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Abstract. In this paper we refine our recently constructed invariants of 4-
dimensional 2-handlebodies up to 2-deformations. More precisely, we define
invariants of pairs of the form (W,ω), where W is a 4-dimensional 2-handle-
body, ω is a relative cohomology class in H2(W,∂W ;G), and G is an abelian
group. The algebraic input required for this construction is a unimodular
ribbon Hopf G-coalgebra. We study these refined invariants for the restricted
quantum group U = Uqsl2 at a root of unity q of even order, and for its
braided extension Ũ = Ũqsl2, which fits in this framework for G = Z/2Z, and
we relate them to our original invariant. We deduce decomposition formulas
for the original invariants in terms of the refined ones, generalizing splittings of
the Witten–Reshetikhin–Turaev invariants with respect to spin structures and
cohomology classes. Moreover, we identify our non-refined invariant associated
with the small quantum group Ū = Ūqsl2 at a root of unity q whose order is
divisible by 4 with the refined one associated with the restricted quantum
group U for the trivial cohomology class ω = 0.

1. Introduction

The central object of study in this paper are 4-dimensional 2-handlebodies, which
are smooth 4-manifolds obtained from the 4-ball by attaching finitely many 1-han-
dles and 2-handles. These handlebodies are usually represented by Kirby diagrams,
with dotted and undotted components corresponding to the attachment of 1-handles
and 2-handles, respectively. We do not consider these 4-manifolds up to diffeomor-
phism, but rather up to a more subtle equivalence relation called 2-deformation,
or 2-equivalence. Recall that every diffeomorphism between 4-dimensional handle-
bodies can be realized by a sequence of isotopies of attaching maps, handle slides,
and creation/removal of canceling pairs of handles of index 0/1, 1/2, 2/3, and
3/4. By definition, 2-deformations are those diffeomorphisms that do not intro-
duce 3-handles and 4-handles, that is, creation/removal of 2/3 and 3/4 pairs are
forbidden. It remains open whether 2-deformations form a proper subclass of the
class of diffeomorphisms. This question is closely related to a deep open problem
in combinatorial group theory, the Andrew–Curtis conjecture.

In [BD21] we defined a wide class of new invariants of 4-dimensional 2-handle-
bodies up to 2-deformations. More precisely, starting from any unimodular ribbon
category C, we constructed a braided monoidal functor J4, with source the category
4HB of 4-dimensional 2-handlebodies, and target C. This can be considered as a
relative1 of a 4-dimensional Topological Quantum Field Theory (TQFT). By a
result of Bobtcheva and Piergallini [BP11], 4HB is generated by a single 4-modular
Hopf algebra object (the solid torus). For a unimodular ribbon category C, we
proved that the end

E =

∫
X∈C

X ⊗X∗

1In 4HB, morphisms are not cobordisms, the monoidal structure is not induced by disjoint
union, and the braiding is not symmetric.
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is always a 4-modular Hopf algebra object in C, and therefore the assignment of E
to the generator of 4HB can always be extended to a functor J4 : 4HB → C, see
[BD21, Theorem 1.1]. Notice that 4HB comes equipped with a natural boundary
functor ∂ with target the category 3Cob of connected 3-dimensional cobordisms
with connected boundary. This category was intensively studied by Crane and
Yetter, who realized that the punctured torus admits the structure of a braided
Hopf algebra [CY94], by Kerler, who found a set of generating morphisms and a
long list of elegant and conceptual relations among them [Ke01], and by Habiro, who
announced a complete algebraic presentation [As11]. The functor ∂ : 4HB→ 3Cob
is compatible with the algebraic structure discovered in [BP11], and sends the 4-
modular Hopf algebra generator of 4HB (the solid torus) to a 3-modular Hopf
algebra generator of 3Cob (the torus) whose algebraic structure is a quotient of the
previous one by two additional relations.

When C is factorizable (that is, when it has no non-trivial transparent objects,
or equivalently when the Hopf copairing on the end is non-degenerate), we showed
that J4 factors as J3◦∂ for a functor J3 : 3Cob→ C, see [BD21, Theorem 1.2]. This
explains why, in all previous attempts at generalizing quantum invariants of 3-man-
ifolds (based on factorizable ribbon categories) to 4-manifolds, the result always
depended exclusively on 3-dimensional boundaries (together with the signature,
since J3 is affected by the usual framing anomaly).

In order to detect 4-dimensional 2-handlebodies that are diffeomorphic but not
equivalent under 2-deformations, the functor J4 needs to vanish against S2 ×D2.
Indeed, our invariant is multiplicative under boundary connected sum, and a finite
number of stabilizations by S2×D2 is sufficient to turn every pair of diffeomorphic
4-dimensional 2-handlebodies into a 2-equivalent pair. Setting C = H-mod for a
unimodular ribbon Hopf algebra H, we obtained that J4(S2 ×D2) is an invertible
scalar if and only if H is cosemisimple (meaning H∗ is semisimple). By observing
that the small quantum group Ū = Ūqsl2 at a root of unity q of order r ≡ 0 (mod 4)
is neither factorizable nor (co)semisimple, we concluded that the corresponding
invariant has the potential of detecting interesting 4-dimensional phenomena.

This paper is devoted to the study of these invariants. More precisely, we inves-
tigate the scalars assigned by J4 to endomorphisms of the tensor unit (the 3-ball) in
4HB in the case C = H-mod. In order to simplify the notation, we will denote the
resulting invariant, which was first constructed by Bobtcheva and Messia [BM02],
by JH . Notice that, in this case, the end E can be explicitly described as the
adjoint representation of H, which determines a 4-modular Hopf algebra object in
H-mod denoted HHHHHHHHHHHHHHHHH, and called the transmutation of H. As a first step, we extend
the definition of JH by allowing H to be a unimodular ribbon Hopf G-coalgebra,
see Section 2. In this case, we construct an invariant of pairs (W,ω), where W is a
4-dimensional 2-handlebody, and ω is a relative cohomology class in H2(W,∂W ;G),
see Theorem 3.1.

As the main motivating example for this construction, we discuss in detail the
restricted quantum group U = Uqsl2 at a root of unity q of even order 2p, which
is a unimodular Hopf Z/2Z-coalgebra that contains the small quantum group Ū
as its degree zero part. The former is not ribbon, but admits a ribbon extension
Ũ = Ũqsl2. However, U is factorizable, while Ũ is not. The adjoint representa-
tion of U is closed under the adjoint action of Ũ , and thus determines an object
in Ũ -mod. This object admits a transmutation, denoted UUUUUUUUUUUUUUUUU , which provides a 4-
modular Hopf algebra in Ũ -mod, as established in Proposition 5.3. Thanks to
[BD21, Theorem 1.2], the corresponding invariant, denoted JU , only depends on
the 3-dimensional boundary and signature of 4-dimensional 2-handlebodies, see
Corollary 5.4. Furthermore, the refined invariant associated with Ũ can be actually
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computed entirely inside U , as proved in Proposition 6.1, and deserves therefore to
be denoted JU too.

In Section 8 we establish a few decomposition formulas for both the refined and
the non-refined invariant JU . The precise form of these decomposition formulas
depends on the arithmetic properties of the order 2p of the root of unity q. When
p ≡ 0 (mod 4), we show that U can be used to define an invariant of 3-manifolds
equipped with spin structures, which is always denoted JU , and that

JU (W,ω) = λ(v−)σ(W )
∑

s∈S(∂W,ω)

JU (∂W, s),

where S(∂W,ω) is the set of spin structures s on ∂W with second relative Stiefel–
Whitney class w2(W, s) = ω, where σ(W ) is the signature of W , and where λ and
v− are the left integral and the inverse ribbon element of U respectively. For the
non-refined invariant, we obtain

JU (W ) = λ(v−)σ(W )
∑

s∈S(∂W )

JU (∂W, s),

where S(∂W ) is the set of all spin structures s on ∂W . This result generalizes the
well-known decomposition of the Witten–Reshetikhin–Turaev (WRT) invariants in
terms of spin structures [Bl92, Be98]. When p ≡ 2 (mod 4), the picture is similar,
although this time U can be used to define an invariant of 3-manifolds equipped
with first cohomology classes with Z/2Z-coefficients, and

JU (W,ω) = λ(v−)σ(W )
∑

ϕ∈H(∂W,ω)

JU (∂W,ϕ),

where H(∂W,ω) is the set of cohomology classes ϕ in H1(∂W ;Z/2Z) satisfying
δ∗(ϕ) = ω for the coboundary homomorphism

δ∗ : H1(∂W ;Z/2Z)→ H2(W,∂W ;Z/2Z)

coming from the long exact sequence of the pair (W,∂W ) in cohomology with
Z/2Z-coefficients. Again, for the non-refined invariant, we obtain

JU (W ) = λ(v−)σ(W )
∑

ϕ∈H(∂W )

JU (∂W,ϕ),

where H(∂W ) = H1(∂W ;Z/2Z), compare with [Be98] for the analogous decompo-
sition of the WRT invariants. This is proved in Theorem 8.1, see also Remark 8.2.

In addition, we show in Proposition 7.1 that, when the cohomology class is taken
to be ω = 0, the refined invariant JU associated with the restricted quantum group
U recovers the non-refined invariant JŪ associated with the small quantum group
Ū . In other words, we have

JŪ (W ) = JU (W, 0).

Using our first decomposition formula, we deduce that, for p ≡ 0 (mod 4), and for
W a non-spin 4-manifold, we have

JŪ (W ) = 0,

because in this case S(∂W, 0) = ∅, and so JU (W, 0) = 0.
These results imply that the scalar invariant JŪ essentially depends on 3-dimen-

sional boundaries, and cannot detect any truly 4-dimensional phenomenon beyond
the signature, the Euler characteristic (see Appendix A), and the spin status of
4-dimensional 2-handlebodies. This happens because the small quantum group
Ū is a finite index Hopf subalgebra of a factorizable Hopf algebra, the restricted
quantum group U . We expect the invariant to behave similarly for other quantum
groups, such as those discussed in [LO16]. We remark however two interesting
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possibilities going forward: first of all, the functor J4 : 4HB → Ū -mod seems to
be more sensitive and rich than its underlying scalar invariant, as it truly manages
to distinguish 1-handles from 2-handles in the non-factorizable case. Furthermore,
the question of finding non-trivial central elements that could be used to deform
the scalar invariant JŪ as in [BM02, Theorem 2.14] remains wide open. More
generally, the same holds in the quest for other 4-modular Hopf algebras that could
be sensitive to 4-dimensional topology.

Acknowledgments. Our work was supported by the National Center of Compe-
tence in Research (NCCR) SwissMAP of the Swiss National Science Foundation
(SNSF).

2. Hopf group-coalgebras

In this section, we recall the definition of Hopf group-coalgebras, as introduced
by Turaev [Tu10]. Let G be an abelian group. Following [Vi00, GHP20], a Hopf
G-coalgebra is a family H = {Hα | α ∈ G} of vector spaces over a field k equipped
with:

· a family µ = {µα : Hα ⊗Hα → Hα | α ∈ G} of products;
· a family η = {ηα : k→ Hα | α ∈ G} of units;
· a family ∆ = {∆α,β : Hα+β → Hα ⊗Hβ | α, β ∈ G} of coproducts;
· a counit ε0 : H0 → k;
· a family S = {Sα : Hα → H−α | α ∈ G} of antipodes.

These data satisfy:
(1) µα ◦ (µα ⊗ idHα) = µα ◦ (idHα ⊗ µα) for every α ∈ G;
(2) µα ◦ (ηα ⊗ idHα) = idHα = µα ◦ (idHα ⊗ ηα) for every α ∈ G;
(3) (∆α,β ⊗ idHγ ) ◦∆α+β,γ = (idHα ⊗∆β,γ) ◦∆α,β+γ for all α, β, γ ∈ G;
(4) (ε0 ⊗ idHα) ◦∆0,α = idHα = (idHα ⊗ ε0) ◦∆α,0 for every α ∈ G;
(5) ∆α,β ◦ µα+β = (µα ⊗ µβ) ◦ (idHα ⊗ τHβ ,Hα ⊗ idHβ ) ◦ (∆α,β ⊗∆α,β) for all

α, β ∈ G, where τHβ ,Hα : Hβ⊗Hα → Hα⊗Hβ is the standard transposition;
(6) ε0 ◦ µ0 = ε0 ⊗ ε0;
(7) ∆α,β ◦ ηα+β = ηα ⊗ ηβ for all α, β ∈ G;
(8) ε0 ◦ η0 = idk;
(9) µα ◦ (S−α⊗ idHα) ◦∆−α,α = ηα ◦ ε0 = µα ◦ (idHα ⊗S−α) ◦∆α,−α for every

α ∈ G.
We will often use the shorthand notation

µα(x⊗ y) = xy, ηα(1) = 1α, ∆α,β(x) = x(1,α) ⊗ x(2,β).

