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CURRENT ALGEBRAS AND CATEGORIFIED QUANTUM GROUPS

ANNA BELIAKOVA, KAZUO HABIRO, AARON D. LAUDA, AND BEN WEBSTER

Abstract. We identify the trace, or 0th Hochschild homology, of type ADE categorified quantum
groups with the corresponding current algebra of the same type. To prove this, we show that 2-
representations defined using categories of modules over cyclotomic (or deformed cyclotomic) quotients
of KLR-algebras correspond to local (or global) Weyl modules. We also investigate the implications
for centers of categories in 2-representations of categorified quantum groups.

Contents

1. Introduction 1
2. The trace decategorification map 3
3. The current algebra Uq(g[t]) 8
4. Categorified quantum groups 14
5. A homomorphism from the current algebra 22
6. Surjectivity results 24
7. Injectivity results 25
8. Trace categorification results 27
9. An action on centers of 2-representations 28
References 30

1. Introduction

One very powerful idea in mathematics is categorification, and its necessary partner decategorifica-
tion. Most work in recent years has understood decategorification to mean taking the Grothendieck
group, but there are other ways of intepreting this idea. The one we will consider in this paper is the
notion of trace.

The trace Tr(C) of a k-linear category C is k-vector space given by

Tr(C) =


 ⊕

x∈Ob(C)

EndC(x)


 / Span

k

{fg − gf},

where f and g run through all pairs of morphisms f : x→ y, g : y → x with x, y ∈ Ob(C).
Trace (or 0th Hochschild homology) and Grothendieck group are closely related: there is a Chern

character map

hC : K0(C) → Tr(C)

sending the class of an object to the image of its identity morphism in the trace. The interplay of
these two kinds of decategorification has shown up in many contexts, most classically in the various
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generalizations of the Riemann-Roch theorem. See [9] for a more categorical perspective and [3] for
more general discussion by the first three authors and Guliyev.

In a certain sense, trace decategorification is richer than Grothendieck decategorification. The Chern
character map is usually injective, but often fails to be surjective, so there are many classes in the trace
which do not correspond to any object. To use an extremely loose analogy, the Grothendieck group
is something like H0 of a space, and the trace or Hochschild homology like its homology. In fact, the
Borel-Moore homology of a space X can be interpreted as the Hochschild homology of the category of
constructible sheaves on X .

We’ll concentrate on only one small aspect of this large topic. For any 2-categoryC, we can consider
its trace, as defined in Section 2.6. This trace is naturally a category. A 2-representation of C is a
2-functor to Cat

1, the 2-category of categories, functors and natural transformations. As explained
in Section 2.7 the 2-representation R induces a representation of the 1-category Tr(C) sending each
object c to the trace of the category R(c).

Actually, let us specialize this yet further: the 2-category C that we’ll consider is the categorified
quantum group U∗ = U∗

Q(g) attached to a symmetric Kac-Moody Lie algebra g [25]. This is a 2-
category with many interesting aspects; for us the most important is its “representation theory.” For
each highest weight λ, there are two representation categories Uλ, and Ǔλ, with Grothendieck groups
that agree with the simple highest weight representation V (λ) of g. The category Uλ is the category
of projective modules over the cyclotomic quotient as introduced in [24, §3.4] and Ǔλ the category of
projective modules over the deformed cyclotomic quotient defined in [47, 38].

When we take the Grothendieck group of the Karoubi completion of U∗, we obtain the category
U̇(g), which is the idempotented version of the universal enveloping algebra U(g); the trace will prove
to be quite a bit larger. Our study of the trace was motivated by geometric considerations. For each
highest weight λ, there is collection of quiver varieties, constructed by Nakajima [36]. The quiver
varieties and 2-category U∗ are closely related; U∗ acts in a natural way on the (quantum) coherent
sheaves on these varieties [11, 43], and many constructions which first appeared in one context have
analogs in the other (for example, Lusztig’s canonical basis appears naturally in both).

This philosophy suggests that the trace of the category U∗ should be connected to the homology of
quiver varieties2. Work of Varagnolo shows that there is an action of the current algebra U(g[t]) on
the whole Borel-Moore homology (or cohomology) of the quiver varieties for λ, identifying their sum
with the Weyl module of highest weight λ over the current algebra (or dual Weyl module). In this
paper we’ll discuss the analogue of Varagnolo’s construction in our algebraic context, which is given
by the trace decategorification we’ve discussed.

Theorem A. Assume g is type ADE. Then Tr(Uλ) is isomorphic to the local Weyl module of highest

weight λ, and Tr(Ǔλ) is isomorphic to the global Weyl module. Dually, the center of Uλ is isomorphic

to the dual local Weyl module.

In fact, this result has recently been shown independently by Shan, Varagnolo, and Vasserot [41];
their techniques are quite similar to ours, having been inspired by the same geometric considerations.

Our motivation in studying traces was to identify the trace of the 2-category U∗ itself. Here we
prove the following theorem:

Theorem B. Assume g is type ADE. The trace category Tr(U∗) is canonically isomorphic to the

category U̇(g[t]). The isomorphisms of Theorem A are induced by this isomorphism.

1More generally, we can speak of a 2-representation of C in an arbitrary bicategory D, such as the bicategory of rings,
bimodules, and bimodule homomorphisms. This is a 2-functor C → D.

2The reader who is paying attention here might rightly complain “Shouldn’t it be connected to the Hochschild
homology of U∗?” Actually, in the geometric context, the grading on U∗ becomes homological in nature, and what we
think of as the trace is really part of the Hochschild homology.
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This result intimately links the study of 2-representations of U∗(g) with the representation the-
ory of the current algebra U(g[t]). As explained above, any 2-representation of U∗ gives rise to a
representation of Tr(U∗) and hence the current algebra.

The 2-category U∗(g) is known to act on numerous categories of interest including:

• categories of modules over the symmetric group [16, 7],
• parabolic category O for glN [8, 47, 21],
• derived categories of coherent sheaves on Nakajima quiver varieties [11, 39],
• coherent sheaves on certain convolution varieties obtained from the affine Grassmannian [10],
• categorified Fock space representations of certain Heisenberg algebras [13, 10],
• category O for a rational Cherednik algebra of G(n, 1, r) [40],
• categories of sln-foams used in link homology theory [33, 29, 37], and
• categories of sln-matrix factorizations [34].

Theorem B indicates that all of these 2-representations give rise to current algebra representations.
As discussed earlier, there is Chern map relating the Grothendieck and trace decategorifications, and
the induced map commutes with the g-action; surprisingly, Theorem A shows that that there are
2-representations with the same Grothendieck decategorification can have different trace decategorifi-
cations.

Finally, another natural construction on categories is the notion of the center of an additive category
Z(C). This is defined as the commutative monoid of endo-natural transformations of the identity functor
End(IdC). The center and trace of a category are closely related. Here we also prove the following:

Theorem C. In general simply-laced type, any 2-representation of U∗ into the 2-category of additive

k-linear categories gives rise to an action of the current algebra Tr(U∗) on the centers of the categories

defining the 2-representation.

In particular, the current algebra acts on the centers of all of the categories listed above. A special
case of this fact was already observed by Brundan. He made the surprising discovery that one could
define an action of the Lie algebra ĝ := gl∞(C) on the center Z(O) =

⊕
ν Z(Oν) of all integral blocks

Oν of category O for gln [6]. In this action, the Chevalley generators of ĝ act as certain trace maps
associated to canonical adjunction maps between special translation functors that arise from tensoring
with a g-module and its dual. Theorem C gives a new construction of Brundan’s action as well as
extends it to an action of the current algebra associated to ĝ.

The paper is organized as follows: In the Sections 2–4, we present some general facts about the
trace and define different versions of the categorified quantum groups and current algebra. In Section
5, we define the map of the current algebra to the trace. Finally, we prove Theorem A, using results
from Theorems 7.3 and 7.4 and Corollary 9.4. Theorem B is equivalent to Theorem 8.3. Theorem C is
proven in the last section where rescaling 2-functors needed to make U∗(g) cyclic are also studied.

Acknowledgments. The authors are grateful to Vyjayanthi Chari for helpful discussions about
representations of current algebras. A.B. was supported by Swiss National Science Foundation under
Grant PDFMP2-141752/1. K.H. was supported by JSPS Grant-in-Aid for Scientific Research (C)
24540077. A.D.L was partially supported by NSF grant DMS-1255334 and by the John Templeton
Foundation. B.W was supported by the NSF under Grant DMS-1151473.

