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CYCLOTOMIC EXPANSIONS FOR glN LINK INVARIANTS

VIA INTERPOLATION MACDONALD POLYNOMIALS

ANNA BELIAKOVA AND EUGENE GORSKY

Abstract. In this paper we construct a new basis for the cyclotomic completion of the
center of the quantum gl

N
in terms of the interpolation Macdonald polynomials. Then

we use a result of Okounkov to provide a dual basis with respect to the quantum Killing
form (or Hopf pairing). The main applications are: 1) cyclotomic expansions for the gl

N

Reshetikhin–Turaev link invariants and the universal gl
N

knot invariant; 2) an explicit
construction of the unified gl

N
invariants for integral homology 3-spheres using universal

Kirby colors. These results generalize those of Habiro for sl2. In addition, we give a
simple proof of the fact that the universal glN invariant of any evenly framed link and
the universal slN invariant of any 0-framed algebraically split link are Γ-invariant, where
Γ = Y/2Y with the root lattice Y .

1. Introduction

In a series of papers [1, 2, 15] Habiro, the first author et al. defined unified invariants
of homology 3-spheres that belong to the Habiro ring and dominate Witten–Reshetikhin–
Turaev (WRT) invariants. Unified invariants provide an important tool to study struc-
tural properties of the WRT invariants. In [3, 5] they were used to prove integrality of
the sl2 WRT invariants for all 3-manifolds at all roots of unity.

The theory of unified invariants for sl2 is based on cyclotomic expansions for the colored
Jones polynomial and for the universal knot invariant constructed as follows. Given a
framed oriented link L in the 3-sphere, we open its components to obtain a bottom tangle
T , presented by a diagram D (see Figure 1). For a ribbon Hopf algebra Uqg, the universal
link invariant JL(g; q) is obtained by spliting D intro elementary pieces: crossings, caps
and cups and then by associating to themR±1-matrices, and pivotal elements, respectively.

Figure 1. An example of the clasp bottom tangle

For a knot K, JK(g; q) belongs to (some completion of) the center Z(Uqg). In the
easiest case g = sl2, the center is generated by the Casimir C. For a 0-framed knot K,
Habiro showed that there are coefficients am(K) ∈ Z[q±1] such that

JK(sl2; q) =
∞∑

m=0

am(K) σm with σm =
m∏

i=1

(
C2 − (qi + q−i + 2)

)
.(1)
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2 ANNA BELIAKOVA AND EUGENE GORSKY

Replacing C2 in (1) by its value qn+q−n+2 on the n-dimensional irreducible representation
Vn−1, we get the n-colored Jones polynomial of K (normalized to 1 for the unknot)

(2) JK(Vn−1, q) =
∞∑

m=0

(−1)mq−
m(m+1)

2 am(K) (q1+n; q)m(q
1−n; q)m

where (a; q)m = (1 − a)(1 − aq) . . . (1 − aqm−1). Equation (2) is known as a cyclotomic
expansion of the colored Jones polynomial. Thus, Habiro’s series (1) dominates all colored
Jones polynomials of K. To prove the fact that JK(sl2; q) belongs to the even part of
Z(Uqsl2), generated by C2, Habiro used the whole power of the theory of bottom tangles
developed in [16].

In this paper we give a simple proof for the “evenness” of the universal invariant of
algebraically split links for all quantum groups of type A. Recall that Uqg has a natural
action of a finite group Γ = Y/2Y where Y is the root lattice of g. For g = glN , Γ = ZN

2

and for g = slN , Γ = ZN−1
2 .

Theorem 1.1. The universal glN invariant of any evenly framed link is Γ-invariant. The
universal slN invariant of any 0-framed algebraically split link is Γ-invariant.

The quantum group UqglN admits a finite dimensional irreducible representation V (λ)
with highest weight vλ for any partition λ = (λ1 ≥ · · · ≥ λN) with N parts and v2 = q. To
prove Theorem 1.1 we extend the Reshetikhin-Turaev invariants to tangles colored with
representations L(ζ)⊗ V (λ) where L(ζ) is a one-dimensional representation of UqglN for
ζ ∈ Γ. Then the claim follows from the comparison of the glN Reshetikhin-Turaev link
invariants colored with L(ζ)⊗ V (λ) and V (λ).

The next main result of the paper establishes an explicit basis in the Γ-invariant part
of the center Z of UqglN . It generalizes Habiro’s basis {σm |m ∈ N} for the even part of
Z(Uqsl2).

Theorem 1.2. There exists a family of central elements σλ ∈ Z labeled by partitions λ
with at most N parts with the following properties:

(a) σλ is Γ-invariant and annihilates L(ζ)⊗ V (µ) for all ζ ∈ Γ and partitions µ with
at most N parts not containing λ;

(b) σλ does not annihilate V (λ) and acts on it by an explicit scalar (see Theorem 8.2).

The proof uses the theory of interpolation Macdonald polynomials developed in [23,
24, 29, 30, 31, 32, 36]. This theory allows one to reconstruct a symmetric function
f(x1, . . . , xN) from its values at special points xi = q−µi−N+i where µ is an arbitrary
partition with at most N parts. The connection between the center of UqglN and sym-
metric functions goes through the quantum Harish-Chandra isomorphism, and we inter-
pret f(q−µ1−N+1, . . . , q−µN ) as the scalar by which the element of the center f acts on the
irreducible representation V (µ). Interpolation Macdonald polynomials then correspond
to a natural basis in the center of UqglN .

The polynomials σλ yield a basis in the Γ-invariant parts of both the center Z and
its completion (a function in the completion is determined by its values on all finite-
dimensional representations). We use a formula of Okounkov [29] to give explicit expan-
sion of a given central element z in the basis σλ in terms of the scalars by which z acts on
all finite-dimensional representations V (λ). This leads to an expansion of the universal
knot invariant in the basis σλ, where the coefficients are related to Reshetikhin-Turaev
invariants of the same knot colored by V (µ) via an explicit triangular matrix (dλ,µ) which
does not depend on the knot.
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Theorem 1.3. For any evenly framed knot K, there exist Laurent polynomials aλ(K) ∈
Z[q, q−1] such that the universal invariant of K has the following expansion:

(3) JK(glN ; q) =
∑

λ

aλ(K) σλ .

Moreover, the coefficients aλ(K) can be computed in terms of the Reshetikhin-Turaev
invariants as follows:

aλ(K) =
∑

µ⊂λ

dλ,µ(q
−1) JK(V (µ), q)

where the coefficients dλ,µ(q) are defined in Theorem 10.17.

We prove Theorem 1.3 as Proposition 8.7. We would like to emphasize that the fact
that aλ(K) are Laurent polynomials in q is highly nontrivial. Indeed, we have computed
the tables of coefficients dλ,µ(q) for gl2 in Section 11.4 and these are complicated rational
functions, so a priori aλ(K) are rational functions as well. Theorem 1.3 thus encodes
certain divisibility properties for the linear combinations of colored invariants of K. We
refer to Section 11.5 for the explicit computation of the coefficients aλ(K) for the figure
eight knot.
We call (3) a cyclotomic expansion of the universal glN knot invariant. The name cy-

clotomic is justified by the fact that (3) has well-defined evaluations at any root of unity
by Lemma 10.29 below. Note that for N = 2 and a 0-framed knot, our expansion does
not coincide with that of Habiro, simply because if an element z ∈ Uqgl2 is central and
Γ-invariant, it does not imply z has a decomposition in even powers of the Casimir. There-
fore, our cyclotomic expansion is rather a generalization of F∞ in [37] or [4, eq.(3.14)],
both having interesting application in the theory of non semisimple invariants of links and
3-manifolds.

For our next application, assume M is an integral homology 3-sphere obtained by ε-
surgery on an ℓ-component algebraically split 0-framed link L with ε ∈ {±1}ℓ. Following
Habiro–Le, we define an glN unified invariant I(M) as

I(M) = 〈 r⊗ε, JL(glN ; q) 〉

where r is the glN ribbon element and 〈·, ·〉 is the Hopf pairing. In the case of slN
Habiro–Le proved [19] that the unified invariant belongs to a cyclotomic completition of
the polynomial ring

Ẑ[q] := lim
←−−n

Z[q]

((q; q)n)

known as Habiro ring. Using interpolation, we are able to express I(M) in terms of
special linear combinations of Reshetikhin–Turaev invariants of L, called Kirby colors.
For this we diagonalize the Hopf pairing, i.e. find a basis Pµ that is orthonormal to σλ

and orthogonal to V (λ) with respect to the Hopf pairing. This allows us to give explicit
formulas for the universal Kirby colors ω± (see (25)) in the basis Pµ and to prove the
following result.

Theorem 1.4. The unified invariant

I(M) = JL(ωǫ1, . . . , ωǫℓ) ∈ Ẑ[q]

belongs to the Habiro ring and dominates glN WRT invariants of M± at all roots of unity.
Moreover, I(M) is equal to the slN Habiro–Le invariant of M±.
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To prove that I(M) is equal to the slN Habiro–Le invariant we show the equality of
the universal glN and slN invariants for 0-framed algebraically split links, and the fact
that the glN and slN twist forms x 7→ 〈r±1, x〉 on them coincide. It follows that I(M)
belongs to the Habiro ring. Then we establish invariance of Kirby colors ω± under Hoste
moves (a version of Fenn–Rourke moves between algebraically split links) in Lemma 9.1,
and finally deduce the equality I(M) = JL(ωǫ1, . . . , ωǫℓ).

The main advantage of Theorem 1.4 compared to Habiro–Le approach is the interpre-
tation of I(M) as the Reshetikhin–Turaev invariant of L colored by ωε. This leads to
various striking divisibility results and allows us to extend our cyclotomic expansion to
links.

Corollary 1.5. Given an ℓ component algebraically split 0-framed link L, then for all but
finitely many partitions λi with 1 ≤ i ≤ ℓ, there exist positive integers n = n(λi, N), such
that

JL(P
′
λ1
, . . . , P ′λℓ

) ∈ (q; q)n Z[q, q
−1]

where P ′λ = v|λ| dimq V (λ)Pλ is a scalar multiple of Pλ.

This is a generalization of the famous integrability theorem in [15, Thm. 8.2]. The
authors do not know any direct proof of Corollary 1.5 without using the theory of unified
invariants. Based on Corollary 9.4 we obtain a cyclotomic expansion for the Reshetikhin-
Turaev invariants of L:

(4) JL(λ1, . . . , λℓ) = v
∑

i |λi|
∑

µi⊂λi

l∏

j=1

cλj ,µj
(q−1) JL(P

′
µ1
, . . . , P ′µℓ

)

where the matrix [cλ,µ(q)]λ,µ :=
[
Fλ(q

−µi−N+i)
]
λ,µ

is the inverse of [dλ,µ(q)]λ,µ. This gen-

eralizes equation (8.2) in [15].
In addition, in the case of knot surgeries we give a direct proof of the fact that

I(M±) = JL(ω±) ∈ Ẑ[v]

by using our cyclotomic expansion and the interpolation theory.

Finally, we would like to comment on potential ideas for categorification of these results.
The ring of symmetric polynomials in N variables is naturally categorified by the category
of annular glN -webs, with morphisms given by annular foams [6, 33, 34, 13, 11]. By the
work of the second author and Wedrich [13], one can interpret it as a symmetric monoidal
Karoubian category generated by one object E corresponding to a single essential circle.
The symmetric polynomials are then categorified by the Schur functors of E.

We expect the categorified interpolation polynomials to correspond to interpolation
Macdonald polynomials where q plays the role of quantum grading and t of the homological
grading (after some change of variables). We recall the general definitions and properties
of these polynomials from [29] in Appendix. The key obstacle for categorification of
interpolation polynomials is that they are not homogeneous. Therefore one needs to
enrich the category and allow additional morphisms between E and identity.

On the other hand, the conjectures of the second author, Negut, and Rasmussen ([12],
see [10, 11] for further discussions) relate a version of the annular category to the derived
category of the Hilbert scheme of points on the plane. The interpolation Macdonald
polynomials appear in that context as well [7].

The paper is organized as follows. After recalling the definitions, we compare the
Reshetikhin–Turaev invariants of tangles colored by V (λ) and L(ζ)⊗ V (λ) in Section 4.
In the next two sections we summarize known results about the center of UqglN , define
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its completion and prove Theorem 1.1 in Section 6.2. The remaining results are proven
in Sections 8, 9 assuming some facts about interpolation.
In the last sections we develop the theory of the interpolation Macdonald polynomials,

starting from the one variable case. We define multi-variable interpolation polynomials,
state and prove their properties in Section 10.2. Next, we solve the interpolation problem
in two ways, one using the approach of Okounkov (Theorem 10.17), and another using
Hopf pairing (see (38)). We study divisibility of Fλ(q

a1 , . . . , qan) by quantum factorials
in Section 10.5 (see Lemma 10.29). Section 11 is focused on various stability properties
of the interpolation polynomials such as adding a column to a partition λ (Proposition
11.8) and changing N for a fixed Young diagram λ. In particular, in Proposition 11.5
we describe a HOMFLY-PT analogue of the interpolation polynomials depending on an
additional parameter A = qN . We provide lots of examples and tables of interpolation
polynomials, especially for gl2. In Appendix A we collect some additional known facts
about the interpolation Macdonald polynomials and the Habiro ring.
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2. Notations and conventions

2.1. q-binomial formulas. Throughout the paper we will use the following notations
for the q-series. The q-Pochhammer symbols are defined as

(a; q)m =
m−1∏

i=0

(1− aqi), (a; q)∞ =
∞∏

i=0

(1− aqi), m ≥ 0.

It is easy to see that

(a; q)m+k = (a; q)m(aq
m; q)k, (a; q)m =

(a; q)∞
(aqm; q)∞

.

We will use two normalizations for q-binomial coefficients defined as follows:

{a}q = 1− qa, [a]q =
{a}q
{1}q

, [a]q! = [1]q · · · [a]q,
(
a

b

)

q

=
[a]q!

[b]q![a− b]q!
.

Note that

[a]q =
(q; q)a
(1− q)a

,

(
a

b

)

q

=
(q; q)a

(q; q)b(q; q)a−b
.

Finally, the q-binomial formula gives

(a; q)m =

m∑

j=0

(−1)jq
j(j−1)

2

(
m

j

)

q

aj .

Let us also define symmetric q-numbers. For this we chose v such that v2 = q and set

{a} = va − v−a, [a] :=
{a}
{1} ,

[
a
b

]
=

{a}!
{b}!{a− b}! .

We will use all these formulas throughout the paper without a reference.
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2.2. Partitions. We will work with partitions λ = (λ1 ≥ λ2 ≥ . . . λN) which we will
identify with the corresponding Young diagrams in French notation, where the rows have
length λi. Transpose diagram to λ is denoted by λ′, and |λ| =

∑
λi. Given a box in a

Young diagram, we define its arm, co-arm, leg and co-leg as in Figure 2.

l′

l

a′ a

Figure 2. Arm, co-arm, leg and co-leg

We define the hook length as h(�) = a(�) + l(�) + 1, and the content c(�) = a′ − l′.
Let

n(λ) =
∑

(i− 1)λi =
∑

�

l′(�) =
∑

�

l(�),

then

n(λ′) =
∑ λi(λi − 1)

2
=

∑

�

a′(�) =
∑

�

a(�).

The content of λ is defined as

c(λ) =
∑

�

c(�) = n(λ′)− n(λ).