Remark that Hα is a unital associative algebra for every α ∈ G, and that H0 is a
Hopf algebra.

A ribbon Hopf G-coalgebra is a Hopf G-coalgebra H = {Hα | α ∈ G} equipped
with:

· a family R = {Rα,β = R′α ⊗R′′β ∈ Hα ⊗Hβ | α, β ∈ G} of R-matrices;
· a family v+ = {vα ∈ Hα | α ∈ G} of central invertible ribbon elements.

These data satisfy:
(1) R′αx(1,α) ⊗R′′βx(2,β) = x(2,α)R

′
α ⊗ x(1,β)R

′′
β for all α, β ∈ G and x ∈ Hα+β ;

(2) R′α ⊗∆β,γ(R′′β+γ) = (R′α ⊗ 1β ⊗R′′γ)(R′α ⊗R′′β ⊗ 1γ) for all α, β, γ ∈ G;
(3) ∆α,β(R′α+β)⊗R′′γ = (R′α ⊗ 1β ⊗R′′γ)(1α ⊗R′β ⊗R′′γ) for all α, β, γ ∈ G;
(4) v2

α = uαS−α(u−α) for all α ∈ G, where uα := S−α(R′′−α)R′α;
(5) ∆α,β(vα+β) = (vα⊗vβ)(S−α(R′−α)⊗R′′β)(R′′α⊗S−β(R′−β)) for all α, β ∈ G;
(6) ε0(v0) = 1;
(7) Sα(vα) = v−α for every α ∈ G.
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Remark that H0 is a ribbon Hopf algebra, and that the family

u = {uα ∈ Hα | α ∈ G}
of Drinfeld elements determines a family

g = {gα ∈ Hα | α ∈ G}
of pivotal elements

gα := uαv
−1
α .

A unimodular Hopf G-coalgebra is a Hopf G-coalgebra H = {Hα | α ∈ G}
equipped with:

· a family λ = {λα : Hα → k | α ∈ G} of left integrals;
· a two-sided cointegral Λ0 ∈ H0.

These data satisfy:
(1) λβ(x(2,β))x(1,α) = λα+β(x)1α for all α, β ∈ G and x ∈ Hα+β ;
(2) xΛ0 = ε0(x)Λ0 = Λ0x for every x ∈ H0.

Remark that H0 is a unimodular Hopf algebra.
If A is an algebra, recall that a central idempotent of A is an element z ∈ A

satisfying

zx = xz, z2 = z

for every x ∈ A. Let G be a finite abelian group. If H is a Hopf algebra, then a
family of central idempotents {1α ∈ H | α ∈ G} is called a G-splitting system if it
satisfies

1α1β = δα,β1α, 1 =
∑
α∈G

1α,

∆(1α) =
∑
β∈G

1α−β ⊗ 1β , ε(1α) = δα,0,

S(1α) = 1−α.

If {1α ∈ H | α ∈ G} is a G-splitting system in H, then {H1α | α ∈ G} is a Hopf
G-coalgebra, with product

µα(x1α ⊗ y1α) = xy1α

for every α ∈ G, coproduct
∆α,β(x1α+β) = x(1)1α ⊗ x(2)1β

for all α, β ∈ G, with counit
ε0(x10) = ε(x),

and with antipode
Sα(x1α) = S(x)1−α

for every α ∈ G. If H is a ribbon Hopf algebra, then {H1α | α ∈ G} is a ribbon
Hopf G-coalgebra, with R-matrix

Rα,β = R(1α ⊗ 1β)

for all α, β ∈ G, and ribbon element

vα = v1α

for every α ∈ G. If H is a unimodular Hopf algebra, then {H1α | α ∈ G} is a
unimodular Hopf G-coalgebra, with left integral

λα(x1α) = λ(x1α)

for every α ∈ G, and two-sided cointegral

Λ0 = Λ.
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Vice versa, if {Hα | α ∈ G} is a Hopf G-coalgebra, then its direct sum

H :=
⊕
α∈G

Hα

is a Hopf algebra, with product

µ

 ⊕
α,β∈G

xα ⊗ yβ

 =
⊕
α∈G

xαyα,

with unit
1 =

⊕
α∈G

1α,

with coproduct

∆

(⊕
α∈G

xα

)
=
⊕
α,β∈G

(xα+β)(1,α) ⊗ (xα+β)(2,β),

with counit

ε

(⊕
α∈G

xα

)
= ε0(x0),

and with antipode

S

(⊕
α∈G

xα

)
=
⊕
α∈G

S−α(x−α).

If {Hα | α ∈ G} is a ribbon Hopf G-coalgebra, then H is a ribbon Hopf algebra,
with R-matrix

R =
⊕
α,β∈G

Rα,β ,

and ribbon element
v =

⊕
α∈G

vα.

If {Hα | α ∈ G} is a unimodular Hopf G-coalgebra, then H is a unimodular Hopf
algebra, with left integral

λ

(⊕
α∈G

xα

)
= λα(xα),

and two-sided cointegral
Λ = Λ0.

For a finite abelian group G, we say a ribbon Hopf G-coalgebra {Hα | α ∈ G} is
factorizable if the direct sum

H =
⊕
α∈G

Hα

is a factorizable ribbon Hopf algebra. By definition, this means that the Drinfeld
map

D : H∗ → H

f 7→ f(M ′+)M ′′+

is a linear isomorphism, where

M+ = M ′+ ⊗M ′′+ = (R′′ ⊗R′)(R′ ⊗R′′) ∈ H ⊗H
is the M-matrix associated with the R-matrix R = R′ ⊗R′′ ∈ H ⊗H.
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3. Refined invariant

In this section, we fix an abelian group G and a unimodular ribbon Hopf G-
coalgebra H, and we define a refined invariant of 4-dimensional 2-handlebodies
equipped with relative cohomology classes with coefficients in G. Let

∅ ⊂W 0 ⊂W 1 ⊂W 2 = W

be a 4-dimensional 2-handlebody featuring a single 0-handle and a finite number of
handles of index 1 and 2. By reversing the handle presentation, W can be obtained
from ∂W × I by attaching a finite number of handles of index 2 and 3, followed by
a single 4-handle, which means

∂W × I ⊂ W̃ 2 ⊂ W̃ 3 ⊂ W̃ 4 = W.

Now let ω ∈ H2(W,∂W ;G) be a cohomology class. Since H1(W,∂W ) = 0, we have

H2(W,∂W ;G) ∼= Hom(H2(W,∂W ), G)⊕ Ext(H1(W,∂W ), G)

∼= Hom(H2(W,∂W ), G),

thanks to the universal coefficient theorem2. Notice that the space Ck(W,∂W ) of
relative cellular k-chains of (W,∂W ) is generated by the set of cocores {0} × Dk

of (4 − k)-handles D4−k × Dk. If D is a Kirby diagram of W , and if we fix an
arbitrary ordering of all components of D, then, up to isotopy, the cocore of the ith
1-handle appears in the Kirby diagram of W as the 2-dimensional Seifert disc di of
the ith dotted component (the complementary hemisphere of di in the boundary
of the cocore lies in ∂W , and has therefore been carved under the diagram, while
the interior of the cocore lies in the interior of W ). Similarly, if we fix an arbitrary
orientation for every undotted component of D, then, up to isotopy, the cocore of
the jth 2-handle appears in the Kirby diagram of W as the 2-dimensional Seifert
disc mj of a positive meridian of the jth undotted component. The differential
∂ : C3(W,∂W )→ C2(W,∂W ) is defined as ∂(di) = mj1 + . . .+mjk , where di and
mj1 , . . . ,mjk are related by the following picture.

If the orientation of one of the vertical strands in the above configuration is reversed,
the sign of the contribution of the corresponding meridian to the sum should also be
reversed. Then, H2(W,∂W ) is by definition equal to coker(∂), and H2(W,∂W ;G)
can be identified with the subgroup of Hom(C2(W,∂W ), G) composed of those
linear maps that vanish on im(∂).

A G-Kirby diagram of (W,ω) is obtained from a Kirby diagram of W by orient-
ing every undotted component and labeling it by ω(m) ∈ G, where m ∈ C2(W,∂W )
denotes the 2-dimensional Seifert disc of a positive meridian of the undotted com-
ponent. Two G-Kirby diagrams represent the same pair (W,ω) if and only if they

2Whenever coefficients are omitted, they are assumed to be in Z.
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are related by a finite sequence of G-Kirby moves:

! (GK1)

! (GK2)

! (GK3)

Pictures (GK1)–(GK3) represent operations performed inside 3-dimensional 1-han-
dlebodies embedded into S3, and they leave G-Kirby diagrams unchanged in the
complement.

In order to define an invariant of the pair (X,ω), let us consider a G-Kirby
diagram D representing (X,ω). First of all, we insert beads labeled by components
of the R-matrix around crossings as shown:

7→ 7→

If a crossing is obtained from the ones above by reversing the orientation of a
strand, the label of the corresponding bead is evaluated against the antipode. For
instance, if the orientation of the strand labeled by α in the left-most crossing above
is reversed, the corresponding bead changes from R′α to S−α(R′−α). Next, we insert
beads labeled by the pivotal element around right-oriented extrema as shown:

7→ 7→

This operation leaves left-oriented extrema untouched. Then, we remove dotted
components, while also inserting beads labeled by coproducts of the cointegral as
shown:

7→

If the orientation of one of the strands piercing a Seifert disc for the dotted unknot
is reversed, the label of the corresponding bead is evaluated against the antipode.
For instance, if the orientation of the strand labeled by αi above is reversed, the
corresponding bead changes from (Λ0)(i,αi) to S−αi((Λ0)i,−αi). When k = 0, re-
moving a dotted component costs a multiplicative factor of ε0(Λ0) in front of D.
Next, we collect all beads sitting on the same component in one place, and we
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multiply everything together according to the rule

=

In the end, we are left with a decorated diagram of the form

B(D) =

We say a label
x1 ⊗ . . .⊗ xk ∈ Hα1

⊗ . . .⊗Hαk

obtained this way is a bead presentation of D.

Theorem 3.1. If W is a 4-dimensional 2-handlebody equipped with a relative co-
homology class ω ∈ H2(W,∂W ;G), if D is a G-Kirby diagram representing (W,ω),
and if x1 ⊗ . . .⊗ xk ∈ Hα1

⊗ . . .⊗Hαk is a bead presentation of D, then the scalar

JH(W,ω) =

k∏
i=1

λαi(xig
−1
αi )

is a topological invariant of the pair (W,ω).

Proof. We need to check that JH(W,ω) is invariant under G-Kirby moves. For
what concerns move (GK1), we have

 

Then the claim follows from

λβ(x(2,β)g
−1
β )x(1,α)g

−1
α = λα+β(xg−1

α+β)1α.

Similarly, for what concerns move (GK2), we have

 

Then the claim follows from

λ0(Λ0x) = ε0(x),

together with the fact that

ε0(R′0)R′′α = 1α = ε0(R′′0 )R′α, ε0(g0) = 1, ε(x(1,0))x(2,α) = x = ε0(x(2,0))x(1,α).

Finally, for what concerns move (GK3), we have

 

In order to see this, it is useful to represent the component as the closure of a braid.
Then the claim follows from

λ−α(Sα(x)g−1
−α) = λ−α(Sα(gαx)) = λα(g−1

α x) = λα(xg−1
α ),
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where the second and third equalities are a consequence of [Vi00, Theorem 4.2],
which implies that

λ−α(Sα(x)) = λα(g−2
α x), λα(xy) = λα(yS−α(Sα(x)))

for all x, y ∈ Hα. Indeed, the distinguished group-like element is g2
α ∈ Hα in our

notation, and we are considering a left integral instead of a right integral. �

Remark 3.2. When G = Z/2Z, then α = −α for all α ∈ G, and the orientations
can be dropped. In this case, the algorithm given above, which follows the oriented
approach of Hennings [He96], has to be replaced with the equivalent algorithm
adapted from the unoriented approach of Kauffman and Radford [KR94], which is
the one followed in [BD21, Section 8.1].

4. General decomposition formulas

We say a 4-dimensional 2-handlebody is geometrically simply connected if it
admits a handle decomposition without 1-handles and k-handles for k > 2. We
will show that, if G is a finite abelian group, and H is a factorizable ribbon Hopf
G-coalgebra, then both the refined and the non-refined invariants can be computed
as sums of invariants of geometrically simply connected 4-dimensional 2-handle-
bodies. In other words, we can always trade 1-handles for 2-handles. In order to
do this, let us consider a connected 4-dimensional 2-handlebody W with boundary
∂W = M , let D be a Kirby diagram for W , let L be the framed link obtained
from D by trading 1-handles for 2-handles (that is, by erasing dots), and let E be
the geometrically simply connected 4-dimensional 2-handlebody represented by L.
Notice that

∂E ∼= ∂W = M,

that L provides a surgery presentation for M . We stress the fact that both L and
E depend crucially on D, and that a different choice of diagram representing W
would yield different results.

