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REFINED BOBTCHEVA-MESSIA INVARIANTS OF
4-DIMENSIONAL 2-HANDLEBODIES

ANNA BELIAKOVA AND MARCO DE RENZI

ABSTRACT. In this paper we refine our recently constructed invariants of 4-
dimensional 2-handlebodies up to 2-deformations. More precisely, we define
invariants of pairs of the form (W,w), where W is a 4-dimensional 2-handle-
body, w is a relative cohomology class in H?(W,0W;G), and G is an abelian
group. The algebraic input required for this construction is a unimodular
ribbon Hopf G-coalgebra. We study these refined invariants for the restricted
quantum group U = Upgsla at a root of unity ¢ of even order, and for its
braided extension U = qulg, which fits in this framework for G = Z/2Z, and
we relate them to our original invariant. We deduce decomposition formulas
for the original invariants in terms of the refined ones, generalizing splittings of
the Witten—Reshetikhin—Turaev invariants with respect to spin structures and
cohomology classes. Moreover, we identify our non-refined invariant associated
with the small quantum group U = Uysla at a root of unity ¢ whose order is
divisible by 4 with the refined one associated with the restricted quantum
group U for the trivial cohomology class w = 0.

1. INTRODUCTION

The central object of study in this paper are 4-dimensional 2-handlebodies, which
are smooth 4-manifolds obtained from the 4-ball by attaching finitely many 1-han-
dles and 2-handles. These handlebodies are usually represented by Kirby diagrams,
with dotted and undotted components corresponding to the attachment of 1-handles
and 2-handles, respectively. We do not consider these 4-manifolds up to diffeomor-
phism, but rather up to a more subtle equivalence relation called 2-deformation,
or 2-equivalence. Recall that every diffeomorphism between 4-dimensional handle-
bodies can be realized by a sequence of isotopies of attaching maps, handle slides,
and creation/removal of canceling pairs of handles of index 0/1, 1/2, 2/3, and
3/4. By definition, 2-deformations are those diffeomorphisms that do not intro-
duce 3-handles and 4-handles, that is, creation/removal of 2/3 and 3/4 pairs are
forbidden. It remains open whether 2-deformations form a proper subclass of the
class of diffeomorphisms. This question is closely related to a deep open problem
in combinatorial group theory, the Andrew—Curtis conjecture.

In [BD21] we defined a wide class of new invariants of 4-dimensional 2-handle-
bodies up to 2-deformations. More precisely, starting from any unimodular ribbon
category €, we constructed a braided monoidal functor Jy, with source the category
4HB of 4-dimensional 2-handlebodies, and target €. This can be considered as a
relative! of a 4-dimensional Topological Quantum Field Theory (TQFT). By a
result of Bobtcheva and Piergallini [BP11], 4HB is generated by a single 4-modular
Hopf algebra object (the solid torus). For a unimodular ribbon category €, we
proved that the end

& = X®X*
Xe%

n 4HB, morphisms are not cobordisms, the monoidal structure is not induced by disjoint
union, and the braiding is not symmetric.
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is always a 4-modular Hopf algebra object in &, and therefore the assignment of &
to the generator of 4HB can always be extended to a functor Jy : 4HB — €, see
[BD21, Theorem 1.1]. Notice that 4HB comes equipped with a natural boundary
functor 0 with target the category 3Cob of connected 3-dimensional cobordisms
with connected boundary. This category was intensively studied by Crane and
Yetter, who realized that the punctured torus admits the structure of a braided
Hopf algebra [CY94], by Kerler, who found a set of generating morphisms and a
long list of elegant and conceptual relations among them [Ke01], and by Habiro, who
announced a complete algebraic presentation [As11]. The functor d : 4HB — 3Cob
is compatible with the algebraic structure discovered in [BP11], and sends the 4-
modular Hopf algebra generator of 4HB (the solid torus) to a 3-modular Hopf
algebra generator of 3Cob (the torus) whose algebraic structure is a quotient of the
previous one by two additional relations.

When € is factorizable (that is, when it has no non-trivial transparent objects,
or equivalently when the Hopf copairing on the end is non-degenerate), we showed
that Jy factors as J300 for a functor J3 : 3Cob — &, see [BD21, Theorem 1.2|. This
explains why, in all previous attempts at generalizing quantum invariants of 3-man-
ifolds (based on factorizable ribbon categories) to 4-manifolds, the result always
depended exclusively on 3-dimensional boundaries (together with the signature,
since J3 is affected by the usual framing anomaly).

In order to detect 4-dimensional 2-handlebodies that are diffeomorphic but not
equivalent under 2-deformations, the functor .J; needs to vanish against S? x D?2.
Indeed, our invariant is multiplicative under boundary connected sum, and a finite
number of stabilizations by $? x D? is sufficient to turn every pair of diffeomorphic
4-dimensional 2-handlebodies into a 2-equivalent pair. Setting € = H-mod for a
unimodular ribbon Hopf algebra H, we obtained that J;(S? x D?) is an invertible
scalar if and only if H is cosemisimple (meaning H* is semisimple). By observing
that the small quantum group U = U,sly at a root of unity q of order r = 0 (mod 4)
is neither factorizable nor (co)semisimple, we concluded that the corresponding
invariant has the potential of detecting interesting 4-dimensional phenomena.

This paper is devoted to the study of these invariants. More precisely, we inves-
tigate the scalars assigned by J4 to endomorphisms of the tensor unit (the 3-ball) in
4HB in the case € = H-mod. In order to simplify the notation, we will denote the
resulting invariant, which was first constructed by Bobtcheva and Messia [BM02],
by Jg. Notice that, in this case, the end & can be explicitly described as the
adjoint representation of H, which determines a 4-modular Hopf algebra object in
H-mod denoted H, and called the transmutation of H. As a first step, we extend
the definition of Jy by allowing H to be a unimodular ribbon Hopf G-coalgebra,
see Section 2. In this case, we construct an invariant of pairs (W,w), where W is a
4-dimensional 2-handlebody, and w is a relative cohomology class in H2(W, 0W; G),
see Theorem 3.1.

As the main motivating example for this construction, we discuss in detail the
restricted quantum group U = Usly at a root of unity g of even order 2p, which
is a unimodular Hopf Z/2Z-coalgebra that contains the small quantum group U
as its degree zero part. The former is not ribbon, but admits a ribbon extension
U = Uqﬁlg. However, U is factorizable, while U is not. The adjoint representa-
tion of U is closed under the adjoint action of U, and thus determines an object
in U-mod. This object admits a transmutation, denoted U, which provides a 4-
modular Hopf algebra in U-mod, as established in Proposition 5.3. Thanks to
[BD21, Theorem 1.2], the corresponding invariant, denoted Jy, only depends on
the 3-dimensional boundary and signature of 4-dimensional 2-handlebodies, see
Corollary 5.4. Furthermore, the refined invariant associated with U can be actually
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computed entirely inside U, as proved in Proposition 6.1, and deserves therefore to
be denoted Jy too.

In Section 8 we establish a few decomposition formulas for both the refined and
the non-refined invariant Jy. The precise form of these decomposition formulas
depends on the arithmetic properties of the order 2p of the root of unity gq. When
p =0 (mod 4), we show that U can be used to define an invariant of 3-manifolds
equipped with spin structures, which is always denoted Jy, and that

Ju(W,w) =Av_)"™) Ny (0w, s),
SES(OW,w)

where &(OW,w) is the set of spin structures s on OW with second relative Stiefel-
Whitney class wa(W, s) = w, where (W) is the signature of W, and where A and
v_ are the left integral and the inverse ribbon element of U respectively. For the
non-refined invariant, we obtain

Jo(W) = Ae=)"™ 37 Ty (0w s),
seS(OW)
where §(OW) is the set of all spin structures s on 9W. This result generalizes the
well-known decomposition of the Witten—Reshetikhin-Turaev (WRT) invariants in
terms of spin structures [B192, Be98]. When p = 2 (mod 4), the picture is similar,
although this time U can be used to define an invariant of 3-manifolds equipped
with first cohomology classes with Z/2Z-coeflicients, and

Ju(Wow) = A )™ 3" Ty (oW, ),
PEXH (OW,w)
where # (0W,w) is the set of cohomology classes ¢ in H'(OW;Z/27Z) satisfying
5*(p) = w for the coboundary homomorphism

§*: HY(OW;Z/27Z) — H*(W,0W;Z/27)

coming from the long exact sequence of the pair (W,0W) in cohomology with
Z/2Z-coeflicients. Again, for the non-refined invariant, we obtain

Ju(W) =)™ 3" Ty (oW, 9),
QEX (OW)
where % (0W) = HY(OW;Z/27Z), compare with [Be98] for the analogous decompo-
sition of the WRT invariants. This is proved in Theorem 8.1, see also Remark 8.2.
In addition, we show in Proposition 7.1 that, when the cohomology class is taken
to be w = 0, the refined invariant Jy associated with the restricted quantum group
U recovers the non-refined invariant Jy associated with the small quantum group

U. In other words, we have
Jg(W) = Ju(W,0).

Using our first decomposition formula, we deduce that, for p =0 (mod 4), and for
W a non-spin 4-manifold, we have

Jg(W) =0,

because in this case S(0W,0) = &, and so Jy (W,0) = 0.