Let λ̄i = λi +N − i for 1 ≤ i ≤ N , then we have the following identity

(5)
∏

�∈λ

(1− th(�)) =

∏
i≥1

∏λ̄i

j=1 (1− tj)
∏

i<j

(
1− tλ̄i−λ̄j

)

and we define

DN(λ) =

N∑

i=1

(λ̄i)(λ̄i − 1)

2
=

∑

i

λi(λi − 1)

2
+
∑

i

(N − i)λi +

N∑

i=1

(
N − i

2

)
(6)

= n(λ′) + (N − 1)|λ| − n(λ) +

(
N

3

)
= c(λ) + (N − 1)|λ|+

(
N

3

)
.(7)

3. Quantum groups

3.1. Quantum glN . The quantum group U = UqglN is a C(v)-algebra generated by
E1, . . . , EN−1, F1, . . . , FN−1, K

±1
1 , . . . , K±1N satisfying the following relations:

(8) KiEi = vEiKi, KiFi = v−1FiKi, Ki+1Ei = v−1EiKi+1, Ki+1Fi = vFiKi+1

(9) [Ei, Fj ] = δij
KiK

−1
i+1 −Ki+1K

−1
i

v − v−1
, [Ki, Kj] = 0,

(10) E2
i Ej − [2]EiEjEi + EjE

2
i = 0 if |i− j| = 1 and [Ei, Ej] = 0 otherwise
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and analogously for Fi, where v
2 = q. To simplify the notation we set Ki := KiK

−1
i+1. Then

the Hopf algebra structure on U (i.e. coproduct, antipode and counit) can be defined as
follows:

∆(Ei) = Ei ⊗ 1 +Ki ⊗Ei, ∆(Fi) = 1⊗ Fi + Fi ⊗K−1i , ∆(K±1i ) = K±1i ⊗K±1i ,

S(K±1i ) = K∓1i , S(Ei) = −EiK−1i , S(Fi) = −KiFi

ε(K±1i ) = 1, ε(Ei) = ε(Fi) = 0.

Usually U is considered as a subalgebra of Uh that is an h-adically complete C[[h]]-
algebra topologically generated by Ei, Fi and Hj for 1 ≤ i ≤ N − 1 and 1 ≤ j ≤ N
with

v = exp h/2, Ki = vHi = exp hHi/2

satisfying (9), (10) and

HiEi−EiHi = Ei, HiFi−FiHi = −Fi, Hi+1Ei−EiHi+1 = −Ei, Hi+1Fi−FiHi+1 = Fi

replacing (8). Rewriting the defining relations in terms of the generators

ei = Ei(v − v−1), F
(n)
i =

F n
i

[n]!
and Kj for 1 ≤ i ≤ N − 1, 1 ≤ j ≤ N

we obtain an integral version UZ as a Hopf algebra over Z[v, v−1] ⊂ C(v) ⊂ C[[h]].
The quantum group glN has a fundamental representation CN with basis v1, . . . , vN

such that

Kivj = vδijvj , Eivj =

{
vi if j = i+ 1

0 otherwise
, Fivj =

{
vi+1 if j = i

0 otherwise.

It generates a braided monoidal category with simple objects V (λ), where λ is a partition
with at most N parts. These are highest weight modules where Ki act on the highest
weight vector by vλi. The fundamental representation corresponds to λ = (1). The
representations V (λ) have integral basis where UZ acts by Z[v, v−1]-valued matrices.

3.2. Ribbon structure. The Hopf algebra Uh admits a ribbon Hopf algebra structure
(see e.g. [8, Cor. 8.3.16]). The universal R-matrix has the form R = DΘ where the
diagonal part D and the quasi-R-matrix are defined as follows

D = v
∑N

i=1 Hi⊗Hi and Θ =
∑

n∈NN−1

Fn ⊗ en

where for any sequence of non-negative integers n = (n1, . . . , nN−1), the elements en
and Fn are defined by equations (66) and (67) in [19] and form topological bases of the
positive and negative parts in the triangular decomposition of UZ. The inverse matrix
R−1 = ι(Θ)D−1 is obtained by applying the involution ι : v → v−1.
The ribbon element and its inverse have the form

(11) r =
∑

n

Fn Kn r0 en and r−1 =
∑

n

ι(Fn) K−n r−10 ι(en)

where r0 = K−2ρv
−
∑

i H
2
i and K−2ρ =

∏N
i=1K

2i−N−1
i is the pivotal element. Here for any

sequence of integers n ∈ ZN−1 we set Kn =
∏

i Kni

i , and denote by

ρ =

(
N − 1

2
,
N − 3

2
, . . . ,

1−N

2

)
=

1−N

2
(1, . . . , 1) + (N − 1, N − 2, . . . , 0)
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the half sum of all positive roots. Using the central element K =
∏N

i=1Ki, we can write
the previous definitions as follows:

r−10 = KN
N∏

i=1

K−2ii v
∑

i Hi(Hi+1), K−2ρ = K−N−1
N∏

i=1

K2i
i .

The central element r−1 acts on V (λ) by the multiplication with

θV (λ) = v(λ,λ+2ρ) = vN |λ|qc(λ)

where (λ, µ) =
∑N

i=1 λiµi, c(λ) is the content of λ and v2 = q.

3.3. Even part of U . The algebra U has a natural grading by Γ = ZN
2 = {±1}N where

ζ = (ζ1, . . . , ζN) ∈ Γ acts on Ki by ζi, on Ei by 1 and on Fi by ζiζi+1. It is easy to see that
the defining relations are preserved under this action. Following [19], we call an element
of UN even or Γ-invariant if it is preserved under the action of Γ.

Let us denote by U ev
Z a Z[q, q−1]-subalgebra of UZ generated by ei, F

(n)
i Ki and K2

j for
1 ≤ i ≤ N − 1 and 1 ≤ j ≤ N . It is easy to check that U ev

Z is Γ-invariant.
The action of Γ descends on the category Rep(U) of all finite-dimensional represen-

tations. Given ζ = (ζ1, . . . , ζN) ∈ Γ, we can define a one-dimensional representation
L(ζ) where Ei and Fi act by zero, and Ki act by ζi. We can also define representation
V (λ)⊗ L(ζ) where Ki act on the highest weight vector by ζiv

λi .

Lemma 3.1. The action of U on V (λ) ⊗ L(ζ) agrees with the Γ-twisted action of U on
V (λ).

Proof. Indeed, ∆(Fi) = 1⊗Fi+Fi⊗K−1i , so Fi acts on V (λ)⊗L(ζ) via Fi⊗K−1i = Fiζiζi+1.
Similarly, Ei acts on V (λ)⊗ L(ζ) via Ei ⊗ 1 = Ei and Ki acts via Ki ⊗Ki = Kiζi. �

3.4. The subalgebra UqslN . We define UqslN as a subalgebra of U generated by Ei, Fi

and K±1i := K±1i K∓1i+1 for 1 ≤ i ≤ N − 1. The Hopf algebra UqslN also admits an integral
version UZslN generated by

ei, F
(n)
i and K±1i

over Z[q, q−1]. The braiding R = D′Θ with Θ as for glN , but different diagonal part

D′ = v
∑N−1

i=1
Hi⊗Hi

2 where Hi = Hi −Hi+1 .

The ribbon element is defined by (11) with r0 = K−2ρ
∏N−1

i=1 v−H
2
i /2. The pivotal element

K−2ρ does not change. Note that the Γ-invariant part of UqslN generated by ei, F
(n)
i Ki

and K2
j for 1 ≤ i, j ≤ N − 1 has a smaller Cartan part than its glN analogue.

Example 3.2. For N = 2 the product K1K2 is central. By denoting K = K1K
−1
2 , E =

E1, F = F1 we get the standard presentation for Uq(sl2):

KE = v2EK, KF = v−2FK, [E, F ] =
K −K−1
v − v−1

.

3.5. Universal invariant. Lawrence, Reshetikhin, Ohtsuki and Kauffman constructed
quantum group valued universal link invariants. As it was already mentioned in the
introduction, the universal invariant of a link is defined by splitting a diagram of its
bottom tangle into elementary pieces and by associating R-matrices and pivotal elements
to them. For more details and references we recommend to consult [16, Sec. 7.3]. However,
we admit here the convention from [19, Sec. 2.7] and write the contributions from left to
right along the orientation of each component.
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4. Ribbon structure on Rep(U)
The aim of this section is to compare the Reshetikhin-Turaev invariants of a bottom

tangle whose components are colored with V (λ) and V (λ)⊗L(ζ). This will be later used
to prove Theorem 1.1.
Let us denote by RQ the representation ring of Rep(U) over Q(v). Given an l compo-

nent link L, Reshetikhin–Turaev functor associated with Lie algebra g provides a Q(v)-
multilinear map

JL : RQ × · · · × RQ → Q(v)

(µ1, . . . , µl) 7→
⊗

i

TrV (µi)
q (JL(g; q)) =: JL(g;µ1, ..., µl)

normalized to
∏

i dimq(V (µi)) for the 0-framed (µ1, . . . , µl)-colored unlink. In cases when
g is fixed in the context, we will remove it from the notation for simplicity.
Note that in the case of a knot, we have JK(λ) = dimq(V (λ))JK(V (λ), q) where the

last invariant is the colored Jones polynomial used in Introduction and normalized to be
1 for the unknot.
The universal R-matrix defines a braiding between the representations V (λ). We can

extend this braiding to Rep(U) as follows. Clearly, L(ζ)⊗L(ζ ′) ≃ L(ζζ ′) and we define the
braiding between L(ζ) and L(ζ ′) to be trivial. Let V be a finite-dimensional representation
of U where the eigenvalues of Ki are integral powers of v. Given ζ ∈ Γ we consider a
C-linear map TV (ζ) : V → V which acts by

∏
ζaii on the weight subspace of V where Ki

acts as vai .

Lemma 4.1. The maps

cζ,V := swap ◦ (Id⊗ TV (ζ)) : L(ζ)⊗ V → V ⊗ L(ζ)

with inverses

cV,ζ := swap ◦ (TV (ζ)⊗ Id) : V ⊗ L(ζ) → L(ζ)⊗ V

define a braiding on Rep(U).

Proof. First, let us check that swap ◦ (Id ⊗ TV (ζ)) intertwines the actions of U on both
sides. Indeed, let v ∈ V be a vector with weight (va1 , . . . , vaN ), then Eiv has weight
(va1 , . . . , vai+1, vai+1−1, . . . , vaN ) while Fiv has weight (va1 , . . . , vai−1, vai+1+1, . . . , vaN ).
Let • denote the basis vector in L(ζ), then

cζ,VEi(• ⊗ v) = cζ,V (ζiζi+1 • ⊗Ei(v)) = ζa11 · · · ζaii ζ
ai+1

i+1 · · · ζaNN Ei(v)⊗ •,
cζ,V Fi(• ⊗ v) = cζ,V (• ⊗ Fi(v)) = ζa11 · · · ζai−1i ζ

ai+1+1
i+1 · · · ζaNN Fi(v)⊗ •,

cζ,VKi(• ⊗ v) = cζ,V (ζi • ⊗Ki(v)) = ζa11 · · · ζai+1
i · · · ζaNN Ki(v)⊗ •,

while

Eicζ,V (• ⊗ v) = Ei(ζ
a1
1 · · · ζaNN v ⊗ •) = ζa11 · · · ζaNN Ei(v)⊗ •,

Ficζ,V (• ⊗ v) = Fi(ζ
a1
1 · · · ζaNN v ⊗ •) = ζa11 · · · ζai−1i ζ

ai+1+1
i+1 · · · ζaNN Fi(v)⊗ •,

Kicζ,V (• ⊗ v) = Ki(ζ
a1
1 · · · ζaNN v ⊗ •) = ζa11 · · · ζai+1

i · · · ζaNN Ki(v)⊗ •.
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Next, we observe that TV (ζ)TV (ζ
′) = TV (ζζ

′) and TU⊗V (ζ) = TU(ζ) ⊗ TV (ζ), so cζ,V
indeed defines a braiding. Even more concretely, we get the braiding as the composition

(12)

cL(ζ)⊗V,L(ζ′)⊗U : L(ζ)⊗V ⊗L(ζ ′)⊗U
cV,ζ′−−→ L(ζ)⊗L(ζ ′)⊗V ⊗U = L(ζ ′)⊗L(ζ)⊗V ⊗U

cV,U−−→
L(ζ ′)⊗ L(ζ)⊗ U ⊗ V

cζ,U−−→ L(ζ ′)⊗ U ⊗ L(ζ)⊗ V.

�

The representations L(ζ) are self-dual, and it is easy to see that the braiding cζ,V is
compatible with changing V to V ∗. Therefore, Rep(U) with objects L(ζ) ⊗ V form a
pivotal braided monoidal category.

The quantum dimension of L(ζ) equals to the trace of the action of the pivotal element,
which is (

∏
i ζi)

N+1. The twist coefficient θL(ζ) is defined as the action of the ribbon
element on L(ζ), and is given by (

∏
i ζi)

N .

Lemma 4.2. Rep(U) is a ribbon category with twist θL(ζ)⊗V = θL(ζ)θV .

Proof. By definition θL(ζ)⊗V = cζ,V θL(ζ)θV cV,ζ = θL(ζ)θV . �

4.1. Braiding in Rep(UqslN). In this section, we study the action of Γ and the corre-
sponding braiding for UqslN , starting from N = 2. Similarly to the previous section, Uqsl2
has a one dimensional representation L(−1) where E and F act by 0 and K acts by −1.
The action of Uqsl2 on L(−1)⊗V is equivalent to Z2-twisted action on V where Z2 scales
E by 1 and F,K by −1.

One can attempt to define a braiding for Uqsl2. Since E and F shift the weights by 2,
it is easy to see that the analogue of TV should act by (

√
−1)a on a subspace with weight

va, and it does not square to identity. Nevertheless, it squares to ±id on each irreducible
representation. This means that braiding relations on Rep(Uqsl2) hold up to sign.

To pin down this sign, we define the sign automorphism ΣV which acts by (−1)a on
a subspace with weight va. Since E, F shift the weight by ±v2, ΣV commutes with the
action of Uqsl2 on V . The operator ΣV acts on the irreducible representation V (n) by a
scalar (−1)n. Also, it is easy to see that ΣV⊕W = ΣV ⊕ ΣW and ΣV⊗W = ΣV ⊗ ΣW .

Lemma 4.3. The operators TV and ΣV satisfy the following properties:

(a) We have

T 2
V = ΣV , cL(−1),V = c−1L(−1),V (1⊗ ΣV ) = (ΣV ⊗ 1)c−1L(−1),V

(b) Let cV,W : V ⊗W → W ⊗ V be the braiding, then

cV,W (ΣV ⊗ 1) = (1⊗ ΣV )cV,W , cV,W (1⊗ ΣW ) = (ΣW ⊗ 1)cV,W

(c) We have cL(−1),V ⊗W = cL(−1),V ◦ cL(−1),W .
(d) The braiding with L(−1) satisfies Yang-Baxter equation, that is, the following

diagram commutes:

L(−1)⊗ V ⊗W V ⊗ L(−1)⊗W V ⊗W ⊗ L(−1)

L(−1)⊗W ⊗ V W ⊗ L(−1)⊗ V W ⊗ V ⊗ L(−1)

cL(−1),V

cV,W

cL(−1),W

cV,W

cL(−1),W cL(−1),V
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Proof. Part (a) is clear. To prove (b), observe that the action of Uqsl2 ⊗ Uqsl2 on V ⊗W
commutes with both ΣV ⊗1 and 1⊗ΣV , and the R-matrix is an element of the completion
of Uqsl2 ⊗ Uqsl2.
Given a pair of vectors u ∈ V, w ∈ W such that Ku = viu and Kw = vjw, we get

K(u ⊗ w) = vi+ju ⊗ w, so TV⊗W = TV ⊗ TW . Since cL(−1),V = swap ◦ (Id ⊗ TV ), we get
the desired relation. Finally, (d) follows from (c). �

We can generalize the above results to representations of UqslN as follows. For ζ ∈
ZN−1
2 there is a one-dimensional representation L(ζ) of Uq(slN ) where Ei, Fi act by 0 and

Ki = KiK
−1
i+1 act by ζi (1 ≤ i ≤ N − 1). Given a representation V where all weights of

Ki are integral powers of v, we can define an operator Tζ,V : V → V which acts by ζA
−1

a

on a subspace where Ki acts by vai . Here A is the Cartan matrix for slN given by

(13) A =




2 −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . 2




and a = (a1, . . . , aN−1). Note that det(A) = N , so A−1 has rational entries with de-

nominator N and one needs to choose an N -th root of (−1) to define ζA
−1

a. Define
Σζ,V = T 2

ζ,V .