Notice that we have a natural inclusion ι : C2(W,M) ↪→ C2(E,M). Furthermore,
as we explained before, relative cohomology classes in H2(W,M) can be identified
with linear maps in Hom(C2(W,M), G) vanishing of the image of the differential
∂ : C3(W,M)→ C2(W,M), and similarly relative cohomology classes in H2(E,M)
can be identified with linear maps in Hom(C2(E,M), G), since C3(E,M) = 0.
Then, let us set

E(E) := H2(E,M ;G),

E(E,ω) := {ψ ∈E(E) | ψ ◦ ι = ω}.

Proposition 4.1. If G is a finite abelian group, and H is a factorizable ribbon
Hopf G-coalgebra, let W be a connected 4-dimensional 2-handlebody with boundary
∂W = M , let D be a Kirby diagram for W , let L be the framed link obtained from
D by trading 1-handles for 2-handles, and let E be the 4-dimensional 2-handlebody
represented by L. Then, for every relative cohomology class ω ∈ H2(W,M ;G) we
have

JH(W,ω) =
∑

ψ∈E(E,ω)

JH(E,ψ), (4.1)

and for the non-refined invariant we have

JH(W ) =
∑

ψ∈E(E)

JH(E,ψ). (4.2)
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Proof. Let us start by proving Equation (4.1). To this end, let us show that every
1-handle can be traded for a 2-handle, provided we take into account all possible
ways of extending ω to the newly created 2-handle. This amounts to showing that,
if α1, . . . , αk ∈ G satisfy

k∑
j=1

αj = 0,

then a local replacement in the G-Kirby diagram D of the form

 
∑
β∈G

does not change the invariant (provided we extend it linearly to linear combina-
tions of G-Kirby diagrams). In order to prove this, it is sufficient to notice that
factorizability of H implies∑

β∈G

λ(S(M ′+1β))(M ′′+)(1)1α1 ⊗ . . .⊗ (M ′′+)(k)1αk

= λ(S(M ′+))(M ′′+)(1)1α1
⊗ . . .⊗ (M ′′+)(k)1αk

= Λ(1)1α1
⊗ . . .⊗ Λ(k)1αk ,

where M+ = M ′+ ⊗M ′′+ = (R′′ ⊗ R′)(R′ ⊗ R′′) ∈ H ⊗H denotes the M-matrix of
H.

In order to prove Equation (4.2), it is sufficient to notice that

JH(W ) =
∑

ω∈H2(W,M ;G)

JH(W,ω). �

Remark 4.2. Notice that, if G is a finite abelian group and H is a factorizable
ribbon Hopf G-coalgebra, then∑

α∈G
λα(v−1

α )λ−α(v−α) = 1.

Indeed, thanks to Proposition 4.1, the invariant of

coincides with the invariant of∑
α∈G

=
∑
α∈G

This means that, if λ(v−1
α ) is an invertible scalar for a single α ∈ G, then we can

understand the invariant appearing on the right-hand side of Equations (4.1) &
(4.2) as the invariant of a 3-manifold equipped with a G-structure that assigns the
degree α to stabilizations by ∂CP 2 and the degree −α to stabilizations by ∂CP 2.
This will be the case in Section 8, where we will decompose the refined and the
non-refined invariants associated with the restricted quantum group U in terms of
3-dimensional invariants depending on spin and cohomological structures.
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5. Restricted quantum sl2

In this section, we recall the definition of our main examples of Hopf Z/2Z-
coalgebras, the restricted quantum group of sl2 and its ribbon extension. Let
q = e

πi
p be a root of unity of order 2p for an integer p > 2. For every integer n > 0

we recall the notation

{n} := qn − q−n, [n] :=
{n}
{1}

, [n]! :=

n∏
k=1

[k].

The restricted quantum group U = Uqsl2 is defined as the algebra over C with
generators {E,F,K} and relations

Ep = 0, F p = 0, K2p = 1,

KEK−1 = q2E, KFK−1 = q−2F, [E,F ] =
K −K−1

q − q−1
.

A Hopf algebra structure on U is obtained by setting

∆(E) = E ⊗K + 1⊗ E, ε(E) = 0, S(E) = −EK−1,

∆(F ) = F ⊗ 1 +K−1 ⊗ F, ε(F ) = 0, S(F ) = −KF
∆(K) = K ⊗K, ε(K) = 1, S(K) = K−1.

The restricted quantum group U is not quasitriangular, because it does not admit
an R-matrix. However, it admits a quasitriangular extension Ũ = Ũqsl2, which is
the algebra over C with generators {Ẽ, F̃, K̃} and relations

Ẽp = 0 F̃ p = 0, K̃4p = 1,

K̃ẼK̃−1 = qẼ, K̃F̃ K̃−1 = q−1F̃, [Ẽ, F̃ ] =
K̃2 − K̃−2

q − q−1
.

A Hopf algebra structure on Ũ is obtained by setting

∆(Ẽ) = Ẽ ⊗ K̃2 + 1⊗ Ẽ, ε(Ẽ) = 0, S(Ẽ) = −ẼK̃−2,

∆(F̃ ) = F̃ ⊗ 1 + K̃−2 ⊗ F̃, ε(F̃ ) = 0, S(F̃ ) = −K̃2F̃

∆(K̃) = K̃ ⊗ K̃, ε(K̃) = 1, S(K̃) = K̃−1,

and we identify U with a Hopf subalgebra of Ũ by setting

E = Ẽ, F = F̃, K = K̃2.

The R-matrix R̃ ∈ Ũ⊗Ũ is given by the product R̃ = D̃Θ, where the quasi-R-matrix
Θ = Θ′ ⊗Θ′′ ∈ U ⊗ U is given by

Θ =

p−1∑
a=0

{1}a

[a]!
q
a(a−1)

2 Ea ⊗ F a, (5.1)

while the diagonal Cartan part D̃ = D̃′ ⊗ D̃′′ ∈ Ũ ⊗ Ũ is given by

D̃ =
1

4p

4p−1∑
a,b=0

t−abK̃a ⊗ K̃b, (5.2)

where t := e
πi
2p . Notice that it is only the diagonal Cartan part D̃ that cannot be

defined in U , while the quasi-R-matrix Θ poses no problem.
Although R̃ 6∈ U ⊗U , the rest of the ribbon structure of Ũ is actually contained

in U . Indeed, the pivotal element g ∈ U can be defined as

g = Kp+1. (5.3)
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This means that the ribbon element and its inverse v+, v− ∈ U are given by

v+ =
1− i
2
√
p

p−1∑
a=0

2p−1∑
b=0

{−1}a

[a]!
q−

(a+3)a
2 t(b+p+1)2F aEaK−a+b, (5.4)

v− =
1 + i

2
√
p

p−1∑
a=0

2p−1∑
b=0

{1}a

[a]!
q

(a+3)a
2 t−(b+p−1)2F aEaKa+b, (5.5)

as shown in Lemma B.1, and that the M-matrix and its inverse M+ = M ′+ ⊗M ′′+,
M− = M ′− ⊗M ′′− ∈ U ⊗ U are given by

M+ =
1

2p

p−1∑
a,b=0

2p−1∑
c,d=0

{1}a+b

[a]![b]!
q
a(a−1)+b(b−1)

2 −2b2−cdK−b+cF bEa ⊗Kb+dEbF a, (5.6)

M− =
1

2p

p−1∑
a,b=0

2p−1∑
c,d=0

{−1}a+b

[a]![b]!
q−

a(a−1)+b(b−1)
2 +2b2+cdEaF bK−b+c ⊗ F aEbKb+d, (5.7)

as shown in Lemma B.2.
A PBW basis of U is given by{

EaF bKc | 0 6 a, b 6 p− 1, 0 6 c 6 2p− 1
}
,

and our preferred non-zero left integral λ of U is given by

λ
(
EaF bKc

)
=

√
2p[p− 1]!

ip−1{1}p−1
δa,p−1δb,p−1δc,p−1, (5.8)

while our preferred non-zero two-sided cointegral Λ of U satisfying λ(Λ) = 1 is
given by

Λ :=
ip−1{1}p−1

√
2p[p− 1]!

2p−1∑
a=0

Ep−1F p−1Ka. (5.9)

Similarly, a PBW basis of Ũ is given by{
EaF bK̃c | 0 6 a, b 6 p− 1, 0 6 c 6 4p− 1

}
,

and our preferred non-zero left integral λ̃ of Ũ is given by

λ̃
(
EaF bK̃c

)
=

√
2p[p− 1]!

ip−1{1}p−1
δa,p−1δb,p−1δc,2p−2,

while our preferred non-zero two-sided cointegral Λ̃ of Ũ satisfying λ̃(Λ̃) = 1 is
given by

Λ̃ :=
ip−1{1}p−1

√
2p[p− 1]!

4p−1∑
a=0

Ep−1F p−1K̃a.

Both U and Ũ are thus unimodular Hopf algebras.
Now let us consider the central orthogonal idempotents

10 =
1 +Kp

2
, 11 =

1−Kp

2
.

We have:

1 = 10 + 11, 1α1β = δα,β1α,

∆(10) = 10 ⊗ 10 + 11 ⊗ 11, ∆(11) = 10 ⊗ 11 + 11 ⊗ 10,

ε(10) = 1, ε(11) = 0,

S(10) = 10, S(11) = 11.

Therefore, U is a unimodular Hopf Z/2Z-coalgebra, while Ũ is a ribbon one.
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Recall that, if H is a finite-dimensional Hopf algebra, its adjoint representation
is the vector space H equipped with the adjoint left H-action

x . y := x(1)yS(x(2))

for all x, y ∈ H.
A grading

U =

p−1⊕
n=−p+1

Γn(U)

is obtained by setting Γn(U) to be the linear subspace of U with basis

{EaF bKc | 0 6 a, b 6 p− 1, 0 6 c 6 2p− 1, a− b = n},
for every −p+1 6 n 6 p−1. If x ∈ Γn(U), then we say x is homogeneous of degree
n, and we write |x| = n.

Lemma 5.1. The linear subspace U of Ũ is closed under the adjoint left action of
Ũ .

Proof. For every homogeneous x ∈ U we have

K̃ . x = K̃xK̃−1 = q|x|x. �

Lemma 5.2. For all homogeneous x, y ∈ U we have

(D̃′ . x)⊗ D̃′′ = x⊗K |x|, (5.10)

(D̃′ . x)⊗ (D̃′′ . y) = q2|x||y|x⊗ y. (5.11)

Proof. The first equality follows from

(D̃′ . x)⊗ D̃′′ =
1

4p

4p−1∑
a,b=0

t−abK̃axK̃−a ⊗ K̃b =
1

4p

4p−1∑
a,b=0

t2a|x|−abx⊗ K̃b

=

4p−1∑
b=0

(
1

4p

4p−1∑
a=0

ta(2|x|−b)

)
x⊗ K̃b =

4p−1∑
b=0

δb,2|x|x⊗ K̃b

= x⊗ K̃2|x| = x⊗K |x|.
Similarly, the second equality follows from

(D̃′ . x)⊗ (D̃′′ . y) =
1

4p

4p−1∑
a,b=0

t−abK̃axK̃−a ⊗ K̃byK̃−b

=
1

4p

4p−1∑
a,b=0

t2a|x|+2b|y|−abx⊗ y

=

4p−1∑
b=0

(
1

4p

4p−1∑
a=0

ta(2|x|−b)

)
t2b|y|x⊗ y

=

4p−1∑
b=0

δb,2|x|t
2b|y|x⊗ y = t4|x||y|x⊗ y = q2|x||y|x⊗ y. �

We denote by UUUUUUUUUUUUUUUUU ∈ Ũ -mod the vector space U equipped with the adjoint left
action of Ũ , and with Ũ̃ŨŨŨŨŨŨŨŨŨŨŨŨŨŨŨU ∈ Ũ -mod the adjoint representation of Ũ .
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Proposition 5.3. UUUUUUUUUUUUUUUUU is a 3-modular Hopf algebra in Ũ -mod, with structure mor-
phisms given, for all x, y ∈ UUUUUUUUUUUUUUUUU , by
µµµµµµµµµµµµµµµµµ(x⊗ y) = xy, ηηηηηηηηηηηηηηηηη(1) = 1,

∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆(x) = x(1)S(Θ′′)K−|Θ
′.x(2)| ⊗ (Θ′ . x(2)), εεεεεεεεεεεεεεεεε(x) = ε(x),

SSSSSSSSSSSSSSSSS(x) = K |Θ
′.x|Θ′′S(Θ′ . x), S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1

S−1(x) = S−1(Θ′ . x)K |Θ
′.x|Θ′′,

v+v+v+v+v+v+v+v+v+v+v+v+v+v+v+v+v+(1) = v+, v−v−v−v−v−v−v−v−v−v−v−v−v−v−v−v−v−(1) = v−,

w+w+w+w+w+w+w+w+w+w+w+w+w+w+w+w+w+(1) = S(M ′+)⊗M ′′+, w−w−w−w−w−w−w−w−w−w−w−w−w−w−w−w−w−(1) = S(M ′−)⊗M ′′−,
λλλλλλλλλλλλλλλλλ(x) = λ(x), ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ(1) = Λ.