2. The trace decategorification map

2.1. Traces of linear categories. In what follows, we recall the notion of the trace of linear categories
and generalizations. For more details, see e.g. [4, 3]. We focus on linear categories over a fixed field k.

Let C be a small k-linear category. Thus, the hom spaces C(x, y) are k-vector spaces, and the
composition is bilinear over k.
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Define the trace Tr(C) of C, also known as the zeroth Hochschild-Mitchell homology HH0(C), by

Tr(C) =


 ⊕

x∈Ob(C)

EndC(x)


 / Span

k

{fg − gf},

where f and g runs through all pairs of morphisms f : x → y, g : y → x with x, y ∈ Ob(C). (Note
that Tr(C) depends on the base field k, but we usually omit it in the notation.) For f : x → x, let
[f ] ∈ Tr(C) denote the corresponding equivalence class.

Recall that a k-linear category with one object is identified with a k-algebra. For a k-algebra A, we
set

Tr(A) = HH0(A) = A/[A,A] = A/ Span
k

{ab− ba | a, b ∈ A}.

The trace Tr gives a functor from the small k-linear categories to the k-vector spaces. If F : C → D
is a k-linear functor, then F induces a linear map on traces

Tr(F ) : Tr(C) → Tr(D)

given by Tr(F )([f ]) = [F (f)] for endomorphisms f : x→ x in C. Furthermore, if α : F ⇒ F : C → D is
a natural transformation of k-linear functors, then α gives rise to a linear map

Tr(α) : Tr(C) → Tr(D)(2.1)

[f : x→ x] 7→ [αx ◦ F (f)].

Lemma 2.1. Let C be a k-linear additive category. Let S ⊂ Ob(C) be a subset such that every object
in C is isomorphic to the direct sum of finitely many copies of objects in S. Let C|S denote the full
subcategory of C with Ob(C|S) = S. Then, the inclusion functor C|S → C induces an isomorphism

Tr(C|S) ∼= Tr(C)(2.2)

Proof. The inclusion functor C|S → C factors, uniquely up to natural isomorphisms, as

C|S → (C|S)
⊕ ≃ C,

where (C|S)
⊕ is the additive closure of C|S . Here C|S → (C|S)

⊕ is the canonical functor, and (C|S)
⊕ ≃ C

is the canonical equivalence. These functors induce isomorphisms on Tr

Tr(C|S) ∼= Tr((C|S)
⊕) ∼= Tr(C).

�

2.2. Split Grothendieck groups and Chern character. For a k-linear additive category C, the
split Grothendieck groupK0(C) of C is the abelian group generated by the isomorphism classes of objects
of C with relations [x ⊕ y]∼= = [x]∼= + [y]∼= for x, y ∈ Ob(C). Here [x]∼= denotes the isomorphism class
of x.

For a k-linear additive category C, the Chern character for C is the k-linear map

hC : K
k

0 (C) := K0(C)⊗ k −→ Tr(C)

defined by hC([x]∼=) = [1x] for x ∈ Ob(C). (Although hC can be defined on K0(C), we consider only the
above k-linear version for simplicity.)
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2.3. Chern character for Krull-Schmidt categories. A k-linear additive category C is said to
be Krull-Schmidt if every object in C decomposes in a unique way as the direct sum of finitely many
indecomposable objects with local endomorphism rings. In a Krull-Schmidt category,

• an object is indecomposable if and only if its endomorphism ring is local,
• idempotents split (see Subsection 2.5 below).

Let C be a k-linear Krull-Schmidt category. Fix a subset I ⊂ Ob(C) consisting of exactly one from
each isomorphism class of indecomposable objects in C. Then the split Grothendieck group K0(C) is a
free abelian group with basis given by the isomorphism classes of indecomposable objects in C. Hence
we have

Kk

0 (C)
∼= k · I =

⊕

x∈I

k.(2.3)

Let J be the two-sided ideal in C|I generated by

• J(C(x, x)) for x ∈ I, and
• C(x, y) for x, y ∈ I, x 6= y.

where J(C(x, x)) is the Jacobson radical of the endomorphism ring C(x, x). (I.e., J is the smallest
family of k-subspaces J (x, y) for x, y ∈ I which contains the subspaces given above and is closed under
left and right composition with morphisms in C|I .)

In fact, J coincides the Jacobson radical of the linear category C|I , defined in [23, 32].

Lemma 2.2. For x ∈ I, we have

J (x, x) = J(C(x, x)),(2.4)

Proof. We have

J (x, x) = J(C(x, x)) +
∑

y∈I,y 6=x

C(y, x) ◦ C(x, y).

Therefore, it suffices to show that, for x, y ∈ I with x 6= y, we have C(y, x) ◦ C(x, y) ⊂ J(C(x, x)).
We will show that if f : x → y, g : y → x, then gf ∈ J(C(x, x)). Suppose gf 6∈ J(C(x, x)) for

contradiction. Since C(x, x) is local, it follows that gf is an isomorphism. Hence f(gf)−1g ∈ C(y, y)
is an idempotent. Since C is Krull-Schmidt, it follows that y has a direct summand isomorphic to x.
Since y is indecomposable, it follows that y ∼= x. This is a contradiction. �

By Lemma 2.2, the quotient category (C|I)/J has the following hom spaces.

((C|I)/J )(x, y) =

{
Dx := C(x, x)/J(C(x, x)), x = y,

0, x 6= y.
(2.5)

Note that Dx is a division algebra over k. By (2.5), we have

Tr((C|I)/J ) ∼=
⊕

x∈I

Dx/[Dx, Dx].

Let η :
⊕

x∈I k→
⊕

x∈I Dx be the composite
⊕

x∈I

k

∼=
(2.3)

Kk

0 (C)
hC−→ Tr(C) ∼=

(2.2)
Tr(C|I) ։ Tr((C|I)/J ) ∼=

⊕

x∈I

Dx/[Dx, Dx],(2.6)

where ։ is induced by the projection C|I → (C|I)/J . It is easy to check that η =
⊕

x∈I ηx, where
ηx : k→ Dx/[Dx, Dx] is defined by ηx(1k) = [1Dx

]. By (2.6), we have the following.

Lemma 2.3. If ηx is injective (i.e. 1 6∈ [Dx, Dx]) for all x ∈ I, then hC is injective.

Using Lemma 2.3, we prove the following.
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Proposition 2.4. Let k be a perfect field. Let C be a k-linear Krull-Schmidt category with finite
dimensional endomorphism algebra for each indecomposable object. Then, the Chern character map
hC : K0(C)⊗Z k→ Tr(C) is injective.

Proof. By Lemma 2.3, it suffices to prove that for each x ∈ I, 1Dx
6∈ [Dx, Dx].

Note that Dx is a finite dimensional division algebra over k. Let K be the center of Dx, which is a
finite extension field of k.

For u ∈ Dx, let Lu : Dx → Dx be left multiplication by u, which is a K-linear map. Define a
K-linear map τx : Dx → K by

τx(u) = tr(Lu).

We have τx([Dx, Dx]) = 0, since

tr(L[u,v]) = tr([Lu, Lv]) = 0.

We have

τx(1Dx
) = tr(L1Dx

) = dimK Dx.

If k is of characteristic p > 0, then since k is perfect, it follows from [1, Theorem 13] that dimK Dx is
not divisible by p. Hence it follows that 1Dx

6∈ [Dx, Dx], regardless of the characteristic of k. �

Proposition 2.5. Let k be a field, and let C be a k-linear Krull-Schmidt category such that for each
indecomposable object x we have C(x, x)/J(C(x, x)) ∼= k. (This condition holds when k is algebraically
closed and each C(x, x) is finite dimensional.) Then the Chern character hC is split injective with a
unique splitting

pC : Tr(C) → Kk

0 (C)

such that, for x ∈ I, pC([1x]) = [x]∼= and pC([f ]) = 0 for f ∈ J(C(x, x)).

