schur polynomials sλ parametrized by Young
diagrams λ with at most N rows. They satisfy

sλsµ =
∑

ν

cνλµsν

where cνλ,µ ∈ N, the Littlewood–Richardson coefficients, are independent of N . Because cνλµ = 0

unless |λ|+ |µ| = |ν|, the above sum is finite.

Proposition 2.2. Let X, Y and Z be pairwise disjoint finite sets of variables. Then the following
equations hold for any Young diagram λ:

sλ(X ⊔ Z) =
∑

α,β

cλαβ sα(X) sβ(Z),(7)

sλ(X) =
∑

α,β

cλαβ (−1)|β| sα(X ⊔ Z) sβt(Z), and(8)

∑

α,β

(−1)|β|cλαβ sα(X) sβt(Y ) =
∑

α,β

(−1)|β|cλαβ sα(X ⊔ Z) sβt(Y ⊔ Z).(9)

Proof. The derivation of (7) can be found in [Mac15, eq.(5.9)] and the formula (8) is the special
case of (9) for Y = ∅. The last equality is proven in [RW20a, Lemma A.7]. �
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Corollary 2.3. Let ν be a Young diagram and X, Y, Z pairwise disjoint finite sets of variables.
Then ∑

α∈T (a,b)

(−1)|α̂|sα(X)sα̂(Y ) =
∑

α∈T (a,b)

(−1)|α̂|sα(X ⊔ Z)sα̂(Y ⊔ Z).

Proof. Set λ = box(a, b) in (9). �

A sequence of positive numbers k = (k1, . . . , kr) with k1+· · ·+kr = N is called a composition of N.
It determines a parabolic subgroupSk := Sk1×· · ·×Skr ofSN and a ringRk := RSk of polynomials

invariant under the action of the subgroup. In particular, R(1,...,1) = R and R(N) = SymN . Clearly,
Rk ∼= Symk1 ⊗ · · · ⊗ Symkr .

We say that a composition ℓ is a refinement of k if it is obtained by replacing each ki with its
composition, possibly of length 1. In such case Sℓ ⊆ Sk and Rk is a subring of Rℓ. The following
is a standard fact from representation theory.

Theorem 2.4 ([EMTW20, Theorem 24.40]). Let ℓ be a refinement of a composition k. Then
Rk ⊆ Rℓ is a graded Frobenius extension.2 In particular, Rℓ is a free module over Rk.

Example 2.5 (cf. [KLMS12, Theorem 2.12]). Assume that ℓ = (ℓ1, . . . , ℓr+1) is an elementary
refinement of k, i.e. there exists an index i, such that

kj =





ℓj, j < i,

ℓi + ℓi+1, j = i,

ℓj+1, j > i.

Then the extension Rk ⊂ Rℓ has degree ℓiℓi+1 and the basis of Rℓ is given by elements

bλ := 1⊗i ⊗ sλ ⊗ 1⊗r−i

with λ ∈ T (ℓi+1, ℓi). The trace map ǫ : Rℓ → Rk takes bλ to 1 if λ = box(ℓi+1, ℓi) and to 0 otherwise.

Example 2.6. The ring Rk is a free module over R(N) ∼= SymN . Its basis is given by pure tensors
of Schur polynomials

1⊗ sλ2 ⊗ · · · ⊗ sλr
,

where λi is a Young diagram with at most and k1 + . . .+ ki−1 columns and ki rows.

Let Bim be the bicategory of rings, bimodules, and bimodule maps, with the horizontal compo-
sition given by the tensor product of bimodules. Consider the induction and restriction bimodules

Ind
ℓ
k
∼= Rℓ(Rℓ)Rk Res

ℓ
k
∼= Rk(qdRℓ)Rℓ

for all Frobenius extensions Rk ⊂ Rℓ, where d is the degree of the extension. Their finite composi-
tions, i.e. tensor products over the polynomial rings, are called singular Bott–Samelson bimodules.

Definition 2.7. The bicategory of singular Soergel bimodules sSBim is the full graded additive and
idempotent complete subbicategory of Bim with rings Rk as objects and 1-morphisms generated by
singular Bott–Samelson bimodules. In other words, every 1-morphism in sSBim(Rk, Rℓ) is a direct
summand of a bimodule of the form

⊕r
i=1 q

diBi, where each Bi ∈ Bim(Rk, Rℓ) is a singular Bott–
Samelson bimodule.

Remark 2.8. It follows directly from the definition that a singular Soergel bimodule is projective
when seen as a left or as a right module. Moreover, it is free when it is a direct sum of singular
Bott–Samelson bimodules.

Remark 2.9. The morphism category sSBim(R,R) is the category of classical (i.e. non-singular)
Soergel bimodules.

2An extension A ⊆ B is Frobenius if there is a nondegenerate A–linear trace ǫ : B → A. It is a graded extension
of degree d if A and B are graded and ǫ is homogeneous of degree −2d.
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2.3. Hochschild homology. Let A be a k-algebra and M an (A,A)–bimodule. The Hochschild
homology of M is the homology of the chain complex CH•(A,M) with chain groups CHn(A,M) :=
M ⊗A⊗n and the differential given by the alternating sum

∂(m⊗ a1 ⊗ · · · ⊗ an) = ma1 ⊗ a2⊗ · · · ⊗ an

+

n−1∑

i=1

(−1)im⊗ a1⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

+(−1)nanm⊗ a1⊗ · · · ⊗ an−1.

(10)

The quotient HH0(A,M) ∼=M/[A,M ] is known as the space of coinvariants of M, where [A,M ] :=
{am−ma | a ∈ A,m ∈M} is the commutator of A and M.

The above definition can be deformed by an algebra automorphism ϕ ∈ Aut(A) by replacing
the last term of the differential with

(11) (−1)nϕ(an)m⊗ a1 ⊗ · · · ⊗ an−1.

The resulting complex CH ϕ
• (A,M) is the ϕ-twisted Hochschild complex. When both A and M

are graded, then the complex admits a natural automorphism, which leads to quantum Hochschild
homology introduced in [BPW19]. Fix an invertible element q ∈ k and define ϕ(a) = q−|a|, where
|a| is the degree of a homogeneous element a ∈ A. Then the last term of the twisted Hochschild
differential (11) takes the form

(12) (−1)nq−|an|anm⊗ a1 ⊗ · · · ⊗ an−1.

The quantum Hochschild homology of M, denoted by qHH•(A,M), is the homology of this complex.
This construction was also reviewed in [Lip20]. Following the usual conventions we write qCH (A)
and qHH (A) when M = A. Additionally, when A is clear from the context, we write qHH (M).

Remark 2.10. Hochschild chains can be visualized by circles divided into segments, one labeled with
m ∈ M and the others with a0, . . . , an. Each of the terms of the differential merges two segments
multiplying their labels.

m

a
0

a
1

7−→

m
a
0

a
1

−

m

a0a1

+

a 1
m

a
0

In the twisted case add a mark on the circle between segments labeled m and an. To merge these
two segments, one has to move an over the mark, acting upon it with ϕ as depicted below.

m

a
0

a
1

 

m

a
0

ϕ
(a

1
)  ϕ

(a
1
)m

a
0

The quantum Hochschild homology can be seen as arising from twisting bimodules by algebra
automorphisms. Namely, given ϕ ∈ Aut(A) and a left A-module M, denote by ϕM its ϕ-twist,
defined as the module M with the action twisted by ϕ, i.e. a · m := ϕ(a)m. If M is an (A,A)-
bimodule, then it follows directly from the definition that

(13) CH ϕ
• (A,M) ∼= CH•(A, ϕM).

The following property is proven in [BPW19].



A PROOF OF DUNFIELD–GUKOV–RASMUSSEN CONJECTURE 11

Proposition 2.11. Choose graded k-algebras A, B, C and graded (A,B)- and (B,C)-bimodules
M and N. Then for any invertible scalars q1, q2 ∈ k there is a bimodule isomorphism

q1M ⊗B q2N
∼=−−→ q1q2(M ⊗B N)

defined as m⊗ n 7→ q
|m|
2 m⊗ n for homogeneous m ∈M and n ∈ N .

This implies together with (13) that the quantum Hochschild homology is invariant under cyclic
permutation of tensor factors.

Proposition 2.12. Pick graded k-algebras A and B and graded (A,B)- and (B,A)-bimodules M
and N that are projective as left modules. Then there is an isomorphism

qHH•(A,M ⊗B N) ∼= qHH•(B,N ⊗A M)

for any invertible parameter q ∈ k.

We end this section with a statement about the quantum Hochschild homology for the algebra
Rk. The proof, which is rather technical, is postponed to Appendix B.

Proposition 2.13. Suppose that 1− qd is invertible for d 6= 0. Then the inclusion k ⊂ Rk induces
a homotopy equivalence of chain complexes

qCH•(R
k) ≃ qCH•(k) ≃ k,

where k lives in homological degree 0. In particular, higher quantum Hochschild homology vanishes.

2.4. Webs and foams. This section provides the basics of webs and foams and results that are
fundamental for this paper. More details can be found in [RW20a, RW19] and [QR16, QRS18]. We
consider only webs and foams embedded in smooth manifolds and for a technical reason we assume
that they have collared boundary. This means that for a smooth manifold M we fix a smooth
embedding ∂M × [0, 1] → M that takes (x, 0) to x. This technical condition implies a canonical
smooth structure on the gluing of two such manifolds along a boundary component.

Definition 2.14. Let Σ be an oriented smooth surface with a collared boundary. A web ω ⊂ Σ is
an oriented trivalent graph, possibly with endpoints, smoothly embedded in Σ in a way, such that
it coincides with ∂ω on the collar of ∂Σ, and with edges labeled with positive integers such that
at each trivalent vertex the flow condition holds: the sum of labels of incoming edges is equal to
the sum of labels of outgoing edges. We write E(ω) and V (ω) respectively for the sets of edges and
vertices of a web ω and ℓ(e) for the label of an edge e. We call ℓ(e) the thickness of e.

The flow condition implies that each vertex of a web is either a split or a merge, illustrated
respectively on the left and the right hand side of Figure 2.

a + b

a

b

a + b

a

b

Figure 2. A split and a merge vertex in a web.

In this paper we are mostly interested in webs in a strip [0, 1] × R (planar webs) or an annulus
S1 × R (annular webs). We say that such a web ω is directed if the projection on [0, 1] or S1

respectively has no critical points when restricted to ω and that projection of orientations agree
with that of [0, 1] or S1 respectively. Such a web can be visualized as a result of a tangential gluing
of parallel intervals oriented from left to right (or circles oriented anticlockwise in the annular case),
see Figure 3. The reverse operation is called a lamination [QW21]. In particular, a directed web ω
can be decomposed into a sequence of merges and splits. Hence, the sum of thicknesses at a generic
section ωt := ω ∩ ({t} × R) is constant. We call it the index of ω. In case of webs in a strip,
the section ω0 and ω1 are called respectively the input and the output of ω.
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4

2

2

3

1

Figure 3. A directed planar web of index 4 (on the left) and its lamination (on the right).

Remark 2.15. Directed annular webs are called vinyl graphs in [RW20b].

Definition 2.16. Let M be an oriented smooth 3-manifold with a collared boundary. A foam
W ⊂ M is a collection of facets, that are compact oriented surfaces labeled with positive integers
and glued together along their boundary points in a way, such that every point p of W has a closed
neighborhood homeomorphic to one of the following:

• a disk, when p belongs to a unique facet,
• Y × [0, 1], where Y is a merge or a split web, when p belongs to three facets, or
• the cone over the 1-skeleton of a tetrahedron with p as the vertex of the cone (so that it
belongs to six facets).

See Figure 4 for a pictorial representation of these three cases. The set of points of the second type
is a collection of curves called bindings and the points of the third type are called singular vertices.
The boundary ∂W of W is the closure of the set of boundary points of facets that do not belong to
a binding. It is understood that W coincides with ∂W × [0, 1] on the collar of ∂M. We write F (W )
for the collection of facets of W and ℓ(f) for the thickness of a facet f. A foam W is decorated if
each facet f ∈ F (W ) is assigned a symmetric polynomial Pf ∈ Symℓ(f).

a

a+ b

a
b

a+ b+ c

a+ b
c

b

b+ c a

Figure 4. The three local models for a foam.

Remark 2.17. A foam satisfies a 2-dimensional version of the flow condition: three facets meet at
each binding in a way, such that the thickness of one of them is equal to the sum of thicknesses
of the other two. The binding induces orientation from the two thinner facets; it is opposite to
the one induced from the thickest facet.

The boundary of a foamW ⊂M is a web in ∂M. In caseM = Σ×[0, 1] is a thickened surface, we
require that ∂W ∩(∂Σ× [0, 1]) is a collection of vertical lines. A generic section Wt :=W ∩(Σ×{t})
is a web, each with the same boundary. The bottom and top websW0 andW1 are called respectively
the input and output of W.

Let Foam(M) be the k-module generated by decorated foams inM modulo local relations, defined
as follows. Consider the collection of Robert–Wagner evaluations

〈−,−〉N : Foam(D3)⊗ Foam(D3) → SymN

from [RW20a]. We impose the relation a1W1 + · · · + arWr = 0 whenever there is a 3-ball B ⊂ M,
such that all sets Wi \ B coincide and the linear combination

∑
i ai(Wi ∩ B) is in the kernel of

〈−,−〉N for all N > 0. The set Foam(M) is graded by Z⊕ Z, see [ETW18] for details.3

3This Z⊕ Z-grading is related to the Z-grading of gln-foams by collapsing (a, b) into a+Nb.
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The bicategory of directed foams. Let us now consider foams between planar directed webs (so that
Σ = [0, 1]× R). In this situations we impose the additional condition that a foam W is “directed”
itself, i.e. that the projection onto the side square [0, 1]× [0, 1] has no critical points when restricted
to W. This immediately implies that a generic section of W is a directed web as defined above.
A foam of this type can be decomposed into seven basic homogeneous pieces: traces of isotopies and
six singular blocks shown in Figure 5. For all of them the second component of the (Z⊕Z)–grading
vanishes, so that the space of directed foams is Z–graded.

a + b + c

a

b

c

a + b

a

b

a + b

a

b

coas, deg = 0 cup, deg = −ab zip, deg = ab

a + b + c

a

b

c

a + b

a

b
a + b

a

b

as, deg = 0 cap, deg = −ab unzip, deg = ab

Figure 5. Local models for all singularities of directed foams, together with their degrees.

Definition 2.18. Let Foam be the bicategory of ∞-foams, in which

• objects are finite sequences of points on a line, labeled with positive integers,
• 1-morphisms from a to b are formal finite direct sums

⊕
i q

diωi, where each ωi is a directed
web ω ⊂ [0, 1] × R with input a and output b,

• 2-morphisms from
⊕

i q
diωi to

⊕
j q

d′jω′j are matrices (mij), where mij is a linear combina-
tion of decorated directed foams in a thickened strip with input ωi, output ωj , and degree
d′j − di.

Remark 2.19. The approach to Foam is slightly different in [QR16]. Here one first constructs
a bicategory nFoam of (directed) gln foams using technics from higher representation theory and
writes down it presentation in terms of generators and relations. Then it is shown that these
categories admit a limit when N goes to infinity. It can be shown that the limit category coincides
with Foam as defined above.

Proposition 2.20 ([RW20b, Proposition 5.10], [QR16]). There are graded isomorphisms of webs
in Foam

c

a

b

a + b

a + b + c ∼=
c

a

b

b + c

a + b + c

c

a

b

a + b

a + b + c ∼=
c

a

b

b + c

a + b + c

a + b a + b

a

b

∼=

[
a+ b
a

]
a + b

a + b
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a
a + d

b

b + c
b + c − d

a + c

d a + d− c ∼=
b⊕

j=max(0,b−a)

[
c

d− j

] a
b − j

b

b + c
a + c + j

a + c

a + j − b j

Of particular interest to us are webs and foams with labels at most 2, the former having all
endpoints labeled one. They arise naturally as resolutions of uncolored link diagrams. Following
[RW19] we call them elementary. In what follows we write Foam62 for the linear subbicategory of
Foam generated by elementary foams and webs.

Proposition 2.21. There are isomorphisms of elementary webs in Foam62 :

2 2

1

1

∼= [2]
2

2
(14)

1

1

1

1

1

1

1 1

2 2

2

1

⊕

1

1

1 1

2

1

1 ∼=

1

1

1

1

1

1

1 1

2 2

2

1

⊕

1

1

1 1

2 1

1(15)

Directed annular webs and foams. Consider now directed annular webs, so that Σ = S1×R. Again,
we consider only directed foams between them, on which the projection onto S1 × [0, 1] has no
critical points. These foams have the same six types of singularities from Figure 5 as directed
foams in a thickened strip.

Annular webs and foams consitute a category AFoam constructed in the same fashion as Foam,
keeping in mind that annular webs have no endpoints. The objects of AFoam are formal finite direct

sums
⊕

i q
diωi, where each ωi is a directed annular web, and morphisms from

⊕
i q

diωi to
⊕

j q
d′jωj

are matrices (mij), where each mij is a linear combination of decorated directed annular foams with
input ωi, output ωj, and degree d′j − di. We impose the same local relations as discussed above. It

contains a subcategory AFoam62 of elementary annular webs and foams, where we consider only
webs and foams with edges and facets of thickness at most 2.

1

6

4

2 3

4
1

5

2

2

1 1

5

1

2
4 2 1

Figure 6. Examples of directed annular webs of index 7. The one to the right is S(4,2,1).

Example 2.22. Given a finite sequence k = (k1, . . . , kr) one can consider a disjoint union of r
concentric clockwise oriented circles with thicknesses k1, . . . , kr, read from the most nested circle
towards the unnested one. We called it a circular web and denote by Sk.

The next proposition follows from the Queffelec–Rose–Sartori reduction algorithm for annular
webs.

Proposition 2.23 (cp. [QRS18, Theorem 3.2]). Given an annular directed web ω, there are graded
direct sums of circular webs SL and SR, such that ω ⊕ SL ∼= SR in AFoam.
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There is a similar result for elementary annular webs, with circular webs replaced by another
class of webs.