Proof. Since Ũ is a unimodular ribbon Hopf algebra, [BD21, Proposition 7.3] im-
plies that Ũ̃ŨŨŨŨŨŨŨŨŨŨŨŨŨŨŨU ∈ Ũ -mod is a 4-modular braided Hopf algebra. Structure morphisms
of Ũ̃ŨŨŨŨŨŨŨŨŨŨŨŨŨŨŨU are given, for all x, y ∈ Ũ̃ŨŨŨŨŨŨŨŨŨŨŨŨŨŨŨU , by
µ̃̃µ̃µ̃µ̃µ̃µ̃µ̃µ̃µ̃µ̃µ̃µ̃µ̃µ̃µ̃µ̃µ(x⊗ y) = xy, η̃̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η(1) = 1,

∆̃̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆(x) = x(1)S(D̃′′Θ′′)⊗ ((D̃′Θ′) . x(2)), ε̃̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε(x) = ε(x),

S̃̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S(x) = D̃′′Θ′′S((D̃′Θ′) . x), S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1
S̃−1(x) = S−1((D̃′Θ′) . x)D̃′′Θ′′,

ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+(1) = v+, ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−(1) = v−,

w̃+w̃+w̃+w̃+w̃+w̃+w̃+w̃+w̃+w̃+w̃+w̃+w̃+w̃+w̃+w̃+w̃+(1) = S(M ′+)⊗M ′′+, w̃−w̃−w̃−w̃−w̃−w̃−w̃−w̃−w̃−w̃−w̃−w̃−w̃−w̃−w̃−w̃−w̃−(1) = S(M ′−)⊗M ′′−,
λ̃̃λ̃λ̃λ̃λ̃λ̃λ̃λ̃λ̃λ̃λ̃λ̃λ̃λ̃λ̃λ̃λ(x) = λ̃(x), Λ̃̃Λ̃Λ̃Λ̃Λ̃Λ̃Λ̃Λ̃Λ̃Λ̃Λ̃Λ̃Λ̃Λ̃Λ̃Λ̃Λ(1) = Λ̃.

Since U is a Hopf subalgebra of Ũ , the unit η̃̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η : C → Ũ̃ŨŨŨŨŨŨŨŨŨŨŨŨŨŨŨU factors through a unit
ηηηηηηηηηηηηηηηηη : C→ UUUUUUUUUUUUUUUUU , while the product µ̃̃µ̃µ̃µ̃µ̃µ̃µ̃µ̃µ̃µ̃µ̃µ̃µ̃µ̃µ̃µ̃µ : Ũ̃ŨŨŨŨŨŨŨŨŨŨŨŨŨŨŨU ⊗ Ũ̃ŨŨŨŨŨŨŨŨŨŨŨŨŨŨŨU → Ũ̃ŨŨŨŨŨŨŨŨŨŨŨŨŨŨŨU and the counit ε̃̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε : Ũ̃ŨŨŨŨŨŨŨŨŨŨŨŨŨŨŨU → C restrict to
a product µµµµµµµµµµµµµµµµµ : UUUUUUUUUUUUUUUUU ⊗ UUUUUUUUUUUUUUUUU → UUUUUUUUUUUUUUUUU and a counit εεεεεεεεεεεεεεεεε : UUUUUUUUUUUUUUUUU → C. Equations (5.4) & (5.5) imply
that the ribbon element ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ : C → Ũ̃ŨŨŨŨŨŨŨŨŨŨŨŨŨŨŨU and its inverse ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ− : C → Ũ̃ŨŨŨŨŨŨŨŨŨŨŨŨŨŨŨU factor through a
ribbon element v+v+v+v+v+v+v+v+v+v+v+v+v+v+v+v+v+ : C → UUUUUUUUUUUUUUUUU with inverse v−v−v−v−v−v−v−v−v−v−v−v−v−v−v−v−v− : C → UUUUUUUUUUUUUUUUU , and Equation (5.8) implies
that the integral λ̃̃λ̃λ̃λ̃λ̃λ̃λ̃λ̃λ̃λ̃λ̃λ̃λ̃λ̃λ̃λ̃λ : UUUUUUUUUUUUUUUUU → C restricts to an integral λλλλλλλλλλλλλλλλλ : UUUUUUUUUUUUUUUUU → C. However, it should
be noted that the cointegral Λ̃̃Λ̃Λ̃Λ̃Λ̃Λ̃Λ̃Λ̃Λ̃Λ̃Λ̃Λ̃Λ̃Λ̃Λ̃Λ̃Λ : C→ Ũ̃ŨŨŨŨŨŨŨŨŨŨŨŨŨŨŨU is different from the cointegral ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ : C→ UUUUUUUUUUUUUUUUU ,
as witnessed by Equation (5.9). The braiding cŨ̃ŨŨŨŨŨŨŨŨŨŨŨŨŨŨŨU,Ũ̃ŨŨŨŨŨŨŨŨŨŨŨŨŨŨŨU : Ũ̃ŨŨŨŨŨŨŨŨŨŨŨŨŨŨŨU ⊗ Ũ̃ŨŨŨŨŨŨŨŨŨŨŨŨŨŨŨU → Ũ̃ŨŨŨŨŨŨŨŨŨŨŨŨŨŨŨU ⊗ Ũ̃ŨŨŨŨŨŨŨŨŨŨŨŨŨŨŨU restricts to
a braiding cUUUUUUUUUUUUUUUUU,UUUUUUUUUUUUUUUUU : UUUUUUUUUUUUUUUUU ⊗ UUUUUUUUUUUUUUUUU → UUUUUUUUUUUUUUUUU ⊗ UUUUUUUUUUUUUUUUU , because Ũ -mod is a ribbon category, although
a direct proof follows from Equation (5.11). Therefore, we need to show that the
coproduct ∆̃̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆ : Ũ̃ŨŨŨŨŨŨŨŨŨŨŨŨŨŨŨU → Ũ̃ŨŨŨŨŨŨŨŨŨŨŨŨŨŨŨU ⊗ Ũ̃ŨŨŨŨŨŨŨŨŨŨŨŨŨŨŨU , the antipode S̃̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S : Ũ̃ŨŨŨŨŨŨŨŨŨŨŨŨŨŨŨU → Ũ̃ŨŨŨŨŨŨŨŨŨŨŨŨŨŨŨU , and its inverse S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1 : Ũ̃ŨŨŨŨŨŨŨŨŨŨŨŨŨŨŨU → Ũ̃ŨŨŨŨŨŨŨŨŨŨŨŨŨŨŨU
restrict to a coproduct ∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆ : UUUUUUUUUUUUUUUUU → UUUUUUUUUUUUUUUUU ⊗ UUUUUUUUUUUUUUUUU and an antipode SSSSSSSSSSSSSSSSS : UUUUUUUUUUUUUUUUU → UUUUUUUUUUUUUUUUU with inverse
S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1 : UUUUUUUUUUUUUUUUU → UUUUUUUUUUUUUUUUU . Notice that

∆̃̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆(x) = x(1)S(D̃′′Θ′′)⊗ (D̃′ . (Θ′ . x(2))),

S̃̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S(x) = D̃′′Θ′′S(D̃′ . (Θ′ . x)),

S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1
S̃−1(x) = S−1(D̃′ . (Θ′ . x))D̃′′Θ′′.

Then the claim follows directly from Equation (5.10).
Next, we need to check that these structure morphisms satisfy the defining con-

ditions of [BD21, Definitions 5.1–6.4]. For what concerns [BD21, Definition 5.1],
Equation (i) is clearly satisfied because U is an associative unital algebra, while
Equations (ii)–(iv) are satisfied because ∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆, εεεεεεεεεεεεεεεεε, SSSSSSSSSSSSSSSSS, and S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1 are restrictions of ∆̃̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆, ε̃̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε,
S̃̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S, and S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1 respectively, which also satisfy Equations (ii)–(iv). For what concerns
[BD21, Definition 6.1], Equations (i)–(iii) are satisfied because ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+ṽ+, ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−ṽ−, w̃+w̃+w̃+w̃+w̃+w̃+w̃+w̃+w̃+w̃+w̃+w̃+w̃+w̃+w̃+w̃+w̃+, w̃−w̃−w̃−w̃−w̃−w̃−w̃−w̃−w̃−w̃−w̃−w̃−w̃−w̃−w̃−w̃−w̃−,
and η̃̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η factor through v+v+v+v+v+v+v+v+v+v+v+v+v+v+v+v+v+, v−v−v−v−v−v−v−v−v−v−v−v−v−v−v−v−v−, w+w+w+w+w+w+w+w+w+w+w+w+w+w+w+w+w+, w−w−w−w−w−w−w−w−w−w−w−w−w−w−w−w−w−, and ηηηηηηηηηηηηηηηηη, while µµµµµµµµµµµµµµµµµ, ∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆, εεεεεεεεεεεεεεεεε, SSSSSSSSSSSSSSSSS, S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1, and cUUUUUUUUUUUUUUUUU,UUUUUUUUUUUUUUUUU
are restrictions of µ̃̃µ̃µ̃µ̃µ̃µ̃µ̃µ̃µ̃µ̃µ̃µ̃µ̃µ̃µ̃µ̃µ, ∆̃̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆, ε̃̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε̃ε, S̃̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S, S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1S̃−1, and cŨ̃ŨŨŨŨŨŨŨŨŨŨŨŨŨŨŨU,Ũ̃ŨŨŨŨŨŨŨŨŨŨŨŨŨŨŨU respectively, which also satisfy Equa-
tions (i)–(iii). For what concerns [BD21, Definition 6.2], Equation (i) is satisfied
because λλλλλλλλλλλλλλλλλ, ∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆, and SSSSSSSSSSSSSSSSS are restrictions of λ̃̃λ̃λ̃λ̃λ̃λ̃λ̃λ̃λ̃λ̃λ̃λ̃λ̃λ̃λ̃λ̃λ, ∆̃̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆̃∆, and S̃̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S̃S respectively, which also satisfy
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Equation (i). Therefore, we need to check by hand Equations (ii) & (iii), which
are the only ones involving Λ. The first part of Equation (ii) follows from the fact
that Λ is a left cointegral of U , while the second part is established by computing

SSSSSSSSSSSSSSSSS(ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ) = K |Θ
′.Λ|Θ′′S(Θ′ . Λ) = S(Λ) = Λ = ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ.

Equation (iii) follows from our choice of normalizations for λ and Λ.
Finally, for what concerns [BD21, Definition 6.4], we compute

(idUUUUUUUUUUUUUUUUU ⊗ λλλλλλλλλλλλλλλλλ) ◦ w+w+w+w+w+w+w+w+w+w+w+w+w+w+w+w+w+ = λ(M ′′+)S(M ′+)

=
1

2p

p−1∑
a,b=0

2p−1∑
c,d=0

{1}a+b

[a]![b]!
q
a(a−1)+b(b−1)

2 −2b2−cdλ(Kb+dEbF a)S(K−b+cF bEa)

=
1√
2p

2p−1∑
c=0

{1}p−1

ip−1[p− 1]!
q(p−1)(p−2)−2(p−1)2S(Kc−p+1F p−1Ep−1)

=
q−p(p−1)

ip−1
√

2p

{1}p−1

[p− 1]!

2p−1∑
c=0

Ep−1F p−1K−c+p−1

=
(−1)p−1

ip−1
√

2p

{1}p−1

[p− 1]!

2p−1∑
a=0

Ep−1F p−1Ka = Λ = ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ. �

As a direct consequence of [BD21, Theorem 1.6] and of Proposition 5.3, we
immediately obtain the following result.

Corollary 5.4. There exists a unique 3-dimensional braided TFT

Jσ3 : 3Cobσ → Ũ -mod

sending 1 ∈ 3Cobσ to UUUUUUUUUUUUUUUUU ∈ Ũ -mod.

6. Refined invariant for restricted quantum sl2

In this section, we prove that the refined invariant associated with the ribbon
extension Ũ of U can be actually computed entirely inside U .