Proof. We have Dx = Dx/[Dx, Dx] ∼= k for each x ∈ I. Using (2.6) and (2.3), we obtain the result. �

2.4. Graded categories. A graded k-linear category is a k-linear category C equipped with an auto-

equivalence 〈1〉 : C
≃
−→ C. For t ≥ 0, set 〈t〉 = 〈1〉t, and, for t < 0, 〈t〉 = 〈−1〉−t, where 〈−1〉 : C

≃
−→ C

is an inverse (unique up to natural isomorphism) of 〈1〉.
The auto-equivalence 〈1〉 induces k-linear automorphisms

q = Kk

0 (〈1〉) : K
k

0 (C)
∼=
→ Kk

0 (C),

q = Tr(〈1〉) : Tr(C)
∼=
→ Tr(C),

which give Kk

0 (C) and Tr(C), respectively, k[q, q−1]-module structures. The Chern character map

hC : K
k

0 (C) → Tr(C)

is a k[q, q−1]-module homomorphism, since hC is a natural transformation.
A translation in a graded k-linear category C is a family of natural isomorphisms

x
∼=
→ x〈1〉.

If a graded k-linear category C admits a translation, then it makes the action q on Kk

0 (C) and Tr(C)
trivial. Thus, in this case, Kk

0 (C) and Tr(C) are k-vector spaces rather than k[q, q−1]-modules.
Given any graded k-linear category C, we can form a graded k-linear category C∗ with translation,

such that Ob(C) = Ob(C∗) and

C∗(x, y) :=
⊕

t∈Z

C(x, y〈t〉),
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for all x, y ∈ Ob(C). Note that C∗ is equipped with a Z-grading with the degree t hom space given by

C∗
t (x, y) := C(x, y〈t〉), t ∈ Z.

Thus C∗ is enriched over Z-graded vector spaces. Hence, the trace Tr(C∗) has a Z-graded k-vector
space structure

Tr(C∗) =
⊕

t∈Z

Trt(C
∗),

where Trt(C
∗) is spanned by [f ] for endomorphisms in C∗ of degree t.

2.5. Traces and the Karoubi envelope. An idempotent e : x → x in C in a category C is said to
split if there is an object y and morphisms g : x→ y, h : y → x such that hg = e and gh = 1y.

The Karoubi envelope Kar(C) (also called idempotent completion) of C is the category whose objects
are pairs (x, e) of objects x ∈ Ob(C) and an idempotent endomorphism e : x → x, e2 = e, in C and
whose morphisms

f : (x, e) → (y, e′)

are morphisms f : x → y in C such that f = e′fe. Composition is induced by the composition in C
and the identity morphism is e : (x, e) → (x, e). Kar(C) is equipped with a linear category structure.
It is well known that the Karoubi envelope of an additive category is additive.

There is a natural fully faithful linear functor

ι : C → Kar(C)

such that ι(x) = (x, 1x) for x ∈ Ob(C) and ι(f : x→ y) = f . The Karoubi envelope Kar(C) is universal
in the sense that if F : C → D is a linear functor from C to a linear category D with split idempotents,
then F extends to a functor from Kar(C) to D uniquely up to natural isomorphism [5, Proposition
6.5.9].

The functor ι : C −→ Kar(C) induces an isomorphism

Tr(ι) : Tr(C)
∼=
−→ Tr(Kar(C)),(2.7)

so that the trace decategorification map is invariant under the passage to the Karoubi envelope.

2.6. K0, Tr and Kar for 2-categories. We can extend many of the constructions defined above for
(additive) k-linear categories to the 2-categorical setting. A 2-category C is linear if the categories
C(x, y) are linear for all x, y ∈ Ob(C) and the composition functor preserves the linear structure
(see [5] for more details). Similarly, an additive linear 2-category is a linear 2-category in which the
categories C(x, y) are also additive and composition is given by an additive functor.

The following definitions extend the Karoubi envelope, split Grothendieck group, and trace to the
2-categorical setting.

• Given an additive linear 2-category C, define the split Grothendieck group K0(C) of C to
be the linear category with Ob(K0(C)) = Ob(C) and with K0(C)(x, y) := K0(C(x, y)) for
any two objects x, y ∈ Ob(C). For [f ]∼= ∈ Ob(K0(C)(x, y)) and [g]∼= ∈ Ob(K0(C)(y, z)) the
composition in K0(C) is defined by [g]∼= ◦ [f ]∼= := [g ◦ f ]∼=.

• For a 2-category C, we define a category Tr(C) with Ob(Tr(C)) = Ob(C) as follows. For
x, y ∈ Ob(C), set Tr(C)(x, y) = Tr(C(x, y)). For x, y, z ∈ Ob(C), define composition for
σ ∈ EndC(x,y) so that τ ∈ EndC(y,z), we have [τ ] ◦ [σ] = [τ ◦ σ]. The identity morphism for
x ∈ Ob(Tr(C)) = Ob(C) is given by [1Ix ].

• The Karoubi envelope Kar(C) of an additive k-linear 2-category C is the linear 2-category
with Ob(Kar(C)) = Ob(C) and with hom categories Kar(C)(x, y) := Kar(C(x, y)). The
composition functor Kar(C)(y, z) × Kar(C)(x, y) → Kar(C)(x, z) is induced by the universal
property of the Karoubi envelope from the composition functor in C. The fully-faithful additive
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functors C(x, y) → Kar(C(x, y)) combine to form an additive 2-functor C → Kar(C) that is
universal with respect to splitting idempotents in the Hom-categories C(x, y).

A k-linear 2-category is a 2-category C such that

(1) for x, y ∈ Ob(C), the category C(x, y) is equipped with a structure of a k-linear category,
(2) for x, y, z ∈ Ob(C), the functor ◦ : C(y, z)×C(x, y) → C(x, z) is “bilinear” in the sense that

the functors − ◦ f : C(y, z) → C(x, z) for f ∈ Ob(C(x, y)) and g ◦ − : C(x, y) → C(x, z) for
g ∈ Ob(C(y, z)) are k-linear functors.

The trace Tr(C) of a linear 2-category C is defined similarly to the trace of 2-category, and is equipped
with a linear category structure.

The homomorphisms hC(x,y) taken over all objects x, y ∈ Ob(C) give rise to a k-linear functor

(2.8) hC : K0(C) → Tr(C)

which is the identity map on objects and sends K0(C)(x, y) → Tr(C)(x, y) via the homomorphism
hC(x,y). It is easy to see that this assignment preserves composition since

hC([g]∼= ◦ [f ]∼=) = hC([g ◦ f ]∼=) = [1g◦f ] = [1g ◦ 1f ] = [1g] ◦ [1f ] = hC([g]∼=) ◦ hC([f ]∼=).(2.9)

2.7. 2-functoriality of Tr on linear 2-categories. A (strict) 2-functor F : C → D between linear
2-categories C and D is a linear 2-functor if for x, y ∈ Ob(C) the functor F : C(x, y) → D(x, y) is
linear. Then F induces a linear functor

Tr(F ) : Tr(C) → Tr(D)

such that the map F : Ob(C) → Ob(D) on objects gives the map

Tr(F ) = F : Ob(Tr(C)) → Ob(Tr(D)),

and, for x, y ∈ Ob(C), the linear functor Fx,y : C(x, y) → D(F (x), F (y)) induces the linear map

Tr(F )x,y = Tr(Fx,y) : Tr(C)(x, y) → Tr(D)(F (x), F (y)).

It is possible to work more generally in the context of linear bicategories and non-strict 2-functors,
however this generality is not needed here.

In the case when D = LinCat, the 2-category of k-linear categories, k-linear functors, and k-linear
natural transformations, a 2-functor F : C → LinCat can be used to define a representation

(2.10) ρF : Tr(C) → Vectk

sending each object x of Tr(C) to the k-vector space Tr(F (x)), and each morphism [σ] : x → y in
Tr(C), with σ : f ⇒ f : x→ y in C, to the linear map

ρF ([σ]) : Tr(F (x)) −→ Tr(F (y)),(2.11)

such that for [g : u→ u] ∈ Tr(F (x)) we have

ρF ([σ])([g]) = [F (f)(g) ◦ F (σ)u] = [F (σ)u ◦ F (f)(g)].

Here, note that F (σ) : F (f) ⇒ F (f) : F (x) → F (y) is a natural transformation. Hence, using equa-
tion (2.1) we see that (2.11) is well-defined.