Lemma 4.4. The operators Tζ,V and Σζ,V satisfy the following properties:

(a) Tζ,VEi = ζiEiTζ,V , Tζ,V Fi = ζiFiTζ,V

(b) Σζ,V commutes with the action of UqslN on V
(c) The map cL(ζ),V = swap ◦ (Id ⊗ Tζ,V ) : L(ζ) ⊗ V → V ⊗ L(ζ) is a morphism of

UqslN -representations
(d) The maps Tζ,V and Σζ,V satisfy all equations in Lemma 4.3 with L(−1) changed

to L(ζ).

Proof. (a) The operator Fi changes the weight a = (a1, . . . , aN−1) by Aei, so if Kiv = vaiv
then

Tζ,V Fi(v) = ζA
−1(a+Aei)Fiv = ζA

−1a+eiFiv = ζiFiTζ,V (v).

The proof for Ei is similar. Part (b) immediately follows from (a).
For (c), we observe that the action of Ei on L(ζ) ⊗ V is the same as the action on

V , while the actions of Fi,Ki are twisted by ζi. On the other hand, the action of Fi on
V ⊗ L(ζ) is the same as the action on V , while the actions of Ei,Ki are twisted by ζi.
Therefore by (a) the operator cL(ζ),V intertwines the actions of UqslN on L(ζ) ⊗ V and
V ⊗ L(ζ).
Finally, the proof of the rest of Lemma 4.3 extends to UqslN verbatim. �

Remark 4.5. The above construction of Tζ,V and Σζ,V can be extended to an arbitrary
semisimple Lie algebra with Cartan matrix A. The action of Σζ,V can be interpreted in
terms of projection of the weight lattice to its quotient by the root lattice.

We draw a tangle colored by a representation V = V (λ) using solid lines, and a tangle
colored by L(ζ) by dotted lines. If a component is colored by L(ζ)⊗V , we draw a dotted
line on the left of a solid line and parallel to it. The crossings between solid and dotted
lines correspond to c±L(ζ),V depicted in Figure 3. Note that unlike glN case, cL(ζ),V does not

square to identity and we have to distinguish under- and over-crossings between solid and
dotted lines. This allows us to define Reshetikhin-Turaev invariants for framed tangles
colored by representations of UqslN of the form L(ζ)⊗ V (λ).
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Using the notations as in Figure 3, we can visualize the statement of Lemma 4.4 in
Figure 4.

Σ

Figure 3. The operators cL(ζ),V , c
−1
L(ζ),V and Σζ .

Theorem 4.6. (a) Let L be an algebraically split 0-framed link with ℓ components. Then
for arbitrary partitions λ1, . . . , λℓ and ζ1, . . . , ζℓ ∈ Γ the following identity of Reshetikhin–
Turaev invariants holds:

(14) JL (slN ;V (λ1)⊗ L(ζ1), . . . , V (λℓ)⊗ L(ζℓ)) =

JL (slN ;V (λ1), . . . , V (λℓ)) · dimq L(ζ1) · · ·dimq L(ζℓ),

where dimq L(ζi) = TrL(ζi)q (1) = ±1.
(b) Let L be an arbitrary link with evenly framed components, if N is odd. Then (14)

holds for glN Reshetikhin–Turaev invariants.

Proof. (a) We use the results of Lemmas 4.3 and 4.4 and the above diagrammatic notation.
By Lemma 4.3(a), we can change crossings between dotted and solid lines at a cost of
placing Σζ on solid lines. By doing this iteratively, we can make all dotted lines to be
above solid lines. At this stage, each solid component of L acquires several copies of
Σζ and Σ−1ζ at various places of the link diagram. The number of these copies (with
signs) equals the linking number between this component and the dotted part which
is even by our assumption. By Lemma 4.3(b) we can combine all these copies of Σζ

together and cancel out. Finally, using Lemma 4.3(d), we can separate the dotted and
solid links. By changing the crossings in the dotted link, we transform it to the 0-framed
unlink. Therefore the invariant of the solid link equals JL (slN ;V (λ1), . . . , V (λℓ)) while
the invariant of the dotted link equals dimq L(ζ1) · · ·dimq L(ζℓ).

(a) = Σ =

Σ

=
Σ

(b)
Σ

=
Σ

(d)

Figure 4. Diagrammatics for Lemma 4.4
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The proof of (b) is similar, except that ΣV is trivial for all V . As before we can unknot
dotted components. Now the ribbon element acts on L(ζ) by θL(ζ) = (

∏
i ζi)

N , and hence,
any (even if N is odd) number of them acts by 1. The result follows.

�

5. Center of U
Let Z be the center of UZ. In this section we recall the main facts known about Z.

5.1. Harish-Chandra isomorphism. Let (U0
Z)

SN := Z[v, v−1][K±11 , . . . , K±1N ]SN be the
Cartan part of UZ invariant under the Weyl group action. After a multiplication by an
appropriate power of the central element K :=

∏N
i=1Ki, each element of (U0)SN can

be viewed as a symmetric function in N variables. This allows to identify (U0
Z)

SN with
the ring of symmetric functions divided by powers of the elementary symmetric poly-
nomial eN = K. In the classical case, this ring can be identified with the center using
the Harish-Chandra isomorphism. After quantization, the image of the Harish-Chandra
homomorphism belongs to

Sym = Z[v±1, e−1N ][x1, . . . , xN ]
SN

where xi = K2
i (compare e.g. [20, Ch. 6]). In this section we will furthermore identify

Sym with the Grothendieck ring R of Rep(U) with coefficients Z[v±1].
First, the character map

ch : R → Sym

sends a representation U to its character ch(U). Clearly, ch(U⊕V ) = ch(U)+ch(V ) and
ch(U ⊗ V ) = ch(U)ch(V ), so ch is a ring homomorphism. The character of V (λ) equals
the Schur function sλ(x1, . . . , xN), while the character of L(ζ) equals ζ1 · · · ζN .
The Harish-Chandra map

hc : Z → Sym

is defined as follows. Let φ be a central element in U , it acts in the Verma module ∆(λ) by
some scalar φ|∆(λ). We define hc(φ) to be the polynomial in Sym defined by the condition

hc(φ)(qρ+λ) = φ|∆(λ) for all λ

where ρ =
(
N−1
2

, N−3
2

, . . . , 1−N
2

)
. Note that the product φφ′ acts on ∆(λ) by the product

of the corresponding scalars, so hc is also a ring homomorphism. It is known to be an
isomorphism (see e.g. [20, Ch. 6]).
Finally, the map ξ : R → Z is defined by ξ = hc−1 ◦ ch. It is a composition of two ring

homomorphisms and hence a ring homomorphism too. Hence, we get the commutative
diagram:

R Z

Sym

ch

ξ

hc

In Lemma 5.3 we will show that ξ actually coincides with the Drinfeld map.

Example 5.1. The central element K = K1 · · ·KN acts on V (λ) by a scalar v
∑

λi. Since∑
ρi = 0, we get hc(K1 · · ·KN) = y1 · · · yN .

Example 5.2. The center of Uqsl2 is generated by the Casimir element:

C = (v − v−1)2FE + vK + v−1K−1
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It acts on a representation Vm by vm+1 + v−m−1, so hc(C) = y+ y−1 (note that vρ = v in
this case). On the other hand, ch(V1) = y+y−1, so ξ(V1) = C, where V1 the 2-dimensional
representation.

Similarly, we can consider the corresponding central element in Uqgl2 defined by

Cgl2
= (v − v−1)2FE + vK1K

−1
2 + v−1K−11 K2.

It acts on a representation V (λ) by a scalar

v1+λ1−λ2 + v−1−λ1+λ2 =
y1
y2

+
y2
y1
, y1 = v1/2+λ1 , y2 = v−1/2+λ2 ,

so hc(Cgl2
) = y1

y2
+ y2

y1
=

y21+y22
y1y2

= e−12 (y1, y2)(x1 + x2).

5.2. Hopf pairing. The Hopf pairing 〈U, V 〉 of two representations U, V ∈ R is defined
as the Reshetikhin–Turaev invariant of the Hopf link with components labeled by U and
V . This is a symmetric bilinear pairing on R. The map ξ is related to the Hopf pairing
as follows:

Lemma 5.3. The Hopf pairing on R can be computed as

〈U, V 〉 = TrUq (ξ(V )).

Proof. Consider the Drinfeld map D [9] which sends a representation V to a central
element corresponding to the universal invariant of the following tangle:

D(V ) := V

By e.g. [14, eq. (20)] (see also [19, Proposition 8.19] and references therein) the eigenvalue
of D(V ) on the irreducible representation V (λ) equals ch(qλ+ρ) where ch is the character
of V . By the definition of the Harish-Chandra map, this means that hc(D(V )) = ch(V ),
and

D(V ) = hc−1(ch(V )) = ξ(V ),

so ξ agrees with the Drinfeld map. Now 〈U, V 〉 = TrUq (D(V )) = TrUq (ξ(V )) or more
precisely,

〈V (λ), V (µ)〉 = sλ(q
µ+ρ)sµ(q

ρ) where dimq V (µ) = sµ(q
ρ).

�

Using the Drinfeld isomorphism ξ we can extend the Hopf pairing to the center by
setting

〈z1, z2〉 := 〈ξ−1(z1), ξ−1(z2)〉 for any z1, z2 ∈ Z .

6. Cyclotomic completion and the universal invariant

The universal invariant of a link belongs a priori to a (completed) tensor product of
copies of Uh, rather than U or UZ, due to the diagonal part of the R-matrix. The aim of
this section is to define a certain completion of UZ and its tensor powers, such that the
universal glN invariant of evenly framed links belongs to it. Since the action of Γ extends
to the completion, this will allow us to speak about Γ-invariance of JL(glN ; q).
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6.1. Cyclotomic completion of UZ. Given n ∈ N, we define a family of two-sided ideals

U (n)
Z as the minimal filtration such that U (n)

Z U (m)
Z ⊂ U (m+n)

Z and

(q; q)n, eni , fn(K
2
j ) ∈ U (n)

Z

for any 1 ≤ i ≤ N − 1 and 1 ≤ j ≤ N where fn(x) = (x; q)n. In other words, U (n)
Z is the

two-sided ideal generated by the products

(15) (q; q)a em fc1(K
2
1 ) · · ·fcN (K2

N), with a +
∑

i

mi +
∑

i

ci = n .

Lemma 6.1. We have

∆
(
fn

(
K2

i

))
=

n∑

a=0

(
n

a

)

q

fa(K
2
i )⊗K

2(n−a)
i fn−a(K

2
i ).

Proof. We prove Lemma by induction in n. For n = 0 it is clear. The induction step
follows from the identities

fn+1(K
2
i ) = fn(Ki)(1− qnK2

i )

and

∆(1− qnK2
i ) = 1⊗ 1− qnK2

i ⊗K2
i = (1− qaK2

i )⊗ qn−aK2
i + 1⊗ (1− qn−aK2

i ).

�

Proposition 6.2. a) U (n)
Z is the left ideal generated by (15).

b) U (n)
Z form a Hopf algebra filtration, that is ∆U (n)

Z ⊂
∑

i+j=n U (i)
Z ⊗ U (j)

Z .

c) Assume that λi ≤ k for all i. Given arbitrary m, there exists n = n(k,m) such that

the elements of U (n)
Z act on the integral basis of V (λ) by matrices divisible by (q; q)m.

Proof. a) Observe that by Lemma 10.5 we get fn(q
sK2

i ) ∈ U (n)
Z for all integer s. Now the

statement follows from the identities

fn(K
2
i )F

(s)
i = F

(s)
i fn(q

−sK2
i ), fn(K

2
i+1)F

(s)
i = F

(s)
i fn(q

sK2
i+1)

and

fn(K
2
i )e

s
i = esifn(q

sK2
i ), fn(K

2
i+1)e

s
i = esifn(q

−sK2
i+1).

b) Follows from the identity

∆(emj ) =
m∑

i=0

(
m

i

)

q

em−ij Ki ⊗ eij

and Lemma 6.1.
c) By (a), it is sufficient to check the statement for eni and fn(K

2
i ). If λi ≤ k then for

n > k eni annihilates V (λ), while fn(K
2
i ) acts on a vector with weight (vλ1, . . . , vλN ) by

fn(q
λi) = (qλi ; q)n which is divisible by (q; q)n. �

By Proposition 6.2(b), the filtration

UZ = U (0)
Z ⊃ U (1)

Z ⊃ . . .U (n)
Z ⊃ . . .

is a Hopf algebra filtration of UZ with respect to a descending filtration of ideals In =
((q; q)n) in Z[v, v−1] in the sense of [18, Sec. 4]. Hence, the completion

Û := lim
←−−n

UZ

U (n)
Z
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is a complete Hopf algebra over the ring

Ẑ[v] := lim
←−−n

Z[v]

((q; q)n)
.

We refer to [18, Section 4] for details. Analogously, we define the Γ-invariant subalgebra

Û ev := lim
←−−n

U ev
Z

U (n)
Z

as a complete Hopf algebra over the Habiro ring Ẑ[q]. Let us now extend the completion
to the tensor powers of UZ. For this we define the filtration for U⊗lZ for l ≥ 1 as follows

Fn(U⊗lZ ) =

l∑

i=1

U⊗i−1Z ⊗ U (n)
Z ⊗ U⊗l−iZ

and the completed tensor product U ⊗̂lZ with respect to this filtration will be the image of
the homomorphism

lim
←−−n

U⊗lZ

Fn(U⊗lZ )
→ U⊗kh

where on the right hand side we use the h-adically completed tensor product.

6.2. Hopf pairing and universal invariants. Let us denote by c ∈ Uh⊗Uh the double
braiding or the universal invariant of the clasp tangle in Figure 1, given by

c = (S ⊗ id)R21R .

The main point about this element is that it is dual to the Hopf pairing or the quantum
Killing form (compare [19, Sec. 4]). Hence, after writing c =

∑
i c(i) ⊗ c′(i) the Hopf

pairing is defined by setting

(16) 〈c(i), c′(j)〉 := δij

Restricting to the Cartan part this gives us (compare [19, Lemma 3.12])

D−2 =

N∏

i=1

q−Hi⊗Hi =

N∏

i=1

∑

ni

(−1)ni
hni

ni!
Hni

i ⊗ Hni

i(17)

and hence, 〈Hn
i , H

m
j 〉 = δijδnm(−1)n n!

hn . We deduce that 〈K2
i , K

2
j 〉 = q−1 or, more gener-

ally,
〈K2a

i , K2b
j 〉 = δijq

−ab

defines the Hopf pairing on the Γ-invariant part of the Cartan. In Section 10 we construct
another basis for the Cartan given by

∏N
i=1 fni

(K2
i ) such that 〈fn, fm〉 = δnm(−1)nq−n(q; q)n.