Definition 2.24. A chain of dumbbells of index k is an annular web Dk obtained from k concentric
circles by glueing each pair of neighboring circles along an arc, such that i–th circle is glued with
(i+ 1)–th immediately after it is glued with (i− 1)–th, see Figure 7.

Note that a chain of dumbbells of index k ≥ 3 consists of k − 1 thick edges and 2k − 1 thin
edges. We say that an elementary web is basic if it is a concetric collections of circles and chains

2

2

2

2

2

2

Figure 7. A chain of dumbbells.

of dumbbells. They play the role of circular webs in AFoam62 .

Proposition 2.25 ([RW19, Corollary 2.5]). Given an elementary annular directed web ω, there
are graded direct sums of basic elementary webs XL and XR, such that ω⊕XL

∼= XR in AFoam62 .

Pointed annular webs. The last category of webs we consider is the category AFoam⋆ of pointed
annular webs, the objects of which are directed annular webs, each with a marking ⋆ placed on
an edge of thickness 1. In particular, not all webs appear in this category. Morphisms between
two such webs are generated by annular foams with the property that the markings of the top and
bottom boundary webs lie at the boundary of the same facet and are connected by an interval
embedded in this facet. This interval splits the facet into two parts that are treated as separate
facets.4 In particular, they can be decorated with different polynomials. Forgetting the markings
of webs and lines connecting them in foams gives a forgetful functor AFoam⋆ → AFoam .

We can actually assume that the markings of all webs are located at a fixed point of the ambient
annulus and the connecting lines in foams are vertical intervals. In order to simplify the exposition,
we impose another restriction in this paper: the marked edge is on the outer side of the web,
i.e. it can be connected to the infinity by a curve disjoint from the web. In the view of this
restriction (as well as the fact that markings restrict the set of foams) there is no direct analogue
of Proposition 2.23. However, Proposition 2.25 still holds for a chain of dumbbells with a marking
on the outer thin edge.

2.5. Foams and webs as Soergel bimodules. Directed webs and foams can be seen as a graphi-
cal representation of Soergel bimodules and bimodule maps. Indeed, there is a fully faithful functor
from foams to Soergel bimodules, the construction of which we recall in what follows. We refer to
[Wed19, RW20b] for more details.

4Essentially, one can consider the marking as a bivalent vertex.
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Pick a web ω and associate with each edge u ∈ E(ω) of thickness r the graded k-algebra of
symmetric polynomials Ru := k[xu,1, . . . , xu,r]

Sr, where deg xu,i = 2. For simplicity we will often
write Xu for the set of variables corresponding to the edge u. The tensor product over k

D(ω) :=
⊗

u∈E(ω)

Ru,

is called the space of decorations of ω. It is the algebra of polynomials in edge variables that
are symmetric with respect to permutions that preserve each set Xu. A pure tensor from D(ω)
corresponds to assigning a symmetric polynomial Pu ∈ Ru to each edge u ∈ E(ω). Therefore, we
represent such elements with collections of dots on edges of ω, each labeled with the corresponding
polynomial, see Figure 8. As special cases we consider

• a dot labeled by a Young diagram λ representing the Schur polynomial sλ, and
• a dot labeled by an integer i > 0 on an edge u of thickness 1 to represent the monomial xiu.

Dots on the same edge follow the multiplicative convention: two dots labeled P1 and P2 on the same
edge are equal to a dot labeled P1P2 and an edge with no dot is decorated by 1.

2

1

2

1

1

•2

2 1 2

•

1

1 1

1

Figure 8. An annular web with a decoration.

Consider now the ideal of local relations I(ω) ⊂ D(ω) generated by all differences

(16) P (Xu)− P (Xu′ ⊔Xu′′),

where u is an edge of thickness a + b that splits into or is a merge of u′ of thickness a and u′′ of
thickness b, and P is a symmetric polynomial in a+ b variables. Diagrammatically,

(17)

a + b

a

b

P
=

∑

i

a + b

a

b

R(i)

Q(i)

and

a + b

a

b

P
=

∑

i

a + b

a

b

R(i)

Q(i)

,

where the symmetric polynomials Q(i) and R(i) satisfy

P (Xu′ ⊔Xu′′) =
∑

i

Q(i)(Xu′)R(i)(Xu′′).

Note that the generators of I(ω) are homogeneous, so that the ideal is graded. Finally, given
a vertex v ∈ V (ω) denote by gr(v) the product of thicknesses of the thin edges adjacent to v.
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The Soergel space associated with ω is the graded quotient

B(ω) := q−
1
2

∑
v∈V (ω) gr(v)D(ω)/I(ω).

In particular, the space is shifted downwards by the number of thick edges when ω is an annular
elementary web.

Suppose now that ω ⊂ [0, 1] × R is a planar directed web of index k. Its input and output
determine compositions a and b of k and B(ω) admits a left and a right action by the algebras Ra

and Rb respectively. Furthermore, when ω consists of a single vertex that is a merge (resp. a split),
then B(ω) coincides up to a grading shift with the induction Ind

a
b (resp. restriction Res

a
b ) bimodule.

The results below follow immediately from the above and the definition of the Soergel space for
a web.

Proposition 2.26. Let ω1 and ω2 be planar directed webs with out(ω1) = a = in(ω2). Then

B(ω1 ◦ ω2) ∼= B(ω1)⊗Ra B(ω2).

In particular, B(ω) is a singular Soergel bimodule for any planar directed web ω.

Proposition 2.27. Let ω̂ be the annular closure of a directed web ω. Then B(ω̂) ∼= HH 0(B(ω)).

Example 2.28. The Soergel bimodule associated with the directed web ω in Figure 3 is a quotient
of the tensor product

R(ω) = R(3,1) ⊗R(4) ⊗R(2,2)

by relations that identify any generator of R(4) with its image in either of the two other factors.
Hence, taking into account the overall shift,

B(ω) = q−
7
2R(3,1) ⊗R(4) R(2,2).

Let us now introduce maps between Soergel spaces that correspond to the basic building blocks
of foams depicted in Figure 5 (compare [Wed19, RW20b]). The first four arise as the units and
traces of associated graded Frobenius extensions [EMTW20].

The cup foam is assigned the inclusion

cup: B

(
a + b

a + b

)
−→ qabB


 a + b a + b

a

b




a + b

a + b
7−→ a + b a + b

a

b

,

whereas with the cap foam we associate the projection

cap: B


 a + b a + b

a

b


 −→ qabB

(
a + b

a + b

)

a + b a + b

a

b

P

Q
7−→ a + b

P ⋆ Q ,

where P ⋆ Q =
∑

I⊔J={1,...,a+b}
#I=a,#J=b

P (xI)Q(xJ )

∇(xI , xJ)
and ∇(xI , xj) =

∏

i∈I
j∈J

(xj − xi).
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A zip is associated with the inclusion

zip : B

(
a

b

)
−→ q−abB

(

b

a a

b

a + b

)

a

b
7−→

∑

α∈T (a,b)

(−1)|α̂|
b

a a

b

a + bα

α̂
,

and an unzip with the projection

unzip: B

(

b

a a

b

a + b

)
−→ q−abB

(
a

b

)

b

a a

b

a + b 7−→
a

b
.

The multiplication by a homogeneous symmetric polynomial P is the map

mP : B ( a ) −→ q− degPB ( a )

a 7−→ a
P .

Finally, the associativity and coassociativity foams are assigned the maps

as : B




c

a

b

a + b

a + b + c


 −→ B




c

a

b

b + c

a + b + c




c

a

b

a + b

a + b + c 7−→
c

a

b

b + c

a + b + c

coas : B




c

a

b

a + b

a + b + c


 −→ B




c

a

b

a + b

a + b + c




c

a

b

a + b

a + b + c 7−→
c

a

b

b + c

a + b + c .

Because of the local nature of the above definitions, they can be interpreted as maps assigned to
foams between either planar or annular directed webs. It is known that this assignment preserves
local relations.

Proposition 2.29. When applied to planar directed webs, the above describe a functor of bicate-
gories

B : Foam → sSBim

and in case of annular directed webs, a functor

B : AFoam → grAb.

Finally, there is a functor

B : AFoam⋆ → grAb

that assigns the quotient B(ω) := B(ω)/(x⋆) to a pointed web ω, where the variable x⋆ is associated
with the marked edge.
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2.6. A quantum trace deformation of annular foams. Following [BPW19] one can show that
AFoam is equivalent to the so-called horizontal trace hTr(Foam) of the bicategory Foam. What
it roughly means is that

• every annular web is isomorphic to a web with vertices away from a fixed section µ := {∗}×R
of the annulus S1 × R, to which we refer as the trace section,

• morphisms are generated by foams that intersect the membrane M := µ×[0, 1] in a directed
web modulo local relations away from the membrane and the horizontal trace relation that
allows to isotope a piece of a foam through M.

The horizontal trace can be defined on any bicategory and is functorial [BPW19]. Having such
a description of AFoam we can now deform it by replacing the horizontal trace relation with
its quantum version, which we will now state more precisely. Notice first that an orientation of
the circle S1×{0}×{0} induces a coorientation of the trace section µ and membrane M. Let W be
an annular foam W that intersects M in a web ω and consider a generic admissible ambient isotopy
φ that pushes M according to its coorientation, so that

• φ(W ) intersects M in a web ω′, and
• M ′ := φ(M) intersects M only at the collar, where both M and M ′ coincide.

ThenM and M ′ bound a 3-ball B with a foam W ∩B from ω′ to ω inside. The quantum horizontal
trace relation states that in this setting

W = q− deg(W∩B)φ(W ),

see Figure 9 for an example.

a

b

a + b = q−ab

a

b

a

b

a + b

Figure 9. The effect of moving a foam through the membrane. The membrane is
depicted in hashed blue with its coorientation indicated by blue arrows.

Definition 2.30. The category AFoamq is a deformation of AFoam , where we consider only
annular directed webs that intersect µ generically, whereas on foams we impose the quantum
horizontal trace relations and only local relations away from the membraneM. We write AFoam62q

for its subcategory generated by elementary webs and foams.

Remark 2.31. The quantum trace relation simply identifies a foam W with φ(W ) when q = 1.
Hence, in this case AFoamq coincides with AFoam .

Propositions 2.20 and 2.21 are proven locally, so that they still hold in the deformed setting.
Likewise, the quantum trace relation is enough for Propositions 2.23 and 2.25.

Proposition 2.32. There is a functor of categories

(18) Bq : AFoamq → grMod

that assigns with an annular closure ω̂ of a web ω the graded k-module qHH 0(B(ω)). In particular,
there is an isomorphism

(19) Bq(ω̂1 ◦ ω2) ∼= Bq(ω̂2 ◦ ω1)

for any webs ω1 : k → ℓ and ω2 : ℓ→ k.
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Sketch of proof. The functoriality of hTrq provides a functor

hTrq(B) : Foam → hTrq(sSBim).

Because sSBim has duals, there is a functor on hTrq(sSBim) that assigns with a (Rk, Rk)-bimodule
M its quantum space of coinvariants (cp. [BPW19, Section 3.8.2]). Combining the two functors
proves the thesis. �

Let us now unroll the definition of Bq from the above proposition. Pick a web ω̂ in the annulus
S1 × R that intersects generically the line µ = {∗} × R. Cutting it along µ results in a directed
web ω with in(ω) = out(ω) = k for some sequence k. To compute Bq(ω̂), take the singular Soergel
bimodule associated with ω and divide it by the quantum trace relation. Explicitly, Bq(ω̂) is
the k-tensor product

D(ω) =
⊗

e∈E(ω)

Symℓ(e)

subjected to the Soergel relations (17) and the quantum trace relation

a
P

q

= q−d
a

P

q

where P is a homogeneous symmetric polynomial of degree d.

Remark 2.33. It is worth to think of the intersection points of ω with the trace section µ as
bivalent vertices; we call them trace vertices. The quantum trace relation is then another type of
local relations in the Soergel space. Sometimes we shall also consider bivalent vertices at other
places, in which case the local relation simply identifies the variables associated with the edges on
both sides of such a vertex.

In a similar way one can deform the category AFoam⋆ of pointed webs into AFoam⋆
q . Here we

always place the marking ⋆ at the trace section µ and the trace relation is imposed only away from
it.5 Notice that the marking is no longer just a mark on an edge, but rather a bivalent vertex.
It can be also considered as a choice of a thin output endpoint of ω. There is a forgetful functor
AFoam⋆

q → AFoamq, which allows us to construct a functor

Bq : AFoam⋆
q → grMod

that takes a marked web ω̂, represented as a closure of ω, to the quotient

Bq(ω̂) = qHH 0(B(ω))/(x⋆),

where x⋆ is the variable associated with the output edge of ω chosen by the marking ⋆. However,
because of the restricted trace relation in AFoam⋆

q , the cyclicity property (19) does not hold for Bq

unless in one of the webs, ω1 or ω2, the top most endpoints are connected by an interval disjoint
from the rest of the web.

We end this section with a result about singular Soergel bimodules, which explains why we take
only the quantum trace to define Bq instead of the full quantum Hochschild homology.

Theorem 2.34. Assume that 1 − qd is invertible for all d 6= 0. Then for any sequence k and
a bimodule B ∈ sSBim(Rk, Rk) one has

qHHi(R
k, B) = 0 for i > 0.

Proof. Because singular Sorgel bimodules are direct summands of singular Bott–Samelson bimod-
ules, it is enough to prove the formula only for the latter. For that notice that every singular
Bott–Samelson bimodule is of the form B(ω) for some directed web ω. The thesis follows from
Propositions 2.23 and 2.13. �

5Formally speaking, AFoam⋆
q is a quotient of a partial horizontal trace of Foam.
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3. Combinatorial link homologies

In this section we recall the combinatorial framework for HHH, HHH red, as well as the gl1 and
gl0 homologies constructed by the last two authors.

3.1. The general cube construction. Let L be a link represented by an annular closure β̂ of
a braid diagram β, drawn horizontally from left to right and closed below the braid, see Figure 11.

We write k for the number of strands of β̂ or its index and X for the set of crossings of β. The latter
consists of of and n+ positive n− negative crossings, and we write n = n+ + n− for the total.

A map I : X → {0, 1} determines a directed annular web β̂I , called the I-resolution of β̂, con-
structed by replacing locally each crossing by either its smoothing or singularization as indicated in
Figure 10. An example is given in Figure 11. Two resolutions I and I ′ are neighboring if they agree

2

I(c) = 1I(c) = 0

I(c) = 0I(c) = 1

Figure 10. The two resolutions of a crossing c: its singularization (to the left) and
smoothing (to the right).

c2 c3 c5

c1

c4

µ

⋆
µ

⋆

Figure 11. A braid diagram of the closure of β = σ−11 σ22σ
−1
3 σ2 and its resolution

associated with (I(ci))1≤i≤5 = (0, 0, 1, 0, 0). The dashed line µ visualizes the trace
section and the red start is the position of the marking.

on all but one crossing c, in which case we write I
c

−→ I ′ if I(c) = 0 and I ′(c) = 1. With such two

neighboring resolutions we associate a foam WI,c : β̂I → β̂I′ , which is an unzip in case the crossing
c is positive and a zip otherwise. These data can be arranged into a commuting diagram in AFoam
as follows. Given a square of neighboring resolutions

(20) I00

I01

I10

I11

c

c′

c′

c
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the foams WI00,c ∪WI01,c′ and WI00,c′ ∪WI10,c coincide upto an ambient isotopy. Choose a sign
ǫ(I, c) = ±1 whenever I(c) = 0, so that

ǫ(I00, c)ǫ(I01, c
′) + ǫ(I00, c

′)ǫ(I10, c) = 0

for each situation as in (20). For instance, one can take ǫ(I, c) := (−1)I≺c , where I≺c :=
∑

c′≺c I(c
′)

for a fixed total ordering ≺ on X. Let Jβ̂K be a formal chain complex in AFoam supported in
homological degrees [−n−, n+], given by objects

Jβ̂Ki :=
⊕

|I|=i+n−

q−iβ̂I

and the differential

∂i :=
∑

|I|=i+n−

c:I(c)=0

ǫ(I, c)WI,c.

A standard argument ensures that the isomorphism type of Jβ̂K does not depend on the choice of
signs, see [ORS13, Put14]. Clearly, AFoam can be replaced with its quantization AFoamq.

Theorem 3.1. The formal complex Jβ̂K, computed either over AFoam or AFoamq, is an invariant
of L regarded as an annular link.

Remark 3.2. When β̂ is considered as a link with a marking, placed at the top trace vertex, then

Jβ̂K is a complex over AFoam⋆ or AFoam⋆
q . However, one can only prove its invariance under braid

moves and the second Markov move (conjugacy) away from ⋆. This is not enough for the bracket
to be an invariant of links with marked components.

Occasionally it will be worth to consider partial resolutions of a link. These are a special type
of diagrams for knotted elementary webs, in which only thin edges cross themselves. Following
[OSS09, OS09] we refer to such webs as singular links and to the thick edges—singular crossings.
It can be checked that every singular link admits a diagram in a braid position.

We shall also extend webs to allow bivalent vertices, depicted on pictures as short tags, with
the obvious local relation that identifies variables associated with incident edges (see also Re-
mark 2.33). Subdividing an edge with a bivalent vertex is called an insertion [Man14] and it does
not change the isomorphism type of the associated Soergel space. We say that a singular link
diagram S is layered if it is in a braid position and there are vertical lines ℓ0, . . . , ℓn called levels,
with ℓn = µ the trace section, that carry all singular crossings and bivalent vertices of S and which
intersect S only at those points, see Figure 12. In order to keep all resolutions of S layered, we
require that real crossings are at the lines ℓi, which results in a bivalent vertex at the over- and at
the underpass. Any diagram in a braid position can be modified to a layered one by a sequence of
insertions.