These results imply that the scalar invariant Jz essentially depends on 3-dimen-
sional boundaries, and cannot detect any truly 4-dimensional phenomenon beyond
the signature, the Euler characteristic (see Appendix A), and the spin status of
4-dimensional 2-handlebodies. This happens because the small quantum group
U is a finite index Hopf subalgebra of a factorizable Hopf algebra, the restricted
quantum group U. We expect the invariant to behave similarly for other quantum
groups, such as those discussed in [LO16]. We remark however two interesting
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possibilities going forward: first of all, the functor J; : 4HB — U-mod seems to
be more sensitive and rich than its underlying scalar invariant, as it truly manages
to distinguish 1-handles from 2-handles in the non-factorizable case. Furthermore,
the question of finding non-trivial central elements that could be used to deform
the scalar invariant Jg as in [BM02, Theorem 2.14| remains wide open. More
generally, the same holds in the quest for other 4-modular Hopf algebras that could
be sensitive to 4-dimensional topology.

Acknowledgments. Our work was supported by the National Center of Compe-
tence in Research (NCCR) SwissMAP of the Swiss National Science Foundation
(SNSF).

2. HOPF GROUP-COALGEBRAS

In this section, we recall the definition of Hopf group-coalgebras, as introduced
by Turaev [Tul0]. Let G be an abelian group. Following [Vi00, GHP20|, a Hopf
G-coalgebra is a family H = {H,, | « € G} of vector spaces over a field k equipped
with:

- afamily p = {po : Ho ® Hy, = H, | a € G} of products;
- afamily n = {ne : k — Hy | @ € G} of units;
- afamily A ={Aq3: Hopp = Ho @ Hg | o, € G} of coproducts;
- a counit €9 : Hy — k;
- afamily S ={S, : Hy, = H_, | @ € G} of antipodes.
These data satisty:
(1) pta o (pa ®idm,) = pa © (idn, ® pa) for every a € G;
) pa© (Ma ®idpy,) =idg, = pa o (idgy, ® n,) for every a € G;
) (AQ,B (24 idHn,) o Aa—i—B,'y = (ldH(¥ X A[—}ﬂ) o Aaﬂ_;,_,y for all Oz,ﬂ,’}/ € G,
) (eo®idp,) 0o Apo =idp, = (idm, ® o) 0 Ay for every a € G;
) Aap o ptats = (ta ® pg) o (idr, ® THy A, ®idH,) © (A ® Aq,p) for all
a,3 € G,where Ty, p, : Hs®H, — H,®Hpg is the standard transposition;
(6) €00 po = €0 ® €o;
(7) Ap,goNat+p =Na @np for all a, 5 € G,
(8) €0 0mo = idy;
(9) pao(S—a®idy,)oA_q a0 =Na0c0 = oo (idg, ® S_4) 0 Ay, o for every
a€qG.
We will often use the shorthand notation

Ma<x ®y) = zy, na(l) = la, Aa,ﬁ(x) = T(1,0) ® T(2,8)-
Remark that H, is a unital associative algebra for every o € G, and that Hj is a
Hopf algebra.
A ribbon Hopf G-coalgebra is a Hopt G-coalgebra H = {H, | a € G} equipped

with:

< afamily R={R, 3 =R, ® R} € H, ® Hg | a, B € G} of R-matrices;

- a family vy = {v, € H, | @ € G} of central invertible ribbon elements.
These data satisty:

(1) Row(1,0) ® Rgx@’ﬁ) =220k, ® x(lﬁ)Rg for all o, 8 € G and = € Hyyp;
(2) R, @ Ag( ’éﬂ) = (R, @15 R))(R, ® Rf® 1,) for all o, 8,7 € G;
(3) Aap(R, 5) @RI = (R, ®15® RY)(lo ® R ® RY) for all a, B,7 € G;
(4) v2 =unS_o(u_y) for all a € G, where u, = S_o(R"” )R.;

(5) An,p(vatp) = (va®vp)(S-a(RL,)@RE)(Ry®@S-5(R._5)) forall a, 8 € G
(6) o(vo) =1;

(7) Sa(ve) =v_q for every a € G.
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Remark that Hy is a ribbon Hopf algebra, and that the family
u={uq € Hy | @« € G}

of Drinfeld elements determines a family
9g=1{9a € Hy | a € G}

of pivotal elements
Jo = uavgl.
A unimodular Hopf G-coalgebra is a Hopf G-coalgebra H = {H, | a € G}
equipped with:
- afamily A = {\, : Hy = k| a € G} of left integrals;
- a two-sided cointegral Ao € Hy.
These data satisfy:
(1) /\B(x(gﬁ))x(lﬂ) = )\OH_Q(I)IQ for all o, € G and z € Hp;
(2) Ao = eo(x)Ag = Aoz for every x € Hy.
Remark that Hj is a unimodular Hopf algebra.
If A is an algebra, recall that a central idempotent of A is an element z € A
satisfying

zZxr = xz, 2=z

for every z € A. Let G be a finite abelian group. If H is a Hopf algebra, then a
family of central idempotents {1, € H | « € G} is called a G-splitting system if it
satisfies

lolg = 0a.pla, 1= 1a,
aceG
A(la) = Z ]-Ozfﬁ & ]-ﬂa 5(104) = 5&,07
BEG
S(1y) =1_4.

If {1, € H | a € G} is a G-splitting system in H, then {H1, | @ € G} is a Hopf
G-coalgebra, with product
,u'a(xla 0y yla) =xyly
for every o € G, coproduct
Aap(@lars) = 21)la © T2)lp
for all o, 8 € G, with counit
eo(zly) = e(x),

and with antipode

Sa(zly) = S(z)1_q
for every « € G. If H is a ribbon Hopf algebra, then {H1, | « € G} is a ribbon
Hopf G-coalgebra, with R-matrix

Rop = R(la ® 15)
for all a, 8 € G, and ribbon element

Vo = V1,

for every @ € G. If H is a unimodular Hopf algebra, then {H1, | a € G} is a
unimodular Hopf G-coalgebra, with left integral

Aa(21s) = Azly)
for every a € GG, and two-sided cointegral
Ao = A
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Vice versa, if {H, | o € G} is a Hopf G-coalgebra, then its direct sum

H::@Ha

aelG
is a Hopf algebra, with product

i @ $a®yﬁ = @xayaa

a,BEG acG

1:@%

aeG

with unit

with coproduct

A (@ a:a> = @ (Tat)1,0) @ (Tats)(2,p),

acG a,BEG
with counit

3 (@ fL'g) = E0(1'0)7

acG
and with antipode

S (@ xa> =P S-alz_a)

acG aeG
If {H, | « € G} is a ribbon Hopf G-coalgebra, then H is a ribbon Hopf algebra,

with R-matrix
R= (D Rop,
a,BEG

0= @

If {H, | @ € G} is a unimodular Hopf G-coalgebra, then H is a unimodular Hopf
algebra, with left integral

and ribbon element

A (@ xa> = A (Ta),

aed
and two-sided cointegral
A= Ay.
For a finite abelian group G, we say a ribbon Hopf G-coalgebra {H, | « € G} is
factorizable if the direct sum
H =P H,

acG
is a factorizable ribbon Hopf algebra. By definition, this means that the Drinfeld
map

D:H"—H
e fM)MY
is a linear isomorphism, where
My=M_oM!=(R'9R)R @R eH®H
is the M-matrixz associated with the R-matrix R=R' @ R € H® H.
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3. REFINED INVARIANT

In this section, we fix an abelian group G and a unimodular ribbon Hopf G-
coalgebra H, and we define a refined invariant of 4-dimensional 2-handlebodies
equipped with relative cohomology classes with coefficients in G. Let

sCWlCcW! cW?=Ww
be a 4-dimensional 2-handlebody featuring a single 0-handle and a finite number of
handles of index 1 and 2. By reversing the handle presentation, W can be obtained

from OW x I by attaching a finite number of handles of index 2 and 3, followed by
a single 4-handle, which means

W xICW2CcWcW'=Ww.
Now let w € H?(W,0W;G) be a cohomology class. Since Hy(W,0W) = 0, we have
H*(W,0W; G) = Hom(Hy(W,0W),G) @ Ext(H,(W,0W),G)
~ Hom(Hy (W, 0W), G),

thanks to the universal coefficient theorem?. Notice that the space Cy,(W,dW) of
relative cellular k-chains of (W,0W) is generated by the set of cocores {0} x D*
of (4 — k)-handles D*~% x Dk. If D is a Kirby diagram of W, and if we fix an
arbitrary ordering of all components of D, then, up to isotopy, the cocore of the ith
1-handle appears in the Kirby diagram of W as the 2-dimensional Seifert disc d; of
the ith dotted component (the complementary hemisphere of d; in the boundary
of the cocore lies in W, and has therefore been carved under the diagram, while
the interior of the cocore lies in the interior of W). Similarly, if we fix an arbitrary
orientation for every undotted component of D, then, up to isotopy, the cocore of
the jth 2-handle appears in the Kirby diagram of W as the 2-dimensional Seifert
disc m; of a positive meridian of the jth undotted component. The differential
0: C3(W,0W) — Co(W,0W) is defined as 9(d;) = mj, + ...+ m,,, where d; and
mj,, ..., my, are related by the following picture.
mjlé{D CID My,

| di
If the orientation of one of the vertical strands in the above configuration is reversed,
the sign of the contribution of the corresponding meridian to the sum should also be
reversed. Then, Hy(W, W) is by definition equal to coker(d), and H?(W,0W;G)
can be identified with the subgroup of Hom(Cq(W,0W),G) composed of those
linear maps that vanish on im(9).