In this new basis, we can rewrite the Cartan part of the clasp element as follows:

(18) D−2 =
∑

n∈NN

N∏

i=1

(−1)niqni

(q; q)ni

fni
(K2

i )⊗ fni
(K2

i )

For slN similar computations will give

(D′)−2 =
∑

n∈NN−1

N−1∏

i=1

(−1)niqni

(q; q)ni

fni
(Ki)⊗ fni

(K2
i )

(compare Section B.1 in [19]).
Let us denote by

Inv (U) = {u ∈ U | x ⊲ u = ǫ(x)u ∀x ∈ U}
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the invariant part of U under the adjoint action x ⊲ u := x(1)uS(x(2)) in Sweedler notation.
The main advantage of the usage of bottom tangles in the definition of JL(glN ; q) is that in
this case JL(glN ; q) ∈ Inv (U) (compare [15, Sec.4.3]). As a corollary, we get the following:

Proposition 6.3. Given an l-component evenly framed link L, the universal invariant

JL(glN ; q) is a well defined element of Inv
(
Û ⊗̂l

)
.

Proof. By definition, JK is obtained by multiplying together elementary pieces, such as
Fn, en, K

±1
2ρ , D

±1, and by then taking a sum over all indices. The linking between different

components and framing will make appear powers of D±2 that we can decompose using
the basis elements fn(K

2
i ) of the completion by (18). Note that we can collect all diagonal

contributions of each component by using formulas like

D(Ei ⊗ 1)D−1 = Ei ⊗Ki and D(1⊗ Fj)D
−1 = K−1j ⊗ Fj .

Since framing is assumed to be even, we will have an even number of D-parts. Hence
using (18) and the explicit form of the quasi R-matrix Θ, we get the claim. �

Remark 6.4. For slN we can build the same completion after replacing Ki with Ki. Then
the arguments in the proof of Proposition 6.3 will show us that for any algebraically split
link the universal invariants belongs to this completion.

Proof of Theorem 1.1.

Using Proposition 6.3 and remark above, we can define the action of Γ on each compo-
nent of JL(g; q) separately. We will denote by Jζ1,...,ζℓ

L (g; q) the result of this action. Then
we have

JL (V (λ1)⊗ L(ζ1), . . . , V (λℓ)⊗ L(ζℓ)) =
l⊗

i=1

TrV (λi)⊗L(ζi)
q (JL(g; q)) =

l⊗

i=1

TrV (λi)
q

(
Jζ1,...,ζℓ
T (g; q)

)
· dimq L(ζ1) · · ·dimq L(ζℓ).

The second equation follows from Lemma 3.1. By Theorem 4.6 we conclude that

Jζ1,...,ζℓ
L (λ1, . . . , λℓ) = JL (λ1, . . . , λℓ)

for all λ1, . . . , λℓ under the assumptions of Theorem 1.1, therefore JL(g; q) = Jζ1,...,ζℓ
L (g; q)

and hence, JL(g; q) is Γ-invariant under the same assumptions.
�

Corollary 6.5. For any ℓ-component evenly framed link L, JL(glN ; q) belongs to the Γ-

invariant part of Inv
(
Û ⊗̂ℓ

)
. Moreover, for every 0-framed algebraically split link L,

JL(glN ; q) = JL(slN ; q) .

Proof. The first statement is the direct consequence of Theorem 1.1. The second one
follows from the fact that the only difference in the definitions of both invariants is in the
diagonal part of the R-matrix, that does not contribute since the linking matrix vanishes
and the rules for moving of D and D′ along a component of the link coincide. �

6.3. Twist forms. Let us denote by Ẑ the center of Û . In what follows, we will be
particularly interested in the following twist forms

T± : Ẑ → Ẑ given by T±(z) := 〈r±1, z〉
the Hopf pairing with the ribbon element. On the Γ-invariant Cartan part they are easy
to compute, given the Hopf pairing between the generators Hi in Section 6.2 . We have

(19) T±(K2a) = 〈r±10 , K2a〉 = v±(a,2ρ−a) ∈ Z[v, v−1]
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for any a ∈ ZN . Now equation (16) allows to extend the twists form to Û ev as follows:

T±(FmKmK2aen) = δm,nq
(ρ,

∑
i niαi)v±(a,2ρ−a) ∈ Z[v, v−1]

where αi = ei − ei+1 are the simple roots. Observe that after restriction to U ev
q slN , i.e.

replacing K2a with K2b in the above formula, the result belong to Z[q, q−1] and coincide
with [19, eq. (102)] for any b ∈ ZN−1.

7. Habiro’s basis for Z(Uqsl2)

In this section we summarize Habiro’s results for sl2 in the way suitable for our gener-
alization.

Habiro [15] defined a remarkable family of central elements in Z(Uqsl2):

(20) σm :=
m∏

i=1

(
C2 − (vi + v−i)2

)
=

m∏

i=1

(C − vi − v−i)(C + vi + v−i).

Since C acts on the (j + 1)-dimensional representation Vj by a scalar vj+1 + v−j−1, the
polynomial σm is completely characterized by the following properties:

(a) (Parity) σm is Γ = Z2-invariant.
(b) (Vanishing) σm annihilates the representations Vj for j < m.
(c) (Normalization) σm acts on the representation Vm by a scalar

(21)
m∏

i=1

(
(vm+1 + v−m−1)2 − (vi + v−i)2

)
.

Note that parity implies that σm also annihilates the representations L(−1)⊗Vj for j < m.
By using the Harish-Chandra isomorphism, we can alternatively consider the polynomials

Tm(y) := hc(σm) :=
m∏

i=1

(yvi − y−1v−i)(yv−i − y−1vi) = (−1)m
m∏

i=1

q−i(1− y2qi)(1− y−2qi)

which are characterized by the following properties:

(a) (Parity) Tm is Z2-invariant, that is, Tm(−y) = Tm(y)
(b) (Vanishing) Tm(±vj+1) = 0 for j < m
(c) (Normalization) Tm(v

m+1) is given in (21).

Habiro proved that {σm}m≥0 form a basis in (a certain completion of) the Γ-invariant
part of the center. Hence, the elements Sm = ξ−1(σm), given by

Sm :=

m∏

i=1

(V1 − vi − v−i)(V1 + vi + v−i)

form a basis of R. We will show that

Pn =

n−1∏

i=0

(V1 − v2i+1 − v−2i−1) ∈ R

is a dual basis to {Sm}m≥0 with respect to the Hopf pairing. The following is a slight
reformulation of [15, Prop. 6.3].

Lemma 7.1. We have

〈Pn, Sm〉 =
{2n+ 1}!

{1} δn,m .
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Proof. Clearly, one has

ξ(Pn) =

n−1∏

i=0

(C − v2i+1 − v−2i−1)

which annihilates V2i for i < n. We have the following cases:
1) For n < m we have 〈Pn, Sm〉 = TrPn

q (σm). Since Pn is in span of Vi for i ≤ n and σm

annihilates all these, we get 〈Pn, Sm〉 = 0.
2) For m < n we have 〈Pn, Sm〉 = TrSm

q (ξ(Pn)). Since Sm is in span of V2i for i ≤ n and

〈Pn, V2i〉 = {i+ n} . . . {i− n+ 1}[2i+ 1] .

Hence Pn annihilates all these, we get 〈Pn, Sm〉 = 0.
3) Finally, for n = m we observe that Pn has a unique copy of Vn and

〈Pn, Sn〉 = 〈Vn, Sn〉 = TrVn

q (σn)

which is easy to compute. �

We can use the above results to compute the coefficients in the decomposition of any
central element into {σm}m≥0.
Lemma 7.2. Let φ be a Z2-invariant element in Z(Uqsl2) which acts on Vj by a scalar
φj. Then

φ =
∑

anσn, where an =

n∑

i=0

(−1)n−i
{2i+ 2}{i+ 1}

{n+ i+ 2}!{n− i}! φi .

Proof. We have ([15, Lemma 6.1])

Pn =
n∑

i=0

(−1)n−i
[2i+ 2]

[n + i+ 2]

[
2n+ 1

n+ 1 + i

]
Vi.

If φ =
∑

amσm then

an =
{1}

{2n+ 1}!Tr
Pn

q (φ) =
{1}

{2n+ 1}!

n∑

i=0

(−1)n−i
[2i+ 2]

[n+ i+ 2]

[
2n+ 1

n+ 1 + i

]
TrVi

q (φ) =

n∑

i=0

(−1)n−i
{2i+ 2}{1}

{n+ i+ 2}!{n− i}! dimq(Vi)φi.

Using dimq(Vi) = [i+ 1] we obtain the result. �

Habiro proved that for any 0-framed knot K, there exist an(K) ∈ Z[q, q−1] such that

JK(sl2; q) =
∑

n≥0

an(K) σn

known as a cyclotomic expansion of the colored Jones polynomial of the knot K.

8. New basis for the center of Û
Recall that Ẑ is the center of the completion Û . In this section we construct the basis

{σλ}λ of the Γ-invariant part of Ẑ. Furthermore, we explicitly define its dual {Pλ}λ with
respect to the Hopf pairing. This allows us to construct the cyclotomic expansion of
JK(glN ; q) for any 0-framed knot K.
The proof uses the existence and properties of interpolation Macdonald polynomials

[29] which are summarized in the following theorem.

Theorem 8.1. There is a family of symmetric polynomials Fλ(x1, . . . , xN ; q) such that:
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(a) Fλ is in the span of Schur functions sµ for µ ≤ λ with the leading term

Fλ = (−1)|λ|+(
N
2 )qDN (λ)sλ + . . . .

(b) Fλ(q
−µ1−N+1, . . . , q−µN ) = 0 unless µ contains λ.

(c) Fλ(q
−λ1−N+1, . . . , q−λN ) = (−1)(

N
2 )qn(λ)+(

N
3 )

∏
�∈λ(1− q−h(�)).

(d) Any function F in the completion can be written as

(22) F (x1, . . . , xN) =
∑

λ, µ⊂λ

dµ,λ(q)F (q−µ1−N+1, . . . , q−µN )Fλ(x1, . . . , xN ; q)

where dλ,µ are explicit coefficients prescribed by Theorem 10.17.

We discuss the definition and give more details on interpolation Macdonald polynomials
in Section 10.

Theorem 8.2. There exists a family of central elements σλ ∈ Z with the following prop-
erties:

(a) σλ is Γ-invariant and annihilates L(ζ)⊗V (µ) for all µ not containing λ and ζ ∈ Γ.
(b) hc(σλ) is in the span of sµ(x1, . . . , xN) for µ ≤ λ, with the leading term

hc(σλ) = (−1)|λ|+(
N
2 )v(N−1)|λ|qDN (λ)sλ + . . . .

(c) σλ acts on V (λ) by a scalar

σλ|V (λ) = (−1)(
N
2 )q−n(λ)−(

N
3 )

∏

�∈λ

(1− qh(�)) .

Proof. Define σλ = hc−1(gλ), where gλ(x1, . . . , xN) = Fλ(v
N−1x1, . . . , v

N−1xN ; q
−1). Then

σλ is clearly Γ-invariant and

σλ|L(ζ)⊗V (µ) = gλ(ζi · vµi+ρi) = Fλ(q
(µ1+N−1), . . . , qµN ; q−1).

Indeed, if yi = ζi · vµi+ρi = ζiv
(µi−

N−1
2

+N−i) then vN−1y2i = q(µi+N−i).
Now Fλ(q

(µ1+N−1), . . . , qµN ; q−1) vanishes unless µ contains λ, and has the nonzero value
prescribed by the previous theorem for µ = λ. �

Let us define RQ := R ⊗ Q(v) by extending the coefficient ring Z[v±1] of R to the
rational functions in v.

Theorem 8.3. Define the following formal elements of RQ

Pλ =
∑

µ⊂λ

dλ,µ(q
−1)

dimq V (µ)
V (µ) ∈ RQ,

then one has

(23) 〈Pλ, σν〉 := TrPλ
q (σν) = δλ,ν .

Proof. First, let us write the interpolation formula (22) for F = Fν :

Fν(x1, . . . , xN ; q) =
∑

µ⊂λ

dλ,µ(q)Fν(q
−µ1−N+1, . . . , q−µN ; q)Fλ(x1, . . . , xN ; q),

so ∑

µ⊂λ

dλ,µ(q)Fν(q
−µ1−N+1, . . . , q−µN ; q) = δλ,ν .
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By changing q to q−1 we get

(24)
∑

µ⊂λ

dλ,µ(q
−1)Fν(q

µ1+N−1, . . . , qµN ; q−1) = δλ,ν .

Now TrV (µ)
q (σν) = dimq(V (µ)) gν(q

µ1+N−1, . . . , qµN ), hence

TrPλ
q (σν) =

∑

µ⊂λ

dλ,µ(q
−1)

dimq V (µ)
TrV (µ)

q (σν) = δλ,ν .

�

Next, we would like to study the integrality properties of the universal knot invariant.

Lemma 8.4. (a) Let σ ∈ Uev

Z . Then σ = (K1 · · ·KN)
−2s

∑
aλσλ with aλ ∈ Z[q, q−1].

(b) Given k and m, there exists n = n(k,m) such that for all Γ-invariant central

elements σ in the ideal U (n)
Z the coefficients aλ are divisible by (q; q)m for |λ| ≤ k.

Proof. (a) Recall that Harish-Chandra transform hc identifies the Γ-invariant part of
the center of UZ with the space of symmetric functions in x1, . . . , xN with coefficients in
Z[q, q−1]. Since Fλ is a polynomial with top degree part equal to the Schur polynomial (up
to a monomial in q), we can write (x1 · · ·xN)

sf(x1, . . . , xN) =
∑

λ aλFλ(x1, . . . , xN ; q
−1)

and the result follows.
(b) If σ is in the ideal U (n)

Z for sufficiently large n, then by Proposition 6.2 its matrix
elements in the integral basis of V (λ) are divisible by (q; q)m. By definition of Harish-
Chandra transform, this implies that the values f(q−λ1−N+1, . . . , q−λN ) are divisible by
(q; q)m and hence by the interpolation formula (22) the coefficients aλ are divisible by
(q; q)m as well. �

Corollary 8.5. The center of the completion Û is isomorphic to the completion of the

space of symmetric polynomials with coefficients in Ẑ[v] with respect to the basis Fλ.

Proof. By Lemma 8.4 any element of the center of Û can be written as an infinite series∑
aλFλ with coefficients in Ẑ[v], up to a factor (x1 · · ·xN )

−s. By Corollary 11.10 the
multiplication by (x1 · · ·xN )

−s preserves the space of such series. �

Corollary 8.6. Any σ ∈ Ûev can be written as an infinite sum σ =
∑

aλσλ with coeffi-

cients aλ = TrPµ

q (σ) ∈ Ẑ[q].

Proposition 8.7. The universal knot invariant admits an expansion

JK(glN ; q) =
∑

λ

aλ(K)σλ with aλ(K) =
∑

µ⊂λ

dλ,µ(q
−1) JK(V (µ), q) ∈ Z[q, q−1]

called a cyclotomic expansion of the universal glN knot invariant.

Proposition 8.7 implies Theorem 1.3 in Introduction. Note that the knot invariant
JK(V (µ), q) is normalized to be 1 for the unknot.