3.2. Triply graded Khovanov–Rozansky homology. Consider the functorB : Foam → sSBim

from Proposition 2.29. Given a resolution βI we assign HH (B(βI)) to the annular closure β̂I . This

results in a functor on AFoam that, when applied to the formal complex Jβ̂K, produces a complex
of bigraded modules that computes the triple graded homology HHH, see [Kho07]. More precisely,

writing k for the number of strands of β with β̂ = L we define HHH (L) as the homology of
the complex of bigraded modules

(21) Ci =
⊕

j

qk−2jHHj(Bi+j(β)), where Bi(β) =
⊕

|I|=i+n−

q−i(B(βI))
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ℓ0 ℓ1 ℓ2 ℓ3 ℓ4

c2 c3 c5

c1

c4

ℓ5= µ

⋆

ℓ0 ℓ1 ℓ2 ℓ3 ℓ4 ℓ5= µ

⋆

Figure 12. Layered diagrams of the braid closure and it resolution from Figure 11.
In order to increase the visibility of bivalent vertices, the real crossings in the left
picture are moved slightly to the right with respect to the vertical lines ℓi.

and the extra grading is defined by putting jth Hochschild homology in degree 2j − w − k, where
w = n+ − n− is the writhe of β. The differential is induced by the zip and unzip foams, which can
be written diagrammatically as follows:

(22)

unzip




1

2

1

1

2

1

 =

1 1

1 1

zip




1 1

1 1

 =

1

2

1

•1

2

1

−
1

2

• 1

1

2

1

and it preserves both the quantum and (modified) Hochschild grading. The degree shifts are chosen
so that the homology is invariant under stabilizations.

Middle homology. It is known that the triple graded homology splits into two copies of middle
homology HHHmid, shifted in homological and Hochschild degrees. This splitting follows easily
when the Hochschild homology of Soergel bimodules B(βI) is computed using the Koszul complex

(23) K(βI) := B(βI)⊗Re

k⊗

i=1

(q2Re xi⊗1−1⊗xi−−−−−−−−→ Re)

where R = k[x1, . . . , xk] and R
e = R⊗R is the enveloping algebra with the left (resp. right) factor

acting from the left (resp. right) on B(βI). After changing the basis of the algebra by trading x1
for e1, the first elementary symmetric polynomial, the differential in the factor associated with e1
vanishes, because the polynomial acts symmetrically. Hence, K(βI) = K ′(βI)⊕ a2q2K ′(βI), where
K ′(βI) is defined as in (23) except that the big tensor product is taken for i > 1. The middle
homology HHHmid arises from a complex defined as in (21), except that the homology of K ′ is
taken instead of HH.

Reduced homology. The above constructions can be repeated with the reduced bimodule B. Taking
the full Hochschild homology as in (21) produces an invariant link homology HHH ′(L) that cate-
gorifies (a − a−1)PL(a, q). The complex again splits into two copies of a smaller complex Cred(L)
that computes the reduced homology HHH red(L). In order to see this, observe that B is isomorphic
to the submodule B′ ⊂ B generated by differences of variables; the variable xi ∈ R acts on B′

by multiplication with xi − x⋆. This submodule is isomorphic to the reduced Soergel bimodule as
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defined in [Rou17] if 2 is invertible.6 Furthermore, when k is invertible, then

k[x1, x2, . . . , xb] ∼= k[e1, x2 − x1, x3 − x2, . . . , xk − xk−1]

so that reducing to K ′ coincides with taking Hochschild homology with respect to the subalgebra
R′ ⊂ R generated by differences of variables. Notice that the identification B ∼= B′ commutes
with the natural action of R′ on both bimodules. This is how the reduced homology was originally
defined [Rou17, Kho07, KR08b]. Its Poincaré polynomial

PL(t, a, q) :=
∑

i,j,n

tiajqn dimHHH redi,j,n(L)

is a new link invariant, where HHH redi,j,n(L) is the homology in ith homological, jth (modified)
Hochschild and nth quantum degree. This construction categorifies the HOMFLY–PT polynomial
PL(a, q) in the sense that for any link L there is an equality of power series in q

(24) PL(a, q) = PL(−1, a, q).

Remark 3.3. In order to recover Rasmussen’s grading (i′, j′, n′), the (modified) Hochschild grading
j must be negated and the homological degree replaced with i′ = 2i+ j; the quantum grading n is
not changed. This makes the Hochschild differential homogeneous of (i′, j′, n)-degree (0, 2, 2) and
the topological (induced by foams) differential of degree (2, 0, 0). We also have

PL(t, a, q) = PRas
L (t1/2, t1/2a−1, q),

where PRas
L (t, a, q) is the Poincaré polynomial of HHH red with respect to Rasmussen’s convention.

3.3. gl1 homology. The technology developed here was first introduced in [RW20b] using foam
in a more general framework. It was recasted in [RW19] in a foam-free framework. Here we use
this latter point of view to recall the construction. Unless stated otherwise, in this section we work
with integral coefficients.

With a web ω we have associated in Section 2.5 the space of decorations D(ω) =
⊗

u∈E(ω)Ru,

where the edge ring Ru consists of symmetric polynomials in as many variables as the thickness of
the edge u. A pure tensor from D(ω) is visualized by dots on ω, see Figure 8. In what follows we
will consider quotients and subquotients of D(ω).

Definition 3.4. Let ω be an annular web of index k. Denote by P({X1, . . . ,Xk}) the power set7

of {X1, . . . ,Xk}. An omnichrome coloring of ω is a map c : E(ω) → P({X1, . . . ,Xk}), such that

• for each edge u ∈ E(ω) the cardinality of c(u) equals the thickness of u,
• given a generic section r of the annulus, the union of the sets c(u) for all edges u intersecting
r is equal to {X1, . . . ,Xk}, and

• the flow condition holds: if u1, u2 and u3 are three adjacent edges with u1 the thickest of
them, then c(u1) = c(u2) ⊔ c(u3).

The set c(u) is called the color of u.

The definition of omnichrome colorings has several direct implications.

(1) At each vertex of ω, the color of the thickest edge is the disjoint union of the colors of
the two thin edges.

(2) For a generic section r of the anulus, the union of sets c(u) associated with the edges u that
intersect r is actually a disjoint union.

(3) Each coloring c induces an algebra homomorphism ϕc : D(ω) → Z[X1, . . . Xk] that for every

each u identifies the ring Ru with the subring Z[c(u)]Sℓ(u) .

6In the original definition the reduced Soergel bimodule is generated only by differences of variables associated
with edges at the same level, which is only enough to generate twice the difference of any two variables.

7The power set of a set S is the family of all subsets of S.
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Let ω be an annular web and c be an omnichrome coloring of ω. For each split vertex v, denote
by ul(v) and ur(v) the left and right edges going out of v. Set

Q(ω, c) :=
∏

v split
vertex

∏

Xi∈c(ul(v))
Xj∈c(ur(v))

(Xi −Xj).

Given a pure tensor T ∈ D(ω) write Tu for the factor associated with an edge u. We set:

P (ω, T, c) = ϕc(T ) =
∏

u∈E(ω)

Tu(c(u))

and extend it linearly to all elements of D(ω). Finally, define

〈ω, T, c〉∞ =
P (ω, T, c)

Q(ω, c)
.

Example 3.5. Consider the omnichrome coloring c

X1

X2

X3

of the decorated annular web (ω, T ) from Figure 8. We compute

P (ω, T, c) = X2
2X1X3,

Q(ω, T, c) = (X3 −X1)(X2 −X3)(X1 −X3)(X2 −X1)

so that

〈ω, T, c〉∞ =
X2

2X1X3

(X3 −X2)(X2 −X1)(X3 −X1)2
.

Definition 3.6. Choose an annular web ω. The ∞-evaluation of T ∈ D(ω) is the sum

〈ω, T 〉∞ =
∑

c : omnichrome
coloring

〈ω, T, c〉∞

and the ∞-pairing is the bilinear form 〈−;ω;−〉∞ on D(ω), defined on decorations S and T as
〈S;ω;T 〉∞ := 〈ω, ST 〉∞. The gl∞ state space of ω is the quotient

S∞(ω) := D(ω)
/
ker〈−;ω;−〉∞.

For another ring of coefficients k we set S∞(ω,k) := S∞(ω)⊗Z k.

Proposition 3.7. Choose an annular web ω of index k.

(1) The ∞-evaluation 〈ω, T 〉∞ is a symmetric polynomial in X1, . . . ,Xk for any T ∈ D(ω).
(2) The graded k-modules S∞(ω,k) and B(ω) coincide when seen as quotients of D(ω). In

particular, the Soergel relations (17) hold in S∞(ω,k).
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Proof. The first statement is the content of [RW19, Lemma 3.13] and the second one follows directly
from [RW20b, Proposition 4.18], because B(ω) coincides with qHH 0(B(ω̃)) when ω is a closure of
a directed web ω̃. �

Definition 3.8. Choose an annular web ω of index k. Define the gl1 evaluation of T ∈ D(ω) by

〈ω, T 〉1 := (〈ω, T 〉∞)
X1,...,Xk 7→0

.

In other words, 〈ω, T 〉1 is the constant coefficient of 〈ω, T 〉∞. The gl1 pairing on ω is the bilinear
form 〈−;ω;−〉1 on D(ω) defined on decorations S and T by 〈S;ω;T 〉1 := 〈ω, ST 〉1. The gl1 state
space of ω is the quotient

S1(ω) :=
D(ω)

/
ker〈−;ω;−〉1.

For another ring of coefficients k we set S1(ω,k) = S1(ω)⊗Z k.

Following its very definition S1(ω) is a quotient of B(ω).

Proposition 3.9.

(1) The assignment ω 7→ S1(ω) extends to a functor S1 : AFoam → grMod that is a quotient of
the functor from Section 2.5. In particular, the isomorphisms from Proposition 2.20 induce
isomorphisms between gl1-state spaces.

(2) S1(ω) is a free graded k-module for any web ω. It has rank 1 and is concentrated in quantum
degree 0 in case ω is a collection of circular webs.

(3) Suppose that a generic section of the annulus intersects edges u1, . . . , us of a annular web ω
and let P ∈ D(ω) represent a homogeneous symmetric polynomial in variables Xu1⊔· · ·⊔Xus

of positive degree. Then P annihilates S1(ω).

Proof. When k = Z, (1) was first proven in [RW20b, Section 5.1.2] and then reformulated in a foam
free language in [RW19, Section 3.4]; (2) is the content of [RW20b, Example 3.25]. Both statements
are obtained from the results over Z after tensoring with k. Statement (3) follows directly from the
definition of 〈·, ·〉1. �

Applying the functor S1(−) to the formal complex Jβ̂K results in a chain complex of k-modules

Cgl1(β̂;k) with homology denoted by Hgl1(β̂;k); we call it the gl1 homology of β̂. The differential
is induced by the zip and unzip maps listed in (22).

Theorem 3.10 ([RW20b]). If k is a field of characteristic 0, then Hgl1 is a link invariant. Its
graded Euler characteristic is 1 for every link.

The construction in [RW20b] is done in an equivariant setting and over Q. Here we consider
a simpler non-equivariant setting, in which case the construction can be performed with integral
coefficients. The proof of invariance, however, requires inverses of nonzero integers, see [RW20b,
Lemma 5.21] and [RW20b, Lemma 5.25].

This invariant can easily be extended to links colored by arbitrary positive integers. The setup
described here corresponds to the case where all components are colored by 1, known as the uncol-
ored case.

3.4. gl0 homology. In this section we assume that the braid β is chosen in such a way that its

closure is a knot K. Consider the chain complex Cgl1(β̂;k). Having picked a basepoint ⋆ on β̂,

one defines an endomorphism ϕ⋆ of Cgl1(β̂;k) that multiplies the decoration of the marked edge by
xk−1. Diagrammatically, this reads:

1⋆ 7→ 1•
k − 1 .

The fact that this is indeed a chain map follows from the locality of the differential and ϕ⋆.

The image of ϕ⋆ is a subcomplex of Cgl1(β̂;k).
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Let us place a basepoint on the top left endpoint of the braid diagram, and denote by Cgl0(β̂;k)

and Hgl0(β̂;k) the chain complex q1−k im(ϕ⋆) and its homology. It is called the gl0 homology of

K = β̂. Of course, one can act with ϕ⋆ on S1(ω;k) for any pointed annular web ω. The image
defines a space S0(ω;k) called the gl0 state space of ω.8

Theorem 3.11 ([RW19]). Assume that k is a field.

(1) The bigraded k-vector space Hgl0(β̂;k) is an invariant of the knot β̂.
(2) Its graded Euler characteristic is the Alexander polynomial ∆

β̂
(q) normalized to satisfy

the skein relation (1).
(3) If k has characteristic 0, then there is a bigraded spectral sequence from the reduced triply

graded homology to the gl0 homology.
(4) Let Dk be the chain of dumbbells of thickness k > 0 (see Definition 2.24 and Figure 7).

Then S0(Dk;k) has dimension 1.

Let us make a few remarks about these results. In [RW19], everything is defined and stated over
Q. There is no difficulty for extending definition over Z or any ring k. The fact that k is a field is
needed for proving that the construction is independent from the basepoint: in the proof of [RW19,
Proposition 5.6], one needs to know that the homology of a chain complex has no torsion.

It is important to notice that, contrary to Hgl1 , there is no condition on the invertibility of
any integers. This comes from the fact that proofs of invariance under the first Markov move
(stabilization) are very different in the two contexts.

The same definition works for links with a basepoint. However the resulting homology may
depend on the component of the link where the basepoint is placed. We do not have an example,
though, for which different choices of components yield different invariants.

Remark 3.12. The endomorphism ϕ⋆ used to define Cgl0 admits an alternative description. Instead
of adding k−1 dots on the edge with basepoint, one can add a dot on each edge below the basepoint.
Indeed, in S1(ω), the following relation holds

1•
k − 1

1

1

...

1

k = (−1)k−1

1

1•
1•

...

1•

k

because of the equality

x2 · · · xk =

k∑

i=1

(−1)i−1xi−11 ek−i(x1, . . . , xk)

and Proposition 3.9 (3). The signs in this formula has absolutely no consequence on the definition
of Cgl0 since we are only interested in the image of ϕ⋆.

The complex Cgl0(β̂) is defined above as a subcomplex of q1−kCgl1(β̂), but one can change

the point of view and construct it also as a quotient of qk−1Cgl1(β̂), which leads to a definition via
a universal construction, Indeed, given a pointed annular web ω, the map ϕ⋆ is the multiplication
by a decoration, hence, an endomorphism of D(ω). This allows us to define a new pairing 〈−;ω;−〉0
on D(ω) as 〈S;ω;T 〉0 := 〈ϕ⋆(S), ω, T 〉1 for all S, T ∈ D(ω). We can then define

(25) S0(ω) ∼= qk−1D(ω)
/
ker〈−;ω;−〉0

8In [RW19] this space was denoted by S ′

0.
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Clearly,
ker〈−;ω;−〉1 ⊆ ker〈−;ω;−〉0

and the isomorphism (25) commutes with the differentials, so that Cgl0(β̂) is a quotient of qk−1Cgl1(β̂).
In particular, for any pointed annular web ω, the space S0(ω;k) is a quotient of B(ω).

3.5. The spectral sequence from the reduced triply graded homology to gl0 homology.
We shall discuss here the construction of the spectral sequence from HHH red to Hgl0 sketched in
[RW19]. Hereafter it is assumed that k is a field of characteristic 0.

Given an elementary web ω of width k writeKred(ω) for the (reduced) Koszul complex associated
with ω that is used to compute the reduced triply graded homology. It is defined as in (23), except
that the reduced bimodule B(ω) is taken and the tensor product is for i > 2. Besides the Koszul
differential dHH this complex admits an additional differential d0 that is induced by identity maps
parallel to the components of dHH . Hence, the total complex can be written as

(26) Kd0(ω) := B(ω)⊗Re

k⊗

i=2

(q2Re xi⊗1−1⊗xi+1⊗1
−−−−−−−−−−−−→ Re)

A quick check shows that d0 anticommutes with dHH , so that (26) is indeed a chain complex. Let
us write Hd0(ω) for the homology of (26).

Proposition 3.13 (cp. [RW19]). The functor Hd0 is isomorphic to S0.

Proof. We first show thatHd0(ω) vanishes when ω is disconnected. Indeed, suppose that ω = ω′⊔ω′′

with ω′ and ω′′ of width k′ and k′′ respectively. Then e1(xk′+1, . . . , xk) ∈ R acts symmetrically on
B(ω). After changing the basis of R by trading xk for the above polynomial, the factor in (26) for
i = k is the identity map. Therefore, the complex is acyclic.

Let now ω = Dk be the chain of k− 1 dumbbells as shown in Figure 13. The associated reduced

x0 = z0

x1

x2

x3

xk−1

xk

.

.

.

y1

y2

y3

y4

yk−1

.

.

.

yk = zk

z2

z3

z4

zk−1

Figure 13. A open chain of dumbbells

Soergel bimodule B(ω) is generated by the variables xi, yi, zi modulo local relations and y1 = 0.
Notice that the set Λ of these relations is regular, that is none of its elements is a zero divisor
modulo the others. Hence, the tensor product

(27)
⊗

r∈Λ

(D(ω)
r

−−→ D(ω)),

where D(ω) is the algebra of all decorations of ω, is a projective resolution of B(ω). Enlarging Λ
by adding relations

(28) xi = yi − 1

for i > 1 produces a complex that computes Hd0(ω). We claim that this enlarged set of relations
is still regular. For that it is enough to notice that (28) allows to rewrite local linear relations as

(29) zi = yi + (k − i).
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The local quadratic relations can be then rewritten as

xi+1zi − yizi+1 = (yi+1 − 1)(yi + (k − i))− yi(yi+1 + (k − i− 1))

= (yi+1 − yi − 1)(k − i)

and reduced to yi+1 = yi + 1, and further to yi+1 = i. Hence, the complex computing Hd0(Dk) is
isomorphic via a base change to the Koszul complex associated with the sequence of relations

yi = i− 1, zi = (k − 1), xi+1 = i− 1,

which is clearly a regular set. Thence, higher homology vanishes and Hd0(ω) = k is generated by
the empty decoration.

It follows now from Proposition 2.25 that Hd0(ω) is concentrated in degree 0 for any elementary
web ω. Hence, it is a quotient of B(ω̂), the Soergel space associated with the annular closure of ω.
The same holds for S0 and the desired isomorphism is induced by the identity on B(ω̂). �

Proposition 3.13 is the main ingredient in the construction of the desired spectral sequence.
Instead of computing Hd0 at once, one can first compute the homology with respect to dHH and
consider the spectral sequence induced by d0. When applied to the cube of resolutions of a braid

closure β, this produces the desired spectral sequence from HHH red(β̂) to Hgl0(β̂). Notice that
the differential on the second page is induced by d0 and of (a, q, t)-degree (−2, 0, 1).