3. The current algebra Uq(g[t])

3.1. The quantum group Uq(g).
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3.1.1. Cartan data. For this article we restrict our attention to simply-laced Kac-Moody algebras.
These algebras are associated to a symmetric Cartan data consisting of

• a free Z-module X (the weight lattice),
• for i ∈ I (I is an indexing set) there are elements αi ∈ X (simple roots) and Λi ∈ X (funda-
mental weights),

• for i ∈ I an element hi ∈ X∨ = Hom
Z

(X,Z) (simple coroots),
• a bilinear form (·, ·) on X .

Write 〈·, ·〉 : X∨ ×X → Z for the canonical pairing. These data should satisfy:

• (αi, αi) = 2 for any i ∈ I,
• 〈i, λ〉 := 〈hi, λ〉 = (αi, λ) for i ∈ I and λ ∈ X ,
• (αi, αj) ∈ {0,−1} for i, j ∈ I with i 6= j,
• 〈hj ,Λi〉 = δij for all i, j ∈ I.

Hence (aij)i,j∈I is a symmetrizable generalized Cartan matrix, where aij = 〈hi, αj〉 = (αi, αj). We
denote by X+ ⊂ X the dominant weights which are of the form

∑
i λiΛi where λi ≥ 0.

Associated to a symmetric Cartan data is a graph Γ without loops or multiple edges. The vertices of
Γ are the elements of the set I and there is an edge from vertex i to vertex j if and only if (αi, αj) = −1.

The quantum group U = Uq(g) associated to a simply-laced root datum as above is the unital
associative Q(q)-algebra given by generators Ei, Fi, Kµ for i ∈ I and µ ∈ X∨, subject to the relations:

i) K0 = 1, KµKµ′ = Kµ+µ′ for all µ, µ′ ∈ X∨,

ii) KµEi = q〈µ,i〉EiKµ for all i ∈ I, µ ∈ X∨,

iii) KµFi = q−〈µ,i〉FiKµ for all i ∈ I, µ ∈ X∨,

iv) EiFj − FjEi = δij
Ki−K−1

i

q−q−1 , where Ki = Kαi
,

v) For all i 6= j
∑

a+b=−〈i,j〉+1

(−1)aE
(a)
i EjE

(b)
i = 0 and

∑

a+b=−〈i,j〉+1

(−1)aF
(a)
i FjF

(b)
i = 0,

where E
(a)
i = Ea

i /[a]!, F
(a)
i = F a

i /[a]!, with [a]! =
∏a

m=1
qm−q−m

q−q−1 .

We are primarily interested in the idempotent form U̇q(g) of Uq(g). The Q(q)-algebra U̇ = U̇q(g) is
obtained from U by replacing the unit with a collection of orthogonal idempotents 1λ for each λ ∈ X ,

(3.1) 1λ1λ′ = δλ,λ′1λ′ ,

such that

(3.2) Kµ1λ = 1λKµ = q〈µ,λ〉1λ, Ei1λ = 1λ+αi
Ei, Fi1λ = 1λ−αi

Fi.

The algebra U̇ decomposes as direct sum of weight spaces

U̇ =
⊕

λ,λ′∈X

1λ′U̇1λ.

We say that λ, respectively λ′, is the right, respectively left, weight of x ∈ 1λ′U̇1λ. The algebra AU̇ is

the Z[q, q−1]-subalgebra of U generated by products of divided powers E
(a)
i 1λ and F

(a)
i 1λ, and has a

similar weight decomposition

AU̇ =
⊕

λ,λ′∈X

1λ′(AU̇)1λ.



10 ANNA BELIAKOVA, KAZUO HABIRO, AARON D. LAUDA, AND BEN WEBSTER

3.2. Definition of the current algebra U(g[t]). First, assume that k is a field of characteristic 0.
The current algebra U

k

(g[t]) is generated over k by x+i,r, x
−
i,s and ξi,k for r, s, k ∈ N ∪ {0} and i ∈ I,

modulo the following relations:

C1: For i, j ∈ I and r, s ∈ N ∪ {0}

[ξi,r , ξj,s] = 0

C2: For i, j ∈ I and r ∈ N ∪ {0}

[ξi,0, x
±
j,r] = ±aijx

±
j,r

C3: For i, j ∈ I and r ∈ N, s ∈ N ∪ {0}

[ξi,r , x
±
j,s] = ±aijx

±
j,r+s

C4: For i, j ∈ I and r, s ∈ N ∪ {0}

[x±i,r+1, x
±
j,s] = [x±i,r, x

±
j,s+1]

C5: For i, j ∈ I and r, s ∈ N ∪ {0}

[x+i,r, x
−
j,s] = δi,jξi,r+s

C6: Let i 6= j. If aij = 0, then for r, s ∈ N ∪ {0}

[x±i,r, x
±
j,s] = 0.

If aij = −1, then for r1, r2, s ∈ N ∪ {0}

[x±i,r1 , [x
±
i,r2

, x±j,s]] = 0.

Note that x±i,s := x±i ⊗ ts, ξi,k := ξi ⊗ tk for i ∈ I, where x+i , x
−
i and ξi are the standard generators of

U(g). We define

|x±i,j | = ±αi, |ξj,s| = 0 .

Instead of C3, some authors use the relation

C3’: For any i, j ∈ I and r, s ∈ N ∪ {0}

[ξi,r+1, x
±
j,s] = [ξi,r , x

±
j,s+1],

which together with C2 implies C3. The current algebra is closely connected to the Yangian, which
can be thought of as its quantized universal enveloping algebra (see, for example [2]).

For a field k of characteristic p, we should use a divided power version of the current algebra.
Consider the subalgebra U

Z

(g[t]) be the subalgebra of U
Q

(g[t]) generated over Z by (x±i,a)
r/r!. For

a general field k, we let U
k

(g[t]) ∼= U
Z

(g[t]) ⊗
Z

k. We’ll typically leave out the k in the notation as
understood.

3.2.1. Triangular decomposition. Let U+(g[t]), U−(g[t]) and U0(g[t]) be the subalgebras of U(g[t])
generated by {(x+i,r)

n/n! | i ∈ I, r ∈ N ∪ {0}}, {(x−i,r)
n/n! | i ∈ I, r ∈ N ∪ {0}} and {ξi,r | i ∈ I, r ∈

N ∪ {0}}, respectively. It is well known that every element f ∈ U(g[t]) can be expressed as a sum

f =
∑

f+f0f− where f± ∈ U±(g[t]), f0 ∈ U0(g[t]).
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3.3. The idempotent form. The idempotented version U̇(g[t]) of the current algebra is a k-linear
category, whose objects are λ ∈ X . For λ, µ ∈ X , the k-vector space of morphisms from λ to µ is
defined as follows:

U̇(g[t])(λ, µ) := U(g[t])/Iξ

where

Iξ :=
∑

i∈I

U(g[t]) (ξi,0 − 〈i, λ〉) +
∑

i∈I

(ξi,0 − 〈i, µ〉)U(g[t]) .

We will denote the identity morphism of λ ∈ X in U̇(g[t])(λ, λ) by 1λ. The element in U̇(g[t])(λ, µ)
represented by x ∈ U(g[t]) can be written as 1µx1λ = 1µx = x1λ, µ − λ = |x|. The composition in

U̇(g[t]) is induced by multiplication in the current algebra, i.e.

(1µx1ν)(1νy1λ) = 1µxy1λ

for x, y ∈ U(g[t]), λ, µ, ν ∈ X , which is zero unless |x| = µ− ν, |y| = ν − λ.

3.3.1. Triangular decomposition. Let U̇+(g[t]) and U̇−(g[t]) be linear subcategories of U̇(g[t]) whose
hom spaces between λ and µ are

1µU
+(g[t])1λ := {1µx

+1λ | x+ ∈ U+(g[t])}

and

1µU
−(g[t])1λ := {1µx

−1λ | x− ∈ U−(g[t])} ,

respectively. Let

U̇0(g[t]) := ⊕λ1λU
0(g[t])1λ

be the center (of objects) of U̇(g[t]). Then any morphism f of U̇(g[t]) decomposes as

f =
∑

f+f0f− where f± ∈ U̇±(g[t]), f0 ∈ U̇0(g[t]).

3.3.2. Grading. Both U̇(g[t]) and U(g[t]) are naturally graded. We’ll take the convention that for
X ∈ g, we have that X ⊗ tm has degree 2m.