Proposition 6.1. If D is a Z/2Z-Kirby diagram, and if

x1 ⊗ . . .⊗ xk ∈ Ũα1
⊗ . . .⊗ Ũαk

is a bead presentation of D, then

x1 ⊗ . . .⊗ xk ∈ Uα1
⊗ . . .⊗ Uαk .

Proof. The claim follows from [BP11, Theorem 4.7.5] and Proposition 5.3. Indeed,
every Kirby diagram can be realized as the composition of tensor products of gener-
ating morphisms appearing in the definition of the Kirby tangle presentation functor
K : 4Alg → KTan of [BD21, Section 6.3]. Then, it is sufficient to check that, for
each of these generating morphisms, the algorithm defining J4 : KTan → Ũ -mod
determines elements of U . This corresponds to the computations of Proposition 5.3,
and these formulas can be established like in the proofs of [BD21, Lemmas 8.1 &
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8.3]. For instance, the coproduct gives

=

Then the claim follows from the chain of equalities

λ(S−1(Λ(1))x1α+β)Λ(2)S(D̃′′Θ′′)1α ⊗ ((D̃′Θ′) . Λ(3))1β

= λ(x1α+βS(Λ(1)))Λ(2)S(D̃′′Θ′′)1α ⊗ ((D̃′Θ′) . Λ(3))1β

= (x1α+β)(1)S(D̃′′Θ′′)1α ⊗ ((D̃′Θ′) . (x1α+β)(2))1β

= x(1)S(Θ′′)K−|Θ
′.x(2)|1α ⊗ (Θ′ . x(2))1β .

where the first equality follows from [Ra12, Theorem 10.5.4.(e)], while the second
one follows from [Ra12, Theorem 10.2.2.(c)]. Similarly, the antipode gives

=

Then the claim follows from the chain of equalities

λ(S−1(Λ(1))x1α)D̃′′Θ′′S((D̃′Θ′) . Λ(2))1α

= λ(x1αS(Λ(1)))D̃
′′Θ′′S((D̃′Θ′) . Λ(2))1α

= D̃′′Θ′′S((D̃′Θ′) . (x1α))1α

= K |Θ
′.x|Θ′′S(Θ′ . x)1α. �

Because of Proposition 6.1, we will use the notation JU for the invariant given
by Theorem 3.1 with H = Ũ .

7. Relation between invariants for restricted and small quantum sl2

In this section, we prove that the non-refined invariant associated with the small
quantum group of sl2 coincides with the refined invariant associated with the re-
stricted quantum group of sl2 for the trivial cohomology class. In order to do this,
let us set

p′ :=
p

gcd(p, 2)
.

The small quantum group Ū = Ūqsl2 is defined as the algebra over C with generators
{Ē, F̄, K̄} and relations

Ēp = 0, F̄ p = 0, K̄p = 1,
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K̄ĒK̄−1 = q2Ē, K̄F̄ K̄−1 = q−2F̄, [Ē, F̄ ] =
K̄ − K̄−1

q − q−1
.

We identify Ū with a Hopf subalgebra of U by setting

Ē = E10, F̄ = F10, K̄ = K10.

As explained in [BD21, Section 9.2], Ū is a unimodular ribbon Hopf algebra, and
it is factorizable if and only if p 6≡ 0 (mod 2). Notice that the R-matrix R̄ ∈ Ū ⊗ Ū
is given by the product R̄ = D̄Θ̄, where the quasi-R-matrix Θ̄ = Θ̄′ ⊗ Θ̄′′ ∈ Ū ⊗ Ū
is given by

Θ̄ = Θ′10 ⊗Θ′′10, (7.1)

while the diagonal Cartan part D̄ = D̄′ ⊗ D̄′′ ∈ Ū ⊗ Ū is given by

D̄ =
1

p

p−1∑
a,b=0

q−2abK̄a ⊗ K̄b. (7.2)

Let us now restrict our attention to the case p ≡ 0 (mod 2). The ribbon element
and its inverse v̄+, v̄− ∈ Ū are given for p ≡ 2 (mod 2) by

v̄+ =
i
p′−1

2

√
p′

p−1∑
a=0

p′−1∑
b=0

{−1}a

[a]!
q−

(a+3)a
2 +

(p′+1)3

2 (2b−1)2 F̄ aĒaK̄−a−2b, (7.3)

v̄− =
i−

p′−1
2

√
p′

p−1∑
a=0

p′−1∑
b=0

{1}a

[a]!
q

(a+3)a
2 − (p′+1)3

2 (2b−1)2 F̄ aĒaK̄a+2b, (7.4)

and for p ≡ 0 (mod 4) by

v̄+ =
1− i
√
p

p−1∑
a=0

p′−1∑
b=0

{−1}a

[a]!
q−

(a+3)a
2 +2b2 F̄ aĒaK̄−a−2b−1, (7.5)

v̄− =
1 + i
√
p

p−1∑
a=0

p′−1∑
b=0

{1}a

[a]!
q

(a+3)a
2 −2b2 F̄ aĒaK̄a+2b+1, (7.6)

as shown in [BD21, Lemma B.2, Equations (B.10)–(B.13)]. Similarly, the M-matrix
and its inverse M̄+ = M̄ ′+ ⊗ M̄ ′′+, M̄− = M̄ ′− ⊗ M̄ ′′− ∈ Ū ⊗ Ū are given by

M̄ =
1

p′

p−1∑
a,b=0

p′−1∑
c,d=0

{1}a+b

[a]![b]!

q
a(a−1)+b(b−1)

2 −2b2−4cdK̄−b+2cF̄ bĒa ⊗ K̄b+2dĒbF̄ a, (7.7)

M̄−1 =
1

p′

p−1∑
a,b=0

p′−1∑
c,d=0

{−1}a+b

[a]![b]!

q
a(a−1)+b(b−1)

2 +2b2+4cdĒaF̄ bK̄−b+2c ⊗ F̄ aĒbK̄b+2d. (7.8)

as shown in [BD21, Lemma B.3, Equations (B.31)–(B.32)]. We slightly change
our conventions with respect to those of [BD21, Section 9.2], and fix our preferred
non-zero left integral λ̄ of Ūqsl2 to be

λ̄
(
ĒaF̄ bK̄c

)
=

√
p′[p− 1]!

ip−1{1}p−1
δa,p−1δb,p−1δc,p−1, (7.9)
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while our preferred non-zero two-sided cointegral Λ̄ of Ūqsl2 satisfying λ(Λ) = 1 is

Λ̄ :=
ip−1{1}p−1

√
p′[p− 1]!

p−1∑
a=0

Ēp−1F̄ p−1K̄a. (7.10)

See Appendix A for an explanation of the effect of this change of conventions, and
for why the current ones are more natural than the ones of [BD21].

Proposition 7.1. For the zero cohomology class, the refined invariant JU satisfies

JU (W, 0) = JŪ (W ),

where JŪ denotes the invariant associated with the small quantum group Ū .

Proof. Since Ū is a unimodular ribbon Hopf algebra, [BD21, Proposition 7.3] im-
plies that Ū̄ŪŪŪŪŪŪŪŪŪŪŪŪŪŪŪU ∈ Ū -mod is a 4-modular braided Hopf algebra. Structure morphisms
of Ū̄ŪŪŪŪŪŪŪŪŪŪŪŪŪŪŪU are given, for all x, y ∈ Ū̄ŪŪŪŪŪŪŪŪŪŪŪŪŪŪŪU , by
µ̄̄µ̄µ̄µ̄µ̄µ̄µ̄µ̄µ̄µ̄µ̄µ̄µ̄µ̄µ̄µ̄µ(x⊗ y) = xy, η̄̄η̄η̄η̄η̄η̄η̄η̄η̄η̄η̄η̄η̄η̄η̄η̄η(1) = 1,

∆̄̄∆̄∆̄∆̄∆̄∆̄∆̄∆̄∆̄∆̄∆̄∆̄∆̄∆̄∆̄∆̄∆(x) = x(1)S(D̄′′Θ̄′′)⊗ ((D̄′Θ̄′) . x(2)), ε̄̄ε̄ε̄ε̄ε̄ε̄ε̄ε̄ε̄ε̄ε̄ε̄ε̄ε̄ε̄ε̄ε(x) = ε(x),

S̄̄S̄S̄S̄S̄S̄S̄S̄S̄S̄S̄S̄S̄S̄S̄S̄S(x) = D̄′′Θ̄′′S((D̄′Θ̄′) . x), S̄−1S̄−1S̄−1S̄−1S̄−1S̄−1S̄−1S̄−1S̄−1S̄−1S̄−1S̄−1S̄−1S̄−1S̄−1S̄−1
S̄−1(x) = S−1((D̄′Θ̄′) . x)D̄′′Θ̄′′,

v̄+v̄+v̄+v̄+v̄+v̄+v̄+v̄+v̄+v̄+v̄+v̄+v̄+v̄+v̄+v̄+v̄+(1) = v̄+, v̄−v̄−v̄−v̄−v̄−v̄−v̄−v̄−v̄−v̄−v̄−v̄−v̄−v̄−v̄−v̄−v̄−(1) = v̄−,

w̄+w̄+w̄+w̄+w̄+w̄+w̄+w̄+w̄+w̄+w̄+w̄+w̄+w̄+w̄+w̄+w̄+(1) = S(M̄ ′+)⊗ M̄ ′′+, w̄−w̄−w̄−w̄−w̄−w̄−w̄−w̄−w̄−w̄−w̄−w̄−w̄−w̄−w̄−w̄−w̄−(1) = S(M̄ ′−)⊗ M̄ ′′−,
λ̄̄λ̄λ̄λ̄λ̄λ̄λ̄λ̄λ̄λ̄λ̄λ̄λ̄λ̄λ̄λ̄λ(x) = λ̄(x), Λ̄̄Λ̄Λ̄Λ̄Λ̄Λ̄Λ̄Λ̄Λ̄Λ̄Λ̄Λ̄Λ̄Λ̄Λ̄Λ̄Λ(1) = Λ̄.

First of all, we claim that
∆̄̄∆̄∆̄∆̄∆̄∆̄∆̄∆̄∆̄∆̄∆̄∆̄∆̄∆̄∆̄∆̄∆(x10) = ∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆(x)(10 ⊗ 10), S̄̄S̄S̄S̄S̄S̄S̄S̄S̄S̄S̄S̄S̄S̄S̄S̄S(x10) = SSSSSSSSSSSSSSSSS(x)10

for every x ∈ U . Indeed, just like for the restricted quantum group, a grading

Ū =

p−1⊕
n=−p+1

Γn(Ū)

is obtained by setting Γn(Ū) to be the linear subspace of Ū with basis

{ĒaF̄ bK̄c | 0 6 a, b, c 6 p− 1, a− b = n},
for every −p+1 6 n 6 p−1. As usual, if x ∈ Γn(Ū), then we say x is homogeneous
of degree n, and we write |x| = n. Then, for all homogeneous x, y ∈ Ū , we have

(D̄′ . x)⊗ D̄′′ = x⊗ K̄ |x|,

(D̄′ . x)⊗ (D̄′′ . y) = q2|x||y|x⊗ y.
This can be shown exactly like Lemma 5.2, and gives a proof of the claim.

Next, we we claim that

v̄+ = v+10, w̄+ = w+(10 ⊗ 10).

Indeed, on the one hand, the equality for the ribbon element is obtained by com-
paring Equations (7.3) & (7.5) with Equations (B.1) & (B.5). For p ≡ 2 (mod 4)
we have

i = qp
′
, q

(p′+1)3

2 = q−
p′2−1

2 ,
1− i√

2
= t−p

′
.
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Therefore, the equality follows from

i
p′−1

2 q
(p′+1)3

2 (2b−1)2 = q
p′(p′−1)

2 − p
′2−1
2 (2b−1)2

= tp
′2−p′−(p′2−1)(2b−1)2

= t(1−(2b−1)2)p′2−p′+(2b−1)2

= t−4b(b−1)p′2t−p
′
t(2b−1)2

=
1− i√

2
t(2b−1)2 .