Remark 3.14. A priori Hd0(ω) does not admit the quantum grading, because it is not preserved by
the total differential. However, it can be recovered by Proposition 3.13. Another way to introduce
the quantum grading on Hd0(ω) is to consider the spectral sequence on HH (B(ω)) induced by d0
and notice that it collapses immediately [RW19]. Hence, Hd0(ω) is the homology of the complex
(HH (B(ω)), d0), in which the Hochschild and quantum gradings are collapsed to a single grading.

4. Heegaard Floer homology

We shall now review the (twisted) Heegaard Floer homology for a marked singular link following
[OSS09, OS09]. We write S0, . . . , Sr for the components of S, ordered top to bottom with respect
to their topmost trace vertices. In particular ⋆ ∈ S0.

4.1. Heegaard diagrams and holomorphic disks. We begin with describing Heegaard dia-
grams for a pointed singular link S, where the marking is located on the component S0. Let
(Hα,Hβ ,Σ) be a Heegaard splitting of S3, for which there is a thickening V ≈ Σ × [0, 1] of Σ
satisfying what follows:

• S ∩ V is a collection of fibers of V that includes all thick edges of S and an arc with
the marking ⋆ ∈ S0,

• thick edges of S and the arc carrying the marking are oriented from Hα to Hβ, and
• S \ V consists of untangled arcs in Hα and Hβ, so that it can be isotoped onto ∂V.

Partition S ∩ Σ into X ⊔ O, where X = {X0, . . . ,Xk} consists of the intersection points, at which
the link is oriented from Hα to Hβ, and O = {O0, . . . , Ok+s} of the other ones (s is the number of
thick edges in S). The intersection points of thick edges with Σ form a subset XX ⊂ X. The elements
of X (resp.O) are called X-basepoints (resp.O-basepoints); the points from XX are double basepoints.
It is understood that X0 coincides with the marking ⋆ ∈ S and O0 is located on S just before X0,
i.e. both basepoints are connected with an arc in Hα.

The last condition on the Heegaard splitting guarantees the existence of a collection of k + g
disks in Hα with boundary on Σ (here g stands for the genus of Σ) that cut the handlebody into
balls, each with one untangled piece of S: either an arc or a Y-shape (a web with a single vertex).
The boundary of this collection α = {α1, . . . , αg+k} consists of α-curves that decompose Σ into
regions A0, . . . , Ak, each containing a unique X-basepoint. By convention we enumerate the regions
so that Xi ∈ Ai. We choose a collection β = {β1, . . . , βg+k} of β-curves likewise by decomposing
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Hβ and we write B0, . . . , Bk for the closures of the connected components of Σ \ β, where Xi ∈ Bi.
It is assumed that the two families of curves intersect transversely.

The data (Σ, α, β,X,O) determines the link S completely. We call it a multipointed Heegaard
diagram for S. It is not determined by S, but any two Heegaard diagrams for S are related by
a finite number of certain moves [OS08, Proposition 3.3].

2

Sj′

Sj

j′<j

∗

Figure 14. Local pictures of the initial Heegaard diagram for a singular link S.
The top row shows the pieces of the diagram around a positive crossing (flip the pic-
ture for the negative one), a singular crossing, and at a chosen line connecting
different components of the link. The bottom row shows configurations around bi-
valent vertices: a general situation to the left and the case of the distinguished vertex
(the marking of S) to the right. Dashed blue and solid red arcs represent α and β
curves respectively.

Example 4.1. Given a diagram of a singular link S, possibly with thin edges subdivided by bivalent
vertices, we construct a multipointed Heegaard diagram, called the initial Heegaard diagram for S,
as follows. First, take the boundary of the tubular neighborhood of the diagram of S decorated
near crossings and bivalent vertices as in the left and middle pictures of Figure 14. The α-curves
are meridians around thin edges of S and curves around real crossings. The β-curves are either
parallel to the contours of the surface or they bound disks containing the X and O basepoints;
the latter are called internal curves. We then perform two modifications. Let S0 be the component
of S that carries the marking of S and enumerate other components S1, . . . , Sr, so that each Sj
for j > 0 can be connected with a straight arrow to some Sj′ with j′ < j. Attach a handle to
the surface along each such arrow, merge two β-curves along this handle and add a new meridinal
α-curve around Sj as shown in the top right corner of Figure 14.9 This guarantees that the surface
is connected, but it has two more β-curves than α-curves. We fix it by removing two β-curves near
the marking: the internal one and one parallel to the contour of the surface, see the bottom right
corner of Figure 14 (this is the piece of the diagram with basepoints X0 and O0). The reader is
encouraged to check that the resulting diagram satisfies the conditions for a Heegaard diagram. In
particular, the number of β-curves matches the number of α-curves.

9This configuration differs by a handle slide from the one associated with a smooth resolution in [OS09].
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Consider the symmetric product of the underlying surface Symg+k(Σ). It is a symplectic manifold
with Lagrangian tori Tα = α1 × · · · × αg+k and Tβ = β1 × · · · × βg+k that are totally real with
respect to any compatible almost complex structure. Let G = Tα ∩ Tβ be the set of intersection
points between the two tori. Given x,y ∈ G denote by π2(x,y) the set of homotopy classes of
Whitney disks from x to y, i.e. continuous maps of the standard complex disk into Symg+k(Σ) that
carry −i (resp. i) to x (resp. y) and points on the boundary circle with positive (resp. negative) real
part to Tα (resp. Tβ). This set is never empty when H1(Y ) = 0 [OS04b, Section 2]. Under generic
conditions, the moduli space M(φ) of pseudo-holomorphic representatives of φ is an orientable
smooth manifold of dimension equal to the Maslov index µ(φ). It admits a free action of the group
of conformal automorphisms of a unit disk that fix the points i and −i, which is isomorphic to R.

We write M̂(φ) for the quotient of M(φ) by the action of this group and refer to its elements as
unparametrized disks. In case x = y we consider also degenerate Whitney disks that carry i to x
and the entire boundary circle either to Tα (α-degeneracy) or Tβ (β-degeneracy), but there is no
additional condition on the image of −i. The space N (ψ) of pseudo-holomorphic representatives
of such a degenerate disk ψ is generically an orientable smooth manifold of dimension µ(ψ) that
admits a free action of a two-dimensional subgroup G of PSL(2,R). In particular, µ(ψ) is even

when N (ψ) 6= ∅. We write N̂ (ψ) for the quotient space.
We shall now recall a combinatorial formula for the Maslov index [Lip20]. Given a Whitney disk

φ and a point p ∈ Σ we write np(φ) for the algebraic intersection number of φ with the subvariety

{p}× Symg+k−2(Σ). Let {Ωi} be the set of (closures of) connected components of Σ \ (α∪ β), and
choose pi ∈ Ωi for each i. The 2-chain

D(φ) :=
∑

i

npi(φ)[Ωi] ∈ C2(Σ, α ∪ β)

is called the domain associated with φ. It determines φ uniquely when g + k > 2 and it is positive,
i.e. with no negative coefficients, when φ has a holomorphic representative. The Maslov index µ(φ)
can be computed as follows. Let (V, ∂V ) ⊂ (Σ, α ∪ β) be a domain bounded by arcs in α and β
curves and denote by ac(V ) and obt(V ) the number of acute and obtuse corners of V . The Euler
norm of V

e(V ) = χ(V ) + 1
4(obt(V )− ac(V ))

is additive under gluing domains together, so that it can be extended linearly to relative 2-chains.
The Maslov index of φ ∈ π2(x,y) represented by a domain D = D(φ) is then given as

µ(φ) = e(D) + ax + ay,

where ax (resp. ay) is the sum of average multiplicities of D over the four regions around each
xi (resp. yi). In particular, if D has only multiplicities 0 and 1, then ap = 1

4 or 3
4 when p is

an acute or an obtuse corner respectively. Note that both D and µ are additive with respect to
the juxtaposition of Whitney disks ⋆ : π2(x,y) × π2(y, z) → π2(x, z).

Example 4.2. Suppose that D(φ) is a bigon with acute corners and no intersection point inside.
Then µ(φ) = 1. In fact, the Riemann Mapping Theorem implies that φ has a unique holomorphic
representative up to reparametrization. More generally, µ(φ) = 1 + 2r if D(φ) is a 2n-gon with
acute corners and intersection points xi = yi for i = 1, . . . , r in its interior.

Example 4.3. Let ψ ∈ π2(x,x) be a degenerated disk with the associated domain D equal to Ai

or Bj . Then µ(ψ) = 2. Indeed, each boundary component of D contains some xi that contributes
1
2 towards both ax and ay (as y = x). Hence, µ(ψ) = e(D)+ r = 2− 2g(D), where r is the number
of boundary components and g(D) = 0 in this case. On the other hand, N (ψ) can be identified
with the group G under certain conditions on the almost complex structure [OS04b, Section 5].

A domain π is periodic if its boundary is a linear combination of α- and β-curves. It represents
a difference of two Whitney disks connecting the same intersection points. Of particular interest are
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periodic domains that vanish at both X- and O-basepoints. For instance, there is such a periodic
domain

(30) πj =
∑

i:Xi∈Sj

(Ai −Bi)

associated with any components Sj of the singular link S. We call them fundamental periodic
domains. Clearly

∑
j πj = 0 and one can show that every periodic domain vanishing at both X-

and O-basepoints is a linear combination of πj ’s.
We say that a Heegaard diagram is admissible if there are no nontrivial positive periodic domains

that avoid the set X.10

Lemma 4.4. The initial Heegaard diagram is admissible.

Proof. The argument is motivated by the one in [Man14, Lemma 2.1]. A periodic domain that

avoids X is given by a 2-chain π =
∑k

i=0 ai(Ai − Bi), where ai > aj whenever Ai ∩ Bj 6= ∅
if π is positive. This forces ai = ai′ when Xi and Xi′ are on the same component of S, because
the coefficients ai cannot increase when going along S (and every directed path in S can be extended
to a cycle). Hence, π =

∑
j cjπj for some cj ∈ Z. Consider now an initial Heegaard diagram for

a singular link S with components S0, . . . , Sr, where ⋆ ∈ S0. A quick glance at the top right
picture in Figure 14 reveals that Bj (bounded by the lower internal curve in the picture) intersects
in a rectangular region some A region around Sj′, forcing cj 6 cj′ . This implies cj 6 c0. On
the other hand, cj > c0 for all j, because B0, obtained from the surface by removing disks bounded
by internal β curves, intersects all A regions. Thus all the coefficients cj coincide if π is positive,
forcing π = c0

∑
j πj = 0. �

Remark 4.5. The initial diagram from [OS09] fails to be admissible in case of links, because in this
diagram periodic domains associated with different components of the link are disjoint.

The moduli space of unparametrized curves M̂(φ) admits a Gromov compactification that adds
as boundary points nodal disks or broken flow lines, which are juxtapositions of Whitney disks
φ1, . . . , φr, degenerated disks ψ1, . . . , ψs and holomorphic spheres S1, . . . , St with the property that

D(φ) =

r∑

i=1

D(φi) +

s∑

j=1

D(ψj) +

t∑

k=1

D(Sk),

where r > 1, s > 0, or t > 0. In particular, M̂(φ) is already compact when µ(φ) = 1 and the same

holds for N̂ (ψ) with µ(ψ) = 2. Note that holomorphic spheres do not appear unless D(φ) covers
the entire surface, because D(S) = Σ for any holomorphic sphere S, see [OS04b].

Having chosen an orientation of moduli spaces, we can write #M̂(φ) (resp. #N̂ (ψ)) for the signed
count of points, where the sign of a point depends on whether the action of the parametrization
group on the moduli space M(φ) (resp. N (ψ)) preserves or reverses the orientation. According to
[AE15] one can always choose a system of orientations with the following properties:

(1) the orientation of M̂(φ1) × M̂(φ2) is induced from M̂(φ1 ⋆ φ2) for any Whitney disks
φ1 ∈ π2(x,y) and φ2 ∈ π2(y, z),

(2) N̂ (ψ) carries the orientation induced from M̂(ψ) in case of α-degeneracies and the opposite
one in case of β-degeneracies,

(3) #N̂ (ψ) = 1 when ψ = Ai or Bj.

As an easy application of the above definition we show the following fact, which is an important
tool to analyze sings in Heegaard–Floer differential recalled in Section 4.2.

10This condition is equivalent to the absence of nontrivial positive periodic domains of Maslov index 0.
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Lemma 4.6. Suppose that Ai ∩ Bi is a bigon for some i and let φ1 and φ2 be Whitney disks

represented by the domains Ai \Bi and Bi \Ai. Then #M̂(φ1) + #M̂(φ2) = 0.

Proof. Choose x and y, such that φ1, φ2 ∈ π2(y,x). Let φ0 ∈ π2(x,y) and ψA, ψB ∈ π2(x,x) be
Whitney disks represented by the domains Ai∩Bi, Ai, and Bi respectively. Notice that φ0, φ1, and
φ2 are the only Whitney disks between x and y that have Maslov index 1 and are associated with

domains contained in Ai ∪Bi. Because M̂(ψA) and M̂(ψB) are 1-dimensional, counting endpoints
of each with signs gives zero. Hence,

0 = #∂M̂(ψA) = #
(
M̂(φ0)× M̂(φ1)

)
+#N̂ (ψA) = #M̂(φ0) ·#M̂(φ1) + 1,

0 = #∂M̂(ψB) = #
(
M̂(φ0)× M̂(φ2)

)
−#N̂ (ψB) = #M̂(φ0) ·#M̂(φ2)− 1.

Summing up the two equations proves the thesis. �

Computing the numbers #M̂(φ) in general is very challenging, but in some cases the answer is

known. For instance, #M̂(φ) = ±1 if D(φ) is a bigon. The following is a generalization of that.

Lemma 4.7 ([OS09, Lemma 3.11]). Suppose that the 2-chain D(φ) associated with a Whitney disk
φ ∈ π2(x,y) is a planar region with the following properties:

• all its boundary components are α-curves (resp. β-curves) except one that is a 2n-gon with
acute corners and edges alternating between arcs in α- and β-curves (thus, the corners
alternate between components of x and y),

• there is a collection of arcs in β-curves (resp. α-curves) between boundary components of
D(φ) that cut the domain into a disk, and

• no component xi or yi is in the interior of D(φ).

Then µ(φ) = 1 and #M̂(φ) = ±1.

The next statement is motivated by [OS08, Theorem 5.1] and it provides an obstruction for
the existence of holomorphic disks with disconnected domains. Define the support supp(φ) ⊂ Σ of
a Whitney disk φ as the collection of points at which D(φ) has nonzero multiplicity.

Lemma 4.8. If a Whitney disk φ admits a holomorphic representative, then the number of con-
nected components of supp(φ) is at most µ(φ). In particular, supp(φ) is connected when µ(φ) = 1.

Proof. Let Ω1, . . . , Ωr be the connected components of supp(φ) and notice that for any i = 1, . . . , r
and any continuous representative u of φ the number of points from Ωi in u(p) ∈ Symg+k(Σ) does
not depend on p ∈ D2. Hence, we can think of u as a product of continuous maps

u1 × · · · × ur : D
2 → Symd1(Ω1)× · · · × Symdr(Ωr) ⊂ Symg+k(Σ)

for some numbers di. When u is holomorphic, then so is each ui. This forces µ(u) = µ(u1) + . . .+
µ(ur) > r, which ends the proof. �

4.2. The Heegaard Floer complex. We are ready to state the definition of the twisted Heegaard
Floer homology from [OS09]. As usual k is a commutative ring and we fix an invertible t ∈ k.

Definition 4.9. Let (Σ, α, β,X,O) be an admissible Heegaard diagram associated with a marked
singular link S ⊂ Y. Given a finite set of markings P ⊂ Σ − (α ∪ β ∪ X ∪ O) we define
the twisted Heegaard Floer complex CFK−(S,P ) as the free module over the polynomial alge-
bra R = k[U0, . . . , Uk+s] with a basis consisting of the intersection points x ∈ G and the differential
given by

(31) ∂x =
∑

y∈G

∑

φ∈π2(x,y)
µ(φ)=1

∀i : Xi(φ)=0

#M̂(φ) tP (φ) U
O0(φ)
0 · · ·U

Ok+s(φ)
k+s y,
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where P (φ) counts multiplicities of D(φ) at elements of P, Xi(φ) is the multiplicity of φ at Xi and

likewise for Oi(φ). The complex ĈFK (S,P ) is defined as the quotient CFK−(S,P )/(U0 = 0) by
the variable U0 associated with the basepoint O0 that is located on the arc of S that terminates at
the marking ⋆ ∈ S. The homology of the complexes are denoted respectively by HFK−(S,P ) and

ĤFK (S,P ).

Remark 4.10. The admissibility implies that any two points x,y ∈ G are connected by only finitely
many positive domains that avoid the set X, making the right hand side of (31) a finite sum.

Remark 4.11. The above definition recovers the usual Heegaard Floer complexes CFK−(S) and

ĈFK (S) when t = 1 or P is empty.

Example 4.12. The Ozsváth–Szabó twisting is given by the set of markings POS visualized in
Figure 14 with gray dots. When S is in a braid position, then we can pick a subset P tr ⊂ POS that
consists only of the dots near trace vertices. These two sets lead to essentially the same twisted
complex, see Corollary 4.15.

The Heegaard Floer complex is bigraded, with the Alexander grading A(x) ∈ Z and the Maslov
grading M(x) ∈ Z. In this paper, however, we consider slightly different gradings: the quantum
grading qdeg(x) := −2A(x) and the homological grading hdeg(x) := 2A(x)−M(x) that satisfy

qdeg(y)− qdeg(x) = 2X(φ) + 2XX(φ)− 2O(φ)(32)

hdeg(y) − hdeg(x) = µ(φ)− 2X(φ)(33)

for any φ ∈ π2(x,y), where given a finite set Q ⊂ Σ we write Q(φ) for the sum of multiplicities of
φ at points from Q. Note that points from XX are counted four times in (32), because XX ⊂ X.