3.3.3. Shifting. For each ξ ∈ k, the loop algebra is equipped with an automorphism τξ(X ⊗ tm) =
X ⊗ (t− ξ)m for any X ∈ g. For any module V over U(g[t]), we can precompose its action with this
automorphism to obtain a new module Vξ, which we will call the shift of V by ξ.

3.3.4. Weyl modules. For a fixed λ, let mi = 〈i, λ〉. Recall that the universal enveloping algebra U(g)
has a finite dimensional representation called the (finite) Weyl module V (λ). We add the word
“finite” here to avoid any confusion with the corresponding modules over the current algebra. These
are modules generated U(g) by a single vector vλ with defining relations:

(3.3) g+vλ = 0, ξivλ = 〈i, λ〉vλ, (x−i )
(mi+1)vλ = 0 for any i ∈ I.

If k has characteristic 0, then these modules give a complete, irredundant list of the finite dimensional
simple modules over U(g). If k has positive characteristic, then for most 〈 these will have proper
submodules, and the finite dimensional simple modules are their unique simple quotients.

Now, we discuss analogs of these modules over the current algebra. The global Weyl module
W(λ) is the g[t]-module generated over U(g[t]) by an element wλ with defining relations:

(3.4) g+[t]wλ = 0, ξi,0wλ = 〈i, λ〉wλ, (x−i,0)
mi+1wλ = 0 for any i ∈ I.

The ring U(h[t]) (which can be thought of as a polynomial ring in infinitely many variables) has
a right action on W(λ) sending uwλ · h = uhwλ. This action is not faithful, but rather factors
through a finitely generated quotient Aλ. By [14, 6.1], the ring Aλ is a polynomial ring generated
by an alphabet {xi,1, . . . , xi,〈i,λ〉}i∈I with xi,k having degree 2k. In particular, its Hilbert series is
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∏
i∈I(1 − t)−1 · · · (1 − t〈i,λ〉)−1. Note that a maximal ideal in Aλ is naturally encoded by scalars νi,k

given by the image of xi,k; we’ll usually consider these as polynomials

νi(−z) = z〈i,λ〉 + νi,1z
〈i,λ〉−1 + · · ·+ νi,〈i,λ〉

For a Lie algebra a, let us denote by at[t] the ideal of a[t] generated by the elements of the form
x⊗ tn with x ∈ a and n > 0.

The local Weyl module W (λ) is the g[t]-module generated by an element wλ with defining rela-
tions:

(3.5) g+[t]wλ = 0, ht[t]wλ = 0, ξi,0wλ = 〈i, λ〉wλ, (x−i,0)
mi+1wλ = 0 for any i ∈ I.

We can also consider the shifts of these modules by scalarsWξ(λ),Wξ(λ); we’ll call these shifted Weyl
modules. These arise naturally in the structure theory of these modules, since:

Lemma 3.1 ([14, 5.8]). The specialization of W(λ) at the maximal ideal for νi in Aλ is isomorphic
(after possible finite base extension) to the tensor product

⊗
ξWξ(λξ) where ξ ranges over the roots

νi(ξ) = 0 for all i, and λξ are roots such that 〈i, λξ〉 is the multiplicity of ξ as a root of νi(z), and∑
ξ λξ = λ.

As long as g is finite type, this decomposition is unique: λξ is the sum of the fundamental weights
with coefficients given by ξ’s multiplicities as roots of νi(z). For infinite type, this decomposition is
not unique, since there exist weights orthogonal to all simple coroots hi.

Both of these modules are naturally graded with the generating vector having degree 0, since the
relations (3.4) and (3.5) are homogeneous.

The global (resp. local) Weyl modules have a natural universal property: there is a homomorphism
of W (λ) (resp. W(λ)) to an integrable module M sending wλ → m ∈M if and only if g+[t]m = 0 and
ξi,0m = 〈i, λ〉m (resp. also ht[t]m = 0). In particular, this map will be surjective if m generates M ,
and homogeneous of degree k if M is graded with m of degree k.

3.3.5. Evaluation modules. For every χ ∈ A in some k-algebraA, we have an evaluation homomorphism
evχ : g[t] → g ⊗ A sending x ⊗ ti 7→ χix for x ∈ g. For any representation V of g ⊗ A, we have an
induced pullback representation Vχ over g[t]. Particularly interesting cases include:

• A = k. In this case, if V is an irrep over g, then Vχ will also be irreducible.
• A = k[x]. In this case, we have the universal evaluation module Vx.

Note that the shift by ξ ∈ k of an evaluation module for χ ∈ A is again an evaluation module with
parameter χ+ ξ. Thus, our notations for shift and evaluation will not conflict.

Note that since the highest weight vector in Vχ(λ) satisfies the equations (3.4), we have a surjective
map W(λ) → Vχ(λ). More generally, assume that χ1, . . . , χN are distinct scalars.

Lemma 3.2. We have a surjective map

W(λ1 + · · ·+ λN ) → Vχ1
(λ1)⊗ · · · ⊗ VχN

(λN ),

sending
wλ1+···+λN

7→ vλ1
⊗ · · · ⊗ vλN

.

Proof. The existence of this map is clear from the universal property. To show that this map is surjective
as well, note that by Lagrange interpolation, there exists a polynomial fi such that fi(χj) = δij . In
this case, X ⊗ f(t) acts on Vχ1

(λ1)⊗ · · · ⊗ VχN
(λN ) by 1⊗ · · · ⊗X ⊗ · · · ⊗ 1, that is, by X in the ith

tensor factor. Since the tensor product of highest weight vectors generates under the action of these
operators, we’re done. �

Note that the map factors through Wχ1
(λ1)⊗ · · · ⊗WχN

(λN ).
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Lemma 3.3. For any finite collection of linearly independent elements ui ∈ U(g[t]), there is an integer
N such that for generic χ1, . . . , χN the images zi = (evχ1

⊗ · · · ⊗ evχN
) ◦∆(N)(ui) under the N -fold

coproduct with the universal evaluation in N independent parameters remain linearly independent.

Proof. To show this result for generic χ1, . . . , χN is the same as to show it for the universal evalution
over K[x1, . . . , xn]. We can assume that each ui is a PBW monomial without loss of generality. In
this case, we let N be the maximal length of one of these monomials. That is, we consider ui =
(Xa1

⊗ tb1)(Xa2
⊗ tb2) · · · (Xan

⊗ tbn) where {X1, . . . , Xd} is a basis of g. The N -fold coproduct
∆(N)(ui) is of the form

(Xa1
⊗ tb1)⊗ (Xa2

⊗ tb2)⊗ · · · ⊗ (Xan
⊗ tbn)⊗ 1⊗ · · · ⊗ 1 + · · · .

Note that this term does not appear in the coproduct of any other PBW monomial.
Now, applying the evaluation, we have the form

zi = xb11 · · ·xbnn Xa1
⊗Xa2

⊗ · · · ⊗Xan
⊗ 1⊗ · · · ⊗ 1 + · · ·

Again, this term will not show up in any other PBW monomial. This shows the desired independence.
�

The following lemma is presumably standard, but we include a short proof for completeness.

Lemma 3.4. For any element u ∈ U(g), there is a tensor product of two Weyl modules for g on which
it acts non-trivially.

Proof. This is a straightforward consequence of Peter-Weyl if K has characteristic 0. However, let us
give an argument that works in arbitrary characteristic. By PBW, we can write u =

∑
u0iu

+
i u

−
i where

u±i ∈ U±(g). Now, consider the action of u on the tensor product of the highest and lowest weight
vectors v+ ⊗ v− ∈ V (λ+)⊗V (λ−) for some λ+ and λ−. We can assume without loss of generality that
these elements are weight vectors, and that we have used a minimal number of terms subject to this
restriction.

Since all elements of U±(g) kill v±, we have that

u(v+ ⊗ v−) =
∑

u0iu
+
i u

−
i (v

+ ⊗ v−) =
∑

u0i (u
−
i v

+ ⊗ u+i v
− + · · · )

where the remaining terms have higher weight in the left term and lower in the right term.
For any linearly independent subset {w±

i } of U±(g), the set {w±
i v

±} is linearly independent for
λ± ≫ 0. Thus, for λ± ≫ 0, the terms of minimal weight in the left term and maximal in the right term
give a linear combination

∑
u0i (u

+
i v

+ ⊗ u−i v
−) = 0. Since these are weight vectors, we have obtained

a linear dependence in the set {u+i u
−
i }; we can use this to reduce the number of terms in the sum of

u, obtaining a contradiction to the assumption that we had taken the minimal number possible. �

Lemma 3.5. No element of U(g[t]) kills all global Weyl modules.