For p ≡ 0 (mod 4), the equality is clear. On the other hand, the equality for the
copairing is obtained by computing

w+ =
1

p′

p−1∑
a,b=0

p′−1∑
c,d=0

{1}a+b

[a]![b]!
q
a(a−1)+b(b−1)

2 −2b2−4cdS(K−b+2cF bEa)⊗Kb+2dEbF a

=
1

p′

p−1∑
a,b=0

p′−1∑
c,d=0

{−1}a+b

[a]![b]!
q
a(a−1)+b(b−1)

2 −(a−b)(a−b−1)−2b2−4cd

EaF bK−a+2b−2c ⊗Kb+2dEbF a

=
1

p′

p−1∑
a,b=0

p′−1∑
c,d=0

{−1}a+b

[a]![b]!
q
a(a−1)+b(b−1)

2 −(a−b)(a−b−1)−2(a−b)(b+2d)−2b2−4cd

EaF bK−a+2b−2c ⊗ EbF aKb+2d

=
1

p′

p−1∑
a,b=0

p′−1∑
c,d=0

{−1}a+b

[a]![b]!
q
a(a−1)+b(b−1)

2 −(a−b)(a−b−1)−2(a−b)(b+2d)−2b2+4(a−b+c)d

EaF bKa+2c ⊗ EbF aKb+2d

=
1

p′

p−1∑
a,b=0

p′−1∑
c,d=0

{−1}a+b

[a]![b]!
q−

a(a−1)+b(b−1)
2 −2b+4cdEaF bKa+2c ⊗ EbF aKb+2d,

and comparing with Equation (B.9).
Finally, we have

λ̄(x10) = λ(x10), Λ̄ = Λ10

for every x ∈ U . Indeed, we have

λ̄(EaF bKc10) =

√
p′[p− 1]!

ip−1{1}p−1
δa,p−1δb,p−1 (δc,p−1 + δc,2p−1) ,

λ(EaF bKc10) =

√
2p[p− 1]!

ip−1{1}p−1
δa,p−1δb,p−1

(
δc,p−1 + δc,2p−1

2

)
for all integers 0 6 a, b 6 p− 1 and 0 6 c 6 2p− 1. �

8. Spin and cohomological decomposition formulas

In this section, we derive a decomposition formula for both the refined and the
non-refined invariants associated with the restricted quantum group U in terms of
refined invariants of 3-dimensional boundaries equipped with additional structures.
Recall that a spin structure on a connected n-dimensional k-handlebody

Dn = X0 ⊂ X1 ⊂ X2 ⊂ . . . ⊂ Xk = X
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can be defined as the fiber-homotopy class of a trivialization of the tangent bundle
TX2 of the 2-handlebody X2. A spin structure on X exists if and only if the second
Stiefel–Whitney class w2(X) ∈ H2(X;Z/2Z) vanishes. By definition, w2(X) is the
cohomology class of a cocycle c(τ) that is constructed as follows: first, we pick
an arbitrary trivialization τ of the tangent bundle TX1 of the 1-handlebody X1,
which exists because X is oriented; next, for every 2-handle in X2, we use the
corresponding attaching map in order to compare τ with the unique trivialization
of the tangent bundle of D2×Dn−2 up to fiber-homotopy; this allows us to associate
with every 2-handle in X2 the obstruction to extending τ , which is an element in
π1(SO(n)) ∼= Z/2Z (for n > 2). Therefore, X admits a spin structure if and only if
c(τ) is a coboundary for some choice of τ , in which case it is a coboundary for all
possible choices of τ , see [GS99, Section 5.6] for more details. If w2(X) = 0, then
the set S(X) of spin structures on X is affinely isomorphic to the vector space

H(X) := H1(X;Z/2Z),

since every pair s, s′ ∈ S(X) of spin structures on X determines a difference class
∆(s, s′) ∈ H(X). Indeed, up to fiber-homotopy, we can suppose that s and s′

coincide on the 0-handlebody Dn = X0, and we obtain a difference cochain d(s, s′)
inside C1(X;π1(SO(n))) ∼= C1(X;Z/2Z) by comparing the two restrictions to the
1-handlebody X1. This is a cocycle because both s and s′ extend to X2, and a
different choice for the fiber-homotopy ensuring that s and s′ coincide on X0 only
affects d(s, s′) by a coboundary, see [GS99, Section 5.6].

If Y is a (n − 1)-manifold with a spin structure s ∈ S(Y ), then a relative n-di-
mensional k-handlebody

Y × I = X0 ⊂ X1 ⊂ X2 ⊂ . . . ⊂ Xk = X

admits a spin structure extending s if and only if the second relative Stiefel–Whitney
class w2(X, s) ∈ H2(X,Y ;Z/2Z) vanishes. The definition of w2(X, s) is analogous
to that of w2(X), although this time the trivialization τ of the tangent bundle TX1

of the 1-handlebody X1 is required to extend s.
Every 3-manifold admits a spin structure, because every 3-manifold is paralleliz-

able, see for instance [BL18]. Notice however that there exist 4-manifolds that do
not admit any spin structure.

Let W be a connected 4-dimensional 2-handlebody with boundary ∂W = M .
For every relative cohomology class ω ∈ H2(W,M ;Z/2Z), we set

S(M,ω) := {s ∈ S(M) | w2(W, s) = ω}
H(M,ω) := {ϕ ∈H(M) | δ∗(ϕ) = ω}

where δ∗ : H(M) → H2(W,M ;Z/2Z) denotes the coboundary homomorphism
coming from the long exact sequence of the pair (W,M) in cohomology with Z/2Z-
coefficients.

Let W be a geometrically simple connected 4-dimensional 2-handlebody with
boundary ∂W = M , let L = L1 ∪ . . .∪Ln denote a Kirby diagram for W featuring
only 2-handles, which yields a surgery presentation of M . Then, every cohomology
class in ω ∈ H2(W,M ;Z/2Z) can be identified with (the indicator function of) a
sublink of L. Indeed, if mi ∈ H2(W,M) denotes the relative homology class of disc
providing a meridian for the tubular neighborhood of a component Li ⊂ L, then
let us set

ωi := 〈ω,mi〉 ∈ Z/2Z.
A sublink ω ∈ H2(W,M ;Z/2Z) is said to be characteristic if it satisfies the equation

lk(Li, ω) :=

n∑
j=1

ωj lk(Li, Lj) ≡ lk(Li, Li) (mod 2)
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for every 1 6 i 6 n, while it is said to be even if it satisfies the equation

lk(Li, ω) :=

n∑
j=1

ωj lk(Li, Lj) ≡ 0 (mod 2)

for every 1 6 i 6 n. On the one hand, the map

S(M)→ H2(W,M ;Z/2Z)

s 7→ w2(W, s)

defines a bijection between S(M) and the set of characteristic sublinks of L, as
explained in [GS99, Section 5.7.11]. In other words, for every characteristic sublink
ω ∈ H2(W,M ;Z/2Z) there exists a unique spin structure s ∈ S(M) such that
w2(W, s) = ω. As explained above, the characteristic class w2(W, s) measures the
obstruction to extending s from M to W . In particular, we have that W is a spin
4-manifold if and only if the empty sublink 0 ∈ H2(W,M ;Z/2Z) is a characteristic
sublink. On the other hand, the coboundary homomorphism

H(M)→ H2(W,M ;Z/2Z)

ϕ 7→ δ∗(ϕ)

coming from the long exact sequence of the pair (W,M) in cohomology with Z/2Z-
coefficients defines a bijection between H(M) and the set of even sublinks of L.
Notice that, when W is not geometrically simply connected, then neither of these
maps is injective in general. For instance, if W = S1 ×D3 and M = S1 × S2, then
H2(W,M ;Z/2Z) = 0 while H1(M ;Z/2Z) ∼= Z/2Z.

Theorem 8.1. Let W be a connected 4-dimensional 2-handlebody with boundary
∂W = M , let D be a Kirby diagram for W , let L be the framed link obtained
from D by trading 1-handles for 2-handles, let σ be its signature, and let E be the
4-dimensional 2-handlebody represented by L.

(1) If p ≡ 0 (mod 4), then for every spin structure s ∈ S(M) the scalar

JU (M, s) := λ(v+11)σJU (E,w2(E, s)) (8.1)

is a topological invariant of the pair (M, s), for every relative cohomology
class ω ∈ H2(W,M ;Z/2Z) we have

JU (W,ω) = λ(v−11)σ
∑

s∈S(M,ω)

JU (M, s), (8.2)

and for the non-refined invariant we have

JU (W ) = λ(v−11)σ
∑

s∈S(M)

JU (M, s); (8.3)

(2) If p ≡ 2 (mod 4), then for every cohomology class ϕ ∈H(M) the scalar

JU (M,ϕ) := λ(v+10)σJU (E, δ∗(ϕ)) (8.4)

is a topological invariant of the pair (M,ϕ), for every relative cohomology
class ω ∈ H2(W,M ;Z/2Z) we have

JU (W,ω) = λ(v−10)σ
∑

ϕ∈H(M,ω)

JU (M,ϕ), (8.5)

and for the non-refined invariant we have

JU (W ) = λ(v−10)σ
∑

ϕ∈H(M)

JU (M,ϕ). (8.6)
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Remark 8.2. Let us point out a few formal differences between the statement of
Theorem 8.1 and the one given in the Introduction. First of all, the signature σ
appearing here is the signature of the framed link L, so it coincides by definition
with σ(E), instead of σ(W ). Of course, this makes no difference, since trading
1-handles for 2-handles does not affect the signature. Indeed, every handle trade
on a 4-manifold can be implemented by a 5-dimensional cobordism, as explained
in [KL01, Remark 3.1.3], and the signature is a cobordism invariant. Furthermore,
the signature renormalization appearing here involves the scalar λ(v−11), if p ≡ 0
(mod 4), or λ(v−10), if p ≡ 2 (mod 4), while in the Introduction we simply used
λ(v−). However, we have λ(v−) = λ(v−10) + λ(v−11), and in both cases we are
simply highlighting here the only non-vanishing summand.

Proof of Theorem 8.1. Let us begin with point (1), so let us assume p ≡ 0 (mod 4),
and let us show that JU (M, s) is independent of the framed link L. Since by defini-
tion it is already invariant under Kirby II moves, meaning 2-handle slides, we only
need to show that it is also invariant under Kirby I moves, meaning stabilization
by ∂CP 2 and ∂CP 2. In order to prove this, it is sufficient to notice that

λ(v+11)λ(v−11) = 1.

This follows from Equation (5.8), which combines with Equation (B.6) to give

λ(v+11) = −
√

2p[p− 1]!

ip−1{1}p−1

1− i
√
p

{−1}p−1

[p− 1]!

q−
(p+2)(p−1)

2 t

2
=

1− i√
2
t3,

and with Equation (B.8) to give

λ(v−11) = −
√

2p[p− 1]!

ip−1{1}p−1

1 + i
√
p

{1}p−1

[p− 1]!

q
(p+2)(p−1)

2 t−1

2
=

1 + i√
2
t−3.

This establishes the first claim, because the signature of a Kirby diagram for
E \(CP 2 r D̊4) is σ+ 1, while the signature of a Kirby diagram for E \(CP 2 r D̊4)
is σ − 1.

Now, thanks to Proposition 4.1, since U is factorizable, in order to conclude
the proof of point (1), we simply need to assume that W is geometrically simply
connected, and to show that

JU (W,ω) = 0

for every ω ∈ H2(W,M ;Z/2Z) which is not of the form ω = w2(W, s) for some spin
structure s ∈ S(M). In other words, we need to show that

JU (W,ω) = 0

whenever ω is not a characteristic sublink of L. Indeed, since for every other
ω ∈ H2(W,M ;Z/2Z) there exists exactly one spin structure s ∈ S(M) satisfying
w2(W, s) = ω, this would imply Equation (8.2), and Equation (8.3) would follow
from

JU (W ) =
∑

ω∈H2(W,M ;Z/2Z)

JU (W,ω).

Therefore, let us follow the structure of the proof of [Bl92, Theorem III.3], and let
us fix an ω that is not a characteristic sublink. This means there exists a component
Li ⊂ L such that

lk(Li, ω) 6≡ lk(Li, Li) (mod 2).

First of all, we claim that we can suppose that Li is unknotted. Indeed, by per-
forming Kirby II moves every self crossing of Li can be changed as follows, without
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changing the invariant:

 

Therefore, we have the following configuration:

In particular, we have two cases:
(1) If Li does not belong to the characteristic sublink, then ωi = 0. This means

we have two further sub-cases:
(a) If lk(Li, Li) ≡ 0 (mod 2), then ωj1 + . . .+ ωjk = 1.
(b) If lk(Li, Li) ≡ 1 (mod 2), then ωj1 + . . .+ ωjk = 0.

(2) If Li belongs to the characteristic sublink, then ωi = 1, and therefore
ωj1 + . . .+ ωjk = 1.

Let us define a Z/2Z-grading on U given by the algebra morphism

deg : U → Z/2Z
determined by

deg(E) = 1, deg(F ) = 0, deg(K) = 1.

Notice that this is well-defined because all the relations of U are homogeneous.
Notice also that

deg(x) = 1⇒ λ(x) = 0,

thanks to Equation (5.8). However
(1) deg(v+10) = 1, thanks to Equation (B.5);
(2) deg(v+11) = 0, thanks to Equation (B.6);
(3) (deg(S(M ′+)10),deg(M ′′+11)) = (1, 0), thanks to Equation (B.10);
(4) (deg(S(M ′+)10),deg(M ′′+10)) = (0, 0), thanks to Equation (B.9);
(5) (deg(S(M ′+)11),deg(M ′′+11)) = (1, 1), thanks to Equation (B.12).