Remark 4.13. At the first sight it might seem that the formulas (32) and (33) do not match those
from [OS09]. The reason is that double X-basepoints are considered in [OS09] as pairs of basepoint,
so that X(φ) from [OS09] matches our X(φ) + XX(φ).

The homological grading is normalized using the quotient complex ĈF = CFK−(S)/(Ui = 1),
in which all variables Ui are specialized to 1. It is known that this complex computes the coho-
mology of the k-torus and we require that the top degree generator of the homology is in degree 0.
The quantum grading is then normalized to match the formula

∆(S) = (q− q−1)σ
∑

d,s

(−1)dqsrkĤFK d(S,P ; s),

where σ is the number of singular crossings in S and ĤFK d(S,P ; s) is the degree s component of
the d-th homology group.

We finish this section with a short discussion on how the complex depends on the twisting set.
It is known that the complex can be completely untwisted in case of non-singular knots [OS09]
and the proof can be extended to singular knots as well. In case of a singular link we can only
identify complexes when the twisting sets are “proportional” on the fundamental periodic domains
π1, . . . , πr defined in (30), which are associated with the components of the link that do not carry
the marking ⋆.

Proposition 4.14. Let S be a singular link and suppose that P and P ′ are two sets of markings on
a Heegaard diagram for S, such that P (πi) = λP ′(πi) for some fixed λ ∈ Z and every fundamental
periodic domain πi. Then there is a linear isomorphism of complexes

Φ: CFK−(S,P, t)
∼=

−−→ CFK−(S,P ′, tλ),

where the left (resp. right) complex is twisted by t (resp. tλ). In particular,

Φ: CFK−(S,P )
∼=−−→ CFK−(S)⊗Z k
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for any singular knot S and a twisting set P .

As a direct consequence, there is no essential difference between Ozsváth–Szabó twisting and its
restriction to trace vertices in case of layered diagrams as defined in Section 3.1.

Corollary 4.15. Let S be a layered diagram of a singular link with vertices at n levels. Then there
is an isomorphism of twisted complexes

CFK−(S,POS, t) ∼= CFK−(S,P tr , tn).

Proof. We have POS(πi) = bin and P tr (πi) = bi, where bi is the width of the component Si. �

In order to proof Proposition 4.14 we need a suitable decomposition of the twisted complex.

Definition 4.16. Generators a = (U
r0
0 · · ·U

rk+s

k+s )x and b = (U
r′0
0 · · ·U

r′
k+s

k+s )y are W0-equivalent,
written a ∼ b, if there is a Whitney disk φ ∈ π2(x,y) such that

(34) Oi(φ) = r′i − ri and Xj(φ) = 0

for each Xj ∈ X and Oi ∈ O.

The W0-equivalence is an equivalence relation on the set

B =
{
(U

r0
0 · · ·U

rk+s

k+s )x | x ∈ G, ri > 0
}

of k-linear generators of the Heegaard Floer complex and it is compatible with the differential.
Hence, it induces a decomposition

CFK−(S,P ) =
⊕

r∈B/∼

CFK−(S,P ; r)

parametrized by the set of equivalence classes. When S is a knot, then for any two generators of
the same Alexander degree there is a disk connecting them,11 so that B/∼ ≈ Z.

Proof of Proposition 4.14. Pick a set R ⊂ B of representants of W0-equivalence classes. Given

a generator a = (U
r0
0 · · ·U

rk+s

k+s )x that isW0-equivalent to a chosen representant (U
r′0
0 · · ·U

r′
k+s

k+s )y ∈ R
pick a Whitney disk φ ∈ π2(x,y) satisfying (34). A difference between any two such disks is a linear
combination of the periodic domains π1, . . . , πr, so that the value P (φ)− λP ′(φ) is independent of
the choice of φ. Hence,

Φ(a) := tP (φ)−λP ′(φ)a

is a well-defined isomorphism of complexes. The case of a singular knot follows, because there are
no periodic domains πi. In particular, the disk φ is unique. �

The assumption on connectivity of the diagram is important for untwisting: the two complexes
have drastically different homology when S is a split link. For instance, the twisted homology may
vanish for fully singular links with more than one component, see Proposition 4.23 or the proof of
[OS09, Proposition 3.4].

4.3. Skein exact triangles. Let us now recall the skein exact triangle for Heegaard Floer homol-
ogy. In this section we use planar Heegaard diagrams that look locally as depicted in Figure 15.
For simplicity, we start with the untwisted complex and discuss the differences afterwards.

Lemma 4.17. The planar Heegaard diagram associated with a singular link is admissible.

11Indeed, such a disk can be constructed by correcting any Whitney disk φ ∈ π2(x,y) as follows. First, impose
multiplicity zero at each Xi by adding to D(φ) domains Ai sufficiently many times. The total multiplicity at O-
basepoints is now equal to qdeg(y)− qdeg(x) =

∑
i
(r′i − ri), but local multiplicities at each Oi may not match (34).

This is fixed by travelling along the knot and adding differences Ai −Bi to correct the mutliplicity at each Oi, which
affects the multiplicity only at the next basepoint. Once the last basepoint is reached, the local multiplicity is already
as expected.
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b

ac

d

A0

A−

BA+

B

ac

ac

Figure 15. Local pictures of the planar Heegaard diagram for a resolution of a sin-
gular link. Near a smoothed resolution the left diagram is used with one X-mark
at each region decorated with B, whereas for a positive (resp. negative) crossing we
place X-marks at A0 and A+ (resp. A−); the local diagram for a singular crossing
is obtained by placing a double X-mark at A0 and removing the pair of ellipses
around it. The top right configuration is used near a bivalent vertex other than
the basepoint ⋆, in which case the bottom variant is used instead. The marked in-
tersection points are components of the canonical generator x0: the white points at
smooth resolutions and the black points elsewhere. Gray dots represent the twisting
markings due to Ozsváth and Szabó.

Proof. Suppose that π =
∑

i ai(Ai − Bi) is a positive periodic domain, where A0 and B0 are
the unbounded regions. Then A0 intersects each Bi forcing a0 > ai. Likewise, B0 intersects each
Ai forcing a0 6 ai. Hence, all ai coincide and π = 0. �

We distinguish a generator x0 = x0(S) ∈ CFK−(S) that is given by the intersection points
marked on Figure 15 with black dots except neighborhoods of smoothed resolutions, where white
points are taken instead. The gradings can be normalized by specifying

(35) hdeg(x0) = 0 and qdeg(x0) = s− n− 1,

where n is the number of real crossings in S and s is the number of Seifert circles, obtained by
smoothing in S all crossings (both real and singular). The first choice follows from the observation
below, whereas the normalization of the quantum grading is justified at the end of this section.

Lemma 4.18. The generator x0, when considered as an element of ĈF = CFK−(S)/(Ui = 1), is
a cycle that generates the top degree homology.

Proof. Setting Ui = 1 for all i allows us to forget the O-basepoints. The Heegaard diagram can be
then reduced, so that each α-curve intersects only one β-curve, exactly in two points, one of which
is a component of x0. In fact, x0 is the top degree generator of the associated Heegaard Floer
complex, hence, a cycle. �

We call x0 the canonical generator12 of CFK−(S). Because the homology ĤF is free, we obtain
a following generalization of Lemma 4.6 that will play an important role in the next section.
The case k = 2 has been proven in an unpublished version of [OS09].

Corollary 4.19. Choose an intersection point y ∈ CFK−(S) with hdeg(y) = hdeg(x0)− 1. Then

(36) #M̂(φ1) + . . . +#M̂(φk) = 0,

12Generally, x0 is not a cycle in CFK−(S)—for instance, the rectangle decorated A− in a neighborhood of a positive
crossing represents a nontrivial holomorphic disk from x0.



A PROOF OF DUNFIELD–GUKOV–RASMUSSEN CONJECTURE 37

where φ1, . . . , φk are all classes of Whitney disks from y to x0 that have Maslov index one and are
disjoint from X.

Proof. The homology class of x0 cannot be free in ĤF when the sum in (36) does not vanish. �

Let S+, S−, S×, S0 be diagrams of singular links that differ only in a small neighborhood of a point
p, where the first three have respectively a positive, a negative and a singular crossing, whereas
S0 is a smoothed. Write k (resp. s) for the number of X-basepoints (resp. double X-basepoints)
in the associated planar Heegaard diagrams and let R = k[U0, . . . , Uk+s]. Using the notation from
Figure 15 we write Aa and Ab (resp. Bc and Bd) for the regions bounded by α-curves (resp. β-

curves) that contain the O-basepoints labeled a and b (resp. c and d). Let U
(p)
a and U

(p)
b (resp. U

(p)
c

and U
(p)
d ) be the associated variables and consider a two term complex

Lp =
(
qR

U
(p)
a +U

(p)
b
−U

(p)
c −U

(p)
d−−−−−−−−−−−−−−→ q−1R

)

generated by u and 1 in homological degrees −1 and 0 respectively.

Theorem 4.20 (cf. [OS09]). There are homotopy equivalences of complexes

CFK−(S+) ≃ t−1
(
CFK−(S×)⊗R Lp

unzipp
−−−−−→ q−1CFK−(S0)

)

CFK−(S−) ≃

(
qCFK−(S0)

zipp
−−−−→ CFK−(S×)⊗R Lp

)

where unzipp(x0(S×)⊗ 1) = x0(S0) and zipp(x0(S0)) = (U
(p)
b − U

(p)
c )(x0(S×)⊗ 1).

Proof. Consider first the case of S−, so that the Heegaard diagram for CFK−(S−) near p has X
basepoints at regions marked A0 and A−. Generators containing the intersection point between
the regions marked A0 and A− span a subcomplex X− that contains x0(S−) and the differential
of which counts holomorphic disks with multiplicity 0 at the five marked regions. Let Y− be
the quotient complex, spanned by the remaining generators, and consider the diagram

q2t2X− q2tX−

Y− X−

id

Φ
A−BΦ

A−

ΦB

U
(p)
a +U

(p)
b
−U

(p)
c −U

(p)
d

where the maps ΦB , ΦA− and ΦA−B count Maslov index one holomorphic disks φ, such that

• B(φ) = 1 and A−(φ) = A0(φ) = 0 in case of ΦB,
• B(φ) = 0 and A−(φ) +A0(φ) = 1 in case of ΦA−,
• B(φ) = 1 and A−(φ) +A0(φ) = 1 in case of ΦA−B ,

and B(φ) is the total multiplicity of φ at both regions labeled B. Considering ends of moduli
spaces of holomorphic disks of Maslov index two, we get that the total of the diagram is a chain

complex, where the terms U
(p)
a , U

(p)
b , U

(p)
c , and U

(p)
d come from degenerated disks represented by

the domains Aa, Ab, Bc and Bd respectively, which explains the signs. The total chain complex is
clearly homotopy equivalent to the mapping cone of ΦB , which is CFK−(S−). The right column is
identified with CFK−(S×)⊗RLp by forgetting the fixed intersection point. This takes x0(S−) ∈ X−,
which is in degree s−n−1, to x0(S×) ∈ CFK−(S×), which lives in degree s−n. The left column is
identified with qtCFK−(S0), in which x0(S0) is identified with a generator y−0 ∈ Y− that is given
by the same collection of intersection points, but living in homological degree −1 and quantum
degree s− n+ 1 (apply (32) and (33) to the rectangle marked A−). There are two Whitney disks
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from y−0 to x0(S−) with multiplicity one at B, represented by domains Ab \Bc and Bc \Ab. Hence,

ΦB(y
−
0 ) = ±(U

(p)
b − U

(p)
c )x0(S−), which is compatible with the formula for zipp.

The case of S+ is similar. This time the diagram has basepoints at regions A0 and A+. Gene-
rators containing the intersection point between the two regions span a quotient complex X+ of
CFK−(S+), which is identified with qtCFK−(S×): the canonical generator x0(S×) corresponds
to x+

0 ∈ X+ that differ from x0(S+) by picking the other corner of the bigon labelled A0. In
particular, hdeg(x+

0 ) = −1 and qdeg(x+
0 ) = s− n+1. Writing Y+ for the subcomplex spanned by

other generators, we consider the diagram

X+ Y+

q−2t−1X+ q−2t−2X+

ΦB

Φ
A+B

U
(p)
a +U

(p)
b
−U

(p)
c −U

(p)
d

id

Φ
A+

where the maps ΦB, ΦA+ and ΦA+B are analogues of the maps from the case of a negative crossing,
but using the region marked A+ instead of A−. Again, the total object is a chain complex that is
homotopy equivalent to the mapping cone of ΦB, which is CFK−(S+). The left column is identified
with CFK−(S×)⊗R Lp and the right one with q−1t−1CFK−(S0). The applied degree shifts follow
from the observation that x+

0 , when considered as a generator of CFK−(S0), lives in the same
homological and quantum degree as x0(S0), because both are connected by the domain A− − A0.
The property of the unzip map follows easily. �

Remark 4.21. Theorem 4.20 remains true for twisted complexes once powers of q are properly

distributed in the formulas for the differential in Lp as well as for the zip map. Namely, each U
(p)
x

must be scaled by tmx, where mx counts twisting markings in the region Ax or Bx (depending on

x). In particular, the formulas are unchanged when twisted by P tr, whereas each U
(p)
a and U

(p)
b is

scaled by t in case of the Ozsváth–Szabó marking POS.

Theorem 4.20 implies immediately that the degree normalization (35) matches the standard one:
the polynomial

(q− q−1)σ
∑

d,s

(−1)dqsrkĤFK d(S; s)

assigned to a diagram S, where σ counts singular crossings, satisfies the skein relation of the Alexan-
der polynomial.

4.4. Computation for planar singular links. Let S be a planar singular knot considered as
a diagram with no real crossings. Recall that a Kauffman state of such diagram is a collection of
markings at singular crossing as shown in Figure 16, such that each region not adjacent to ⋆ ∈ S
contains exactly one marking. Because switching D− with D+ has the effect of replacing q with
1/q, the Alexander polynomial ∆S(q) is symmetric. It can be shown that the minimal power of q
is equal to s− n− 1, where s is the number of Seifert circles in S and n is the number of singular
crossings.

In terms of intersection points on the initial Heegaard diagram, picking a Kauffman state is
equivalent to fixing points on the β-curves parallel to the contours of the underlying surface, leaving
a choice between two intersection points on each internal β-curve, see Figure 17. Thus, there are
2n generators associated with a fixed Kauffman state, where n is the total of singular crossings
and bivalent vertices in S other than ⋆. It is shown in [OSS09] that with each Kauffman state
there is associated a unique generator of highest (in the conventions of this paper) homological
degree, represented in Figure 17 by black and white dots. This generator is actually in homological
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A

C

D+

D−

A D+ D− C

1 q q−1 1

Figure 16. Kauffman markings at a singular crossing and their (multiplicative)
contributions towards the evaluation of the Kauffman state.

Figure 17. Local pictures for generators associated with the A state (to the left)
and the D− state (to the right). The black dot on one of the meridians is fixed
by the state, which leaves a choice between the white and gray point on the other
meridian. Choosing always the white point produces the generator of the highest
homological degree.

degree 0 and its quantum grading matches the contribution of the associated Kauffman state to
the Alexander polynomial. Our main goal is to provide an argument that no other generators
contribute towards the twisted homology.

Consider now the initial diagram for S together with the Ozsváth–Szabó twisting POS. As in
the previous section, given a singular crossing p we denote the O-basepoints on outgoing (resp.

incoming) arcs by O
(p)
a and O

(p)
b (resp. O

(p)
c and O

(p)
d ). Likewise, when p is a bivalent vertex, then

O
(p)
a and O

(p)
c are located at the outgoing and incoming arc respectively. Define

LS :=
⊗

p∈X

(
R

tU
(p)
a +tU

(p)
b
−U

(p)
c −U

(p)
d−−−−−−−−−−−−−−−−→ R

)

as the tensor product over R of linear complexes taken over all singular crossings p (where, again,
we write R for the k-algebra of polynomials in all variables Ui).

Proposition 4.22. Let S be a planar singular knot. Then H∗(CFK
−(S,POS) ⊗R LS), up to t-

torsion, is a free k[U0]-module concentrated in homological degree zero and generated by Kauffman

states of S. The same holds for H∗(ĈFK (S,POS)⊗R LS) with k in place of k[U0].

Proof. Without loss of generality we can assume that k = Z[t, t−1]. We further extend the ring by
a square root of t and extend the set of markings as shown in Figure 18. Write Q for this new

Figure 18. The extra twisting markings on an initial Heegaard diagram.
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set. Because S is connected, the complex CFK−(S,Q; t1/2) is isomorphic to CFK−(S,POS; t) by
Proposition 4.14. Hence, it suffices to prove the thesis for the twisting set Q.

The complex ĈFK (S,Q) is filtered with respect to the power of t and the t-degree zero part of
the differential relates only generators associated with the same Kauffman state. In fact, the com-
ponent of the graded associate complex spanned by generators corresponding to a fixed Kauffman
state s has the form of the tensor product over R

Ns =
⊗

p 6=⋆

(
R

U
(p)
x−−−−→ R

)

taken over all singular crossings and bivalent vertices of S other than the basepoint ⋆, and where
x = c or d depending on p and s. We claim that the homology of

(37) Ns ⊗R grLS
∼=
⊗

p 6=⋆

(
R

U
(p)
x−−−−→ R

)
⊗R

⊗

p∈X

(
R

U
(p)
c +U

(p)
d−−−−−−−−→ R

)

is freely generated by the highest homological degree generator associated with s. This follows from
the observation that the set of relations

(38)
{
U (p)
x

∣∣ p 6= ⋆
}
∪
{
U (p)
c + U

(p)
d

∣∣ p ∈ X
}

is regular, i.e. each element is a non-zero divisor in the quotient of R by other elements. In par-
ticular, the relations eliminate all variables except U0. Following the proof of [OS09, Proposition
3.4] we show that the generator of (37) is in homological degree 0, i.e. its Maslov degree is twice
the Alexander degree, so that the spectral sequence associated with the filtration collapses imme-
diately. This shows that each component Ns⊗ grLS contributes exactly one free generator towards
the E∞ page.