Proof. By Corollary 6.5, JK(glN ; q) is a central element in Û ev, so it can be written

as σ =
∑

aλσλ with coefficients aλ ∈ Ẑ[q]. On the other hand, the value of JK on
any representation Vλ is in Z[q, q−1], so by the interpolation formula (22) the coeffi-
cients aλ can be written as rational functions with numerators in Z[q, q−1] and cyclo-
tomic denominators. By Proposition 12.1 this implies that aλ ∈ Z[q, q−1]. The ex-
plicit formula for aλ is obtained by taking Hopf pairing with Pµ and observing that

TrV (µ)
q (JK(glN ; q)) = dimq(V (µ))JK(V (µ), q) according to our normalization. �
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The last result shows that aλ(K) = TrPλ
q (JK(glN ; q)) ∈ Z[q±1], even through the coeffi-

cients dλ,µ(q) are rational functions in q (compare Example 10.23).

9. Unified invariants of integral homology 3-spheres

This section is devoted to our main application of the previous results — a construction
of the unified invariants for integral homology 3-spheres. We start with few auxiliary
results.

Let us denote by

P ′λ = v−|λ| dimq V (λ)
∑

µ⊂λ

dλ,µ(q
−1)

dimq V (µ)
V (µ) ∈ RQ

and define

(25) ω± =
∑

λ

(−1)|λ|+(
N
2 )q∓c(λ)qw±(λ)P ′λ ∈ R̂Q with

w+(λ) = DN(λ)
w−(λ) = DN(λ) +N |λ|

where c(λ) is the content of λ. The next Lemma implies that ω± is the universal Kirby
color for (±1)-surgery.

Lemma 9.1. For any x ∈ R̂Q, we have

(26) 〈ω±, x〉 = JU∓(x) = 〈r±1, ξ(x)〉
where JU±(x) is the Reshetikhin–Turaev invariant of the (±1)-framed unknot colored by
x.

Proof. It is enough to check (26) for the basis elements x = V (ν). We compute

〈P ′λ, V (ν)〉 = v−|λ| dimq V (λ)
∑

µ⊂λ

dλ,µ(q
−1)

dimq V (µ)
〈V (µ), V (ν)〉 = v−|λ| dimq V (λ)

∑

µ⊂λ

dλ,µ(q
−1)sν(q

µi+N−i)

= dimq V (λ)
∑

µ⊂λ

dλ,µ(q
−1)CνFν(q

µi+N−i) = Cλδλ,ν dimq V (λ)

where we used Lemma 5.3, equation (24) and the expansion sν = (−1)|λ|+(
N
2 )q−DN (λ)v(1−N)|λ|Fν+

lower terms and hence,

Cλ = (−1)|λ|+(
N
2 )q−DN (λ)v−N |λ| .

Using this computation it is easy to check that

(27) 〈ω±, V (ν)〉 = v∓N |ν|q∓c(ν) dimq V (ν) = v∓(ν,ν+2ρ) dimq V (ν) = TrV (ν)
q (r±1)

is equal to JU∓(V (ν)). �

From the following computation for V ′(ν) = V (ν)
dimq(V (ν))

〈ω+ω−, V
′(ν)〉 = 〈ω+, V

′(ν)〉〈ω−, V ′(ν)〉 = v(ν,ν+2ρ)v−(ν,ν+2ρ) = 〈1, V ′(ν)〉
we see that ω+ and ω− are inverse to each other in the algebra R̂Q isomorphic to ẐQ.

A direct consequence of the above Lemma and the fusion rules is the following result.

Theorem 9.2. Let L ∪K = L1 ∪ L2 · · · ∪ Ll ∪K be an (l + 1) component algebraically
split 0-framed link such that K is the unknot. We denote by L(K,±1) the framed link in S3

obtained from L by ±1-surgery along K, then for any p1, . . . , pl ∈ R
JL∪K(p1, . . . , pl, ω

±1) = JL(K,±1)
(p1, . . . , pl).

Proof. The proof is given in [15, Thm. 9.4]. �
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9.1. Construction of the unified invariants. Without loss of generality, we can as-
sume that an integral homology 3-sphere M is obtained by ε-surgery on an ℓ component
algebraically split link L, where ε ∈ {±1}ℓ. For slN Habiro and Le defined a unified
invariant of M as follows

IHL(M) := T ′ε (JL(slN ; q)) ∈ Ẑ[q] where T ′ε =
ℓ⊗

i=1

T ′εi

is the slN twist form. They also proved that IHL(M) belongs to the Habiro ring [19].
For glN we define the unified invariant of M similarly

I(M) := Tε(JL(glN ; q)) ∈ Ẑ[q] where Tε =

ℓ⊗

i=1

Tεi

by using the glN twist forms.

Theorem 9.3. For any integral homology 3-sphere M ,

I(M) = JL(ωε1, . . . , ωεl) ∈ Ẑ[q]

Moreover, its evaluation at any root of unity coincides with the slN Witten–Reshetikhin–
Turaev invariant of M .

This implies Theorem 1.4 from Introduction.

Proof. By Corollary 6.5, for any algebraically split 0-framed link L we have

JL(glN ; q) = JL(slN ; q).

Hence, as explained in Section 6.3, the glN and slN twist forms on JL do coincide. This
implies I(M) = IHL(M). Since the Habiro–Le invariant is known to belong to the Habiro
ring and to evaluate at a root of unity to the Witten-Reshetikhin-Turaev (WRT) one, it
remain to show I(M) = JL(ωǫ1, . . . , ωǫℓ). We prove this claim in two steps.
Step 1: Assume ℓ = 1, then JL(ω±) = I(M) by Lemma 9.1.

Step 2: For any x = x1 ⊗ · · · ⊗ xℓ ∈ Inv(Û ⊗̂ℓZ ) we define ak for k = 0, 1, . . . , ℓ and
bk = 1, . . . , ℓ as follows:

ak =

k∏

i=1

〈rǫi, xi〉
ℓ∏

j=k+1

〈ωǫj , xj〉, bk = xk

k−1∏

i=1

〈rǫi, xi〉
ℓ∏

j=k+1

〈ωǫj , xj〉.

Then
ak−1 = 〈ωǫk , bk〉 and ak = 〈rǫk , bk〉.

where we identify ω± with their image under ξ for simplicity. Since bk ∈ ZQ, we have
ak = ak−1 by Step 1 for k = 1, 2, . . . , ℓ. Hence, we have a0 = aℓ which is our claim. �

Theorem 9.3 has striking consequences. Indeed, for any λ ∈ R let us denote

Pλ = SpanZ[q±1]{P ′µ | λ ⊂ µ}, P = P∅ and P̂ := lim
←−−
λ

P
Pλ

.

For any framed link L, the Reshetikhin–Turaev functor provides a Q(v)-multilinear map
JL : RQ × · · · × RQ → Q(v). For any algebraically split 0-framed link L, Theorem 9.3
implies that its restriction to P provides a Z[q±1]-multilinear map

JL : P × · · · × P → Z[q, q−1]

inducing

JL : P̂ × · · · × P̂ → Ẑ[q] .

This leads to a generalization of the famous integrability theorem in [15, Thm. 8.2].
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Corollary 9.4. Given an ℓ component algebraically split 0-framed link L, then for all but
finitely many partitions λi with 1 ≤ i ≤ ℓ, there exist positive integers n = n(λi, N), such
that

JL(P
′
λ1
, . . . , P ′λℓ

) ∈ (q; q)nZ[q, q
−1] .

It would be interesting to have a direct proof of Corollary 9.4 without using the theory
of unified invariants.

Based on Corollary 9.4 we can give a cyclotomic expansion of the Reshetikhin–Turaev
invariant of L as follows:

(28) JL(λ1, . . . , λℓ) = v
∑

i |λi|
∑

µi⊂λi

ℓ∏

j=1

cλj ,µj
(q−1) JL(P

′
µ1
, . . . , P ′µℓ

)

where the matrix [cλ,µ(q)]λ,µ :=
[
Fλ(q

−µi−N+i)
]
λ,µ

is the inverse of [dλ,µ(q)]λ,µ by Theorem

10.17 below. This generalizes equation (8.2) in [15].

9.2. Few direct arguments. Our proof of the fact that I(M) belongs to the Habiro

ring is based on the result that IHL(M) ∈ Ẑ[q] proven in [19] on more than 100 pages.
Given the complexity of their argument, we decided to collect here different facts that
can be shown without reference to [19].

Theorem 9.5. Assume M± is obtained by (±1)-surgery on the knot K, then

I(M±) = JK(ω±) ∈ Ẑ[v]

belongs to the Habiro ring.

Proof. By Theorem 1.3 we know

JK(glN ; q) =
∑

µ

aµ(K)σµ with aµ(K) ∈ Z[q, q−1]

The fact that I(M±) belongs to the Habiro ring easily follows from the claim that T±(σµ)
is divisible by (v; v)m for some m depending on µ and N . Let us prove this claim. By (19)
the Hopf pairing with r±1 replaces an element xki

i with vQ±(ki) where Q± is a quadratic

form. By Lemma 10.27 we can rewrite σµ as a linear combination of
∏d

i=1 fni
(qsixi) such

that
∑

i ni = |µ|, d = N(N + 1)/2 and si ∈ Z. Moreover, each fn(q
axi) is divisible by

fn(v
ayi) where y2i = xi and hence belongs to the ideal In of Z[v±1, y±1i ] characterized in

Proposition 2.1 of [3]. The result follows now from [3, Theorem 2.2]. The number m we

are looking for is
⌊

|µ|
N(N+1)

⌋
.

�

Combining previous results we obtain an explicit expression for the unified invariant
for knot surgeries:

(29) IM± = JK(ω±) = Trω±
q JK(glN ; q) =

∑

λ

(−1)|λ|+(
N
2 )q∓c(λ)qw±(λ) JK(P

′
λ)

Assuming that I(M) = JL(ωε1, . . . , ωεl) is well defined, its topological invariance can be
shown directly as follows. Since I(M) depends only on the isotopy class of L, it remains
to check its invariance under Hoste moves (a version of Fenn-Rourke moves between alge-
braically split links). Without loss of generality, we can assume that the last component
is an unknot, then the statement follows from Theorem 9.2.



CYCLOTOMIC EXPANSIONS VIA INTERPOLATION MACDONALD POLYNOMIALS 25

Assuming I(M) belongs to the Habiro ring, and as such has well defined evaluations
at roots of unity [17, Thm. 6.3] we can use the same trick as above to show that for any
root of unity ζ

evζI(M) = WRT(M, ζ).

Let us recall that the WRT invariant is obtained from JL(slN ; q) by taking trace along
each component with the Kirby color

Ω± =

∑
λ v
±(λ,λ+2ρ) dimq V (λ)∑

µ v
±(µ,2ρ+µ) dim2

q V (µ)
V (λ)

where the sums are taken over all λ, µ ∈ Rfin = {λ| dimζ V (λ) 6= 0} and v2 is evaluated
to ζ . Hence, we need to show that for any x in the ad-invariant part of the completed ℓth

tensor power of ÛZ, we have

TrΩε

q (x)
ζ
= Trωε

q (x) ∀x ∈ Inv(Û ⊗̂ℓZ )

where
ζ
= means the equality after evaluation v2 = ζ . We will prove this fact in two steps.

Step 1: Assume ℓ = 1, in this case Inv ÛZ = Ẑ with basis given by zλ = ξ(V (λ)). Since
Ω± is invariant under Hoste moves, we have

TrΩ±
q (zν) = 〈Ω±, V (ν)〉 = evζ

(
v∓(ν,ν+2ρ) dimq V (ν)

)

where we interpret the left hand side as a Hopf link with components colored by Ω± and
V (ν), and the right hand side is the result of the sliding. Comparing this computation
with (27), we deduce that at roots of unity the actions of Ω± and ω± do coincide on

ξ(Rfin), and they vanish on x ∈ Ẑ \ ξ(Rfin) after evaluation.
Step 2: Define ak for k = 0, 1, . . . , ℓ and bk = 1, . . . , ℓ as follows:

ak =
k⊗

j=1

Tr
Ωεj
q ⊗

ℓ⊗

j=k+1

Tr
ωεj
q (x), bk =

k−1⊗

j=1

Tr
Ωεj
q ⊗ 1⊗

ℓ⊗

j=k+1

Tr
ωεj
q (x).

Then

ak−1 = Tr
ωεk
q (bk) and ak = Tr

Ωεk
q (bk).

Since bk ∈ ZQ, we have ak
ζ
= ak−1 by Step 1 and Lemma 9.1 for k = 1, 2, . . . , ℓ. Hence,

we have a0
ζ
= aℓ which is our claim.

10. Interpolation polynomials

In this section we summarize the theory of interpolation Macdonald polynomials.

10.1. One variable case. Consider the space of polynomials in one variable x over C(q)
with the following bilinear form

(xk, xm) = q−km.

Let us define polynomials fm(x), m = 0, 1, . . . by the equation f0(x) = 1 and

(30) fm(x) = (x; q)m = (1− x) · · · (1− xqm−1) for m ≥ 1.

Clearly, fm(x) is a degree m polynomial with leading term (−1)mq
m(m−1)

2 xm, so {fm}m≥0
form a basis in Zq,q−1 [x]. Our next aim is to show that this basis is orthogonal. Observe
that fm(q

−k) = 0 for k < m.

Lemma 10.1. We have (fm(x), fk(x)) = δkmq
−m(q; q)m



26 ANNA BELIAKOVA AND EUGENE GORSKY

Proof. First, observe that (g(x), xk) = g(q−k) for any polynomial g(x). Therefore for
m > k we have (fm(x), x

k) = fm(q
−k) = 0, so (fm(x), g(x)) = 0 for any polynomial g(x)

of degree strictly less than m. In particular, (fm(x), fk(x)) = 0 for m > k and

(fm(x), fm(x)) = (−1)mq
m(m−1)

2 (fm(x), x
m) = (−1)mq

m(m−1)
2 fm(q

−m) =

(−1)mq
m(m−1)

2 (1− q−m) · · · (1− q−1) = q−m(1− qm) · · · (1− q).

�

Lemma 10.2. The transition matrix between the monomial basis xa and the basis fb(x)
has the following form:

(31) xa =
∑

b≤a

ka,bfb(x), ka,b = (−1)bq−ab+
b(b+1)

2

(
a

b

)

q

.

Proof. To find the coefficients we compute the pairing (fb(x), x
a), then using orthogonality

we obtain

ka,b =
(fb(x), x

a)

(fb(x), fb(x))
=

fb(q
−a)

(fb(x), fb(x))
.

For a ≥ b from Lemma 10.1 we get

(fb(x), fb(x)) = q−b(q; q)b,

while

fb(q
−a) = (1− q−a) · · · (1− q−a+b−1) = (−1)bq−ab+

b(b−1)
2 (1− qa) · · · (1− qa−b+1)

= (−1)bq−ab+
b(b−1)

2
(q; q)a
(q; q)a−b

.

and the equation follows. �

Our next goal is to expand arbitrary polynomial f(x) in the basis fm(x). This can be
done in two different ways. First, we can expand f(x) in the monomial basis and apply
(31). Alternatively, we can apply Newton interpolation method: if f(x) =

∑
amfm(x)

then
f(q−j) =

∑

m≥j

amfm(q
−j),

which is a triangular system of equations for the unknown coefficients am. Thus knowing
f(q−j) one can at least theoretically reconstruct the coefficients am. This can be made
explicit by the following:

Lemma 10.3. We have

(32) f(x) =

∞∑

m=0

amfm(x), am =
1

(fm, fm)

m∑

j=0

(−1)jq
j(j−1)

2

(
m

j

)

q

f(q−j).

Proof. By q-binomial theorem we have

(33) fm(x) =

m∑

j=0

(−1)jq
j(j−1)

2

(
m

j

)

q

xj .

Now

am =
(f, fm)

(fm, fm)
=

1

(fm, fm)

m∑

j=0

(−1)jq
j(j−1)

2

(
m

j

)

q

(f, xj).