This implies immediately that

λ(S(M ′+)10v
2n
+ 10)M ′′+11 = 0,

λ(S(M ′+)10v
2n+1
+ 10)M ′′+10 = 0,

λ(S(M ′+)11v
n
+11)M ′′+11 = 0,

which in particular means that

λ(S(M ′+)v2n
+ 10)(M ′′+)(1)1ωj1 ⊗ . . .⊗ (M ′′+)(k)1ωjk = 0,

λ(S(M ′+)v2n+1
+ 10)(M ′′+)(1)1ωj1 ⊗ . . .⊗ (M ′′+)(k)1ωjk = 0,

λ(S(M ′+)vn+11)(M ′′+)(1)1ωj1 ⊗ . . .⊗ (M ′′+)(k)1ωjk = 0.

This concludes the proof of point (1).
The proof of point (2) is completely analogous, but we will briefly explain what

should be adapted from the previous one, so let us assume p ≡ 2 (mod 4). This
time, we have

λ(v+10)λ(v−10) = 1.
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This follows from Equation (5.8), which combines with Equation (B.1) to give

λ(v+10) =

√
2p[p− 1]!

ip−1{1}p−1

1− i
√
p

{−1}p−1

[p− 1]!

q−
(p+2)(p−1)

2 t

2
= −1− i√

2
t3,

and with Equation (B.3) to give

λ(v−10) =

√
2p[p− 1]!

ip−1{1}p−1

1 + i
√
p

{1}p−1

[p− 1]!

q
(p+2)(p−1)

2 t−1

2
= −1 + i√

2
t−3.

This establishes the first claim.
Now, in order to conclude, we need to assume that W is geometrically simply

connected, and to show that
JU (W,ω) = 0

for every ω ∈ H2(W,M ;Z/2Z) which is not an even sublink of L. For such an ω,
there exists a component Li ⊂ L such that

lk(Li, ω) 6≡ 0 (mod 2),

and again we can suppose that Li is unknotted. In particular, we have two cases:
(1) If Li does not belong to the even sublink, then ωi = 0, and therefore

ωj1 + . . .+ ωjk = 1.
(2) If Li belongs to the even sublink, then ωi = 1. This means we have two

further sub-cases:
(a) If lk(Li, Li) ≡ 0 (mod 2), then ωj1 + . . .+ ωjk = 1.
(b) If lk(Li, Li) ≡ 1 (mod 2), then ωj1 + . . .+ ωjk = 0.

However
(1) deg(v+10) = 0, thanks to Equation (B.1);
(2) deg(v+11) = 1, thanks to Equation (B.2);
(3) (deg(S(M ′+)10),deg(M ′′+11)) = (1, 0), thanks to Equation (B.10);
(4) (deg(S(M ′+)11),deg(M ′′+11)) = (1, 1), thanks to Equation (B.12);
(5) (deg(S(M ′+)11),deg(M ′′+10)) = (0, 1), thanks to Equation (B.11).

This implies immediately that

λ(S(M ′+)10v
n
+10)M ′′+11 = 0,

λ(S(M ′+)11v
2n
+ 11)M ′′+11 = 0,

λ(S(M ′+)11v
2n+1
+ 11)M ′′+10 = 0,

which in particular means that

λ(S(M ′+)vn+10)(M ′′+)(1)1ωj1 ⊗ . . .⊗ (M ′′+)(k)1ωjk = 0,

λ(S(M ′+)v2n
+ 11)(M ′′+)(1)1ωj1 ⊗ . . .⊗ (M ′′+)(k)1ωjk = 0,

λ(S(M ′+)v2n+1
+ 11)(M ′′+)(1)1ωj1 ⊗ . . .⊗ (M ′′+)(k)1ωjk = 0. �

Appendix A. Rescaling the invariant

In this appendix, we explain the behavior of the invariant of [BD21] under the
operation of rescaling the integral and the cointegral. In order to do this, let us
consider a unimodular ribbon category C with end

E =

∫
X∈C

X ⊗X∗,

as in [BD21, Section 5.1] (for instance, we could consider C = H-mod for a uni-
modular ribbon Hopf algebra H, in which case E = HHHHHHHHHHHHHHHHH would be the adjoint repre-
sentation). Suppose that λ : E → is a two-sided integral, and that Λ : →E is a
two-sided cointegral satisfying λ ◦Λ = 1. Let us denote by JC the associated scalar
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invariant of 4-dimensional 2-handlebodies, given by the restriction of the functor
of [BD21, Theorem 1.1] to endomorphisms of the tensor unit of 4HB. Let us also
denote by JC,ξ the scalar invariant obtained from JC by replacing λ and Λ with ξλ
and ξ−1Λ respectively, for some invertible scalar ξ ∈ k×.

Lemma A.1. For every 4-dimensional 2-handlebody W we have

JC,ξ(W ) = ξχ(W )−1JC(W ), (A.1)

where χ(W ) is the Euler characteristic of W .

Proof. Notice that the space Ck(W ) of cellular k-chains of W is generated by the
set of cores Dk × {0} of k-handles Dk ×D4−k. In particular, we have

C3(W ) C2(W ) C1(W ) C0(W )

= =

0 Z

0 ∂ 0

Therefore

H2(W ) = ker(∂), H1(W ) = coker(∂).

This implies that

rank(C2(W ))− rank(C1(W )) = rank(ker(∂))− rank(coker(∂)) = χ(W )− 1.

Since
JC,ξ(W ) = ξrank(C2(W ))−rank(C1(W ))JC(W ),

we proved the claim. �

Notice that Equation (A.1) behaves well under boundary connected sum, since

χ(W \W ′) = χ(W ) + χ(W ′)− χ(D4) = χ(W ) + χ(W ′)− 1.

Thanks to Lemma A.1, the normalization of Equations (7.9) & (7.10) simply
amounts to multiplying the invariant of W computed in [BD21, Corollary 9.3] by
i(p−1)(χ(W )−1) (notice that r = 2p in our current notation). We point out however
that there is a sign mistake in the computation of the invariant of (S2 ×̃S2) r D̊4

for r ≡ 4 (mod 8). This can be traced back to a sign mistake in the computation
of λ(v−) for r ≡ 4 (mod 8) in [BD21, Lemma 9.1]. Therefore, let us give here
the correct formulas, at least in the non-factorizable case (the factorizable one is
already correct). Under the normalization of Equations (7.9) & (7.10), we have

JŪ ((S2 × S2) r D̊4) = 1,

JŪ ((S2 ×̃S2) r D̊4) =

{
1 if p ≡ 2 (mod 4),

0 if p ≡ 0 (mod 4).

Appendix B. Ribbon element and copairing

Let us compute the ribbon element v+ ∈ U .

Lemma B.1. The ribbon element and its inverse are given by

v+ =
1− i
2
√
p

p−1∑
a=0

2p−1∑
b=0

{−1}a

[a]!
q−

(a+3)a
2 t(b+p+1)2F aEaK−a+b,

v− =
1 + i

2
√
p

p−1∑
a=0

2p−1∑
b=0

{1}a

[a]!
q

(a+3)a
2 t−(b+p−1)2F aEaKa+b.
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Proof. These formulas can be obtained by computing the Drinfeld element

u =
1

4p

p−1∑
a=0

4p−1∑
b,c=0

{1}a

[a]!
q
a(a−1)

2 t−bcS(kcF a)kbEa

=
1

4p

p−1∑
a=0

4p−1∑
b,c=0

(−1)a
{1}a

[a]!
q−

(a+3)a
2 t−bcF ak2a+b−cEa

=
1

4p

p−1∑
a=0

4p−1∑
b,c=0

(−1)a
{1}a

[a]!
q−

(a+3)a
2 t2a(2a+b−c)−bcF aEak2a+b−c

and its inverse

u−1 =
1

4p

p−1∑
a=0

4p−1∑
b,c=0

{1}a

[a]!
q
a(a−1)

2 t−bckcF aS2(kbEa)

=
1

4p

p−1∑
a=0

4p−1∑
b,c=0

{1}a

[a]!
q

(a+3)a
2 t−bckcF akbEa

=
1

4p

p−1∑
a=0

4p−1∑
b,c=0

{1}a

[a]!
q

(a+3)a
2 t2ab−bcF aEakb+c.

For what concerns u, if we set d = 4a+ b− c and n = 2a+ b, we obtain

u =
1

4p

p−1∑
a=0

4p−1∑
b,c=0

(
4p−1∑
n=0

t−n
2+dn

)
{−1}a

[a]!
q−

(a+3)a
2 F aEak−2a+d.

Similarly, for what concerns u−1, if we set d = −2a+ b+ c and n = b, we obtain

u−1 =
1

4p

p−1∑
a=0

(
4p−1∑
n=0

tn
2+dn

)
{1}a

[a]!
q

(a+3)a
2 F aEak2a+d.

Since
4p−1∑
n=0

t±n
2+dn =

{
2
√
p(1± i)t∓ d

2

4 if d ≡ 0 (mod 2),

0 if d ≡ 1 (mod 2),

this implies

u =
1− i
2
√
p

p−1∑
a=0

2p−1∑
b=0

{−1}a

[a]!
q−

(a+3)a
2 tb

2

F aEak−2a+2b,

and similarly

u−1 =
1 + i

2
√
p

p−1∑
a=0

2p−1∑
b=0

{1}a

[a]!
q

(a+3)a
2 t−b

2

F aEak2a+2b.

The claim now follows from v+ = uKp−1 and v− = u−1Kp+1. �

Let us compute the M-matrix M+ ∈ U ⊗ U .

Lemma B.2. The M-matrix and its inverse are given by

M+ =
1

2p

p−1∑
a,b=0

2p−1∑
c,d=0

{1}a+b

[a]![b]!
q
a(a−1)+b(b−1)

2 −2b2−cdK−b+cF bEa ⊗Kb+dEbF a,

M− =
1

2p

p−1∑
a,b=0

2p−1∑
c,d=0

{−1}a+b

[a]![b]!
q−

a(a−1)+b(b−1)
2 +2b2+cdEaF bK−b+c ⊗ F aEbKb+d.
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Proof. We have

M+ =
1

16p2

p−1∑
a,b=0

4p−1∑
c,d,e,f=0

{1}a+b

[a]![b]!

q
a(a−1)+b(b−1)

2 t−cd−efkfF bkcEa ⊗ keEbkdF a

=
1

16p2

p−1∑
a,b=0

4p−1∑
c,d,e,f=0

{1}a+b

[a]![b]!

q
a(a−1)+b(b−1)

2 t−cd−ef+2b(c−d)kc+fF bEa ⊗ kd+eEbF a

=
1

16p2

p−1∑
a,b=0

4p−1∑
e,f,g,h=0

{1}a+b

[a]![b]!

q
a(a−1)+b(b−1)

2 t−(f−g)(e−h)−ef−2b(f−g−e+h)kgF bEa ⊗ khEbF a

=
1

4p

p−1∑
a,b=0

4p−1∑
e,g,h=0

 1

4p

4p−1∑
f=0

t−f(2b+2e−h)

 {1}a+b

[a]![b]!

q
a(a−1)+b(b−1)

2 t(2b+g)(e−h)+2bgkgF bEa ⊗ khEbF a

=
1

4p

p−1∑
a,b=0

4p−1∑
e,g=0

{1}a+b

[a]![b]!

q
a(a−1)+b(b−1)

2 t−(2b+g)(2b+e)+2bgkgF bEa ⊗ k2b+2eEbF a

=
1

4p

p−1∑
a,b=0

2p−1∑
e=0

4p−1∑
g=0

{1}a+b

[a]![b]!
(1 + (−1)g)

q
a(a−1)+b(b−1)

2 t−(2b+g)(2b+e)+2bgkgF bEa ⊗ k2b+2eEbF a

=
1

2p

p−1∑
a,b=0

2p−1∑
e,g=0

{1}a+b

[a]![b]!

q
a(a−1)+b(b−1)

2 t−(2b+2g)(2b+e)+4bgk2gF bEa ⊗ k2b+2eEbF a.