The uniqueness of a limit of a spectral sequence (compare Appendix A.1) implies that

H∗(CFK
−(S,Q)⊗R LS),

when computed over the completed ring Z[t−1/2, t1/2]][U0], is freely generated by Kauffman states
and concentrated in homological degree 0. This proves the statement for the twisting set Q and

the case of POS follows from Proposition 4.14. Finally, the computation for ĈFK follows, because
adding U0 to (38) does not affect the regularity of the set. �

Let us now discuss briefly the case of disconnected diagrams. In [OS09] it is shown that
the twisted homology vanishes, because the set of generators is empty (the initial diagram used in
the paper is not admissible for disconnected diagrams). This argument is no longer true for our
initial diagram, but the vanishing result (up to t-torsion) still holds.

Proposition 4.23. Suppose that S is a planar singular link with at least two components. Then

both H∗(CFK
−(S,POS)⊗R LS) and H∗(ĈFK (S,POS)⊗R LS) are t-torsion.

Proof. We may assume as before that k = Z[t1/2, t−1/2] and consider the twisting set Q. For
any component Si of S and the associated periodic domain πi the equality Q(πi) = 2POS(πi)

holds, so that Proposition 4.14 provides again an isomorphism between CFK−(S,Q; t1/2) and
CFK−(S,POS; t). Because S has at least two components, the initial diagram contains a neck
connecting surfaces built for different components of S. Figure 19 shows four possibly choices
of intersection points near such a neck (a black point paired with either a white or a gray point
from the same picture). Notice that the top intersection points on the two meridians cannot be
picked, because the intersecting β curve must carry an intersection point with some meridian around
the upper component of S.
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Figure 19. Local pictures for generators near a neck connecting different compo-
nents of a singular link S.

Consider now the graded associate grCFK−(S,Q). The differential counts not only bigons carry-
ing the O-basepoints, but also two rectangles near each connecting neck. In particular, the complex
admits a tensor factor of the form

R

(
1
U

)

−−−−→ R⊕R
(U −1 )

−−−−−−→ R,

where U is the variable associated with the lower O-basepoint in the picture. This complex is acyclic,
and so is the entire graded associate complex. Thus, CFK−(S,Q) is t-torsion. The statement

for CFK−(S;POS) follows from Proposition 4.14. The argument carries over to ĈFK with no
change. �

5. Main results

In this Section we prove the main results of this paper. We start by defining Gilmore space as
a quotient of the reduced Soergel space Bq(ω) associated with a pointed annular web ω by non-
local relations. By inserting this space at vertices in the cube construction we produce the Gilmore

complex CAG(β̂). In Theorem 5.11 we prove that the complex is quasi-isomorphic to the twisted

Heegaard Floer complex ĈFK (β̂) if k = Z[q−1, q]]. In Section 5.4 we define our algebro-geometric

quotient qAG(ω) of the Gilmore space. By applying the Bockstein spectral sequence to qAG(β̂)
we prove Theorems B and C.

5.1. The normalized Gilmore complex. Choose a pointed annular web ω and recall that
the marking ⋆ is on an edge of thickness 1 that is at the same time an outer edge. We say
that a simple closed curve γ is adapted to ω if it avoids vertices of the web, intersects its edges
transversally, and the region Rγ bounded by the curve does not contain the marking ⋆, see Fig-
ure 20. The intersection points between ω and γ fall into two categories: incoming and outgoing
points, at which the web is oriented inwards and outwards the region Rγ respectively.

In Section 2.6 we have associated with a pointed annular web ω the polynomial algebra

Bq(ω) = qHH 0(R
k;B(ω̃))/(x⋆),

where x⋆ is the variable associated with the edge terminating at the basepoint and ω̃ is the directed
web obtained by cutting ω along the trace section. Consider the ideal Nω ⊂ Bq(ω) of non-local
relations defined as follows. Pick a curve γ adapted to ω and write etop(Xp) for the product of
variables associated with the edge containing the intersection point p ∈ ω ∩ γ. Define

xin(γ) :=
∏

p∈(ω∩γ)+

etop(Xp) and xout(γ) :=
∏

p∈(ω∩γ)−

etop(Xp),

where (ω∩ γ)+ and (ω∩ γ)− are respectively the sets of incoming and outgoing intersection points,
and put

(39) NLγ := xout(γ) − q2ixin(γ),
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γ

Rγ

⋆

Figure 20. A curve γ adapted to the web from Figure 11 and the bounded region
Rγ . There are four incoming edges and three outgoing edges, one of which it thick.
A curve adapted to ω can have turn-backs and it can cross an edge more than once.

where i is the number of trace vertices in Rγ . Note that γ may intersect an edge several times,
in which case the variables associated with such an edge appear in both products, possibly with
exponents bigger than 1. The ideal Nω is generated by NLγ for all such curves γ.

Definition 5.1. The quotient space

A(ω) = Bq(ω)
/
Nω

assigned to a pointed annular web ω is called the Gilmore space of ω.

Following the common practice we write A(ω;k) to emphasize the choice of coefficients.

Example 5.2. When ω is an elementary web, then A(ω) is generated by variables xi associated
to its thin edges modulo the following local relations

xc xa xc xa xc xa⋆

xc

xd

xa

xb

xa = xc xa = q2xc xa = 0 xa + xb = xc + xd

xaxb = xcxd

and non-local relations NLγ for curves γ adapted to ω that do not intersect thick edges. Note

the special role of the marking ⋆: we do not enforce xc = 0, which holds in Bq(ω). This follows
from the non-local relation associated with a small loop around the marking, because it forces xa
and xc to be proportional.

Example 5.3. If ω is a chain of dumbbells (see Figure 21), then A(ω) ∼= k is generated by the
constant polynomial if 1 − qd is invertible for each d > 1. To see this, assign to thin edges of ω
variables xi, yi, and zi for i = 1, . . . , k, so that at the i-th thick edge we have the following situation:

zi

xi+1

yi

zi+1

γ′i

γi

where the curves γi and γ
′
i have no more intersections with ω and the edges with variables xi and yi

meet at a trace vertex, so that xi = q2yi. It is understood that z1 = x1 and zk = yk. The non-local
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relations associated with curves γi and γ′i forces zi = q2i−2kyi for each i. Substituting that in
the linear local relation

zi + xi+1 = yi + zi+1

forces (q2i−2k−1)(yi−q2yi+1) = 0, so that all variables are proportional to each other. In particular,
to y1, which is killed by the basepoint relation. Finally, since there is no non-trivial relation involving
polynomials of degree 0, one has A(ω) ∼= k as claimed.

x0 = z0

x1

x2

x3

xk−1

xk

.

.

.

y1

y2

y3

y4

yk−1

.

.

.

yk = zk

z2

z3

z4

zk−1

⋆

γ3

γ′

1

Figure 21. A pointed chain of dumbbells with a trace section.

Example 5.4. Suppose that ω is a disjoint union of webs ω0, . . . , ωr, positioned so that ωi is
surrounded by ωi−1 for i = 1, . . . , r, and write wi for the width of the component ωi. Consider
a loop γi separating ωi−1 from ωi; the associated non-local relations forces 1 = qwi+···+wr . Hence,
A(ω) is annihilated by 1− qgcd(w1,...,wr). In particular, the space vanishes when 1− qd is invertible
for all d > 0.

Proposition 5.5. The assignment ω 7→ A(ω) extends to a functor

A : AFoam⋆
q → grMod

that is a quotient of the functor Bq from Section 2.6.

In order to prove the proposition, we need the following property of non-local relations.

Lemma 5.6. Let γ and γ′ be curves adapted to a pointed annular web ω that coincide everywhere
except a small neighborhood of a vertex v, in which γ intersects only the incoming edges, whereas
γ′ intersects the outgoing edges. Then NLγ = NLγ′ in Bq(ω).

Proof. The only difference between NLγ and NLγ′ is that in one of the two terms of NLγ a product of
variables associated with the edges terminating at v is replaced by a product of variables associated
with the edges originating at v. The equality of both products is imposed by Soergel relations. �

Proof of Proposition 5.5. We have to check that linear maps induced by foams preserve the ideal
of non-local relations. In all diagrams, the region Rγ enclosed by a simple closed curve γ is located
below γ.

There are six maps (cup, cap, zip, unzip, as and coas) to be inspected, but in the view of
Lemma 5.6 only zip required a non-trivial check. Indeed, let us demonstrate how the lemma is used
in case of the map cap, which eliminates a bigon.
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Denote by ω and ω′ marked annular webs with a membrane that are identical except in a small
disk D disjoint from the membrane and the marking ⋆, in which

ω = a + b a + b

a

b

and ω′ =
a + b

a + b
.

If a curve γ does not pass through the bigon in ω, then the relation NLγ is clearly preserved.
Otherwise, we apply Lemma 5.6 to isotope γ away from the bigon:

a + b a + b
a

b

γ′

 a + b a + b
a

b

γ′

Analogue arguments ensure that as, coas, cup and unzip induce morphisms on quotient spaces.
Let us now deal with zip. Denote by ω and ω′ pointed annular webs with a membrane that are

identical except in a small disk D disjoint from the membrane and the marking ⋆, in which

ω =

a

b

and ω′ =
b

a a

b

a + b .

The only problematic curves are the ones that, inside D, go between the two edges of ω:

a

b

γ .

Let us denote by γ1 and γ2 curves adapted to ω′ that are identical to γ outside of D, whereas inside
they look like in the following diagram:

b

a a

b

a + b

γ1

γ2

.

In order to prove that the zip map is well-defined, we shall show that NLγ is mapped onto of
the form

NLγ1

∑

α∈T (a−1,b)

(−1)|α̂|sα(Y
′)sα̂(Z) + NLγ2

∑

α∈T (a,b−1)

(−1)|α̂|sα(Y
′)sα̂(Z),(40)

where the set of viarables Y, Z, Y ′, and Z ′ are associated with edges of the web as indicated in
the figure below:

b

a a

b

a + b

Y ′

Z′

Y

Z

.

This implies that zip(NLγ) belongs to Nω′ , hence, non-local relations are preserved by the map.
Using the equality

(41)
∑

α∈T (a,b)

(−1)|α̂|sα(Y
′)sα̂(Z) =

∑

α∈T (a,b)

(−1)|α̂|sα(Y )sα̂(Z
′)
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that holds in B(ω′), we can rewrite the image of NLγ = xout(γ) − q2ixin(γ) as

(42) xout(γ)
∑

α∈T (a,b)

(−1)|α̂|sα(Y
′)sα̂(Z) − q2ixin(γ)

∑

α∈T (a,b)

(−1)|α̂|sα(Y )sα̂(Z
′).

We shall analyze each term separately. Notice first that

xin(γ1) = xin(γ)ea(Y ), xin(γ2) = xin(γ)eb(Z
′),(43)

xout(γ1) = xout(γ)ea(Y
′), xout(γ2) = xout(γ)eb(Z).(44)

Denote by T1(a, b) the subset of Young diagrams with exactly a boxes in the first column and set

T2(a, b) = T (a, b) \ T1(a, b). Note that β̂ has exactly b boxes the first column when β ∈ T2(a, b).
Hence, for such α and β one has

sα(Y ) = ea(Y )sα′(Y ), s
β̂
(Z) = eb(Z)sβ̂′(Z),

sα(Y
′) = ea(Y

′)sα′(Y ′) s
β̂
(Z ′) = eb(Z

′)s
β̂′(Z

′),

where α′ (resp. β̂′) is the Young diagram α (resp. β̂) with its first column removed. On one hand,
using (44) one obtains:

(45) xout(γ)
∑

α∈T (a,b)

(−1)|α̂|sα(Y
′)sα̂(Z)

= xout(γ1)
∑

α∈T1(a,b)

(−1)|α̂|sα′(Y ′)sα̂(Z) + xout(γ2)
∑

α∈T2(a,b)

(−1)|α̂|sα(Y
′)sα̂′(Z)

= xout(γ1)
∑

α∈T (a−1,b)

(−1)|α̂|sα(Y
′)sα̂(Z) + xout(γ2)

∑

α∈T (a,b−1)

(−1)|α̂|sα(Y
′)sα̂(Z).

On the other hand, using (43) and Corollary 2.3 one computes

(46) xin(γ)
∑

α∈T (a,b)

(−1)|α̂|sα(Y )sα̂(Z
′)

= xin(γ1)
∑

α∈T (a−1,b)

(−1)|α̂|sα(Y )sα̂(Z
′) + xin(γ2)

∑

α∈T (a,b−1)

(−1)|α̂|sα(Y )sα̂(Z
′)

= xin(γ1)
∑

α∈T (a−1,b)

(−1)|α̂|sα(Y ⊔Z)sα̂(Z
′⊔Z) + xin(γ2)

∑

α∈T (a,b−1)

(−1)|α̂|sα(Y ⊔Z)sα̂(Z
′⊔Z)

= xin(γ1)
∑

α∈T (a−1,b)

(−1)|α̂|sα(Y
′⊔Z ′)sα̂(Z

′⊔Z) + xin(γ2)
∑

α∈T (a,b−1)

(−1)|α̂|sα(Y
′⊔Z ′)sα̂(Z

′⊔Z)

= xin(γ1)
∑

α∈T (a−1,b)

(−1)|α̂|sα(Y
′)sα̂(Z) + xin(γ2)

∑

α∈T (a,b−1)

(−1)|α̂|sα(Y
′)sα̂(Z).

Putting (45) and (46) together, we get that formulas (40) and (42) coincide as desired. �

Proposition 5.5 allows us to use the framework from Section 3.1 to associate with a braid diagram

β̂ of a link a chain complex CAG(β̂), by applying the functor A to the formal complex Jβ̂K. We

refer to it as the (normalized) Gilmore complex of β̂. It follows immediately that the homotopy

type of CAG(β̂) is invariant under braid moves and conjugation away from the marking ⋆. It can
be also shown that the homology is invariant under stabilization if 1− qd is invertible for all d > 0.
The question whether the complex is truly a knot invariant remains open.
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5.2. The identification with ĤFK . Hereafter we show that CAG(β̂) computes the twisted Hee-

gaard Floer homology of β̂. The first step is to compare the two constructions for diagrams with no
real crosssings; the general case follows by applying the exact skein triangle. We begin by reducing
the set of generators of the ideal Nω. Consider a coherent cycle Z in S, i.e. a directed closed path
with no self-intersections that does not pass through the distinguished vertex ⋆. Write NLZ for
the nonlocal relation associated with the curve γZ obtained from Z by pushing the cycle slightly
away from the region RZ enclosed by Z.

Lemma 5.7. The polynomials NLZ parametrized by coherent cycles in S generate the ideal Nω.

Proof. Pick a curve γ adapted to ω. When γ does not surround any vertex of S, then in(γ) = out(γ)
and NLγ = 0. Suppose the converse and that there is an arc α ⊂ Rγ disjoint from S that connects
two points of γ. Performing a surgery on γ along this arc produces two curves γ′ and γ′′ adapted
to ω; NLγ is clearly a consequence of NLγ′ and NLγ′′ . Likewise, we can perform surgery along such
an arc if it is inside the interior of an edge u. In this case

in(γ) = in(γ′)in(γ′′)xu and out(γ) = out(γ′)out(γ′′)xu,

so that NLγ is again a consequence of NLγ′ and NLγ′′ .
The above together with Lemma 5.6 allows us to restrict generators of Nω to relations NLγ

parametrized by curves γ surrounding at least one vertex of S and for which none of the above
surgeries can be performed. Such a curve γ must intersect every edge of S at most once and if
it surrounds a vertex p, then it must also surround at least one edge going out of p and one edge
coming to p. Such curves are exactly those of the form γZ , where Z consists of the edges of S that
are contained in Rγ and that can be connected to γ by an arc with its interior disjoint from S. �

Define Ã(ω) as A(ω) but ignoring the marking ⋆: the usual trace relation is applied at this vertex
and non-local relations are also imposed for curves than engulfs it. Alternatively, we can think of ⋆
as placed at inifinity, outside of ω, or that ω is put inside a marked loop. The following is a direct
consequence of Lemma 5.7.

Lemma 5.8. Let S be a planar singular link in a braid position with components S0, . . . , Sr, where
Si is nested inside Si−1 for i = 1, . . . , r and S0 carries the marking ⋆. Then

A(S) ∼= A(S0)⊗ Ã(S1)⊗ · · · ⊗ Ã(Sr)

Notice that Ã(ω) is annihilated by 1 − q2w, where w is the width of ω. Hence, A(ω) is torsion
when ω is disconnected, as already shown in Example 5.4.

A similar result holds for the twisted Heegaard Floer complex. The following is inspired by
[Man14, Lemma 2.2].

Lemma 5.9. Let S be a singular link in braid position with split components S0, . . . , Sr, where
⋆ ∈ S0. Then there is an isomorphism of complexes

(47) CFK−(S) ∼= CFK−(S0)⊗ CFK−(U ⊔ S1)⊗ · · · ⊗ CFK−(U ⊔ Sr),

where in each U ⊔ Si the marking lies on the unknotted component.

Proof. The planar Heegaard diagram for S can be seen as a sequence of nested annular diagrams
H0, . . . ,Hr withX0 outside of them as shown at the left side of Figure 22. HereH0 together withX0

represents the component S0, whereas each Hi for i > 0, with an extra pair of basepoints outside,
represents U ⊔Si with ⋆ ∈ U . Thence the isomorphism (47) is clear at the level of chain groups. In
order to compare the differentials we modify the Heegaard diagram, so that the components Hi are
no longer nested, but instead they are contained in disjoint disks on the sphere and the complement
of those disks is decorated with X0 (see the right side of Figure 22). According to Lemma 4.8
Whitney disks of Maslov index 1 with nonempty moduli spaces are associated with domains lying
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in exactly one of the diagram Hi, forcing the differential from CFK−(S) to match the right hand
side of (47).

In order to obtain the desired Heegaard diagram, notice that each Hi intersect the trace section µ
in α-curves only and that inside Hi for i > 0 all basepoints and twisting points are inside α-curves.
Hence, for each i > 0 we can slide Hi along µ outside of H0 by isotopy and handle slide moves,
which does not affect the Heegaard–Floer complex. �

H2

H1

H0

isotopies and

handle slides

H0 H1 H2

Figure 22. Sketches of the planar Heegaard diagram for a split link and the dia-
gram desired for the proof of Lemma 5.9. Each thick circle represent a collection of
α- and β-curves that intersect each other and represent one of the components of
the link.