A G-Kirby diagram of (W, w) is obtained from a Kirby diagram of W by orient-
ing every undotted component and labeling it by w(m) € G, where m € Co(W, 0W)
denotes the 2-dimensional Seifert disc of a positive meridian of the undotted com-
ponent. Two G-Kirby diagrams represent the same pair (W, w) if and only if they

2Whenever coefficients are omitted, they are assumed to be in Z.
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are related by a finite sequence of G-Kirby moves:

(GK1)

= &
~ @ o

(GK3)

Pictures (GK1)-(GK3) represent operations performed inside 3-dimensional 1-han-
dlebodies embedded into S3, and they leave G-Kirby diagrams unchanged in the
complement.

In order to define an invariant of the pair (X,w), let us consider a G-Kirby
diagram D representing (X,w). First of all, we insert beads labeled by components
of the R-matrix around crossings as shown:

R I N
oé - R;AA% Oi‘/\@ ) Riih S-a(fL-p)

[
If a crossing is obtained from the ones above by reversing the orientation of a
strand, the label of the corresponding bead is evaluated against the antipode. For
instance, if the orientation of the strand labeled by « in the left-most crossing above
is reversed, the corresponding bead changes from R/, to S_, (R’ ). Next, we insert
beads labeled by the pivotal element around right-oriented extrema as shown:

| _
U-U~
— —
{17
This operation leaves left-oriented extrema untouched. Then, we remove dotted

components, while also inserting beads labeled by coproducts of the cointegral as
shown:

& = (Ao)an | 1 (A0) (ko)

o
If the orientation of one of the strands piercing a Seifert disc for the dotted unknot
is reversed, the label of the corresponding bead is evaluated against the antipode.
For instance, if the orientation of the strand labeled by «; above is reversed, the
corresponding bead changes from (Ag)(; a,) t0 S—a,((A0)i,—a;). When k = 0, re-
moving a dotted component costs a multiplicative factor of £o(Ag) in front of D.
Next, we collect all beads sitting on the same component in one place, and we
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multiply everything together according to the rule

T

= {L‘y
Y

In the end, we are left with a decorated diagram of the form

B(D) = xl(;l xk(;k

T1Q...0x,L € Hy, ®...Q Hqy,,
obtained this way is a bead presentation of D.

We say a label

Theorem 3.1. If W is a 4-dimensional 2-handlebody equipped with a relative co-
homology class w € H*(W,0W;G), if D is a G-Kirby diagram representing (W, w),
and if 11 ® ...z, € Hy, ® ... ® Hy, is a bead presentation of D, then the scalar

k
w) =[] Ao (igs)
i=1
is a topological invariant of the pair (W,w).

Proof. We need to check that Jy(W,w) is invariant under G-Kirby moves. For
what concerns move (GK1), we have

\ Dz
Ca +8 ~ Q ﬂ)B :

Then the claim follows from

Mo (22,95 )T(1.0) 90" = Aats(€9,15) 1

Similarly, for what concerns move (GK2), we have

0 0

Then the claim follows from
Ao(Aox) = eo(2),
together with the fact that
eo(Ry)Ry, = 1o = e0o(R)R,,, eo(g0) =1, e(®(1,0)T(2,0) = T = €0(T(2,0))T(1,0)-

Finally, for what concerns move (GK3), we have

In order to see this, it is useful to represent the component as the closure of a braid.
Then the claim follows from

)‘—a(Sa(x)g:i) = A-a(Sa(gaz)) = )\a(gglx) = )‘a(xgojl)a
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where the second and third equalities are a consequence of [Vi00, Theorem 4.2],
which implies that

A—a(Sa(z)) = )‘a(g(;Qx)a Aa(7Y) = Aa(¥S—-a(Sa(T)))
for all 2,y € H,. Indeed, the distinguished group-like element is g2 € H, in our
notation, and we are considering a left integral instead of a right integral. O

Remark 3.2. When G = Z/27, then @ = —« for all @ € G, and the orientations
can be dropped. In this case, the algorithm given above, which follows the oriented
approach of Hennings [He96], has to be replaced with the equivalent algorithm
adapted from the unoriented approach of Kauffman and Radford [KR94], which is
the one followed in [BD21, Section 8.1].

4. GENERAL DECOMPOSITION FORMULAS

We say a 4-dimensional 2-handlebody is geometrically simply connected if it
admits a handle decomposition without 1-handles and k-handles for & > 2. We
will show that, if G is a finite abelian group, and H is a factorizable ribbon Hopf
G-coalgebra, then both the refined and the non-refined invariants can be computed
as sums of invariants of geometrically simply connected 4-dimensional 2-handle-
bodies. In other words, we can always trade 1-handles for 2-handles. In order to
do this, let us consider a connected 4-dimensional 2-handlebody W with boundary
OW = M, let D be a Kirby diagram for W, let L be the framed link obtained
from D by trading 1-handles for 2-handles (that is, by erasing dots), and let E be
the geometrically simply connected 4-dimensional 2-handlebody represented by L.
Notice that

OF =2 0W = M,
that L provides a surgery presentation for M. We stress the fact that both L and
E depend crucially on D, and that a different choice of diagram representing W
would yield different results.

Notice that we have a natural inclusion ¢ : Co(W, M) — Co(E, M). Furthermore,
as we explained before, relative cohomology classes in H?(W, M) can be identified
with linear maps in Hom(Cy(W, M), G) vanishing of the image of the differential
9 : C3(W, M) — Co(W, M), and similarly relative cohomology classes in H2(E, M)
can be identified with linear maps in Hom(Cs(E, M), G), since C3(E, M) = 0.
Then, let us set

&(E):= H*(E,M;G),
E(E,w)={Yve&FE)|por=w}
Proposition 4.1. If G is a finite abelian group, and H is a factorizable ribbon
Hopf G-coalgebra, let W be a connected 4-dimensional 2-handlebody with boundary
OW = M, let D be a Kirby diagram for W, let L be the framed link obtained from
D by trading 1-handles for 2-handles, and let E be the 4-dimensional 2-handlebody

represented by L. Then, for every relative cohomology class w € H2(W, M;G) we
have

Ju(Ww) = Y Ju(E), (4.1)
YeEE(E,w)
and for the non-refined invariant we have

Tu(W)= Y Ju(E,¥). (4.2)

YEE(E)
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Proof. Let us start by proving Equation (4.1). To this end, let us show that every
1-handle can be traded for a 2-handle, provided we take into account all possible
ways of extending w to the newly created 2-handle. This amounts to showing that,

if aq,...,qp € G satisty
k
> =0,
j=1

then a local replacement in the G-Kirby diagram D of the form

&1 b PO 0541 i
does not change the invariant (provided we extend it linearly to linear combina-
tions of G-Kirby diagrams). In order to prove this, it is sufficient to notice that

factorizability of H implies
S OASM1) (M) 1y lay @ .. @ (M) 1y 1a,
BeG
= MS(ML) (M) 1y lay ® - @ (MY) () Llay,
=Apla, @... @ Ayl
where M, = M @ M = (R" ® R')(R' ® R") € H® H denotes the M-matrix of

H.
In order to prove Equation (4.2), it is sufficient to notice that

Ju(W) = Yoo Ja(Ww). O
weH?(W,M;G)
Remark 4.2. Notice that, if G is a finite abelian group and H is a factorizable
ribbon Hopf G-coalgebra, then
> ez a(voa) = 1.
aeG
Indeed, thanks to Proposition 4.1, the invariant of

/ /F\
\J
coincides with the invariant of

(020 O

This means that, if A\(v is an invertible scalar for a single a € G, then we can
understand the 1nvar1ant appearlng on the right-hand side of Equations (4.1) &
(4.2) as the invariant of a 3-manifold equipped with a G-structure that assigns the
degree « to stabilizations by JCP? and the degree —a to stabilizations by dCP2.
This will be the case in Section 8, where we will decompose the refined and the
non-refined invariants associated with the restricted quantum group U in terms of
3-dimensional invariants depending on spin and cohomological structures.
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5. RESTRICTED QUANTUM sls

In this section, we recall the definition of our main examples of Hopf Z/2Z-
coalgebras the restricted quantum group of sly and its ribbon extension. Let
g=c¢e % be a root of unity of order 2p for an integer p > 2. For every integer n > 0
we recall the notation

o _ -n _ {n} T
{n}=q"—q" [n] == o [n]!._g[k].

The restricted quantum group U = U,ysly is defined as the algebra over C with
generators {F, F, K'} and relations

EP =0, FP =0, K% =1,

K—-K!

KEK™! = ¢E, KFK™' =q¢?F, [E,F] = -
q—q

A Hopf algebra structure on U is obtained by setting

A(E)=EQK+1QE, e(E) =0, S(E) = —EK ™,

A(F)=F®1+K '®F, e(F) =0, S(F)=—KF

A(K)=K®K, e(K) =1, S(K)=K"'.