Finally, (f, xj) = f(q−j). �
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Remark 10.4. Equation (33) can be interpreted as an explicit inverse of the matrix in
(31).

One can consider completion Ẑq[x] of the space of polynomials with respect to the basis
fm(x). In this completion, infinite sums

∑∞
m=0 amfm(x) are allowed. Newton interpo-

lation method and (32) identify this completion with the space of distributions on the
interpolation nodes 1, q−1, . . ..
We will need the following lemma.

Lemma 10.5. We have

(x− qs)(x− qs+1) · · · (x− qs+m−1) =
m∑

j=0

(−1)jq−jm+(j+1
2 )

(
m

j

)

q

(1− qs+j) · · · (1− qs+m−1)fj(x).

Proof. We prove it by induction in m. For m = 1 we get

x− qs = −(1 − x) + (1− qs) = −f1 + (1− qs)f0.

For the step of induction we observe

(x− qs+m)fj(x) = −q−j(1− qjx)fj(x) + (q−j − qs+m)fj(x)(34)

= −q−jfj+1(x) + q−j(1− qs+m+j)fj(x).

Using (34), it is easy to identify the coefficient at fj(x) in

(x− qs+m)
∑

(−1)jq−jm+(j+1
2 )

(
m

j

)

q

(1− qs+j) · · · (1− qs+m−1)fj(x)

as

− q−j+1(−1)j−1q−(j−1)m+(j2)
(

m

j − 1

)

q

(1− qs+j−1) · · · (1− qs+m−1)

+ q−jq−jm+(j+1
2 )

(
m

j

)

q

(1− qs+j) · · · (1− qs+m−1)(1− qs+m+j)

= −q−j(m+1)+(j+1
2 )(1− qs+j) · · · (1− qs+m−1)

×
[
qm−j+1

(
m

j − 1

)

q

(1− qs+j−1) +

(
m

j

)

q

(1− qs+m+j)

]
.

It remains to notice that

qm−j+1

(
m

j − 1

)

q

(1− qs+j−1) +

(
m

j

)

q

(1− qs+m+j)

=

[
qm−j+1

(
m

j − 1

)

q

+

(
m

j

)

q

]
− qs+m

[(
m

j − 1

)

q

+ qj
(
m

j

)

q

]

=

(
m+ 1

j

)

q

− qs+m

(
m+ 1

j

)

q

= (1− qs+m)

(
m+ 1

j

)

q

.

�
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Remark 10.6. If we set a formal variable y = qs in Lemma 10.5, then we get the identity

(x− y)(x− qy) · · · (x− yqm−1) =

m∑

j=0

(−1)jq−jm+(j+1
2 )

(
m

j

)

q

fm−j(yq
j)fj(x).

This is a q-analogue of the binomial identity

(x− y)m =

m∑

j=0

(−1)j
(
m

j

)
(1− y)m−j(1− x)j .

10.2. Multi-variable case: polynomials. Let us generalize the above results to the
case of N variables. The pairing has the form

(xa1
1 · · ·xaN

N , xb1
1 · · ·xbN

N ) = q−
∑

aibi = (xa1
1 , xb1

1 ) · · · (xaN
N , xbN

N ).

Note that for x = (x1, . . . , xN)

(g(x), xb1
1 · · ·xbN

N ) = g(q−b1, . . . , q−bN ).

Consider the products

fk1,...,kN (x) = fk1(x1) · · ·fkN (xN).

Since fk(x) give a basis in C(q)[x], the polynomials fk1,...,kN give a basis in C(q)[x1, . . . , xN ].
Clearly,

(fk1,...,kN , x
b1
1 · · ·xbN

N ) = 0 unless bi ≥ ki for all i.

Lemma 10.7. We have (fk1,...,kN , fm1,...,mN
) = 0 unless ki = mi for all i.

Proof. Suppose that ki > mi for some i. Since fm1,...,mN
contains only monomials of the

form xb1
1 · · ·xbN

N with bi ≤ mi, we have (fk1,...,kN , x
b1
1 · · ·xbN

N ) = 0 for all such monomials
and hence (fk1,...,kN , fm1,...,mN

) = 0. �

Next, we would like to describe the basis in symmetric polynomials. It will be labeled
by partitions λ = (λ1 ≥ λ2 ≥ . . . ≥ λN) with at most N parts. We define

(35) Fλ(x) =
det(fλi+N−i(xj))∏

i<j(xi − xj)
.

Clearly, the numerator in (35) is antisymmetric in xi, so it is divisible by
∏

i<j(xi − xj)

and the ratio is a symmetric function. It is easy to see that Fλ(x) is a non-homogeneous

polynomial of degree |λ|, and the top degree component equals (−1)|λ|+(
N
2 )qDN (λ)sλ where

sλ is the Schur function and DN(λ) is defined by (6). The function Fλ(x) is known
as a special case of a factorial Schur function [26, 27, 28], it is also a specialization of
nonsymmetric Macdonald polynomials described below.

Lemma 10.8. Suppose that b1 > . . . > bN . Then Fλ(q
−b1, . . . , q−bN ) = 0 unless bi ≥

λi +N − i for all i.

Proof. Suppose that bj < λj +N − j for some j, then for all i ≤ j and ℓ > j one has λi +
N−i ≥ λj+N−j > bj ≥ bℓ, so fλi+N−i(q

−bℓ) = 0. This implies det[fλi+N−i(q
−bℓ)]Ni,ℓ=1 = 0.

On the other hand, since bi 6= bj the denominator
∏

i<j(q
−bi − q−bj) does not vanish. �

Corollary 10.9. If µ is another partition then we can define bi = µi+N−i, and conclude
that Fλ(q

−µi−N+i) = 0 unless µi ≥ λi for all i, that is, partition µ contains λ.
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Example 10.10. Suppose that λ = (1), then F(1) is a symmetric function of degree 1

with leading term (−1)1+(
N
2 )qDN (1)s(1) = qDN (1)

∑
xi. We have DN(1) = N − 1 +

(
N
3

)
, so

F(1)(x1, . . . , xN) = (−1)1+(
N
2 )qN−1+(

N
3 )

∑
xi + c. To find the constant c, we observe that

by Corollary 10.9 we get F(1)(q
−N+1, q−N+2, . . . , 1) = 0, so

c = (−1)(
N
2 )qN−1+(

N
3 )(q−N+1 + q−N+2 + . . .+ 1) = (−1)(

N
2 )q(

N
3 )[N ]q.

Lemma 10.11. We have

Fλ(q
−λi−N+i) = (−1)(

N
2 )qn(λ)+(

N
3 )

∏

�∈λ

(1− q−h(�)),

where h(�) is the hook length of a box � in the Young diagram corresponding to λ.

Proof. Since the sequence λi+N− i is strictly decreasing, we have fλj+N−j(q
−λi−N+i) = 0

for j > i and

fλi+N−i(q
−λi−N+i) = {λi +N − i}q−1!

and

det(fλj+N−j(q
−λi−N+i)) =

∏

i

{λi +N − i}q−1 ! .

On the other hand,
∏

i<j

(q−λi−N+i − q−λj−N+j) = (−1)(
N
2 )q−

∑
(λj+N−j)(j−1)

∏

i<j

(1− q−λi+i+λj−j).

and the statement follows now from formula (5) and the identity

∑
(λj +N − j)(j − 1) = n(λ) +

(
N

3

)
.

�

Example 10.12. For arbitrary N and λ = (1) we computed in Example 10.10 that

F(1) = (−1)1+(
N
2 )q(

N
3 )(qN−1(x1 + . . .+ xN)− [N ]q).

Hence,

F(1)(q
−N , q−N+2, . . . , 1) = q(

N
3 )(qN−1(q−N + q−N+2 + . . .+ 1)− [N ]q) =

(−1)1+(
N
2 )q(

N
3 )(q−1 − 1) = (−1)(

N
2 )q(

N
3 )(1− q−1).

We summarize the above results in the following proposition:

Proposition 10.13. [29] There exists a unique collection of nonhomogeneous symmetric
polynomials Fλ(x1, . . . , xN ) with the following properties:

• Fλ(x1, . . . , xN ) has degree |λ|.
• Fλ(q

−µi−N+i) = 0 for all partitions µ not containing λ.

• Fλ(q
−λi−N+i) = (−1)(

N
2 )qn(λ)+(

N
3 )

∏
�∈λ(1− q−h(�)).

We will denote the value Fλ(q
−λi−N+i) = (−1)(

N
2 )qn(λ)+(

N
3 )

∏
�∈λ(1− q−h(�)) by cλ,λ.

Lemma 10.14. Suppose that q is a root of unity. Then cλ,λ vanishes for all but finitely
many partitions λ.



30 ANNA BELIAKOVA AND EUGENE GORSKY

Proof. Observe that
∏

�∈λ(1− q−h(�)) is divisible by
∏

i[λi − λi+1]q! and

N∑

i=1

i(λi − λi+1) = |λ|.

This means that for some i we must have

i(λi − λi+1) ≥
|λ|
N

, λi − λi+1 ≥
|λ|
iN

≥ |λ|
N2

,

and cλ,λ is divisible by (1− q) · · · (1− q⌊
|λ|

N2 ⌋). If qs = 1 then it vanishes for |λ| ≥ sN2. �

Remark 10.15. A partition is called an s-core if none of its hook lengths is divisible
by s. The s-core partitions play an important role in representation theory of symmetric
groups in finite characteristic, and of Hecke algebras at roots of unity [21]. If qs = 1 then
clearly cλ,λ(q) 6= 0 if and only if λ is an s-core. Although there are infinitely many s-cores,
Lemma 10.14 shows that there are finitely many s-cores with at most N rows.

For example, for s = 2 the 2-cores are “staircase partitions” λ = (k, k − 1, . . . , 1), and
the maximal 2-core with at most N rows has size N + (N − 1) + . . .+ 1 =

(
N+1
2

)
.

10.3. Multi-variable case: interpolation. One can use the polynomials Fλ to solve
the following interpolation problem.

Problem 10.16. Find a symmetric function f =
∑

aλFλ given its values f(q−µi−N+i)
for all µ.

We have
f(q−µi−N+i) =

∑
aλFλ(q

−µi−N+i)

This is a linear system on aλ with the triangular matrix

(36) C = [cλ,µ]λ,µ , cλ,µ(q) := Fλ(q
−µi−N+i)

It is clear from Proposition 10.13 that to find aλ for a given λ it is sufficient to know all
coefficients cµ,ν for µ ⊂ ν ⊂ λ.

In [29] Okounkov computed the inverse matrix D = C
−1 which allows one to explicitly

compute the coefficients aλ.

Theorem 10.17. [29] Define c∗λ,µ(q) = cλ,µ(q
−1) and cont(λ) = n(λ)− n(λ′). Then

D = [dλ,µ]λ,µ , dλ,µ = (−1)|µ|−|λ|qcont(λ)−cont(µ)
c∗λ,µ

cµ,µc
∗
λ,λ

and

aµ =
∑

λ⊂µ

dλ,µf(q
−λi−N+i) =

1

cµ,µ

∑

λ⊂µ

(−1)|µ|−|λ|qcont(λ)−cont(µ)
c∗λ,µ
c∗λ,λ

f(q−λi−N+i).

Example 10.18. If λ = µ then clearly dλ,µ = 1
cλ,λ

.

Example 10.19. We have F(∅) = (−1)(
N
2 )q(

N
3 ), so

c(∅),(∅) = c(∅),(1) = (−1)(
N
2 )q(

N
3), c∗(∅),(∅) = c∗(∅),(1) = (−1)(

N
2 )q−(

N
3 ).

Since
c(1),(1) = (−1)(

N
2 )q(

N
3 )(1− q−1) = (−1)(

N
2 )+1q(

N
3 )−1(1− q),

we get

d(∅),(1) =
(−1)(

N
2 )q−(

N
3 )+1

(1− q)
.
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So the first two terms of interpolation series have the following form:

f(x1, . . . , xN) = (−1)(
N
2 )q−(

N
3 )f(q1−N , q2−N , . . . , 1)F(∅)(x)+

(−1)(
N
2 )+1q−(

N
3 )+1

1− q

[
−f(q1−N , q2−N , . . . , 1) + f(q−N , q2−N , . . . , 1)

]
F(1)(x) + . . .

Example 10.20. For N = 1 and a ≥ b we have

c(b),(a) = fb(q
−a) = (1− q−a) · · · (1− q−a+b−1)

hence

c∗(b),(a) = (1− qa) · · · (1− qa−b+1)

Now
c∗(b),(a)
c∗(b),(b)

=
(1− qa) · · · (1− qa−b+1)

(1− qb) · · · (1− q)
=

(
a

b

)

q

,

and

d(b),(a) = (−1)a−bq
b(b−1)

2
− a(a−1)

2

c∗(b),(a)
c(a),(a)c∗(b),(b)

=
(−1)a−b

c(a),(a)
q

b(b−1)
2
− a(a−1)

2

(
a

b

)

q

,

which matches (32).

Example 10.21. Let N = 2, λ = (1) and µ = (3, 2). We have Fλ = q(x1 + x2)− (1+ q),
so

cλ,µ = Fλ(q
−4, q−2) = (−q − 1 + q−1 + q−3), c∗λ,µ = q3 + q − 1− q−1,

and using Lemma 10.11

cλ,λ = −(1− q−1), c∗λ,λ = −(1− q),

cµ,µ = −q2(1− q−1)2(1− q−2)(1− q−3)(1− q−4) = q−9(1− q)2(1− q2)(1− q3)(1− q4).

Now

dλ,µ = q−2
c∗λ,µ

cµ,µc
∗
λ,λ

= −q6
q4 + q2 − q − 1

(1− q)3(1− q2)(1− q3)(1− q4)
.

10.4. Hopf pairing. We have a symmetric bilinear form (·, ·) on Z[x1, . . . , xN ]
SN defined

by its values on Schur polynomials

(sλ, sµ) = sλ(q
−µ1−N+1, . . . , q−µN )sµ(q

−N+1, . . . , 1).

It is closely related to the Hopf pairing 〈·, ·〉 for R = Rep(U) defined in Section 5.2. Note
that

(f, sµ) = f(q−µ1−N+1, . . . , q−µN )sµ(q
−N+1, . . . , 1).

for any symmetric function f .

Proposition 10.22. We have

(37) (Fλ, Fν) = δλ,νq
−|λ|+2(N3 )

∏

�∈λ

(1− qN+c(�)),

so the Hopf pairing is diagonal in the basis {Fλ}λ.
Proof. We have

(Fλ, sµ) = Fλ(q
−µ1−N+1, . . . , q−µN )sµ(q

−N+1, . . . , 1) = 0

unless λ ⊂ µ. On the other hand, Fν can be expanded in sµ for µ � ν, so (Fλ, Fν) vanishes
unless there exists µ � ν such that λ ⊂ µ, in particular, λ � ν.
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Since the Hopf pairing is symmetric, (Fλ, Fν) vanishes unless λ � ν and ν � λ, so
λ = ν. Finally,

(Fλ, Fλ) = (−1)|λ|+(
N
2 )qDN (λ)(Fλ, sλ) = (−1)|λ|+(

N
2 )qDN (λ)Fλ(q

−λ1−N+1, . . . , q−λN )sλ(q
−N+1, . . . , 1).

Now

Fλ(q
−λ1−N+1, . . . , q−λN ) = (−1)(

N
2 )qn(λ)+(

N
3 )

∏

�∈λ

(1− q−h(�))

while

sλ(q
−N+1, . . . , 1) = q−n(λ)

∏

�∈λ

(1− q−N−c(�))

(1− q−h(�))
.

hence

Fλ(q
−λ1−N+1, . . . , q−λN )sλ(q

−N+1, . . . , 1) = (−1)(
N
2 )q(

N
3 )

∏

�∈λ

(1− q−N−c(�)) =

(−1)|λ|+(
N
2 )q−N |λ|−c(λ)+(

N
3 )(1− qN+c(�)).