Consider now the complex CFK−(S) computed from the planar Heegaard diagram for S, where
the link diagram is considered to consists only of singular crossings and bivalent vertices. This
simplifies the diagram a lot: each basepoint, except the one related to the marking ⋆, lies in
a bigon. The generators of the complex are associated in [OS09, Section 3] with coherent multicycles
in S, i.e. (possibly empty) collections of disjoint coherent cycles; the multicycle Z associated with
a generator x consists of the edges of S that corresponds to those bigons with O-basepoints that
have a component of x at one of the corners. Other components of x are corners of bigons containing
X-basepoints.

Theorem 5.10 (cp. [OS09, Theorem 3.1]). Let S be a diagram of a planar singular link in a braid
position. Then there is an isomorphism

H0(ĈFK (S)⊗ LS) ∼= A(S)

that sends the homology class of x0 to the unit of A(S) and for every thin edge e identifies the action
of Ue with the multiplication by xe.

Proof. Assume first that S has only one component. Following [OS09] we show first that x0 is
a cycle that generates the homology. For that define the deviation of a generator x ∈ CFK−(S) as
the number of components of x that are right corners of bigons. As in [OS09, Section 3] we can show
that hdeg(x) = −|Z| − d, where |Z| is the number of components of the multicycle Z associated
with x and d is the deviation of the generator. Hence, each multicycle Z admits a unique generator
xZ of maximal homological degree −|Z|. In particular, this implies that x0 = x∅ is a cycle that
generates the 0th homology. The relations come from counting pseudo-holomorphic disks from
generators of degree −1 to x0. There are two types of such generators: the deviation 1 generators
associated to Z = ∅ and the generators xZ associated with (connected) coherent cycles Z.

The first kind of generators impose local relations on x0. Let x be deviated from x0 at one bigon.
Because Z = ∅, the bigon contains a basepoint Xp that corresponds to a vertex p ∈ S. Write Ap
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and Bp for the regions containing Xp and bounded respectively by α- and β-curves. The differential
∂x has only two terms that correspond to Ap \ Bp and Bp \ Ap, and which appear with opposite
signs due to Lemma 4.6. Thence,

∂y = ±
(
U (p)
a U

(p)
b − U (p)

c U
(d)
d

)
x0

when p is a singular crossing and

∂y = ±
(
τU (p)

a − U (p)
c

)
x0

in case of a bivalent vertex, where τ = t appears only in case of trace vertices and τ = 1 otherwise.
Hence, all local relations hold in the homology.

The second kind of generators impose non-local relations on x0. For any connected coherent
cycle Z there are exactly two positive Maslov index one Whitney disks from xZ to x0 that avoid
X:

(48) φ1 = (RZ ∪
⋃

Xi∈Z

Bi) \
⋃

i>0

Ai and φ2 = (RZ ∪
⋃

Xi∈Z

Ai) \
⋃

i>0

Bi,

see [OS09, Figure 10]. Note that the connectivity of S is important for this to hold. By Lemma 4.7,

M̂(φi) = ±1, and M̂(φ1) + M̂(φ2) = 0 by Corollary 4.19. In our framework, the disks φ1 and

φ2 contribute (up to sign) towards ∂xZ respectively tw(Z)Uout(Z) and Uin(Z), where Uout(Z) (resp.
Uin(Z)) is the product of variables associated with edges going out of (resp. coming into) the (closed)
region RZ bounded by Z and w(Z) is the number of trace vertices in RZ . Hence,

∂xZ = ±
(
tw(Z)Uout(Z) − Uin(Z)

)
x0,

where the difference in parentheses matches NLγZ for t = q−2. Together with Lemma 5.7 this
implies that non-local relations hold in the homology.

Suppose now that S = U ⊔ S′, where S′ is connected and surrounded by the unknot U that
carries the basepoint ⋆. The same argument as above shows that the 0th homology coincides with

A(S) = Ã(S′). Together with Lemmata 5.8 and 5.9 this proves the general case. �

Choose now a braid diagram β̂ of a link. By applying Theorem 4.20 we can replace ĈFK (β̂)

with a homotopy equivalent complex C̃(β̂) modelled on the cube of resolutions from Section 3.1:

• a vertex corresponding to a full resolution S is decorated with ĈFK (S)⊗ LS,
• edges are decorated with zip and unzip maps,
• higher components of the differential, decorating diagonals in the cube, are possible.

The column filtration on this cube leads to a spectral sequence converging to ĤFK (β̂). When k is

q-complete, e.g. k = Z[q−1, q]], then H(ĈFK (S)⊗LS) is concentrated in homological degreee 0 by

Proposition 4.22 and the first page of the spectral sequence coincides with CAG(β̂). In particular,
the spectral sequence collapses on the second page.

Theorem 5.11. Suppose that β̂ is a braid diagram of a knot and let k = Z[q−1, q]] with t = q−2.
Then there is a quasi-isomorphism

ĈFK (β̂)
∼

−−→ CAG(β̂).

In particular, H(CAG(β̂)) ∼= ĤFK (β̂)⊗ k is a knot invariant.

Proof. The desired quasi-isomorphism is a composition of a sequence of homotopy equivalences from

Theorem 4.20, which replaces ĈFK (β̂) with a cube of complexes computed from full resolutions of

β̂, followed by an epimorphism onto CAG(β̂) given by

ĈFK (β̂I)⊗ L
β̂I

−→ H0(ĈFK (β̂I)⊗ L
β̂I
) ∼= A(β̂I)
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at each resolution β̂I . The projection on 0th homology is well-defined, because the canonical

generator x0 ∈ ĈFK (β̂I) has the maximal homological degree. It is a quasi-isomorphism, because
higher homology groups vanish, see Proposition 4.22. �

5.3. An identification with the original Gilmore complex. Choose a braid diagram β̂ of

a knot and its complete resolution β̂I . The original construction of the algebra A(β̂I) as described
in [OS09, Gil16] computes the Heegaard–Floer homology twisted by the set POS. This algebra,

denoted here by A′(β̂I), assumes β̂I is layered in the sense of Section 3.1 with n+1 levels, where n

is the number of crossings in β̂ (the extra level is the trace section) and it is generated like A(β̂I)

by thin edges of β̂I . The local relations, however, are twisted differently:

xc xa xc xa xc xa⋆

xc

xd

xa

xb

txa = xc xa = xc xa = 0 t(xa + xb) = xc + xd

t2xaxb = xcxd

and non-local relations, parametrized by coherent cycles Z in S, take the form

NL′Z = t|Z|xout(Z) − xin(Z),

where |Z| is a weighted counts of (non-trace) vertices in RZ : each (non-trace) bivalent vertex
contributes 1, whereas a singular crossing contributes 2. The form of local relations suggests
already an isomorphism between the two algebras.

Proposition 5.12. Let k = Z[t1/2, t−1/2] and set q = t−n/2, where n is the number of crossings in

β̂. Then there is an isomorphism of algebras

A′(β̂I) ∋ xα
∼=

−−→ t−n(α)xα ∈ A(β̂I),

where α is the edge of ω that contains the image of the semi-arc α in the resolution and n(α) is
the number of crossings in β to the left of α.

Proof of Proposition 5.12. Renormalize the basis of A′(β̂I) by setting x̃α := tn(α)xα. Clearly, the lo-
cal relations at non-trace vertices do not involve t anymore, whereas at a trace vertex the linear
relation xa = xc is replaced with x̃a = tnx̃c, that coincides with the quantum trace relation
x̃a = q−2x̃c. In particular, variables at both sides of a bivalent vertex other than the trace vertex
are identified.

It remains to show that the non-local relation NL′Z associated with a coherent cycle Z, when
rewritten in the new basis, takes the form (39) for γ = γZ a small push of Z. In other words,

the power of t must equal in, where i is the number of trace vertices in RZ . For that resolve β̂I into
a collection of concentric loops ℓ1, . . . , ℓk by replacing every singular crossing with two horizontal
lines, each with a bivalent vertex on it. The exponent of t in NL′Z counts then bivalent vertices
inside γZ .

Consider first a loop ℓr, the trace vertex of which is inside γZ . If it is entirely contained by γZ ,
then it contributes exactly n towards the power of t. Otherwise, each arc with s bivalent vertices
outside of γZ

γZ

α β
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lowers the contributions of the loop towards w(γZ) by s. However, the semi-arcs α and β containing
the left and right endpoints of the arc satisfy n(β) = n(α) + s, so that renormalizing the variables
increases the contribution back. Hence, in the renormalized basis, each such loop contributes
exactly n towards w(γZ).

Conversely, if the trace vertex of ℓr is not contained by γZ , then ℓr does not contribute towards
the power of t. Indeed, for every arc of ℓr with s vertices inside γZ

γZ

α β

and the left and right endpoints on semi-arcs α and β respectively, we have n(β)−n(α) = s. Hence,
renormalizing variables lowers the power of t by s, cancelling the contribution of the vertices from
the arc.

Hence, the power of t in NL′Z , when rewritten in the new basis, is equal to in as desired. �

5.4. A pseudo completion. In this section, we introduce a functor qAG that interpolates gl0-
homology and knot Floer homology. It comes from the observation that Theorem 5.11 relates
Gilmore’s construction to knot Floer homology when coefficients are Z[q−1, q]]. On the other hand,
the definition of gl0 homology can be “morally” thought of as Gilmore specialized at q = 1. The
functor qAG aims to take the best of these two incompatible worlds.

Coefficients over which chain complexes are considered will play an important role in this section.
We emphasize this importance by writing them systematically. Moreover, despite the construction
of qAG makes sense for any pointed annular web, we focus on the case of elementary webs.

Given an annular web ω, consider the map:

Qω : A(ω;Z[q, q−1]) −→ A(ω;Z[q−1, q]])

given by extending the scalars. It may not be injective. Define

qAG(ω) := A(ω;Z[q, q−1])
/
kerQω

and more generally qAG(ω;k) := qAG(ω) ⊗Z[q,q−1] k for any Z[q, q−1]-module k. Notice that in

qAG(ω) we kill every decoration x ∈ D(ω) that is annihilated in A(ω;Z[q, q−1]) by some nontrivial
polynomial p(q) ∈ Z[q, q−1]. Because the homomorphism Qω is natural with respect to actions of
foams, qAG(−;k) extends to a functor on AFoam⋆

q.

Lemma 5.13. If k is a PID and ω is an elementary pointed annular web, then qAG(ω;k) is a free
k-module of finite rank.

Proof. Notice first that qAG(ω;k) vanishes when ω is disconnected and is free of rank one when ω is
a chain of dumbbells, see Example 5.3. The thesis follows now from the functoriality of qAG(−;k)
and Proposition 2.25, because a submodule of a finitely generated free module over a PID is finitely
generated and torsion-free, hence free. �

Using the cube of resolutions approach one extends qAG to braid diagrams and we write

qAGH (β̂;k) for the homology of the corresponding complex. This complex plays a central in
our subsequent constructions. We simplify the notation to AG and AGH respectively when q = 1.

While it can be shown that qAGH (β̂;k) is a braid invariant that is preserved under stabilization,
checking the first Markov move (conjugacy) is challenging.

Conjecture 1. If k is a field of characteristic 0, then qAGH is a knot invariant for any q.

As a direct consequence of the construction, qAG(ω) can be identified with a Z[q, q−1]-subspace
of A(ω;Z[q−1, q]]) of maximal rank. This observation leads immediately to the following result.



A PROOF OF DUNFIELD–GUKOV–RASMUSSEN CONJECTURE 51

Proposition 5.14. For any braid closure β̂, qAG(β̂;Z[q−1, q]]) and CAG(β̂;Z[q−1, q]]) are isomor-

phic complexes of graded Z[q−1, q]]-modules. In particular, qAG(β̂;Z[q−1, q]]) is quasi-isomorphic

to ĈFK (β̂)⊗ Z[q−1, q]] when β̂ is a knot.

Proof. The map qAG(ω,Z[q, q−1]) → A(ω,Z[q−1, q]]) induced by the inclusion of the coefficients
is injective, due to the definition of qAG, and it becomes an isomorphism after tensoring with
Z[q−1, q]] over Z[q, q−1]. The last statement follows from Theorem 5.11. �

Specializing the complex CAG(β̂) at q = 1 does not recover the gl0-complex, e.g. A(ω) may not
vanish for a disconnected web ω. The situation is different for qAG.

Proposition 5.15. For any elementary pointed annular web ω there is an isomorphism AG(ω;k) ∼=
S0(ω;k) that intertwines the action of foams. In particular, AG(β̂;k) and Cgl0(β̂;k) are naturally
isomorphic as complexes of graded k-modules

Proof. Both AG(ω;k) and S0(ω;k) are quotients of the Soergel space B(ω) of the web ω. We
claim that the identity on B(ω) induces the desired isomorphism. Due to functoriality of both
constructions and Proposition 2.25 it is enough to check the claim for basic elementary webs.

This is clear when ω has more than one component, because in this case both spaces are zero.
Otherwise ω is either a single circle or a chain of dumbbells and in each case both spaces are freely
generated by the empty decoration, see Theorem 3.11, Examples 5.2 and 5.3. �

Proposition A from the introduction is an immediate corollary of the above result.

Proposition A. The homology theories AGH and Hgl0 coincide. Hence, AGH is a knot invariant
if k is a field.

Proof. The first statement follows from applying Proposition 5.15 to each vertex in the cube of
resolutions. Since the gl0 homology is a knot invariant when k is a field, then so is AGH. �

Remark 5.16. Another consequence of Propositon 5.15 is that AG(ω) is a free k-module for any
elementary pointed web ω and any ring k, because S0(ω;k) is free. This strengthens Lemma 5.13
when q = 1.

5.5. The spectral sequence. In this short section we establish the main result of the paper.

The idea is to apply to qAGH (β̂) the (q 7→ 1) Bockstein spectral sequence, discussed in details in
Appendix A. For this purpose we fix an arbitrary field K and work over a PID K[q, q−1], where we
can specialize q = 1.

Theorem B. Assume that K is a field and K is a knot represented by a braid closure β̂. Then

the (q 7→ 1) Bockstein spectral sequence applied to qAG(β̂;K[q, q−1]) has Hgl0(K;K) as its first
page and converges after finitely many steps. The last page is (non-canonically) isomorphic to

ĤFK (K;K).

Proof. The thesis follows directly from Proposition A.7, which we can apply thanks to Lemma 5.13.

Indeed it states that the (q 7→ 1) Bockstein spectral sequence has AGH (β̂;K) on the first page and

converges to the free part of qAGH (β̂;K[q−1, q]) tensored with K. The former is isomorphic to

Hgl0(K,K) by Proposition A and we identify the latter with ĤFK (K,K) as follows.
Because K[q−1, q]] contains the field of fractions of K[q, q−1], the universal coefficient theorem

and Proposition 5.14 imply that the homology groups of qAG(β̂,K[q, q−1]) and CAG(β̂,K[q−1, q]])

have the same rank. On the other hand, we know from Theorem 5.11 that H(CAG(β̂,K[q−1, q]])) is

isomorphic to ĤFK (β̂)⊗K[q−1, q]]. Hence, the free part of qAGH (β̂,K[q, q−1]) has the same rank

as ĤFK (β̂)⊗K[q, q−1] and we conclude by tensoring both sides with K. �
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If the characteristic of K is 0, then we can combine this spectral sequence with the one from
Theorem 3.11, establishing the Dunfield–Gukov–Rasmussen Conjecture.

Theorem C (Dunfield–Gukov–Rasmussen Conjecture). For any knot K, there exists a spectral

sequence from HHH red to ĤFK with coefficients in any field of characteristic 0.

Appendix A. On Bockstein spectral sequences

A.1. Limits of spectral sequences. This short section is a survey of [McC01, Chapter 3]. In
what follows, we consider decreasing filtrations of modules and chain complexes, not necessary
bounded. More explicitly, a filtration of a k-module M is a sequence (Fn)n∈Z of submodules of M
satisfying

Fn ⊇ Fn+1 for all n ∈ Z.

Its associated graded module gr•(M) is defined as the sequence of quotients

grn(M) = Fn/Fn+1 for n ∈ Z.

For a chain complex (C, d) it is understood that the submodules Fn are subcomplexes. In such case
each chain group Ci is filtered by FnCi := Fn∩Ci and d(F

nCi) ⊆ FnCi+1 for all i, n ∈ Z. There is
also an associated filtration on the homology with FnH(C, d), defined as the image of the natural
map H(Fn, d) → H(C, d).

With every filtered chain complex (C, d, F ) there is an associated spectral sequence {Er}r∈N with
the first page

En,p−n
1 = Hp(grn(C)).

We say that the spectral sequence converges to the homology of the filtered chain complex (C, d, F )
if the ∞-page is directly related to the filtration of H(C, d) by

En,p−n
∞ = grnHp(C, d).

By [McC01, Theorem 3.2] this is the case if the filtered chain complex (C, d, F ) is exhaustive,
i.e.

⋃
n F

nC = C, and weakly convergent. The later holds for instance when
⋂

n F
nC = 0; for

the general definition see [McC01, Definition 3.1].

Example A.1. Consider graded filtered k-complexes (C, d, F ) and (C ⊕ k, d ⊕ 0, F̃ ) with F̃n =
Fn ⊕ k. The associated graded of these complexes coincide, so that they induce the same exact
sequence. We deduce that the spectral sequence converges simultaneously to both H(C, d) and
H(C, d) ⊕ k.

To assure the uniqueness of the limit of a spectral sequence associated with (C, d, F ), the filtration
needs to be Hausdorff, that is weakly convergent and

⋂

n∈Z

FnH(C, d) = 0.

Note that the second filtration in Example A.1 is not Hausdorff. An important source of exhaustive
and Hausdorff filtrations is provided by completions of filtered chain complexes.

Recall that the completion of a filtered module (M,F ) is the inverse limit

M̂ := lim
←s

M/F s

together with the filtration

F̂n := lim
←s

Fn/Fn+s.