The restricted quantum group U is not quasitriangular, because it does not admit
an R-matrix. However, it admits a quasitriangular extension U = Uysl,, which is
the algebra over C with generators {E, F, K} and relations

E? =0 FP =0, K =1,
o~ o~ - . ~ o K2 7[{72
KEK ™' =qFE, KFK™' =q7'F, [E,F) = =
q9—dq
A Hopf algebra structure on U is obtained by setting

AE)=E®K*+10F, e(E) =0, S(E) = —EK~2,
A(F)=F®1+K2aF, e(F) =0, S(F) = —K*F
ARK)=KoK, e(K) =1, S(K) =K1,

and we identify U with a Hopf subalgebra of U by setting
E=E, F=F, K = K>

The R-matrix R € U®U is given by the product R = DO, where the quasi-R-matrix
0=00"cU®U is givenby

} aa1)

Z [7 E*® F°, (5.1)
while the diagonal Cartan part D = D’ @ D" € U ® U is given by
1 4p—1
D= Y K @ K, (5.2)
P
a,b=0

where ¢ := e?». Notice that it is only the diagonal Cartan part D that cannot be
defined in U, while the quasi-R-matrix © poses no problem.

Although R ¢ U @ U, the rest of the ribbon structure of U is actually contained
in U. Indeed, the pivotal element g € U can be defined as

g=KP*, (5.3)
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This means that the ribbon element and its inverse v, ,v_ € U are given by

1 p—12p— 1

oy = ! g B b)) pa g pr—ath (5.4)
a=0 b=0
p—12p—1

v = 1+ ’Z Z {1} 2 = (= 1)? o o rath (5.5)
a=0 b=0

as shown in Lemma B.1, and that the M-matrix and its inverse M, = M/ ® M,
M_ =M oM €U®Uaregivenby

1 p—1 2p— 1 a+b e
M+ - = § { } QM 2b2—ch—b+chEa ® Kb+dEbFa, (56)
2p [a]'[b)!
a,b=0 ¢,d=0
—1 2p—1
1 X 13010 .
M = — { '} 'q_w+2b2+CdEanK_b+c ® FaEbe+d, (57)
2p a,b=0 ¢,d=0 [a}[b]

as shown in Lemma B.2.
A PBW basis of U is given by

{E°F’K°|0<ab<p—1,0<c<2p—1},

and our preferred non-zero left integral A of U is given by
a c V 2p[p _ 1]'

)\ (E FbK ) = W5a7p_15b7p_1607p_1, (58)
while our preferred non-zero two-sided cointegral A of U satisfying A\(A) = 1 is
given by

{11

A= NerTE] ZEP FPlKe, (5.9)

Similarly, a PBW basis of U is given by
{E“Fbkc|O<a,b<p—170<c<4p—1},

and our preferred non-zero left integral X of U is given by

3 a rC V 2p[p - 1}'
A (E FYK ) = W5a7p_15b7p_15c,2p_2,
while our preferred non-zero two-sided cointegral A of U satisfying S\(A) =1is
given by
1 14—l
A= i {1}]0 Z pp-lpp—lfa
V2plp -

Both U and U are thus unimodular Hopf algebras.

Now let us consider the central orthogonal idempotents

10:1+2Kp’ 11:1—2Kp.
We have:
1=1¢+ 14, lalg = dapla,
A(ly) =1o® 1+ 11 ® 14, A(l}) =1o® 11 + 11 ® 1o,
e(lo) =1, e(11) =0,
S(1g) = 1o, S(11) = 14.

Therefore, U is a unimodular Hopf Z/27Z-coalgebra, while U is a ribbon one.
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Recall that, if H is a finite-dimensional Hopf algebra, its adjoint representation
is the vector space H equipped with the adjoint left H-action
Ty = x(l)yS(x(g))
for all z,y € H.

A grading
p—1

U= @ T.(U)
n=—p+1
is obtained by setting I',,(U) to be the linear subspace of U with basis

{E°F’K°|0<a,b<p—-1,0<c<2p—1,a—b=n},

for every —p+1 <n<p—1. If x € T',(U), then we say x is homogeneous of degree
n, and we write |z| = n.

Lemma 5.1. The linear subspace U of U is closed under the adjoint left action of

U.
Proof. For every homogeneous x € U we have
Koz =KaK™' = ¢®lz. O
Lemma 5.2. For all homogeneous x,y € U we have
(D'bz)@ D" =z KI®l (5.10)
(D'bx)® (D" >y) = @?e ey (5.11)

Proof. The first equality follows from
1 4p—1 1 4p—1
(DID-%')@DN:Z Z t—abKaxK—a(X)Kb:Z Z tQa\xl—abx®Kb
a,b=0 a,b=0
4p—1 1 4p—1 4p—1
Z <4 Z ta(Q\x| b)) z® Kb Z §b,2\m|x®Kb
b=0 p b=0
=zx@ K2l = a:®K|x|.

Similarly, the second equality follows from

4p—1

(D'>2)® (D" >y) = Z t" K%K @ Kby K~°
a,b=0
1 4p—1

_ = Z t2a\x|+2b\y\fabx®y
4p a,b=0

4p—1 4p—1
= Z ( Z to2lz|— b)) 2Py @y

4p 1
= Z 6b,2\z|t2b‘y|x Qy= t4|r||y‘x Qy= qQ\mHy|x . 0
b=0

We denote by U € U-mod the vector space U equipped with the adjoint left
action of U, and with U € U-mod the adjoint representation of U.
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Proposition 5.3. U is a 3-modular Hopf algebra in U-mod, with structure mor-
phisms given, for all x,y € U, by

Wz ®@y) =y, n(1) =1,
A(z) =20y S(OK 190 @ (0" b am),  g(x) =),
S(z) = K19%"10"S(0' > ), S~ (z) = SO b ) KIOPle
v (1) = vy v_(1) =v_,
%(1):5( )@ MY, w_(1) = S(M_) & M,
Alz) = A=), A1) = A

Proof. Sinc~e U is a unimodular ribbon Hopf algebra, [BD21, Proposition 7.3] im-
plies that U € U-mod is a 4-modular braided Hopf algebra. Structure morphisms
of U are given, for all z,y € U, by

fi(r ® y) = vy, (1) =1,
A(z) =21)S(D"0") @ (D'®') > z(2)), &(z) = e(x),
S(z) = D"O"S((D'®') > x), S~ (x) = S7H(D'®)>a)D"E",
(1) = vy, 0-(1) =v_,
Wy (1) = S(M}) ® MY, w_(1) = S(ML) e M,
Az) = M), A1) =A

Since U is a Hopf subalgebra of U, the unit 7:C— U factors through a unit
7 : C — U, while the product [ : U ®U — U and the counit & : U — C restrict to
a product g : U®U — U and a counit £ : U — C. Equations (5.4) & (5.5) imply
that the ribbon element v, : C — U and its inverse _ : C — U factor through a
ribbon element vy : C — U with inverse v_ : C — U, and Equation (5.8) implies
that the integral A \: U — C restricts to an integral A : U — C. However, it should
be noted that the cointegral A : C — U is different from the cointegral A : C — U,
as witnessed by Equation (5.9). The braiding o U®U — U®U restricts to

a braiding cyy : U ®U — U ® U, because U-mod is a ribbon category, although
a direct proof “follows from Equation (5. 11). Therefore, we need to show that the
coproduct A : U — U ® U, the antipode S : U — U, and its inverse S~ : U — U
restrict to a coproduct A : U — U ® U and an antipode S : U — U with inverse
S~!:U — U. Notice that

A(m) = :L‘(l)S(DN@N) X ([)/ > (@l > m(g))),
S(z) =D"0"S(D'> (0> x)),
S~ Yx)=8"YD'v> (0 >z))D"O".

Then the claim follows directly from Equation (5.10).

Next, we need to check that these structure morphisms satisfy the defining con-
ditions of [BD21, Definitions 5.1-6.4]. For what concerns [BD21, Definition 5.1],
Equation (4) is clearly satisfied because U is an associative unital algebra, while
Equations (i) (iv) are satisfied because A, ¢, S, and S~! are restrictions of A, &,
S, and S—! respectively, which also satisfy Equations (7i)—(iv). For what concerns
[BD21 Definition 6.1], Equations (i)—(iii) are satisﬁed because Uy, U ~;, Wy, W,

are I‘eStI"ICtIOIlb of [, é £, § S and Co o respectlvely, Wthh also satisfy Equa—

tions (¢)—(i44). For what concerns [BDQI Definition 6.2], Equation (i) is satisfied
because A, A, and S are restrictions of A, A, and S respectively, which also satisfy
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Equation (7). Therefore, we need to check by hand Equations (i7) & (4i7), which
are the only ones involving A. The first part of Equation (i7) follows from the fact
that A is a left cointegral of U, while the second part is established by computing

S(A) = K19"Me"S(0 > A) = S(A) = A = A.

Equation (#i¢) follows from our choice of normalizations for A and A.
Finally, for what concerns [BD21, Definition 6.4], we compute

(idy ® A) 0wy, = )\(M”)S(M’ )

1« LT {1}a+b ala—DIbO-1) _9p2_cq b+d b b b
= Z Z T e\ (KU R P S(K Ve FP EY)
p c,d=

1 {1}”7 P02 =2(-1) g gre—p+1 pr—1 o1
S(KePH pr-1gp-1y

~ V2 Z Tl
q —p(p—1) {1}17 1
=iy
_(=ppt et
T 13 p— 1!