Similarly, we have

M− =
1

16p2

p−1∑
a,b=0

4p−1∑
c,d,e,f=0

{−1}a+b

[a]![b]!

q−
a(a−1)+b(b−1)

2 tcd+efEakcF bkf ⊗ F akdEbke

=
1

16p2

p−1∑
a,b=0

4p−1∑
c,d,e,f=0

{−1}a+b

[a]![b]!

q−
a(a−1)+b(b−1)

2 tcd+ef−2b(c−d)EaF bkc+f ⊗ F aEbkd+e

=
1

16p2

p−1∑
a,b=0

4p−1∑
e,f,g,h=0

{−1}a+b

[a]![b]!

q−
a(a−1)+b(b−1)

2 t(f−g)(e−h)+ef+2b(f−g−e+h)EaF bkg ⊗ F aEbkh
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=
1

4p

p−1∑
a,b=0

4p−1∑
e,g,h=0

 1

4p

4p−1∑
f=0

tf(2b+2e−h)

 {−1}a+b

[a]![b]!

q−
a(a−1)+b(b−1)

2 t−(2b+g)(e−h)−2bgEaF bkg ⊗ F aEbkh

=
1

4p

p−1∑
a,b=0

4p−1∑
e,g=0

{−1}a+b

[a]![b]!

q−
a(a−1)+b(b−1)

2 t(2b+g)(2b+e)−2bgEaF bkg ⊗ F aEbk2b+2e

=
1

4p

p−1∑
a,b=0

2p−1∑
e=0

4p−1∑
g=0

{−1}a+b

[a]![b]!
(1 + (−1)g)

q−
a(a−1)+b(b−1)

2 t(2b+g)(2b+e)−2bgEaF bkg ⊗ F aEbk2b+2e

=
1

2p

p−1∑
a,b=0

2p−1∑
e,g=0

{−1}a+b

[a]![b]!

q−
a(a−1)+b(b−1)

2 t(2b+2g)(2b+e)−4bgEaF bk2g ⊗ F aEbk2b+2e.

The claim now follows by setting g = −b+ c and e = d. �

Let us compute the copairing

w+ := w+w+w+w+w+w+w+w+w+w+w+w+w+w+w+w+w+(1) ∈ U ⊗ U.

Lemma B.3. The copairing is given by

w+ =
1

2p

p−1∑
a,b=0

2p−1∑
c,d=0

{−1}a+b

[a]![b]!
q−

a(a−1)+b(b−1)
2 −2b+cdEaF bKa+c ⊗ EbF aKb+d.

Proof. We have

w+ =
1

2p

p−1∑
a,b=0

2p−1∑
c,d=0

{1}a+b

[a]![b]!
q
a(a−1)+b(b−1)

2 −2b2−cdS(K−b+cF bEa)⊗Kb+dEbF a

=
1

2p

p−1∑
a,b=0

2p−1∑
c,d=0

{−1}a+b

[a]![b]!
q
a(a−1)+b(b−1)

2 −(a−b)(a−b−1)−2b2−cd

EaF bK−a+2b−c ⊗Kb+dEbF a

=
1

2p

p−1∑
a,b=0

2p−1∑
c,d=0

{−1}a+b

[a]![b]!
q
a(a−1)+b(b−1)

2 −(a−b)(a−b−1)−2(a−b)(b+d)−2b2−cd

EaF bK−a+2b−c ⊗ EbF aKb+d

=
1

2p

p−1∑
a,b=0

2p−1∑
c,d=0

{−1}a+b

[a]![b]!
q
a(a−1)+b(b−1)

2 −(a−b)(a−b−1)−2(a−b)(b+d)−2b2+(2a−2b+c)d

EaF bKa+c ⊗ EbF aKb+d

=
1

2p

p−1∑
a,b=0

2p−1∑
c,d=0

{−1}a+b

[a]![b]!
q−

a(a−1)+b(b−1)
2 −2b+cdEaF bKa+c ⊗ EbF aKb+d. �

From now on, let us focus on the case p ≡ 0 (mod 2). Let us compute the graded
ribbon and inverse ribbon elements

vα := v+1α ∈ U1α, v−1
α := v−1α ∈ U1α.
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Lemma B.4. The graded ribbon and inverse ribbon elements are given for p ≡ 2
(mod 4) by

v+10 =
1− i
√
p

p−1∑
a=0

p′−1∑
b=0

{−1}a

[a]!
q−

(a+3)a
2 t(2b−1)2F aEaK−a−2b10, (B.1)

v+11 = −1− i
√
p

p−1∑
a=0

p′−1∑
b=0

{−1}a

[a]!
q−

(a+3)a
2 t(2b)

2

F aEaK−a−2b−111, (B.2)

v−10 =
1 + i
√
p

p−1∑
a=0

p′−1∑
b=0

{1}a

[a]!
q

(a+3)a
2 t−(2b−1)2F aEaKa+2b10, (B.3)

v−11 = −1 + i
√
p

p−1∑
a=0

p′−1∑
b=0

{1}a

[a]!
q

(a+3)a
2 t−(2b)2F aEaKa+2b+111, (B.4)

and for p ≡ 0 (mod 4) by

v+10 =
1− i
√
p

p−1∑
a=0

p′−1∑
b=0

{−1}a

[a]!
q−

(a+3)a
2 t(2b)

2

F aEaK−a−2b−110, (B.5)

v+11 = −1− i
√
p

p−1∑
a=0

p′−1∑
b=0

{−1}a

[a]!
q−

(a+3)a
2 t(2b−1)2F aEaK−a−2b11. (B.6)

v−10 =
1 + i
√
p

p−1∑
a=0

p′−1∑
b=0

{1}a

[a]!
q

(a+3)a
2 t−(2b)2F aEaKa+2b+110, (B.7)

v−11 = −1 + i
√
p

p−1∑
a=0

p′−1∑
b=0

{1}a

[a]!
q

(a+3)a
2 t−(2b−1)2F aEaKa+2b11. (B.8)

Proof. We have

v+10 =
1− i
2
√
p

p−1∑
a=0

2p−1∑
b=0

{−1}a

[a]!
ip(−1)b+1q−

(a+3)a
2 t(b−1)2F aEaK−a−b10

=
1− i
2
√
p

p−1∑
a=0

p−1∑
b=0

{−1}a

[a]!
q−

(a+3)a
2 t(b−1)2

(
1 + ip(−1)b+1

)
F aEaK−a−b10,

v+11 =
1− i
2
√
p

p−1∑
a=0

2p−1∑
b=0

{−1}a

[a]!
ip(−1)b+1q−

(a+3)a
2 t(b−1)2F aEaK−a−b11

=
1− i
2
√
p

p−1∑
a=0

p−1∑
b=0

{−1}a

[a]!
q−

(a+3)a
2 t(b−1)2

(
−1 + ip(−1)b+1

)
F aEaK−a−b11,

v−10 =
1 + i

2
√
p

p−1∑
a=0

2p−1∑
b=0

{1}a

[a]!
i−p(−1)b+1q

(a+3)a
2 t−(b−1)2F aEaKa+b10

=
1 + i

2
√
p

p−1∑
a=0

p−1∑
b=0

{1}a

[a]!
q

(a+3)a
2 t−(b−1)2

(
1 + ip(−1)b+1

)
F aEaKa+b10,

v+11 =
1 + i

2
√
p

p−1∑
a=0

2p−1∑
b=0

{1}a

[a]!
i−p(−1)b+1q

(a+3)a
2 t−(b−1)2F aEaKa+b11

=
1 + i

2
√
p

p−1∑
a=0

p−1∑
b=0

{1}a

[a]!
q

(a+3)a
2 t(b−1)2

(
−1 + ip(−1)b+1

)
F aEaKa+b11. �



REFINED BOBTCHEVA–MESSIA INVARIANTS OF 4-DIMENSIONAL 2-HANDLEBODIES 31

Let us compute the graded copairing

wα,β := w+(1α ⊗ 1β) ∈ U1α ⊗ U1β .

Lemma B.5. The graded copairing is given by

w+(10 ⊗ 10) =
1

p′

p−1∑
a,b=0

p′−1∑
c,d=0

{−1}a+b

[a]![b]!
q−

a(a−1)+b(b−1)
2 −2b+4cd

EaF bKa+2c10 ⊗ EbF aKb+2d10, (B.9)

w+(10 ⊗ 11) =
1

p′

p−1∑
a,b=0

p′−1∑
c,d=0

{−1}a+b

[a]![b]!
q−

a(a−1)+b(b−1)
2 −2b+2d+4cd

EaF bKa+2c+110 ⊗ EbF aKb+2d11, (B.10)

w+(11 ⊗ 10) =
1

p′

p−1∑
a,b=0

p′−1∑
c,d=0

{−1}a+b

[a]![b]!
q−

a(a−1)+b(b−1)
2 −2b+2c+4cd

EaF bKa+2c11 ⊗ EbF aKb+2d+110, (B.11)

w+(11 ⊗ 11) =
1

p′

p−1∑
a,b=0

p′−1∑
c,d=0

{−1}a+b

[a]![b]!
q−

a(a−1)+b(b−1)
2 −2b+2(c+d)+4cd

EaF bKa+2c+111 ⊗ EbF aKb+2d+111. (B.12)

Proof. We have

w+(10 ⊗ 10) =
1

2p

p−1∑
a,b,c=0

2p−1∑
d=0

{−1}a+b

[a]![b]!
q−

a(a−1)+b(b−1)
2 −2b+cd

(1 + (−1)d)EaF bKa+c10 ⊗ EbF aKb+d10

=
1

p

p−1∑
a,b,c,d=0

{−1}a+b

[a]![b]!
q−

a(a−1)+b(b−1)
2 −2b+2cd

EaF bKa+c10 ⊗ EbF aKb+2d10

=
1

p

p−1∑
a,b,c=0

p′−1∑
d=0

{−1}a+b

[a]![b]!
q−

a(a−1)+b(b−1)
2 −2b+2cd

(1 + (−1)c)EaF bKa+c10 ⊗ EbF aKb+2d10

=
1

p′

p−1∑
a,b=0

p′−1∑
c,d=0

{−1}a+b

[a]![b]!
q−

a(a−1)+b(b−1)
2 −2b+4cd

EaF bKa+2c10 ⊗ EbF aKb+2d10,
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w+(10 ⊗ 11) =
1

2p

p−1∑
a,b,c=0

2p−1∑
d=0

{−1}a+b

[a]![b]!
q−

a(a−1)+b(b−1)
2 −2b+cd

(1 + (−1)d)EaF bKa+c10 ⊗ EbF aKb+d11

=
1

p

p−1∑
a,b,c,d=0

{−1}a+b

[a]![b]!
q−

a(a−1)+b(b−1)
2 −2b+2cd

EaF bKa+c10 ⊗ EbF aKb+2d11

=
1

p

p−1∑
a,b,c=0

p′−1∑
d=0

{−1}a+b

[a]![b]!
q−

a(a−1)+b(b−1)
2 −2b+2cd

(1− (−1)c)EaF bKa+c10 ⊗ EbF aKb+2d11

=
1

p′

p−1∑
a,b=0

p′−1∑
c,d=0

{−1}a+b

[a]![b]!
q−

a(a−1)+b(b−1)
2 −2b+2d+4cd

EaF bKa+2c+110 ⊗ EbF aKb+2d11,

w+(11 ⊗ 10) =
1

2p

p−1∑
a,b,c=0

2p−1∑
d=0

{−1}a+b

[a]![b]!
q−

a(a−1)+b(b−1)
2 −2b+cd

(1− (−1)d)EaF bKa+c11 ⊗ EbF aKb+d10

=
1

p

p−1∑
a,b,c,d=0

{−1}a+b

[a]![b]!
q−

a(a−1)+b(b−1)
2 −2b+c+2cd

EaF bKa+c11 ⊗ EbF aKb+2d+110

=
1

p

p−1∑
a,b,c=0

p′−1∑
d=0

{−1}a+b

[a]![b]!
q−

a(a−1)+b(b−1)
2 −2b+c+2cd

(1 + (−1)c)EaF bKa+c11 ⊗ EbF aKb+2d+110

=
1

p′

p−1∑
a,b=0

p′−1∑
c,d=0

{−1}a+b

[a]![b]!
q−

a(a−1)+b(b−1)
2 −2b+2c+4cd

EaF bKa+2c11 ⊗ EbF aKb+2d+110,
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w+(11 ⊗ 11) =
1

2p

p−1∑
a,b,c=0

2p−1∑
d=0

{−1}a+b

[a]![b]!
q−

a(a−1)+b(b−1)
2 −2b+cd

(1− (−1)d)EaF bKa+c11 ⊗ EbF aKb+d11

=
1

p

p−1∑
a,b,c,d=0

{−1}a+b

[a]![b]!
q−

a(a−1)+b(b−1)
2 −2b+c+2cd

EaF bKa+c11 ⊗ EbF aKb+2d+111

=
1

p

p−1∑
a,b,c=0

p′−1∑
d=0

{−1}a+b

[a]![b]!
q−

a(a−1)+b(b−1)
2 −2b+c+2cd

(1− (−1)c)EaF bKa+c11 ⊗ EbF aKb+2d+111

=
1

p′

p−1∑
a,b=0

p′−1∑
c,d=0

{−1}a+b

[a]![b]!
q−

a(a−1)+b(b−1)
2 −2b+2(c+d)+4cd

EaF bKa+2c+111 ⊗ EbF aKb+2d+111. �
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