Proof. We must show that no u ∈ U(g[t]) can act trivially on all global Weyl modules. By Lemma 3.3,
for generic χi, we have v = (evχ1

⊗ · · ·⊗ evχN
)◦∆(N)(u) 6= 0. Such a set of χi must exist if k is infinite

(and we can replace k with an infinite extension without changing the result).
Thus, we have an algebra map U(g[t]) → U(g)⊗N ∼= U(g⊕N ) which does not kill u. Applying

Lemma 3.4 to U(g⊕N ), we have a tensor product

(V (λ1,1)⊗ · · · ⊗ V (λ1,k1
))⊠ · · ·⊠ (V (λN,1)⊗ · · · ⊗ V (λN,kN

))

on which v acts non-trivially. Here the symbol ⊠ is used for the tensor product of g[t]-modules, where
the standard symbol ⊗ refers to the tensor products of g-modules.

That is to say, u acts non-trivially on

(Vχ1
(λ1,1)⊗ · · · ⊗ Vχ1

(λ1,k1
))⊗ · · · ⊗ (VχN

(λN,1)⊗ · · · ⊗ VχN
(λN,kN

).
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Thus, necessarily, this shows that u acts non-trivially on Vx1,1
(λ1,1)⊗ · · · ⊗ VxN,kN

(λN,kN
), for formal

parameters x∗,∗, and thus also when xi,k is replaced by a generic numerical parameter χi,k ∈ k.
Thus u must act non-trivially on Vχ1,1

(λ1,1) ⊗ · · · ⊗ VχN,kN
(λN,kN

). Since this is a quotient of the

global Weyl module W(λ1,1 + · · ·+ λN,kN
), the action on this module must be non-trivial as well. �

4. Categorified quantum groups

Here we describe a categorification of U(g) mainly following [12] and [25]. For an elementary
introduction to the categorification of sl2 see [28].

4.0.6. Choice of scalars Q. Let k be an field, not necessarily algebraically closed, or characteristic zero.

Definition 4.1. Associated to a symmetric Cartan datum define an choice of scalars Q consisting of:

• {tij | for all i, j ∈ I},

such that

• tii = 1 for all i ∈ I and tij ∈ k× for i 6= j,
• tij = tji when aij = 0.

We say that a choice of scalars Q is integral if tij = ±1 for all i, j ∈ I.

The relevant parameters that govern the behavior of the 2-category UQ(g) are the products vij =

t−1
ij tji taken over all pairs i, j ∈ I. It is possible to define UQ(g) over the integers, rather than a base
field k, and for this reason, an integral choice of scalars is the most natural.

4.1. Definition of the 2-category UQ(g). By a graded linear 2-category we mean a category enriched
in graded linear categories, so that the hom spaces form graded linear categories, and the composition
map is grading preserving.

Given a fixed choice of scalars Q we can define the following 2-category.

Definition 4.2. The 2-category UQ(g) is the graded linear 2-category consisting of:

• objects λ for λ ∈ X .
• 1-morphisms are formal direct sums of (shifts of) compositions of

1λ, 1λ+αi
Ei = 1λ+αi

Ei1λ = Ei1λ, and 1λ−αi
Fi = 1λ−αi

Fi1λ = Fi1λ

for i ∈ I and λ ∈ X . In particular, any morphism can be written as a finite formal sum of
symbols Ei1λ〈t〉 where i = (±i1, . . . ,±im) is a signed sequence of simple roots, t is a grading
shift, E+i1λ := Ei1λ and E−i1λ := Fi1λ, and Ei1λ〈t〉 := E±i1 . . .E±im1λ〈t〉.

• 2-morphisms are k-vector spaces spanned by compositions of (decorated) tangle-like diagrams
illustrated below.

OO

•
λλ+αi

i

: Ei1λ → Ei1λ〈(αi, αi)〉
��

•
λλ−αi

i

: Fi1λ → Fi1λ〈(αi, αi)〉

OOOO

i j
λ : EiEj1λ → EjEi1λ〈−(αi, αj)〉

����i j
λ : FiFj1λ → FjFi1λ〈−(αi, αj)〉

�� JJ i
λ

: 1λ → FiEi1λ〈1 + (λ, αi)〉
��TT i

λ

: 1λ → EiFi1λ〈1 − (λ, αi)〉

WW


i λ

: FiEi1λ → 1λ〈1 + (λ, αi)〉 GG ��
i λ

: EiFi1λ → 1λ〈1 − (λ, αi)〉



CURRENT ALGEBRAS AND CATEGORIFIED QUANTUM GROUPS 15

Here we follow the grading conventions in [12] and [29] which are opposite to those from [25]. In this
2-category (and those throughout the paper) we read diagrams from right to left and bottom to top.
The identity 2-morphism of the 1-morphism Ei1λ is represented by an upward oriented line labeled by
i and the identity 2-morphism of Fi1λ is represented by a downward such line.

The 2-morphisms satisfy the following relations:

(1) The 1-morphisms Ei1λ and Fi1λ are biadjoint (up to a specified degree shift). These conditions
are expressed diagrammatically as

(4.1) OO �� OO

λ

λ+ αi

= OO

λλ+ αi

��OO��

λ+ αi

λ

= ��

λ+ αiλ

(4.2) OO��OO

λ

λ+ αi

= OO

λλ+ αi

�� OO ��

λ+ αi

λ

= ��

λ+ αiλ

(2) The 2-morphisms are Q-cyclic with respect to this biadjoint structure.

(4.3) OO

��

��

λ+ αi

λ
•

=

��

•
λ λ+ αi

= OO

��

��

λ+ αi

λ

•

The Q-cyclic relations for crossings are given by

(4.4)
����i j

λ = t−1
ij

OO ��

�� OO
λ

�� OO

��OO

j i

ji

= t−1
ji

OO��

��OO
λ

��OO

�� OO

ij

i j

Sideways crossings can then be defined utilizing the Q-cyclic condition by the equalities:

(4.5)
OO

��j i

λ :=
OO

λ
�� OO

��OO

i j

ij

= tij
��

λ
OO��

OO ��

ji

j i

(4.6)
��

OO

ij

λ :=
OO

λ
��OO

�� OO

ji

j i

= tji
�� λ

OO ��

OO��

i j

ij

where the second equality in (4.5) and (4.6) follow from (4.4).
(3) The E ’s carry an action of the KLR algebra associated to Q. The KLR algebra R = RQ

associated to Q is defined by finite k-linear combinations of braid–like diagrams in the plane,
where each strand is labeled by a vertex i ∈ I. Strands can intersect and can carry dots but
triple intersections are not allowed. Diagrams are considered up to planar isotopy that do not
change the combinatorial type of the diagram. We recall the local relations:
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i) For i 6= j

(4.7)
λ

OOOO

i j

=





0 if (αi, αj) = 2,

tij

OOOO

i j

if (αi, αj) = 0,

tij

OOOO

•

i j

+ tji

OOOO

•

i j

if (αi, αj) = −1,

ii) The nilHecke dot sliding relations

(4.8)

OO

•

OO

i i
−

OO

•
OO

i i
=

OOOO

•

i i
−

OOOO

•i i
=

OO OO

i i

hold.
iii) For i 6= j the dot sliding relations

(4.9)

OO

•
OO

i j
=

OO

•

OO

i j

OOOO

•

i j
=

OOOO

•i j

hold.
iv) Unless i = k and (αi, αj) < 0 the relation

(4.10)

OOOO OO

λ

i j k

=

OOOOOO

λ

i j k

holds. Otherwise, (αi, αj) = −1 and

(4.11)

OOOO OO

λ

i j i

−

OOOOOO

λ

i j i

= tij

OOOO OO

i j i

λ

(4) When i 6= j one has the mixed relations relating EiFj and FjEi:

(4.12) OO��

��

OO

λ

i j

= tji ��OO λ

i j

��

��

OO

OO

λ

i j

= tij OO�� λ

i j

(5) Negative degree bubbles are zero. That is, for all m ∈ Z+ one has

(4.13)
i

��MM

•
m

λ

= 0 if m < 〈i, λ〉 − 1,
i

QQ��

•
m

λ

= 0 if m < −〈i, λ〉 − 1.