The filtered module (M̂, F̂ ) is exhaustive and Hausdorff by [McC01, Prop. 3.12]. Finally, given

a map f : (M,FM ) → (N,FN ) of exhaustive filtered modules, the induced map f̂ : M̂ → N̂ is
an isomorphism if and only if grf : grM → grN is an isomorphism [McC01, Prop. 3.14]. This
implies the following important statement (compare [McC01, Cor. 3.15]).
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Theorem A.2. Assume that {fr : Er → E′r}r≥0 is a morphism of spectral sequences Er and E′r
that converges to (M,FM ) and (N,FN ) respectively. If fn is an isomorphism for some n, then f∞
induces an isomorphism of filtered modules (M̂, F̂M ) and (N̂ , F̂N ).

Example A.3. Consider the module Z[t] filtered by powers of t. Its associated graded

grZ[t] =
⊕

n∈N

tnZ[t]

tn+1Z[t]
=
⊕

n∈N

Z{tn}

can be identified with Z[t] as an abelian group (note that the action of t annihilates grZ[t]), whereas
the completion is exactly Z[[t]]. Consider M := Z[t]/(1 − tp) for some p ∈ Z[t] with the induced
filtration. Then FnM = M for any n, because t is invertible in M. This forces grnM = 0 for all

n ≥ 0 and M̂ = 0 as a result. Note that the filtration is not weakly convergent and also M [[t]] = 0.

Example A.4. Consider the ring of Laurent polynomials Z[t, t−1] as a Z[t]-module and let Fn

by generated by tn for n ∈ Z. Contrary to the previous case, this filtration is not bounded from
below. The associated graded can be identified as an abelian group with Z[t, t−1] as in the previous
example and the completion

Ẑ[t, t−1] = lim
←s

Z[t−1, t]

tsZ[t]
= Z[t−1, t]]

is filtered by F̂n = tnZ[[t]] for t ∈ Z. Note that the filtration is exhaustive and weakly convergent.
As before, consider M := Z[t, t−1]/(1− tp) for some polynomial p ∈ Z[t] with the induced filtration.

Again, t is invertible in M, so that both grM and M̂ vanish.

A.2. The mod-p Bockstein spectral sequence. The aim of this section is to recall the classical
Bockstein sequence in the context of Z-modules, following [May09]. This is generalized in section
A.3 to the case of modules over Laurent polynomials and specializing the value of the formal
variable.

Let C be a chain complex of Z-modules and p a prime number. The short exact sequence

0 −→ Z
·p

−→ Z
π

−→ Z/pZ −→ 0

induces a long exact sequence of homology groups13

. . .
∂

−−→ H•(C;Z)
H(·p)
−−−−→ H•(C;Z)

H(π)
−−−→ H•(C;Z/pZ)

∂
−−→ H•+1(C;Z)

H(·p)
−−−−→ . . .

which can be thought of as an exact triangle

H(C;Z) H(C;Z)

H(C;Z/pZ)

H(·p)

H(π)∂

and described in terms of exact couples as we explain below.
Recall from [Mas52] that an exact couple is a tuple (A,B, f, g, h) consisting of objects A and

B from an abelian category and morphisms f : A → A, g : A → B and h : B → A satisfying
im f = ker g, im g = ker h and imh = ker f. Defining

• A′ = im f,
• B′ = ker(g ◦ h)/ im(g ◦ h),
• f ′ : A′ → A′ as the restriction of f to A′,
• h′ : B′ → A′ as induced by h, and

13Recall that for us a differential in a chain complex has degree +1, i.e. it increases the homological degree.
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• g′ : A′ → B′ by declaring that a′ = f(a) ∈ A′ is mapped on g(a′) = g(a) ∈ B′

yields another exact couple (A′, B′, f ′, g′, h′). Inductively one constructs a sequence of exact couples

(A(n), B(n), f (n), g(n), h(n))n∈N and checks that (B(n), g(n) ◦f (n)) is a spectral sequence14. The Bock-
stein spetral sequence arises from the exact couple

(H(C;Z),H(C;Z/pZ),H(·p),H(π), ∂).

Example A.5. Consider the chain complex C = Z
·pk
−→ Z for some k ≥ 1. The first exact couple

at stake is:

Z/pkZ Z/pkZ

Z/pZ⊕ Z/pZ

·p

(
0
1

)(
pk−1 0

) .

In general, for 1 ≤ i ≤ k, the ith exact couple is given by:

Z/pk+1−iZ Z/pk+1−iZ

Z/pZ⊕ Z/pZ

·p

(
0
1

)(
pk−i 0

)

and finally the (k + 1)-st exact couple is identically 0.

Proposition A.6. The first page of the Bockstein spectral sequence of a chain complex C of abelian
groups is H(C;Z/pZ). If the chain complex C is free and finitely generated, then the Bockstein
spectral sequence converges in finitely many steps and the infinite page is canonically isomorphic to
the free part of H(C;Z) tensored with Z/pZ.

Sketch of the proof. This is a very classical result and the proof is rather elementary. First, using
Smith normal form of differentials, one obtains that every free and finitely generated complex of
Z-modules is a direct sum of shifted complexes of the form

(1) 0 −→ Z −→ 0,

(2) 0 −→ Z
·r

−→ Z −→ 0 with r an integer coprime with p,

(3) 0 −→ Z
·pkr
−−−→ Z −→ 0 with k ≥ 1 and r an integer coprime with p.

In case (1), the spectral sequence converges immediately and its infinite page is equal to Z/pZ. In
case (2), the spectral sequence converges immediately and its infinite page is equal to 0. Case (3)
is dealt with in Example A.5: it converges to 0 at the (k + 1)-st page. �

A.3. The (q 7→ 1) Bockstein sequence. Let K be a field and L := K[q, q−1] be the ring of
Laurent polynomial over K. Note that L is a principal ideal domain (PID), so that Smith’s normal
form result applies. We endow K with an L-module structure by letting q act by 1. In other words,
we have an exact sequence of L-modules

0 −→ L
·(q−1)
−−−−→ L

q 7→1
−−−→ K −→ 0.

Let C be a chain complex of L-modules. Just like in subsection A.2, one can use the induced long
exact sequence of homology to construct an exact couple

(H(C;L),H(C;K),H(·(q − 1)),H(q 7→ 1), ∂).

This exact couple induces a spectral sequence, which we call the (q 7→ 1) Bockstein spectral sequence.

14Not necessarily bigraded in general.
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Proposition A.7. The first page of the (q 7→ 1) Bockstein spectral sequence of a chain complex C
of L-modules is H(C;K). If the chain complex C is free and finitely generated, then the (q 7→ 1)
Bockstein spectral sequence converges in finitely many steps the infinite page is canonically isomor-
phic to the free part of H(C;L) tensored with K.

Sketch of the proof. The proof follows the same line as the one of Proposition A.6. Every free and
finitely generated complex of L-module is a direct sum of shifted complexes of the form

(1) 0 −→ L −→ 0,

(2) 0 −→ L
·p(q)
−−−→ L −→ 0 with p(q) a polynomial coprime with q − 1, or

(3) 0 −→ L
·(q−1)kp(q)
−−−−−−−→ L −→ 0 with k ≥ 1 and p(q) a polynomial coprime with q − 1.

In case (1), the spectral sequence converges immediately and its infinite page is equal to K. In case
(2), the spectral sequence converges immediately and its infinite page is equal to 0. Case (3) is
similar to Example A.5. The first exact couple at stake is

L/〈(q − 1)kp(q)〉 L/〈(q − 1)kp(q)〉

K⊕K

·(q − 1)

(
0
1

)(
(q − 1)k−1p(q) 0

) .

In general, for 1 ≤ i ≤ k, the ith exact couple is given by

L/〈(q − 1)k+1−ip(q)〉 L/〈(q − 1)k+1−ip(q)〉

K⊕K

·(q − 1)

(
0
1

)(
(q − 1)k−ip(q) 0

) .

Finally, the (k+ 1)-st exact couple is identically 0. Hence, in all three cases the (q 7→ 1) Bockstein
spectral sequence converges to the free part of H(C;L) tensored with K as desired. �

Appendix B. Cyclicity of the quantum Hochschild homology

For this section we fix a graded algebra A and consider its quantum Hochschild complex qCH •(A)
with the differential denoted by ∂. The complex arises actually from a simplicial module,15 which
means that each chain group qCH n(A) admits two families of homomorphisms: the family of face
maps {di : Mn → Mn−1}06i6n and of degeneracy maps {sj : Mn → Mn+1}06j6n, which satisfy
the equalities

didj = dj−1di for i < j,(49)

sisj = sjsi−1 for i > j,(50)

disj =





sj−1di for i < j,

id for i = j, j + 1,

sjdi−1 for i > j + 1.

(51)

Indeed, the face maps are the components of the quantum Hochschild differential,

di(a0 ⊗ · · · ⊗ an) :=





a0a1 ⊗ a2 ⊗ · · · ⊗ an if i = 0,

a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an if 0 < i < n,

q−|an|ana0 ⊗ a1 ⊗ · · · ⊗ an−1 if i = n,

15For more details about simplicial and cyclic module see [Lod98].
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whereas the degeracy map sj inserts 1 ∈ A after j-th factor:

sj(a0 ⊗ · · · ⊗ an) := a0 ⊗ · · · ⊗ aj ⊗ 1⊗ aj+1 ⊗ · · · ⊗ an.

In addition to that, there is a family of component-wise endomorphisms

tn(a0 ⊗ · · · ⊗ an) := q−|an|an ⊗ a0 ⊗ · · · ⊗ an−1,

which satisfy the equalities

(52) ditn =

{
dn for i = 0,

tn−1di−1 for i > 0,
sjtn =

{
t2n+1sn for j = 0,

tn+1sj−1 for j > 0.

Consider the endmorphism T of qCH •(A) defined by Tn := tn+1
n . It is the identity map when q = 1,

which means that the classing Hochschild homology is a cyclic module, but in general case it scales
a homogeneous degree d Hochschild chain by qd. However, it is not far from the identity map.

Lemma B.1. The endomorphism T is chain homotopic to the identity map.

Proof. Define σn := tn+1sn, so that

(53) diσn =





id for i = 0,

σn−1di−1 for 0 < i < n,

tn for i = n.

We claim that hn =
∑n

j=0(−1)jnσnt
j
n is a desired chain homotopy. First, write

hn−1∂n =
n−1∑

j=0

n∑

i=0

(−1)i+j(n−1)σn−1t
j
n−1di(54)

∂n+1hn =
n+1∑

i=0

n∑

j=0

(−1)i+jndiσnt
j
n(55)

and notice the following cancellation in (55):

(56) (−1)n+1+jndn+1σnt
j
n = −(−1)(j+1)ntj+1

n = −(−1)(j+1)nd0σnt
j+1
n .

Hence,
n∑

j=0

(−1)jn(d0 − (−1)ndn+1)σnt
j
n = d0σn − dn+1σnt

n
n = id − tn+1

n .(57)

Put the remaining terms of ∂h as well as the terms of h∂ in the lexicographic order with respect
to i then j, to create n(n+ 1) pairs:

(58)

d1σn < d2σn < · · · < dnσn < d1σntn < d2σntn < · · ·

l l l l l

σn−1d0 < σn−1d1 < · · · < σn−1dn−1 < σn−1dn < σn−1tn−1d0 < · · ·

It is enough to show that none of the pair contributes to ∂h+ h∂.

The term di+1σnt
j
n is at the position jn+ i+ 1 in the upper sequence of (58) and it appears in

(55) with sign (−1)jn+i+1. We compute

(59) di+1σnt
j
n = σn−1dit

j
n =

{
σn−1t

j−1
n−1di−j+n+1 if 0 6 i < j,

σn−1t
j
n−1di−j if j 6 i < n,

obtaining a term at the position jn+ i+1 in the lower sequence of (58), which appears in (54) with

sign (−1)j(n−1)+i−j = (−1)jn+i. Hence, the two terms cancel each other and the thesis follows. �
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We are now ready to prove the statement about quantum Hochschild homology for a polynomial
algebra Rk. In fact, Proposition 2.13 is a special case of the following result.

Proposition B.2. Suppose that A is supported in nonnegative degrees and that 1 − qd is invert-
ible for d 6= 0. Then the inclusion A0 ⊂ A induces a homotopy equivalence of chain complexes
qCH•(A0) → qCH•(A). In particular, qHH•(A)

∼= qHH•(A0).

Proof. Let T be the endomorphism of qCH•(A) that maps a homogeneous chain c to q|c|c. The map
T − id is nullhomotopic by Lemma B.1, so that the subcomplex generated by chains of positive
degree is contractible, whereas the degree 0 subcomplex coinsides with qCH•(A0). �

Appendix C. Computations of gl0 homology

This section provides details of computation of the gl0 homology of the two trefoil knots, the figure
eight knot and the (5, 2)-torus knot. These computation is used in the introduction to prove
detection results.

C.1. Trefoils. We see the right-handed (resp. left-handed) trefoil 31 (resp. 3̄1) as the closure of the
braid σ31 (resp. σ−31 ) in the braid group on two strands. We start with 31. Following the definition

of Hgl0 , we consider the hypercube given on Figure 23. On this figure bases of some gl0-state
spaces are given. The fact that they are indeed basis follows directly from the digon relation and
Theorem 3.11 (4).

2 2 2⋆

{1, X1}{1, X2}

q−1 2 2⋆

{1b, Xb}

q−1 2 2⋆

{1a, Xa}

q−1 2 2⋆

{1c, Xc}

q−2
2⋆

q−2
2⋆

q−2
2⋆

q−3
⋆

Graded
rank

q2 + 2 + q−2

3(1 + q−2)

3q−2

0

Figure 23. The hypercube for computing the gl0 homology of the right-handed
trefoil. On the upper four diagrams their homogeneous bases are given schematically
in blue. The diagram on top (resp. bottom) is in homological degree 0 (resp. 3) and
all maps between diagrams are given by unzips. A dot at the beginning of an arrow
indicates the multiplication by (−1) in the differential.
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In the bases given in Figure 23, the two non-trivial differentials are given by:

1 X1 X2 X1X2





1 0 0 0 1a
1 0 0 0 1b
1 0 0 0 1c
0 0 1 0 Xa

0 1 1 0 Xb

0 1 0 0 Xc

and

1a 1b 1c Xa Xb Xc( )−1 1 0 0 0 0
−1 0 1 0 0 0
0 −1 1 0 0 0

Hence, the Poincaré polynomial of Hgl0(31) with coefficients in either F or Q is equal to:

t0q2 + tq0 + t2q−2.

For the left-handed trefoil all arrows in the hypercube are reversed whereas the homological
degree and the q-grading shifts are opposite to that of Figure 23. The matrices of the two non-
trivials differentials are







0 0 0 1a
0 0 0 1b
0 0 0 1c
−1 −1 0 Xa

1 0 −1 Xb

0 1 1 Xc

and

1a 1b 1c Xa Xb Xc





0 0 0 0 0 0 1
1 1 0 0 0 0 X1

0 1 1 0 0 0 X2

0 0 0 1 1 1 X1X2

.

Hence, the Poincaré polynomial of Hgl0(3̄1) with coefficients in either F or Q is equal to:

t−2q2 + t−1q0 + t0q−2.

For a comparison we give the Poincaré polynomials of the reduced triply graded homology of the
trefoil knots below:

P31(t, a, q) = t2a−2q−2 + t1a−4q0 + t0a−2q2,

P3̄1(t, a, q) = t−2a2q2 + t−1a4q0 + t0a2q−2.

C.2. Figure-eight knot. We consider the figure-eight knot 41 as the closure of the braid σ1σ
−1
2 σ1σ

−1
2

on three strands. Following the definition of Hgl0 we build the hypercube given on Figure 24 (dis-
connected diagrams are skipped, because the associated spaces vanishes). One could compute
explicit bases for all diagrams. However, this is not necessary. Over F or Q one easily obtains
that the graded rank of Hgl0(41) in homological degrees −1 and 1 is respectively q2 and q−2. Us-
ing the Euler characteristic argument, we conclude that the Poincaré polynomial of Hgl0(41) with
coefficients in either F or Q is equal to:

t−1q2 + 3t0q0 + t1q−2.

For comparison we give the Poincaré polynomials of the reduced triply graded homology of the figure-
eight knot:

P41(t, a, q) = t0a2q0 + t1a0q−2 + t0a0q0 + t−1a0q2 + t0a−2q0
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q

2 2

2

⋆

q

2

2

2⋆

2

2

⋆

2

2

⋆

2

2⋆

2

2

⋆

2

2

2

2

⋆

q−1
2

2

2

⋆

q−1

2

2 2

⋆

Graded
rank

2(1 + q2)

q−2 + 7 + q2

2(1 + q−2)

Figure 24. The hypercube for computing the gl0 homology of the figure-eight knot.
The two diagrams on top (resp. bottom) are in homological degree −1 (resp. 1).

C.3. (5,2)-torus knot. The (5,2)-torus knot 51 can be presented as the closure of the braid σ51 on
two strands. Computing its homology directly from the hypercube of resolutions is a bit tedious,
since it requires a priori to compute 32 state spaces (which are, however, quite simple). Fortunately,
the complex of Soergel bimodules associated with σ5 is homotopic (see [Kho07]) to:

1

2

1

1 2 1

1

2

1

1 2 1

1

2

1

1 2 1

1

2

1

1 2 1

1

2

1

1 2 1

1 1

1 1x− y′ x− x′ x− y′ x− x′ unzip

where x and y act on the left and x′ and y′ on the right. We ignore homological grading shifts for
the moment. In this setting all arrows except the last one have degree 2, the last one has degree 1.

We can use this simplification for computing gl0 homology. In that context, all spaces have
dimension 1, the last one has dimension 0 and all maps are zero. Taking care of the (q, t)-grading,
we obtain that the Poincaré polynomial for Hgl0(51) with coefficients in either F or Q is equal to:

t0q4 + t1q2 + t2q0 + t3q−2 + t4q−4.

For comparison, here is the Poincaré polynomials of the reduced triply graded homology:

P51(t, a, q) = t0a−4q4 + t1a−6q2 + t2a−4q0 + t3a−6q−2 + t4a−4q−4.
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