On the other hand, DN(λ) = c(λ) + (N − 1)|λ|+
(
N
3

)
. �

This provides us with a different perspective for the interpolation problem. Suppose
that we have a Schur expansion for Fλ:

Fλ =
∑

µ�λ

bλ,µsµ.

Then for an arbitrary symmetric function f(x1, . . . , xN ) we can write

f =
∑

λ

(f, Fλ)

(Fλ, Fλ)
Fλ =

∑

λ

∑

µ�λ

bλ,µ
(f, sµ)

(Fλ, Fλ)
Fλ =

∑

λ

∑

µ�λ

bλ,µsµ(q
−N−i)

(Fλ, Fλ)
f(q−µi−N+i)Fλ,

and the interpolation coefficient is equal to

(38) dλ,µ =
bλ,µsµ(q

−N+i)

(Fλ, Fλ)
.

Example 10.23. For N = 2 and λ = (3, 2) we have

F(3,2) = q2(1− x1)(1− qx1)(1− x2)(1− qx2)(q
3(x1 + x2)− (1 + q)) =

q7s3,2 − q6(1 + q)s3,1 − q4(1 + q + q2 + q3)s2,2 + q6s3,0 + q3(1 + q + q2 + q3)(1 + q)s2,1−
q3(1+ q+ q2+ q3)s2,0− q2(1+ q+ q2+ q3)(1+ q)s1,1+(q5+ q4+2q3+ q2)s1,0− (q3+ q2).

Also

(F3,2, F3,2) = −q−5(1− q4)(1− q3)(1− q2)2(1− q)

Therefore the interpolation coefficient for λ = (3, 2) and µ = (1, 0) equals

d(3,2),(1,0) = (q5 + q4 + 2q3 + q2)
s1,0(q

−1, 1)

(F3,2, F3,2)
=

− (q5 + q4 + 2q3 + q2)(1 + q−1)

q−5(1− q4)(1− q3)(1− q2)2(1− q)
= − q6(q4 + q2 − q − 1)

(1− q4)(1− q3)(1− q2)(1− q)3
.

This agrees with Example 10.21.
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10.5. Divisibility. Given a polynomial f(x), define

∂xy(f) :=
f(x)− f(y)

x− y
.

Observe that

∂xy(fg) =
f(x)− f(y)

x− y
g(x) + f(y)

g(x)− g(y)

x− y
= ∂xyf · g(x) + f(y) · ∂xy(g).

More generally, we have

∂xy(f1 · · · fk) = ∂xy(f1)f2(x) · · ·fk(x) + f1(y)∂xy(f2)f3(x) · · ·fk(x) + . . .(39)

+ f1(y)f2(y) · · ·∂xy(fk).

Example 10.24. For fn(x) = (1− x) · · · (1− qn−1x), note that ∂xy(1− qix) = −qi, so we
get

Fn,0(x, y) = ∂x,yfn+1(x) =
n∑

i=0

(1− y) · · · (1− qi−1y)[∂x,y(1− qix)](1− qi+1x) · · · (1− qnx)

=

n∑

i=0

fi(y) · (−qi)fn−i(q
i+1x).

Example 10.25. For example,

F1,0(x, y) = q(x+ y)− (1 + q) = q(y − 1) + (qx− 1) = −[qf1(y) + f1(qx)].

Similarly,

F2,0(x, y) = −q3(x2 + xy + y2) + (q + q2 + q3)(x+ y)− (1 + q + q2)

= −[(1 − qx)(1− q2x) + q(1− q2x)(1− y) + q2(1− y)(1− qy)]

= −[f2(qx) + qf1(x)f2(y) + q2f2(y)].

Corollary 10.26. For all integers a and b the value Fn,0(q
a, qb) is divisible by

(⌊
n
2

⌋)
q
!

Proof. Let k =
⌊
n
2

⌋
. In the above equation either i ≥ k or n− i ≥ k, so each term in the

sum is either divisible by fk(q
i+1+a) or by fk(q

b), so by q-binomial theorem it is divisible
by (k)q! �

More generally, let ∂i = ∂xi,xi+1
then it is well known that ∂i satisfy braid relations, so

one can define ∂w for any permutation w. Furthermore,

Fλ(x1, . . . , xN) = ∂w0 [fλ1+N−1(x1) · · ·fλN
(xN)],

where w0 = (N N − 1 . . . 1) is the longest element in SN .

Lemma 10.27. For all λ one can write Fλ(x1, . . . , xN ) as the sum where each term has
the form

(40) fj1(q
s1xm1) · · · fjd(qsdxmd

), where j1 + . . .+ jd = |λ| and d =

(
N + 1

2

)
.

Here the indices mi might repeat arbitrarily.

Proof. From (39) and Example 10.24 it is clear that ∂i applied to a product (40) with ℓ
factors produces a sum of similar products with ℓ+1 factors. We start from a product of
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N factors, and ∂w is a composition of
(
N
2

)
operators ∂i, so the terms in the resulting sum

have N +
(
N
2

)
=

(
N+1
2

)
factors. Also, each ∂i decreases the degree by 1, so

j1 + . . .+ jd =
∑

(λi +N − i)−
(
N

2

)
= |λ|.

�

Remark 10.28. A more careful analysis of this proof leads to a combinatorial formula
for Fλ where the terms are labeled by semistandard tableaux, but we do not need it here.
This is a q-analogue of the expansion of a Schur function in the monomial basis.

Lemma 10.29. For any sequence of integers a1, . . . , aN the value Fλ(q
a1 , . . . , qaN ) is

divisible by (k)q! where k =

⌊
|λ|

(N+1
2 )

⌋
.

Proof. In each term (40) there are d =
(
N+1
2

)
indices j1, · · · , jd which add up to |λ|, so at

least one of these indices is greater than |λ|/d. It remains to notice that fj(q
a) is divisible

by (q)j! for all integers a. �

The following lemma gives a rough description of the expansion

(41) Fλ(x1, . . . , xN ) =
∑

m1,...,mN

bm1,...,mk
fm1(x1) · · ·fmN

(xN).

of the symmetric interpolation polynomial Fλ in terms of nonsymmetric ones.

Lemma 10.30. Given k, for sufficiently large |λ| for all terms of the expansion (41) either
the coefficient bm1,...,mk

is divisible by (k)q! or there exists mi ≥ k for some 1 ≤ i ≤ N .

Proof. We follow the same logic as in Lemma 10.29. For |λ| > 2k
(
N+1
2

)
every term (40) is

divisible by f2k(q
sxi) for some s and i. By Lemma 10.5 this can be further decomposed

into terms which are divisible by (j)q!f2k−j(xi), and either j or 2k − j is greater than or
equal to k. Overall, we presented

Fλ(x1, . . . , xN) = A(k)q! +
∑

Bifk(xi)

for some polynomials A and Bi. It remains to notice that the polynomial Bifk(xi) can be
presented as the sum of fm1(x1) · · ·fmN

(xN ) where mi ≥ k. �

11. Stability of interpolation and the case N = 2

11.1. Stability of interpolation matrices. In this section study the dependence of the
interpolation polynomials on N .

As above, if partition λ has less than N parts we can complete it with zeroes. We
denote by Fλ;N(x1, . . . , xN) the corresponding polynomial in N variables.

Lemma 11.1. Let λ be a partition with at most N parts. Then

Fλ;N(x1, . . . , xN−1, 1) =

{
(−1)N−1q(

N−1
2 )Fλ;N−1(qx1, . . . , qxN−1) if λN = 0

0 otherwise.

Proof. Let µ be a partition with at most N − 1 parts. Then by Proposition 10.13

Fλ;N (q
−µ1−N+1, . . . , q−µN−1−1, 1) = 0

unless µ contains λ. If λN > 0 then this never happens and Fλ;N(x1, . . . , xN−1, 1) = 0. If
λN = 0 we write L(x1, . . . , xN−1) = Fλ;N−1(qx1, . . . , qxN−1). We have

L(q−µ1−N+1, . . . , q−µN−1−1) = Fλ;N−1(q
−µ1−(N−1)+1, . . . , q−µN−1)
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which vanishes unless µ contains λ, so by Proposition 10.13 Fλ;N(x1, . . . , xN−1, 1) is pro-
portional to L(x1, . . . , xN−1). Finally, at µ = λ we can use Lemma 10.11 to determine the
coefficient. �

Remark 11.2. We can also prove the lemma using the explicit determinantal formula.
Indeed, fλi+N−i(1) = 0 unless fλi+N−i = 0 which is equivalent to i = N and λN = 0.
Therefore for λN 6= 0 the last row in the matrix fλi+N−i(xj) vanishes (where xN = 1),
and Fλ;N(x1, . . . , xN−1, 1) = 0. For λN = 0 we have

Fλ;N (x1, . . . , xN−1, 1) =
det [fλi+N−i(xj)]

N−1
i,j=1∏

i<j≤N−1(xi − xj)
∏

i≤N−1(xi − 1)
.

Note that fk+1(x) = (1− x)fk(qx), so

fλi+N−i(xj) = (1− xj)fλi+(N−1)−i(qxj)

Therefore

Fλ;N(x1, . . . , xN−1, 1) =

∏n
i=1(1− xi) det

[
fλi+(N−1)−i(qxj)

]N−1
i,j=1∏

i<j≤N−1(xi − xj)
∏

i≤N−1(xi − 1)
=

(−1)N−1q(
N−1

2 )Fλ;N−1(qx1, . . . , qxN−1).

Corollary 11.3. Let c
(N)
λ,µ be the coefficient defined in previous section for symmetric

functions in N variables. Then the expressions

(−1)(
N
2 )q−(

N
3 )c

(N)
λ,µ , (−1)(

N
2 )q(

N
3 )c

(N)∗
λ,µ , (−1)(

N
2 )q(

N
3 )d

(N)
λ,µ

are independent of N (provided that λ and µ have at most N parts).

Example 11.4. For one-row partitions λ = (b) and µ = (a) the interpolation coefficients
are given by the formulas in Example 10.20 up to a monomial factor.

The above results allow us to describe Schur expansion of interpolation polynomials:

Proposition 11.5. We have

(42) F
(N)
λ = (−1)(

N
2 )q(

N
3 )

∑

µ⊂λ

bλ,µA
|µ|

∏

�∈λ\µ

(1− Aqc(�))s
(N)
λ

where A = qN and the coefficients

bλ,µ = (−1)(
N
2 )q(

N
3 )d

(N)
λ,µ q

−|λ|−|µ|−n(µ)
∏

�∈µ

(1− qh(�))

do not depend on N .

Proof. It follows from (38) that

Fλ =
∑

bλ,µsµ, bλ,µ =
dλ,µ(Fλ, Fλ)

sµ(q−N+i)
.

Since dλ,µ vanishes unless µ ⊂ λ, the same is true for bλ,µ. By Corollary 11.3 the product

dλ,µ = (−1)(
N
2 )q(

N
3 )dλ,µ does not depend on N , and we can use the formulas

(Fλ, Fλ) = q−|λ|+2(N3 )
∏

�∈λ

(1− Aqc(�)),

sµ(q
−N+i) = qn(µ)−(N−1)|µ|

∏

�∈µ

(1−Aqc(�))

(1− qh(�))
.
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to write

bλ,µ = (−1)(
N
2 )q−(

N
3 )dλ,µ · q−|λ|+2(N3 )−n(µ)+N |µ|−|µ|

∏

�∈λ

(1− Aqc(�))
∏

�∈µ

(1− qh(�))

(1− Aqc(�))
.

The result follows. �

Corollary 11.6. The one-row interpolation polynomials have the following Schur expan-
sion:

F
(N)
(m) = (−1)(

N
2 )q(

N
3 )

∑

µ⊂λ

(−1)jq
j(j−3)

2 Aj (1− Aqj) · · · (1− Aqm−1)

(1− q) · · · (1− qm−j)
h
(N)
j =

(−1)(
N
2 )q(

N
3 )

∑

µ⊂λ

(−1)jq
j(j−3+2N)

2

(
N +m− 1

m− j

)

q

h
(N)
j .

Here h
(N)
j = s

(N)
(j) are complete symmetric functions in N variables.

Proof. For λ = (m) and N = 1 we have

fm(x) =

m∑

j=0

(−1)jq
j(j−1)

2

(
m

j

)

q

xj .

By writing A = q and µ = (j) we get

A|µ|
∏

�∈λ\µ

(1− Aqc(�)) = qj(1− qj+1) · · · (1− qm),

so

b(m),(j) = (−1)j
q

j(j−3)
2

(1− q) · · · (1− qm−j)
.

�

Remark 11.7. The HOMFLY-PT limit of interpolation polynomials in Proposition 11.5
appears to be related to the results and conjectures in [22], it would be interesting to find
a precise connection.

11.2. Adding a column. It is well known that in symmetric functions in N variables
one has the identity

sλ+1N = x1 · · ·xN · sλ.
Here λ + 1N = (λ1 + 1, . . . , λN + 1) and the corresponding Young diagram is obtained
from the Young diagram for λ by adding a vertical column.

For interpolation polynomials we have two different generalizations of this identity:
the first relates Fλ+1N to Fλ and the second describe the action of the multiplication by
x1 · · ·xN .

Proposition 11.8. We have Fλ+1N (x1, . . . , xN) = q(
N
2 )

∏N
i=1(1 − xi)Fλ(qx1, . . . , qxN).

More generally,

(43) Fλ+kN (x1, . . . , xN) = qk(
N
2 )

N∏

i=1

fk(xi)Fλ(q
kx1, . . . , q

kxN ).

Proof. We have fm+1(x) = (1− x)fm(qx), therefore

det [fλi+1+N−i(xj)] = det [(1− xj)fλi+N−i(qxj)] =

N∏

j=1

(1− xj) det [fλi+N−i(xj)] .
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Since each factor (xi−xj) in the denominator gets multiplied by q after changing xi → qxi,
this implies the first equation. Now (43) can be obtained by applying it k times. �

Let ei denote the i-th basic vector in ZN with 1 at i-th position and 0 at other positions.
Given I ⊂ {1, . . . , n}, we define eI =

∑
i∈I ei.

Proposition 11.9. We have

x1 · · ·xNFλ(x1, . . . , xN) = q−|λ|−(
N
2 )

∑

I⊂{1,...,n}

(−1)|I|Fλ+eI (x1, . . . , xN ).

Here we use the convention that Fλ+eI = 0 unless the entries of λ+ eI are non-increasing
(that is, λ+ eI is a partition).

Proof. We have fm+1(x) = fm(x)(1− qmx), so

xfm(x) = q−m(fm(x)− fm+1(x)).

Therefore

x1 · · ·xN det [fλi+N−i(xj)] = det [xjfλi+N−i(xj)] =

det
[
q−λi−N+i(fλi+N−i(xj)− fλi+1+N−i(xj))

]
.

�

Corollary 11.10. Consider the completion of the space of symmetric functions with co-
efficients in Z[q, q−1] with respect to the basis Fλ. Then the operator of multiplication by
x1 · · ·xN is invertible in this completion and its inverse is given by the equation

(x1 · · ·xN )
−1Fλ(x1, . . . , xN) = q(

N
2 )

∑

v∈ZN
≥0

q|λ|+vFλ+v(x1, . . . , xN).