On the other hand, a dotted bubble of degree zero is just the identity 2-morphism:

i
��MM

•
〈i,λ〉−1

λ

= Id1λ
for 〈i, λ〉 ≥ 1,

i
QQ��

•
−〈i,λ〉−1

λ

= Id1λ
for 〈i, λ〉 ≤ −1.



CURRENT ALGEBRAS AND CATEGORIFIED QUANTUM GROUPS 17

(6) For any i ∈ I one has the extended sl2-relations. In order to describe certain extended sl2
relations it is convenient to use a shorthand notation from [27] called fake bubbles. These are
diagrams for dotted bubbles where the labels of the number of dots is negative, but the total
degree of the dotted bubble taken with these negative dots is still positive. They allow us
to write these extended sl2 relations more uniformly (i.e. independent on whether the weight
〈i, λ〉 is positive or negative).

• Degree zero fake bubbles are equal to the identity 2-morphisms

i
��MM

•
〈i,λ〉−1

λ

= Id1λ
if 〈i, λ〉 ≤ 0,

i
QQ��

•
−〈i,λ〉−1

λ

= Id1λ
if 〈i, λ〉 ≥ 0.

• Higher degree fake bubbles for 〈i, λ〉 < 0 are defined inductively as

(4.14)
i

��MM

•
〈i,λ〉−1+j

λ

=





−
∑

a+b=j
b≥1

MM

•
〈i,λ〉−1+a

��

•
−〈i,λ〉−1+b

λ

if 0 ≤ j < −〈i, λ〉+ 1

0 if j < 0.

• Higher degree fake bubbles for 〈i, λ〉 > 0 are defined inductively as

(4.15)
i

QQ��

•
−〈i,λ〉−1+j

λ

=





−
∑

a+b=j
a≥1

MM

•
〈i,λ〉−1+a

��

•
−〈i,λ〉−1+b

λ

if 0 ≤ j < 〈i, λ〉+ 1

0 if j < 0.

These equations arise from the homogeneous terms in t of the ‘infinite Grassmannian’ equation


 i QQ��

•
−〈i,λ〉−1

λ

+
i QQ��

•
−〈i,λ〉−1+1

λ

t+ · · ·+
i QQ��

•
−〈i,λ〉−1+α

λ

tα + · · ·





 i

��MM

•
〈i,λ〉−1

λ

+
i

��MM

•
〈i,λ〉−1+1

λ

t+ · · ·+
i

��MM

•
〈i,λ〉−1+α

λ

tα + · · ·


 = Id1λ

.

(4.16)

Now we can define the extended sl2 relations. Note that in [12] additional curl relations were
provided that can be derived from those above. For the following relations we employ the
convention that all summations are increasing, so that

∑α
f=0 is zero if α < 0.

(4.17)

λKK

LL

RR

VV

i

= −
∑

f1+f2+f3
=−〈i,λ〉

λ
OO

i

i
��MM

•
〈i,λ〉−1+f2

•f1
λ SS

RR

LL

HH

i

=
∑

g1+g2+g3
=〈i,λ〉

i

λ

OO
i

QQ��

•
−〈i,λ〉−1+g2

•g1

(4.18)

i i

OO �� λ = − OO��

��

OO

λ

i i

+
∑

f1+f2+f3
=〈i,λ〉−1

λ

��NN•
f3

		
OO

•
f1

i
QQ��

•
−〈i,λ〉−1+f2

i

i
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(4.19)

i i

�� OO λλ = − ��

��

OO

OO

λ

i i

+
∑

g1+g2+g3
=−〈i,λ〉−1

RR��•
g3

II��

•g1
i

��MM

•
〈i,λ〉−1+g2

i

i
λ

The significance of the 2-category UQ(g) is given by the following theorem.

Theorem 4.3. ([25, 45]) There is an isomorphism

γ : AU̇ −→ K0(U̇)(4.20)

of linear categories.

4.2. Symmetric functions and bubbles. The calculus of closed diagrams in the 2-category UQ(g)
is remarkably rich. A prominent role is played by the non-nested dotted bubbles of a fixed orientation
since any closed diagram in the graphical calculus for UQ(g) can be reduced to composites of such
diagrams. In what follows it is often convenient to introduce a shorthand notation

λ
i

��MM

•
♠+α

:=

λ
i

��MM

•
〈i,λ〉−1+α

λ
i

QQ��

•
♠+α

:=

λ
i

QQ��

•
−〈i,λ〉−1+α

for all 〈i, λ〉. Note that as long as α ≥ 0 this notation makes sense even when ♠ + α < 0. These
negative values are the fake bubbles defined in the previous section.

Using equations (6.8) and (6.9) of [12] one can prove that the following bubble slide equations

λ

OO

j

i
QQ��

•
♠+α

=





∑α

f=0

(α+ 1− f)

λ+ αj

OO

j

i
QQ��

•
♠+f

•α−f

if i = j

λ+ αj

OO

j

i
QQ��

•
♠+α

+ t−1
ij tji

λ+ αj

OO

j

i
QQ��

•
♠+α−1

•

if aij = −1

λ+ αj

OO

j

i
QQ��

•
♠+α

if aij = 0

(4.21)
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λ

OO

j

i
��MM

•
♠+α

=





∑α

f=0

(α+ 1− f)

λ

OO

j

i
��MM

•
♠+f

•α−f

if i = j

t−1
ij tji

λ

OO

j

i
��MM

•
♠+α−1

•

+

λ

OO

j

i
��MM

•
♠+α

if aij = −1

λ

OO

j

i
��MM

•
♠+α

if aij = 0

(4.22)

(4.23)

λ

OO

j

i
��MM

•
♠+α

=





λ+ αi

OO

j

i
��MM

•
♠+(α−2)

• 2
− 2

λ+ αi

OO

j

i
��MM

•
♠+(α−1)

•

+

λ+ αi

OO

j

i
��MM

•
♠+α

if i = j

∑α

f=0

(−t−1
ij tji)

f

λ+ αj

OO

j

i
��MM

•
♠+α−f

• f

if aij = −1

(4.24)

λ+ αj

OO

j

i
QQ��

•
♠+α

=





λ

OO

j

i
QQ��

•
♠+(α−2)

• 2

− 2

λ

OO

j

i
QQ��

•
♠+(α−1)

•

+

λ

OO

j

i
QQ��

•
♠+α

if i = j

∑α

f=0

(−t−1
ij tji)

f

λ

OO

j

i
QQ��

•
♠+(α−f)

• f

if aij = −1

hold in UQ(g).
In [27] it is shown that there is an isomorphism

ψλ : Sym −→ Z(λ) = UQ(sl2)(1λ,1λ)(4.25)

hr 7→
i

��MM

•
♠+r

λ

(−1)ses 7→
i

QQ��

•
♠+s

λ

where Sym denotes the ring of symmetric functions, hr denotes the complete symmetric function of
degree r, and es denotes the elementary symmetric function of degree s. In fact, under this isomorphism
the well known relationship between complete and elementary symmetric functions becomes the infinite
Grassmannian equation (4.16).
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It is well known that for a partition λ = (λ1, . . . , λn) with λ1 ≥ λ2 ≥ · · · ≥ λn, products of elementary
symmetric functions eλ = eλ1

. . . eλn
form a Z-basis for Sym, see for example [30]. Likewise, products

of complete symmetric functions also provide a Z-basis for Sym. This mirrors the fact that any closed
diagram in the graphical calculus for UQ(sl2) can be reduced to a product on non-nested bubbles of a
given orientation.

In the calculus of the 2-category UQ(g), we have the isomorphism

ψλ :
∏

i∈I

Sym −→ Z(λ) = UQ(g)(1λ,1λ)

since any closed diagram can still be reduced to products of non-nested closed bubbles labelled by
i ∈ I.