As a direct consequence of [BD21, Theorem 1.6] and of Proposition 5.3, we
immediately obtain the following result.

2p—1
ZEp 1Fp 1K ct+p—1

2p1
ZEP lpp=lpga — A = A, O

Corollary 5.4. There exists a unique 3-dimensional braided TFT
Jg : 3Cob” — U-mod
sending 1 € 3Cob? to U € U-mod.

6. REFINED INVARIANT FOR RESTRICTED QUANTUM sly

In this section, we prove that the refined invariant associated with the ribbon
extension U of U can be actually computed entirely inside U.

Proposition 6.1. If D is a Z/2Z-Kirby diagram, and if
21®...0x, €U, ®...0U,,
is a bead presentation of D, then
T1Q...0x, €Uy ®...Q0U,,.

Proof. The claim follows from [BP11, Theorem 4.7.5] and Proposition 5.3. Indeed,
every Kirby diagram can be realized as the composition of tensor products of gener-
ating morphisms appearing in the definition of the Kirby tangle presentation functor
K : 4Alg — KTan of [BD21, Section 6.3]. Then, it is sufficient to check that, for
each of these generating morphisms, the algorithm defining J; : KTan — U-mod
determines elements of U. This corresponds to the computations of Proposition 5.3,
and these formulas can be established like in the proofs of [BD21, Lemmas 8.1 &
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8.3]. For instance, the coproduct gives

o B

\ noy
& A(Q)SDG) U
NN

x O S_l(A(l))x O
+B +B

« «

Then the claim follows from the chain of equalities
ASTHA@))Tlats)A2)S(D"O") 1, ® (D'O) > Ag3))1g
= M#latsS(A1)A @) S(D"O") 1o © (D'O') > Azy)1s
= (@lass) ) S(D"O") 14 @ (D'O) b (2lass) )1
= 2)S(O")K19" @1, (0> w)1p

where the first equality follows from [Ral2, Theorem 10.5.4.(e)], while the second
one follows from [Ral2, Theorem 10.2.2.(c)|. Similarly, the antipode gives
.G, e

'\ ' D"9"S((D'®') > ) U

=,
G —

Then the claim follows from the chain of equalities
A(S™HAq))z1,)D"O"S((D'O') > A))1a
= A(rLaS(A1))D"6"S((D'O) b Ag)) L
= D"0"S((D'O") > (x14))14
= K19%*19"5(0' b 2)1,. 0

Because of Proposition 6.1, we will use the notation Jy for the invariant given
by Theorem 3.1 with H = U.

7. RELATION BETWEEN INVARIANTS FOR RESTRICTED AND SMALL QUANTUM slg

In this section, we prove that the non-refined invariant associated with the small
quantum group of sly coincides with the refined invariant associated with the re-
stricted quantum group of sly for the trivial cohomology class. In order to do this,

let us set
;L D

 ged(p,2)’
The small quantum group U = U,sly is defined as the algebra over C with generators
{E,F, K} and relations

EP =0, FP =0, KP =1,
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g _ S _ _ . K- f{
KEK™' = ¢*E, KFK—' =¢72F, [E,F] = ———
q9—q9
We identify U with a Hopf subalgebra of U by setting
E = E1,, F = F1,, K = Kl1,.

As explained in [BD21, Section 9.2], U is a unimodular ribbon Hopf algebra, and
it is factorizable if and only if p #Z 0 (mod 2). Notice that the R-matrix R € U @ U
is given by the product R = DO, where the quasi-R-matrix © = 0’ ® 0" ¢ U@ U
is given by

0 =0"180"1,, (7.1)
while the diagonal Cartan part D = D' ® D" € U ® U is given by
oy pt _ _
D=-= 1K@ Kb, (7.2)
p a,b=0

Let us now restrict our attention to the case p = 0 (mod 2). The ribbon element
and its inverse 74,0_ € U are given for p = 2 (mod 2) by

.p'*l —1p
1 a+3)a p’ 1)3 — — —
'U_A'_ _ Z { } _( +23) Jr%(Zb*l)zFaEaKfanb’ (73)
_ 2t {1} (a+3)a7(p’+1>3 12 ma ma a
" \FZZ 20 S ()
a=0 b=0

and for p =0 (mod 4) by

}“ (00492 Foa fra fg—a—2b1 (7.5)

oy Al

CL

a+3)a
( lad8)a_gp2

FvaE_‘aRa—&-Qb-&-l’ (7.6)

—1p
=0b
—1p
=0 b=0
as shown in [BD21, Lemma B. 2 Equations (B.10)—(B.13)]. Similarly, the M-matrix
and its inverse M, = M/ ® M”, M_=M'"®M"” €U ®U are given by

-1 p'—
-1 1}a+?
M= 2 {[]}' G
a,b=0 ¢,d=0 e
qia‘“‘”;“”(b‘” 72b274ch7b+2chEa ® Kb+2dEvaa7 (7.7)

p—1 p'—1 a+b
{1y 1} "

e lS S L

a,b=0 ¢,d=0

alo—D4b(b-1) +2b2+4chanI—(—b+2c ® Fo B gb+2d, (7.8)

as shown in [BD21, Lemma B.3, Equations (B.31)-(B.32)]. We slightly change

our conventions with respect to those of [BD21, Section 9.2], and fix our preferred

non-zero left integral A of Uysly to be

N (e bire \/ﬁ{p_ 1}'

A(ECF'K®) = W‘Sa,pﬂ%,p—ﬁc,p—h (7.9)
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while our preferred non-zero two-sided cointegral A of U,sly satisfying A(A) = 1 is

_ o gple-1RZl
A= Z/LZE”*FP‘IK@. (7.10)
VP lp— 1! =
See Appendix A for an explanation of the effect of this change of conventions, and
for why the current ones are more natural than the ones of [BD21].

Proposition 7.1. For the zero cohomology class, the refined invariant Jy satisfies
JU(VVv 0) = ']U(W)7
where Jg denotes the invariant associated with the small quantum group U.

Proof. Since U is a unimodular ribbon Hopf algebra, [BD21, Proposition 7.3] im-
plies that U € U-mod is a 4-modular braided Hopf algebra. Structure morphisms

of U are given, for all 2,y € U, by

Az ®y) = zy, 7(1) =1,
A(z) =21)S(D"0") ® (D'O) b a()), &) =ela),
S(z) =D"0"S((D'®) > x), S~ (z)=5"1((D'®)>2)D"O",
U4.(1) = vy, (1) =0,
@..(1) = S(M}) © MY, w_(1) = S(') @ 3",
M) = M), A(1) = A.
First of all, we claim that
A(aly) = Ax)(1o ® 1o), S(x10) = S(x)1o
for every € U. Indeed, just like for the restricted quantum group, a grading
-1
= %B T,(0)
n=—p+1

is obtained by setting I',,(U) to be the linear subspace of U with basis
{E°F’K°|0<a,b,c<p—1,a—b=n},

for every —p+1 < n < p—1. Asusual, if z € T, (U), then we say « is homogeneous
of degree n, and we write |z| = n. Then, for all homogeneous z,y € U, we have

(D'vz)@ D" =z K
(D'>a)@ (D" >y) ="y,
This can be shown exactly like Lemma 5.2, and gives a proof of the claim.
Next, we we claim that
vy = vy lo, Wy =wy(lo ®1p).

Indeed, on the one hand, the equality for the ribbon element is obtained by com-
paring Equations (7.3) & (7.5) with Equations (B.1) & (B.5). For p = 2 (mod 4)
we have

/ ®'+1)3 p2-1 1—1 /
2

i=q", q =tP.

= 2
q ) /2
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Therefore, the equality follows from

Zp';1q<p’;1>3 2b-1)2 _ qw_ipﬂ;l(zb—l)z’
— PP = (P -1)(2b-1)?