Proof. Define the operators Ai by Ai(Fλ) = Fλ+ei , and pi(Fλ) = qλiFλ for i = 1, . . . , N .
Clearly, [Ai, Aj] = [pi, pj] = [Ai, pj] for i 6= j and by Proposition 11.9 we have

x1 · · ·xN = q−(
N
2 )

∏

i

(1− Ai)p
−1
i ,

hence

(x1 · · ·xN )
−1 = q(

N
2 )

∏

i

pi(1 + Ai + A2
i + . . .).

�

Example 11.11. For N = 1 and λ = (0) we get a curious identity

x−1 =
∞∑

m=0

fm(x)q
m

We can check this identity directly, by computing the values of both sides at q−j for all
j. Denote

uj =

∞∑

m=0

fm(q
−j)qm =

j∑

m=0

fm(q
−j)qm.

Then uj+1 = 1 + q(1− q−j−1)uj and u0 = 1, so it is easy to see that uj = qj.
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11.3. Interpolation polynomials for gl2. In this subsection we describe the interpo-
lation polynomials for gl2 explicitly. By definition, we have polynomials Fλ(x1, x2) where
λ1 ≥ λ2:

Fλ1,λ2(x1, x2) =
1

x1 − x2

∣∣∣∣
fλ1+1(x1) fλ1+1(x2)
fλ2(x1) fλ2(x2)

∣∣∣∣

Let us consider the case λ2 = 0 first, and write λ1 = k. Then

Fk,0(x1, x2) =
1

x1 − x2
det

∣∣∣∣
fk+1(x1) fk+1(x2)

1 1

∣∣∣∣ =
fk+1(x1)− fk+1(x2)

x1 − x2
.

Let

hi(x1, x2) =
xi+1
1 − xi+1

2

x1 − x2
.

Recall that fk+1(x) =
∑k+1

j=0(−1)jq
j(j−1)

2

(
k+1
j

)
q
xj , so

Fk,0(x1, x2) =

k+1∑

j=1

(−1)jq
j(j−1)

2

(
k + 1

j

)

q

hj−1(x1, x2),

compare with Corollary 11.6. We just replace each xj in the expression for fk+1(x) by
hj−1(x1, x2).

Example 11.12. We have

f1(x) = 1− x, f2(x) = (1− x)(1− qx) = 1− (1 + q)x+ qx2,

f3(x) = (1− x)(1− qx)(1− q2x) = 1− (1 + q + q2)x+ (q + q2 + q3)x2 − q3x3

so

F0,0(x1, x2) = −1, F1,0(x1, x2) = q(x1 + x2)− (1 + q),

F2,0 = −q3(x2
1 + x1x2 + x2

2) + (q + q2 + q3)(x1 + x2)− (1 + q + q2).

By Proposition 11.8 we have

Fλ1,λ2(x1, x2) = qλ2fλ2(x1)fλ2(x2)Fλ1−λ2,0(q
λ2x1, q

λ2x2).

In particular, for (λ1, λ2) = (k, k) we have

Fk,k(x1, x2) = qkfk(x1)fk(x2).

Also, by Lemma 11.1 we get

(44) Fλ1,λ2(x1, 1) =

{
−fλ1(qx1) if λ2 = 0

0 otherwise.

11.4. Interpolation tables for gl2. For the reader’s convenience, we have computed
the polynomials Fλ(x1, x2) and the corresponding interpolation matrices using Sage [35].
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First, we present Fλ in Schur basis:

F0 = −1, F1 = qs1 − (q + 1), F2 = −q3s2 + (q3 + q2 + q)s1 − (q2 + q + 1),

F1,1 = −qs1,1 + qs1 − q = −q(1− x1)(1− x2)

F3 = q6s3 − (q6 + q5 + q4 + q3)s2 + (q5 + q4 + 2q3 + q2 + q)s1 − (q3 + q2 + q + 1)

F2,1 = q3s2,1 − q3s2 − (q3 + q2 + q)s1,1 + (q3 + q2 + q)s1 − (q2 + q)

F3,1 = −q6s3,1 + q6s3 + (q6 + q5 + q4 + q3)s2,1 − (q6 + q5 + q4 + q3)s2−
(q5 + q4 + 2q3 + q2 + q)s1,1 + (q5 + q4 + 2q3 + q2 + q)s1 − (q3 + q2 + q)

F2,2 = −q4s2,2 + (q4 + q3)s2,1 − q3s2 − (q4 + q3 + q2)s1,1 + (q3 + q2)s1 − q2

F3,2 = q7s3,2− (q7+ q6)s3,1− (q7+ q6+ q5+ q4)s2,2+ q6s3+(q7+2q6+2q5+2q4+ q3)s2,1−
(q6 + q5 + q4 + q3)s2 − (q6 + 2q5 + 2q4 + 2q3 + q2)s1,1 + (q5 + q4 + 2q3 + q2)s1 − (q3 + q2)

F3,3 = −q9s3,3+(q9+ q8+ q7)s3,2− (q8+ q7+ q6)s3,1− (q9+ q8+2q7+ q6+ q5)s2,2+ q6s3+

(q8+2q7+2q6+2q5+q4)s2,1−(q6+q5+q4)s2−(q7+q6+2q5+q4+q3)s1,1+(q5+q4+q3)s1−q3

Next, we list the values of the evaluations cλ,µ = Fλ(q
−µ1−1, q−µ2) for various λ and µ in

Tables 1, 2, 3 below. The resulting matrix C = (cλ,µ) is upper-triangular, with diagonal
entries prescribed by Lemma 10.11. Zero entries correspond to pairs (λ, µ) where µ does
not contain λ. The entry corresponding to (λ, µ) = ((1), (3, 2)) is marked in bold, it is
divisible by 1− q but does not factor any further.
Using either Theorem 10.17 or equation (38), one can easily reconstruct the inverse

matrix D = C
−1, and we list part of it in Table 4 (see Examples 10.21 and 10.23 for more

computations).
Note that by Corollary 11.3 this determines the coefficients cλ,µ and dλ,µ for λ ⊂ µ ⊂

(3, 3) and arbitrary N .

11.5. Link invariants for gl2. We can use the interpolation tables to expand the invari-
ants of simple knots in the basis Fλ. Indeed, the colored gl2 invariants are determined by
the colored sl2 invariants (that is, colored Jones polynomial) by the formula

JK(V (λ1, λ2), q) = JK(Vλ1−λ2 , q).

The coefficients aλ(K) are then determined by Theorem 1.3

aλ(K) =
∑

µ⊂λ

dλ,µ(q
−1)JK(V (µ), q).

For example, for the figure eight knot we have the following values of the colored Jones
polynomial:

JK(V0, q) = 1 = JK(V (1, 1), q), JK(V1, q) = JK(V (2, 1), q) = 1 + q2 + q−2 − q − q−1,

JK(V2, q) = 1 + q3 + q−3 − q − q−1 + (q3 + q−3 − q − q−1)(q3 + q−3 − q2 − q−2).

Using the values of dλ,µ from Table 4 (and changing q to q−1) we obtain

a0(K) = −JK(V0, q) = −1, a1(K) = − q−1

1− q−1
JK(V0, q)+

q−1

1− q−1
JK(V1, q) = q−2(q3−1),

a2(K) = − q−2

(1− q−1)(1− q−2)
JK(V0, q) +

q−2

(1− q−1)2
JK(V1, q)−

q−3

(1− q−1)(1− q−2)
JK(V2, q) = q−6(−q9 + q5 + q4 − q3 − 1),
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a1,1(K) = − q−3

(1 − q−1)(1− q−2)
JK(V0, q) +

q−2

(1− q−1)2
JK(V1, q)−

q−2

(1− q−1)(1− q−2)
JK(V (1, 1), q) = q−2(q2 + q + 1),

a2,1(K) = − q−4

(1 − q−1)2(1− q−3)
JK(V0, q) +

q−3

(1− q−1)3
JK(V1, q)−

q−4

(1− q−1)2(1− q−2)
JK(V2, q)−

q−3

(1− q−1)2(1− q−2)
JK(V (1, 1), q)+

q−4

(1− q−1)2(1− q−3)
JK(V (2, 1), q) = q−6(−q8 − q7 − q6 − q5 + q4 + 2q3 + q2 + q + 1).

Using Tables 1, 2, 3, one can similarly compute the values of aλ(K) for all λ ⊂ (3, 3) and
verify that these are indeed Laurent polynomials in q.

λ\µ (0) (1) (2) (1,1)
(0) −1 −1 −1 −1
(1) 0 q−1(1− q) q−2(1− q2) q−1(1− q2)
(2) 0 0 −q−3(1− q)(1− q2) 0
(1,1) 0 0 0 −q−2(1− q)(1− q2)
(3) 0 0 0 0
(2,1) 0 0 0 0
(3,1) 0 0 0 0
(2,2) 0 0 0 0
(3,2) 0 0 0 0
(3,3) 0 0 0 0

Table 1. Evaluations of interpolation polynomials: matrix C = (cλ,µ)

λ\µ (3) (2,1) (3,1)
(0) −1 −1 −1
(1) q−3(1− q3) q−2(1− q3) q−3(1− q4)
(2) −q−5(1− q2)(1− q3) −q−3(1− q)(1− q3) −q−5(1− q2)(1− q4)
(1,1) 0 −q−3(1− q)(1− q3) −q−4(1− q)(1− q4)
(3) q−6(1− q)(1− q2)(1− q3) 0 q−6(1− q)(1− q2)(1− q4)
(2,1) 0 q−4(1− q)2(1− q3) q−6(1− q)(1− q2)(1− q4)
(3,1) 0 0 −q−7(1− q)2(1− q2)(1− q4)
(2,2) 0 0 0
(3,2) 0 0 0
(3,3) 0 0 0

Table 2. Matrix C = (cλ,µ), continued

12. Appendix

Here we collect some useful definitions and facts about Habiro’s ring and interpolation
Macdonald polynomials.
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λ\µ (2,2) (3,2) (3,3)
(0) −1 −1 −1
(1) q−2(1 + q)(1− q2) q−3(−q4 − q3 + q2 + 1) q−3(1 + q)(1− q3)
(2) −q3(1− q2)(1− q3) −q−5(1− q3)(1− q4) −q−5(1 + q)(1− q3)2

(1,1) −q−4(1− q2)(1− q3) −q−5(1− q2)(1− q4) −q−6(1− q3)(1− q4)
(3) 0 q−6(1− q)(1− q3)(1− q4) q−6(1− q2)(1− q3)(1− q4)
(2,1) q−5(1− q2)2(1− q3) q−7(1− q2)(1− q3)(1− q4) q−8(1 + q)(1− q2)(1− q3)(1− q4)
(3,1) 0 −q−8(1− q)(1− q2)(1− q3)(1− q4) −q−9(1− q2)(1− q3)2(1− q4)
(2,2) −q−6(1− q)(1− q2)2(1− q3) −q−8(1− q)(1− q2)(1− q3)(1− q4) −q−10(1− q2)(1− q3)2(1− q4)
(3,2) 0 q−9(1− q)2(1− q2)(1− q3)(1− q4) q−11(1− q2)2(1− q3)2(1− q4)
(3,3) 0 0 −q−12(1− q)(1− q2)2(1− q3)2(1− q4)

Table 3. Matrix C = (cλ,µ), continued

λ\µ (0) (1) (2) (1,1) (2,1)

(0) −1 − q
1−q

− q2

(1−q)(1−q2)
− q3

(1−q)(1−q2)
− q4

(1−q)2(1−q3)

(1) 0 q
1−q

q2

(1−q)2
q2

(1−q)2
q3

(1−q)3

(2) 0 0 − q3

(1−q)(1−q2)
0 − q4

(1−q)2(1−q2)

(1,1) 0 0 0 − q2

(1−q)(1−q2)
− q3

(1−q)2(1−q2)

(2,1) 0 0 0 0 q4

(1−q)2(1−q3)

Table 4. Interpolation matrix D = (dλ,µ) = C−1

12.1. Habiro’s ring. The Habiro ring [17] is defined as

Ẑ[q] := lim
←−−n

Z[q]

((q; q)n)

Any element of Ẑ[q] can be presented (not uniquely) as infinite series

f(q) =

∞∑

n=0

fn (q; q)n, fn ∈ Z[q].

Evaluations of such f(q) at all roots of unity are well defined, since if qs = 1 one has

f(q) =
∑s−1

n=0 fn(q)n. It is easy to expand every f(q) ∈ Ẑ[q] into formal power series in
(q − 1), denoted by T (f) and called the Taylor series of f(q) at q = 1. One important

property of the Habiro ring is that any f ∈ Ẑ[q] is uniquely determined by its Taylor

series. In other words, the map T : Ẑ[q] → Z[[q − 1]] is injective [17, Thm 5.4]. In

particular, Ẑ[q] is an integral domain. Moreover, every f ∈ Ẑ[q] is determined by the
values of f at any infinite set of roots of unity of prime power order. Because of these
properties, Habiro ring is also known as a ring of analytic functions at roots of unity.

Since ∩n≥0In = 0 with In = (q; q)nZ[q], the natural map Z[q] → Ẑ[q] is injective. The
image of q under this map is invertible, and the inverse is given by

q−1 =
∞∑

n=1

qn(q; q)n,

compare with Example 11.11. This implies that there is an injective map Z[q, q−1] → Ẑ[q].
The following result is proved in [17, Proposition 7.5], but we give a slightly different proof
here for the reader’s convenience. We will denote by Φn(q) the nth cyclotomic polynomial
Φn(q) =

∏
(a,n)=1 (q − ζan) where ζn is any primitive nth root of unity.
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Proposition 12.1. Suppose that f(q) ∈ Ẑ[q] and f(q)h(q) ∈ Z[q, q−1] for some product
of cyclotomic polynomials h(q) = Φn1(q) · · ·Φnr

(q). Then f(q) ∈ Z[q, q−1].

Proof. Let us denote g(q) = f(q)h(q) ∈ Z[q, q−1], we prove the statement by induction
in r. For r = 1 we get h(q) = Φn(q) and g(q) = f(q)Φn(q), so for any primitive n-
th root of unity ζn we have g(ζn) = f(ζn)Φn(ζn) = 0, so g(q) = α(q)Φn(q) for some

α ∈ Z[q, q−1]. This implies (f(q)− α(q))Φn(q) = 0, and since Ẑ[q] is an integral domain
we get f(q) = α(q).

For r > 1 we get
f(q)Φn1(q) · · ·Φnr

(q) ∈ Z[q, q−1],

so by the above
f(q)Φn1(q) · · ·Φnr−1(q) ∈ Z[q, q−1],

and by the assumption of induction f(q) ∈ Z[q, q−1]. �

12.2. Interpolation Macdonald polynomials. We consider partitions with at most N
parts.

Theorem 12.2. [23, 24, 29, 30, 31, 32, 36] There exists unique up to scalar factors family
of symmetric polynomials Iλ(x1, . . . , xN ; q, t) with the following properties:

(a) Iλ(q
−µitN−i) = 0 unless µ contains λ

(b) Iλ(q
−λitN−i) 6= 0

(c) Iλ is a nonhomogeneous polynomial of degree |λ|, and its degree |λ| part is propor-
tional to the Macdonald polynomial Pλ(x1, . . . , xN ; q, t).

The polynomials Iλ are called interpolation Macdonald polynomials. In fact, the prop-
erties (a) and (b) already uniquely determine Iλ (up to a scalar), and their existence
follows from the fact that q−λitN−i for a nondegenerate grid in the sense of [31]. Part (c)
is then a deep property of these polynomials.

It is easy to see that at q = t interpolation Macdonald polynomials Iλ specialize to Fλ.
Unlike Fλ, there is no determinant formula for Iλ but there is a different combinatorial
formula [30].
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