— t(17(2bfl)"’)p’2fp’Jr(2bfl)2
_ t—4b(b—1)p/2t—p/t(2b—1)2

gt(%—lf

7 .
For p = 0 (mod 4), the equality is clear. On the other hand, the equality for the
copairing is obtained by computing

p—1 p'—1
1 {1}a+b ale= b1 g2

wp=2) )] ¢

p a,b=0 c,d=0

_4CdS(K_b+2CFbEa) ® Kb+2dEbFa

p—1 p'—

Z Z {-1} 1}a+b Ala=DbB=1) (5 p)(a—b—1)—2b%—ded
p

a,b=0 ¢,d=0

EanK a+2b—2c¢ ® Kb+2dEbFa
p=1 p'—1 a

1 Z Z {-1}" 1} o 2D — (ab) (a—b—1)=2(a—b) (b-2d) ~27 —ded
a,b=0 ¢,d=0

EanK a+2b 2c ® EbFaKb+2d

p—1 p'— a
Z Z { 1} o w (a—b)(a—b—1)—2(a—b)(b+2d)—2b>+4(a—b+c)d

a,b=0 ¢,d=0
EanKa+26 ®EbFaKb+2d
1« S {- 1}a+b ala=D4bG=1) _op44ed b 2 b b+2d
o Z 'q’ 2 —2btded pa pb prat2e o pb pa grbt2d
p
a,b=0 c,d=0

and comparing with Equation (B.9).
Finally, we have

5\(1‘10) = )\(1‘10), 1_\ = Alo

for every z € U. Indeed, we have

_ Tp — 1]!
)\(EanKcl()) = M(Sa,pfl(sb,pfl (5c,p71 + 60,2;071)7

- {1}p1
a c \/7[]9 ] 56, -1+ 56,2 —1
ANE b K 1p) = Yy 15(17,,,151,71,,1 %
for all integers 0 < a,b<p—land 0<ec<2p—1. O

8. SPIN AND COHOMOLOGICAL DECOMPOSITION FORMULAS

In this section, we derive a decomposition formula for both the refined and the
non-refined invariants associated with the restricted quantum group U in terms of
refined invariants of 3-dimensional boundaries equipped with additional structures.
Recall that a spin structure on a connected n-dimensional k-handlebody

D'=XocXiCcXoC...C X=X
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can be defined as the fiber-homotopy class of a trivialization of the tangent bundle
T X5 of the 2-handlebody Xs. A spin structure on X exists if and only if the second
Stiefel-Whitney class wy(X) € H?(X;7Z/27) vanishes. By definition, wo(X) is the
cohomology class of a cocycle ¢(7) that is constructed as follows: first, we pick
an arbitrary trivialization 7 of the tangent bundle T'X; of the 1-handlebody Xj,
which exists because X is oriented; next, for every 2-handle in Xo, we use the
corresponding attaching map in order to compare 7 with the unique trivialization
of the tangent bundle of D? x D™2 up to fiber-homotopy; this allows us to associate
with every 2-handle in X5 the obstruction to extending 7, which is an element in
m1(SO(n)) = Z/2Z (for n > 2). Therefore, X admits a spin structure if and only if
¢(7) is a coboundary for some choice of 7, in which case it is a coboundary for all
possible choices of 7, see [GS99, Section 5.6] for more details. If wo(X) = 0, then
the set & (X) of spin structures on X is affinely isomorphic to the vector space

¥ (X):=H (X;Z/27),

since every pair 8,8 € &(X) of spin structures on X determines a difference class
A(s,s’) € #Z(X). Indeed, up to fiber-homotopy, we can suppose that s and s’
coincide on the 0-handlebody D™ = X, and we obtain a difference cochain d(s, s)
inside C1(X;71(SO(n))) & C1(X;Z/2Z) by comparing the two restrictions to the
1-handlebody X;. This is a cocycle because both s and s’ extend to X3, and a
different choice for the fiber-homotopy ensuring that s and s’ coincide on X only
affects d(s, s") by a coboundary, see [GS99, Section 5.6].

If Y is a (n — 1)-manifold with a spin structure s € §(Y), then a relative n-di-
mensional k-handlebody

YxI=XoCcX;jCXeC...C X=X

admits a spin structure extending s if and only if the second relative Stiefel-Whitney
class wo(X,s) € H?(X,Y;Z/2Z) vanishes. The definition of wy(X, s) is analogous
to that of wo(X), although this time the trivialization 7 of the tangent bundle T'X;
of the 1-handlebody X, is required to extend s.

Every 3-manifold admits a spin structure, because every 3-manifold is paralleliz-
able, see for instance [BL18|. Notice however that there exist 4-manifolds that do
not admit any spin structure.

Let W be a connected 4-dimensional 2-handlebody with boundary W = M.
For every relative cohomology class w € H*(W, M; Z/27), we set

S(M,w) :={s € S(M) | wa(W,s) =w}
H(M,w):={peX(M)|5(p) =w}

where 6* : #(M) — H?*(W, M;Z/27) denotes the coboundary homomorphism
coming from the long exact sequence of the pair (W, M) in cohomology with Z/2Z-
coefficients.

Let W be a geometrically simple connected 4-dimensional 2-handlebody with
boundary OW = M, let L = L1 U...U L,, denote a Kirby diagram for W featuring
only 2-handles, which yields a surgery presentation of M. Then, every cohomology
class in w € H*(W, M;Z/2Z) can be identified with (the indicator function of) a
sublink of L. Indeed, if m; € Ho(W, M) denotes the relative homology class of disc
providing a meridian for the tubular neighborhood of a component L; C L, then
let us set

w; = (w,m;) € Z/27.
A sublink w € H2(W, M;7Z/27) is said to be characteristic if it satisfies the equation

Ik(Li,w) =Y w;Ik(L;, L;) = 1k(L;, L;)  (mod 2)
j=1



22 A. BELIAKOVA AND M. DE RENZI

for every 1 < i < n, while it is said to be even if it satisfies the equation
)= w;ilk(Li, L;) =0 (mod 2)

for every 1 < i < n. On the one hand, the map
§(M) — H*(W, M;7/27)
s+ wa (W, s)
defines a bijection between &(M) and the set of characteristic sublinks of L, as
explained in [GS99, Section 5.7.11]. In other words, for every characteristic sublink
w € H?(W,M;7/27) there exists a unique spin structure s € &(M) such that
wa (W, s) = w. As explained above, the characteristic class ws(W, s) measures the
obstruction to extending s from M to W. In particular, we have that W is a spin
4-manifold if and only if the empty sublink 0 € H?(W, M;Z/27Z) is a characteristic
sublink. On the other hand, the coboundary homomorphism
H (M) — H*(W,M;Z/2Z)
P 0" ()
coming from the long exact sequence of the pair (W, M) in cohomology with Z/2Z-
coefficients defines a bijection between # (M) and the set of even sublinks of L.
Notice that, when W is not geometrically simply connected, then neither of these
maps is injective in general. For instance, if W = S' x D3 and M = S x S2, then
H2(W, M;7,/27) = 0 while HY(M;7,/27) = 7./27.
Theorem 8.1. Let W be a connected 4-dimensional 2-handlebody with boundary
OW = M, let D be a Kirby diagram for W, let L be the framed link obtained

from D by trading 1-handles for 2-handles, let o be its signature, and let E be the
4-dimensional 2-handlebody represented by L.

(1) If p=0 (mod 4), then for every spin structure s € S(M) the scalar
Ju(M, s) := ANvy11)° Ju(E,wa(E, s)) (8.1)
is a topological invariant of the pair (M, s), for every relative cohomology
class w € H*(W, M;7Z/27) we have
Ju(Ww)=Av_11)7 > Ju(M,s), (8.2)
seES(M,w)

and for the non-refined invariant we have

Ju(W) =Av-11)7 > Ju(M,s) (8.3)
seS(M)
(2) If p=2 (mod 4), then for every cohomology class ¢ € F (M) the scalar
Ju (M, @) = ANv4+10)7 Ju (E,6"(p)) (8.4)

is a topological invariant of the pair (M, p), for every relative cohomology
class w € H*(W, M;Z/27) we have

Jo(Ww) =Av_10)7 Y Ju(M,o), (8.5)
pEeH (M,w)
and for the non-refined invariant we have

Jo(W) = Mu-10)7 > Ju(M, ). (8.6)
peX (M)
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Remark 8.2. Let us point out a few formal differences between the statement of
Theorem 8.1 and the one given in the Introduction. First of all, the signature o
appearing here is the signature of the framed link L, so it coincides by definition
with o(E), instead of o(W). Of course, this makes no difference, since trading
1-handles for 2-handles does not affect the signature. Indeed, every handle trade
on a 4-manifold can be implemented by a 5-dimensional cobordism, as explained
in [KLO1, Remark 3.1.3], and the signature is a cobordism invariant. Furthermore,
the signature renormalization appearing here involves the scalar A(v_1;), if p =0
(mod 4), or A(v_1p), if p = 2 (mod 4), while in the Introduction we simply used
A(v=). However, we have AM(v_) = A(v_1p) + A(v_1;), and in both cases we are
simply highlighting here the only non-vanishing summand.

Proof of Theorem 8.1. Let us begin with point (1), so let us assume p =0 (mod 4),

and let us show that Jiy (M, s) is independent of the framed link L. Since by defini-

tion it is already invariant under Kirby II moves, meaning 2-handle slides, we only

need to show that it is also invariant under Kirby I moves, meaning stabilization

by OCP? and OCP2. In order to prove this, it is sufficient to notice that
A(’U+11))\(1}_11) =1.

This follows from Equation (5.8), which combines with Equation (B.6) to give

VB -1 {17 g t 11—
{1t p [p -1 2 V2

and with Equation (B.8) to give

V2plp— 11144 {1}~ 1 ¢ =t 1+it73

P p -1 2 Vel
This establishes the first claim, because the signature of a Kirby diagram for
Ef(CP%\ D% is 0 + 1, while the signature of a Kirby diagram for Ef(CP2 \ D*)
is o — 1.

Now, thanks to Proposition 4.1, since U is factorizable, in order to conclude
the proof of point (1), we simply need to assume that W is geometrically simply
connected, and to show that

_ (+2)(p—=1)
2

)\(U+11) = t3v

(+2)(p—1)
2

)\(’U_ll) =

JU(VV, w) =0
for every w € H?(W, M;Z/27) which is not of the form w = wy(W, s) for some spin
structure s € S(M). In other words, we need to show that

Ju(W,w) =0

whenever w is not a characteristic sublink of L. Indeed, since for every other
w € H?(W, M;7Z/27) there exists exactly one spin structure s € &(M) satisfying
wo (W, s) = w, this would imply Equation (8.2), and Equation (8.3) would follow
from
Ju(W) = > Ju(W,w).
weH?(W,M;Z/2Z7)
Therefore, let us follow the structure of the proof of [B192, Theorem III.3|, and let
us fix an w that is not a characteristic sublink. This means there exists a component
L; C L such that
Ik(L;,w) #1k(L;, L;) (mod 2).

First of all, we claim that we can suppose that L; is unknotted. Indeed, by per-
forming Kirby II moves every self crossing of L; can be changed as follows, without
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changing the invariant:

Lo |
Wi Wi Wi Qi

Therefore, we have the following configuration:

‘le (ij-

et f—

b

‘ k(L;, L;)

In particular, we have two cases:
(1) If L; does not belong to the characteristic sublink, then w; = 0. This means
we have two further sub-cases:
(a) If Ik(L;, L;) =0 (mod 2), then w;, +...+w;, =1.
(b) If Ik(L;, L;) =1 (mod 2), then wj, + ... +w;, =0.
(2) If L; belongs to the characteristic sublink, then w; = 1, and therefore
Wi, +...+wjk =1.
Let us define a Z/2Z-grading on U given by the algebra morphism
deg:U — Z/27
determined by
deg(E) =1, deg(F) =0, deg(K) = 1.
Notice that this is well-defined because all the relations of U are homogeneous.
Notice also that
deg(z) =1= Az) =0,
thanks to Equation (5.8). However
(1) deg(vy1p) = 1, thanks to Equation (B.5);
(2) deg(vy1y1) =0, thanks to Equation (B.6);
(3) (deg(S(M’)1p),deg(M11)) = (1,0), thanks to Equation (B.10);
(4) (deg(S(M’)1p),deg(M1p)) = (0,0), thanks to Equation (B.9);
(5) (deg(S(M’)11),deg(M11)) = (1,1), thanks to Equation (B.12).
This implies immediately that
AMS(M) 13" 1) M 11 =0,
AMS(M )13 1) MY 19 = 0,
)\(S(Mjr)llv+11)Mjr’11 = 0,

which in particular means that

A(S(M} )03 o) (M) (1)L, @ -+ © (MY) (1) 1w, =0,
AS(ML )2 1) (M) 1)Ly, @ . @ (M) gy Ly, = 0,
)\(S(Mjr)’l)ill) Mi)(l w“ .® <Mi)(k)1“’1k =0.

This concludes the proof of point (1).

The proof of point (2) is completely analogous, but we will briefly explain what
should be adapted from the previous one, so let us assume p = 2 (mod 4). This
time, we have

A(U+10))\(1)_10) =1.
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This follows from Equation (5.8), which combines with Equation (B.1) to give

Moy 1) = VIR U i {1
T T p— 1) 2 R

and with Equation (B.3) to give
Ao 1) = Y2 i g VS S
ST s - 2 v

This establishes the first claim.
Now, in order to conclude, we need to assume that W is geometrically simply
connected, and to show that
Ju(W,w) =0
for every w € H*(W, M;Z/27) which is not an even sublink of L. For such an w,
there exists a component L; C L such that
Ik(L;,w) #0 (mod 2),
and again we can suppose that L; is unknotted. In particular, we have two cases:
(1) If L; does not belong to the even sublink, then w; = 0, and therefore
Wiy —‘y—...—l—(;.)jk =1.
(2) If L; belongs to the even sublink, then w; = 1. This means we have two
further sub-cases:
(a) If1k(L;, L;) =
(b) If Ik(L;, L;) =
However
(1) deg(v41p) =0, thanks to Equation
(2) deg(vy11) =1, thanks to Equation
(3) (deg(S(M))lo),deg(MV11)) = (1,0
(4) (deg(S(M))11),deg(MV1y)) = (1,1
(5) (deg(S(M!)11),deg(M1o)) = (0,1
This implies immediately that
)\(S(Mjr)lo’l}il())Mill = 0,
AMS(M) L3 )M 1, =0,
A(S(M) 103" 1) M 1 = 0,
which in particular means that
)‘(S(M./s_)vinll)(Mi)(l)lw“ ... (Mi)(k)lek =0,
ASMD 1) (M) )1y, © ... @ (M) (k) Les,, = 0. O

0 (mod 2), then wj, +... +wj, = 1.
1 (mod 2), then wj, +...4+wj, = 0.

(B.1);

(B.2);

), thanks to Equation (B.10);
)

)

, thanks to Equation (B.12);
, thanks to Equation (B.11).

APPENDIX A. RESCALING THE INVARIANT

In this appendix, we explain the behavior of the invariant of [BD21] under the
operation of rescaling the integral and the cointegral. In order to do this, let us
consider a unimodular ribbon category € with end

% - X ® X*7
Xe®
as in [BD21, Section 5.1] (for instance, we could consider € = H-mod for a uni-
modular ribbon Hopf algebra H, in which case & = H would be the adjoint repre-
sentation). Suppose that A : & — 1 is a two-sided integral, and that A : 1 — & is a
two-sided cointegral satisfying Ao A = 1. Let us denote by Jg the associated scalar
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invariant of 4-dimensional 2-handlebodies, given by the restriction of the functor
of [BD21, Theorem 1.1] to endomorphisms of the tensor unit of 4HB. Let us also
denote by Jg ¢ the scalar invariant obtained from Jg by replacing A and A with £\
and £~ 1A respectively, for some invertible scalar £ € k*.

Lemma A.1. For every 4-dimensional 2-handlebody W we have
e e(W) = "1 (W), (A1)
where x(W) is the Euler characteristic of W.

Proof. Notice that the space C (W) of cellular k-chains of W is generated by the
set of cores D¥ x {0} of k-handles D* x D*~*. In particular, we have

Therefore
Hy(W) = ker(9), H, (W) = coker(0).
This implies that
rank(Cz(W)) — rank(C1(W)) = rank(ker(9)) — rank(coker(9)) = x(W) — 1.
Since
J%ﬁg(W) — grank(C’g(W))—lralﬂk(C'l(VV))J(g(VV)7
we proved the claim. O

Notice that Equation (A.1) behaves well under boundary connected sum, since
X(WEW') = x(W) + x(W') = x(D*) = x(W) + x(W') - 1.

Thanks to Lemma A.l, the normalization of Equations (7.9) & (7.10) simply
amounts to multiplying the invariant of W computed in [BD21, Corollary 9.3] by
iP=DXMW)=1) (notice that 7 = 2p in our current notation). We point out however
that there is a sign mistake in the computation of the invariant of (52 x §2) < D*
for r = 4 (mod 8). This can be traced back to a sign mistake in the computation
of Av_) for r = 4 (mod 8) in [BD21, Lemma 9.1]. Therefore, let us give here
the correct formulas, at least in the non-factorizable case (the factorizable one is
already correct). Under the normalization of Equations (7.9) & (7.10), we have

Jo((S? x 82)~ DY =1,
- o 1 ifp=2 d4
JU((S2 X 52) N D4) _ 1 p (mo )7
0 ifp=0 (mod4).
APPENDIX B. RIBBON ELEMENT AND COPAIRING
Let us compute the ribbon element vy € U.

Lemma B.1. The ribbon element and its inverse are given by

1 p—12p— 1
’U+ _ —Z (a+23)at(b+p+1)2FaEaK_a+b7
a=0 b=0
12p—1
1 +Zp {1} (a+3)a —(b+p— 1) a ma a+b
oSS e

aObO
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Proof. These formulas can be obtained by computing the Drinfeld element

Z Z {1} a(a Ut bcs(kcFa)kbEa

1« 1 at3)a
_ Z Z( 1) { } _(a43)a +3) = chak2a+b cga
a

= i Z Z ( 1) {1} <"'+23)“' t2a(2a+bfc)7chaEak2a+bfc
al!

and its inverse

1 a a(a—1
{ } q%tfbckcFaSZUGbEa)

t bck_cFakbEa

{1}0' (a+3)a
q

{1}a (a+3)a t2ab chaEak_b+c

For what concerns u, if we set d = 4a 4+ b — ¢ and n = 2a + b, we obtain

p—14p—1 /4p—1 1}
Z Z (Z " +dn> ] <a+3)aFaEak 2a+d

a 0b,c=0
Similarly, for what concerns u~!, if we set d = —2a + b + ¢ and n = b, we obtain
p—1 /4p—1 {1} ( )
— n +dn a+3 ¢ a a 2a+d
v = Z (Z t ) FOE°k
a=0
Since

4pz_:1 g dn _ 2,/p(1+ i)ﬁ% ifd=0 (mod 2),
- 0 ifd=1 (mod 2),

this implies
p 12p—1

Z Z {=1}* 1} — (502 12 pa pa g —2a+2b
a=0 b=0
and similarly
p—12p—1
ul— 1 —|— 1 Z Z {1} (a+23)a t_szaEakQLH_Qb.
a=0 b=0
The claim now follows from v, = uK?~! and v_ = u~'KP*L O

Let us compute the M-matrix M, € U ®U.

Lemma B.2. The M-matriz and its inverse are given by

—1 2p—1
1 2 1lat+db _
M+ _ { } q%_Qlﬂ_ch—b-‘rchEa ® Kb+dEbFa,
X il CHUL

p—1 2p— 1{ 1}a+b

-ty ¥ b

ab 0c,d=0

—%+2b2+chanK—b+c & FeEb b+
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Proof. We have
p—1 4p—1 {1}a+b

a,b=0 c,d,e, f=0
a(a—1)4+b(b—1)

qft—cd—efkbekcEa ® keEvbk,dFa

My = 16p2

p—1 4p—1 {1}a+b

2. >

2
16p a,b=0c,d,e,f=0
q%t—cd—ef+2b(c—d)k,c+beEa ® kdte pb pa
p—1 4p—1
{1}a+
=D IDY Tl
a,b=0e,f,g,h=0
q%t—(f—g)(e—h)—ef—2b(f—g—e+h)ngbEa ® kM EVFe
— 4p—1 4p—1 a
Z 3 1 S St {ayett
1p1!
ab 0e,g,h=0 4]? =0 [a’][b]

qiﬂa L4b(b-1) 4(2b+9)(e=h)+2bg .9 b pra. &) b b Fra

p—1 4p—1 {1}a+b

DD

a,b=0e,g=0
q%t—(2b+g)(2b+e)+2bgk,ngEa ® ]{i2b+2€EbFa

p—1 2p—14p— 1{1}a+b

TDIDIDIR

a,b=0 e=0 g=0
%t—(2b+g)(2b+e)+2bgngbEa ® k2b+26EbFa

+(=1)7)

q
p—1 2p—1 {1}a+b

> 1

a,b=0e,g=0
%t7(2b+29)(2b+e)+4b9k’2ngEa ® k2b+2eEbFa.

p

q
Similarly, we have
p—1 4p—1 { 1}a+b

a,b=0 c,d,e,f=0
a(a—1)4+b(b—1)

q_fth-"_efEak‘chk‘f ® Fa]{:dEbke

16p2

p—1 4p—1 { 1}a+b

PIEDY

a,b=0 c,d,e,f=0
—%tcd-&-ef—Qb(c—d)Eankc-&-f ® FeEbidte

16p2

q

a,b=0e,f,g,h=0

q—wt(f—g)(e—h)+ef+2b(f—g—e+h)Eankg ® FoEbEh
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4p—1

== revae—ny | {=1F
DIl Fp S

ab Oe,g,h=0

q—%t—(Qb—&-g)(e—h)—ngEankg ® FaEbkh
a,b=0e,9=0

qfia(a 1)2+b(b 1 t(2b+g)(2b+e)f2ngankg ® FaEbk2b+2&

p—1 2p—14p-—1

EDIDIDIL= IRIEHD

abOeOgO

qfia(a 1)2+b(b 1 t(2b+g)(2b+e)72ngankg ® FaEbk2b+26

p—1 2p— 1{ 1}a+b

DI

ab 0e,g=0
a(a—1)+b(b—1)

qfft(2b+29)(2b+e)74ngank,2g & Fopbg2b+2e,
The claim now follows by setting g = —b+ c and e = d. O
Let us compute the copairing
wy=wy (1) eURU.
Lemma B.3. The copairing is given by

p—1 2p—1
{ 1}a+b _a(a—1)+b(b—1)
2

DI

a,b=0 ¢,d=0
Proof. We have

p—1 2p—1 b
1le+ a(a 1)+b(b 1) 2
wy = — Z Z { } =2 2b —Cds(K—b—i-chEa) ®Kb+dEbFa
a b=0 ¢,d=0 !
p—1 2p—1

Z Z {1} 1}a+b ale=14b=1) (4 p)(a—b—1)—2b°—cd
ab 0 ¢,d=0
EanK a+2b—c ®Kb+dEbFa

p—1 2p—1 a+b
Z Z } w (a—b)(a—b—1)—2(a—b)(b+d)—2b%—cd

ab 0 ¢,d=0
EanK a+2b— C®EbFaKb+d

—2b+chanKa+c ® EbFaKb+d.

p—1 2p—1
A Z Z { 1}a+ %—(a—b)(a—b—l)—2(a—b)(b+d)—2b2+(2a—2b+c)d

ab 0 ¢,d=0
EanKa+C ® EbFaKb+d

p=l 2p—1 }a+b

ZZ

ab 0 c,d=0

_a(a—1)+b(b—1)
2

—2b+chanK(l+C ® EbFaKb+d. 0

From now on, let us focus on the case p =0 (mod 2). Let us compute the graded
ribbon and inverse ribbon elements

Vo :=v41ly € Ul,, voli=wv_1, € Ul,.

(e
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Lemma B.4. The graded ribbon and inverse ribbon elements are given for p = 2
(mod 4) by

1 1-— pzfp/ 1 (a+3)at(2b_1)2FaEaK_a_2b1 (B 1)
vylp = ——— 2 05 .
\/ﬁ a=0 b
_ Pz 1p’ 1 (wra o
vely = — Z 2 () papa—a=2b-ly (B.2)
p a=0 b=
1 polp— at8)a
v_lp = Z’Z {[ g F D pagegat (B.3)
a=0 b
145 1p' 1{ (3 )
v-h=-—5 > T > () pepe ety (B.4)
P =0 v=o
and for p=0 (mod 4) by
1 1—1 pz_fp/_l _1} _%t(QbeaEaK—a—Qb—ll (B 5)
vyl = q 05 .
\/13 a=0 b=
Y 11/ 1 _ (at9)a
a+3)a 2
vply = — f 7 4(20-1)" papafr—a=2by, (B.6)
P =0 =0
140 AR 1{ (@t3)a _(op)2 2b+1
v_lg = — Z [7 2 () pape ettty (B.7)
p a=0 b
144 “’/ ! esy 2
vlhi=-m ) (52— (20-1)? pa pa frat2by (B.8)
VP a=0 b=0
Proof. We have
1—’Lp 12p— 1 l}a b (a+3)a b 2 b
o= IS S o g,
a=0 b=0
1—zp = 1{ 1}“ _(at8)a 2
_ ZZ ae t(b—l) (1+,L'p(_1)b+1) FaEaK_a_blo,
a=0 b=0
1_ZP 12p— 1 1}(1 bl (at3)a 2 b
vyl = Z Z —1)iHg ) e pe g ety
a=0 b=0

1 ip_lp_l{ 1}* (s
— — a+3)a 2
= q_ 2 t(b—l) (_1+ip(_1)b+l) FaEaK_a_blh
oV
. p—12p—1 a
_ L+i Z {1}' i—p(_l)b—qu%t—(b—lfFaEaKa—i-blO
eV e [t

. 1p—1
1 b 1 a a a 2
+1 Z{ }' (+-3) +— (b—l) (1+Zp(_1)b+l) FaEaKa+b10,
VP = b=0 [alt

p—12p—1

1 + ) Z
2\/ﬁ a=0 b=0

140 58 {130 wime 2
= Gt ¢ T (P PR L. O
a=0 b=0 ’

v
L
o

|

I
M

M

1la at3)a
vyl = {[]} iP(—1 )b+1q%t—(b—1)2FaEaKa+bh
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Let us compute the graded copairing

Wa,g 1= wy(ly ® 15) cUl,®Ulg.

Lemma B.5. The graded copairing is given by

wi(lo®@1p) =

w4 (lo®11)

'U}+(11 ® ].0

wy(l; ®1q)

Proof. We have

(10 X ].()

1 —1
L { 1}a+b _a(a—1)+b(b—1)
2

§ 2 —2b+4cd
a,b=0 ¢,d=0

EanKa+201 ® EbFaKb+2d10,
p—1 p'-1 a+b
Z Z {=1" 1} g 20D b9 4cd
a,b=0 c¢,d=0

EaF Ka+20+1 10 ® EbFaKb+2d11’
p—1 p'— a+b
Z Z {=1}" 1} g~ SR 220 ded
a,b=0 ¢,d=0

EanKa+201 ® EbFaKb+2d+1 10’
p=1 p'-1 a+b
Z Z { 1} %dbﬂ(wdﬁzxcd
a,b=0 ¢,d=0

EanKa+2(:+111 ® EbFaKb+2d+l 11'

p—1 2p—1 a+b
1 Z Z { 1} ,%,Qlﬂrcd

a’

b,c=0 d=0
(1 +( 1) )ECLFI)K(I+010 ®EbFaKb+d10
p—

1

_ ! Z {1} — 2le=DAPO-D _opt2ed
p

q
a,b,c,d=0 [a]'[b]'
E*FPK“*°1y @ E"FOK 241,

p—1

/
_ ! Z Z{ l}a“’ EEICES SRS I Y
p a,b,c

0 d=
(1 ( 1)C)Ea bKa+Clo ® EbFaKb+2d10
p

pP— 1 71 a+b
Z { 1} g~ 2RO o dca
a,b=0 c,d=0

EaF K(L+2610 ® EbFaKb+2d10’

(B.10)

(B.11)

(B.12)
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32
p—1 2p—1
{=1}" 1}a+b —7‘1(”*1);1’“*1)—%%(1

1
wy (1o ®11) =% Z Z
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