In what follows, it will be interesting to consider which products of closed diagrams correspond to
the Q-basis of Sym given by the power sum pr symmetric functions (see e.g. p.16 in [30]). Using a
formula that expresses power sum symmetric functions in terms of products of complete and elementary
symmetric functions, we can denote by pi,r(λ) for r > 0, the image of the power sum symmetric
polynomial on i-labelled strands in Z(λ):
(4.26)

pi,r(λ) :=
∑

a+b=r

(a+ 1)
i

��MM

•
♠+a

i
QQ��

•
♠+b

λ

= −
∑

a+b=r

(b + 1)
i

��MM

•
♠+a

i
QQ��

•
♠+b

λ

= −
∑

a+b=r

a
i

��MM

•
♠+b

i
QQ��

•
♠+a

λ

For later convenience we set pi,0(λ) = 〈i, λ〉.
The bubble sliding equations imply the following power sum slide rule

λ
OO

j

pi,r(λ+ αj)
=





λ
OO

j

pi,r(λ)
+ 2

λ
OO

j

• r if i = j,

λ
OO

j

pi,r(λ)
− (−vij)

r
λ

OO

j

• r if aij = −1

(4.27)

4.3. Dependence of UQ(g) on choice of scalars. The purpose of this section is to exclude some
choices of scalars for our study of trace decategorifications of the 2-category UQ(g).

For any pair of vertices i, j ∈ I, rescaling one of the ij-crossings by λ ∈ k× and leaving the other
one fixed has the effect of replacing scalars tij and tji with λtij and λtji. Then the 2-category resulting
from this choice of scalars is isomorphic to the 2-category UQ(g) by the 2-functor that rescales one of

the ij-crossings. Hence, the 2-category UQ(g) depends only on the parameters vij := t−1
ij tji taken over

all pairs of vertices i, j ∈ I. Note that if (αi, αj) = 0, then vij = 1 since tij = tji. For an integral
choice of scalars vij = ±1 for all i, j ∈ I.

The most common choices of scalars Q for the 2-category UQ(g) involve taking all vij = +1 (the
unsigned and cyclic version [25]), or all vij = −1 (the signed, and more geometrically motivated
definition [42]).

Definition 4.4. A symmetric Cartan data represented by the graph Γ is said to be colored by the
elements of the set Z2 if it is equipped with a map c : I → Z2. Given a coloring c : I → Z2 of a Cartan
data, a choice of scalars Q is said to be (+)-compatible with the coloring if
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• vij = +1 if (αi, αj) = −1 and c(i) = c(j),
• vij = −1 if (αi, αj) = −1 and c(i) 6= c(j).

A choice of scalars Q is said to be (−)-compatible with the coloring if

• vij = −1 if (αi, αj) = −1 and c(i) = c(j),
• vij = +1 if (αi, αj) = −1 and c(i) 6= c(j).

In other words, a choice of scalars is (±)-compatible with the coloring when like colored vertices
connected by an edge have vij = ±1, and oppositely colored vertices connected by an edge have
vij = ∓1.

Let Γ be a symmetric Cartan data equipped with a coloring c : I → Z2. Fix an arbitrary orientation
for each edge in Γ. Associated to Γ and the chosen orientation define an integral choice of scalars
(−)-compatible with the coloring as follows:

• tij = 1 if (αi, αj) = 0,
• tij = tji = +1 if (αi, αj) = −1 and c(i) 6= c(j),

• tij = −1 if c(i) = c(j) and i j// , and

• tij = +1 if c(i) = c(j) and i joo .

In other words, vij = −1 if the vertices have the same color, and vij = +1 if the vertices have different
colors. Reversing the orientation of an edge between two vertices with the same color has the effect
of rescaling these tij by the scalar λ = −1. Indeed, rescaling one of the ij-crossings by λ = −1 for
any ij-pair allows us to replace tij by −tij without affecting the parameters vij . An integral choice of
scalars (+)-compatible with the coloring can be defined in a similar fashion.

Remark 4.5. If the graph Γ associated to the Cartan data contains no odd cycles, then we can obtain
all integral choices of scalars Q (up to rescaling) from the (−)-compatible choice obtained from some
coloring of the graph. However, if Γ does contain an odd cycle we cannot obtain the choice of scalars
where vij = +1 for all edges of an odd cycle, since this would require the vertices of the odd cycle to
alternate in color, which is impossible.

4.4. The 2-category U∗
Q(g). The 2-category U∗ := U∗

Q(g) is defined as follows. The objects and

1-morphisms are the same as those of UQ(g). Given a pair of 1-morphisms f, g : n → m, the abelian
group U∗(n,m)(f, g) is defined by

U∗(n,m)(f, g) :=
⊕

t∈Z

U(n,m)(f, g〈t〉).

The category U∗(n,m) is additive and enriched over Z-graded abelian groups. Alternatively, the linear
category U∗(n,m) is obtained from U(n,m) by adding a family of natural isomorphisms f → f〈1〉 for
each object f of the category U(n,m).

In U∗(n,m) an object f and its translation f〈t〉 are isomorphic via the 2-isomorphism

1f ∈ U(n,m)(f, f〈0〉) = U(n,m)(f, (f〈t〉)〈−t〉) ⊂ U∗(n,m)(f, f〈t〉).

The inverse of the isomorphism 1f : f → f〈t〉 is given by

1f〈t〉 ∈ U(n,m)(f〈t〉, f〈t〉) = U(n,m)(f〈t〉, (f〈0〉)〈t〉) ⊂ U∗(n,m)(f〈t〉, f).

These isomorphisms f ∼= f〈t〉 make the Grothendieck group K0(U
∗) into a Z-module, rather than

Z[q, q−1]-module since [f ]∼= = [f〈t〉]∼= in U∗.
The horizontal composition in U induces horizontal composition in U∗. It follows that the U∗(n,m),

n,m ∈ Z, form an additive 2-category.
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The Karoubi envelope Kar(U∗) will be denoted by U̇∗, which is equivalent as an additive 2-category

to the additive 2-category obtained from U̇ by defining

U̇∗(n,m)(f, g) =
⊕

t∈Z

U̇(n,m)(f, g〈t〉).

5. A homomorphism from the current algebra

In typeA a homomorphism from the current algebra to the trace of the 2-categoryU∗ was constructed
in [4] and [3]. For sl2 is it proven to be an isomorphism for the integral version of U∗ in [4].

The image E
(a)
i,r of the divided power of the current algebra generator is given by [yr1 · · · y

r
aea], which

is the rth power of a dot on each of a consecutive strands, multiplied by a primitive idempotent in the
nilHecke algebra (see Proposition 9.7 and Corollary 9.8 in [4]). Since any two primitive idempotents
are equal in the trace, and the identity is the sum of a! many such idempotents, this indeed satisfies

E
a
i,r = (a!)E

(a)
i,r .

Proposition 5.1. Let Ei,r1λ,Fj,s1λ,Hi,r1λ denote the elements of Tr(U∗
Q(g)):

Ei,r1λ :=




λ
OO• r

i


 , Fj,s1λ :=




λ
��

j

• s

 , Hi,r1λ := [pi,r(λ) Id1λ

] ,

where pi,r(λ) was defined in equation (4.26). For any choice of (−)-compatible choice of scalars Q
arising from a coloring c : Γ → Z2 of the graph Γ associated to the simply-laced Kac-Moody algebra g,
there is a well defined homomorphism

(5.1) ρ : U̇(g[t]) −→ Tr(U∗
Q(g)),

given by
(5.2)

(x+i,r)
(a)1λ 7→ (−1)ac(i)·r E

(a)
i,r 1λ, (x−j,s)

(a)1λ 7→ (−1)ac(j)·s F
(a)
j,s 1λ, ξi,r1λ 7→ (−1)c(i)·r Hi,r1λ.

We will denote by ρ± and ρ0 the restrictions of ρ to the subalgebras U̇±(g[t]) and U̇0(g[t]), respec-
tively.

Proof. To prove this proposition we verify the current algebra relations using the relations in the 2-
category U∗

Q(g). We only need to consider the case i 6= j, since the relations in U∗
Q(sl2) have been

proven in [4]. C1 is clear, since bubbles commute with each other. Axiom C2 follows immediately
from the definition of pi,01λ = 〈i, λ〉1λ.

Consider the equality C3. The case aij = 0 follows easily from the bubble slide relation. Suppose
aij = −1. Using the power sum slide identity (4.27), we get

Hi,rEj,s1λ = Ej,sHi,r1λ − (−vij)
r
Ej,r+s1λ.

The relation

[Hi,r,Fj,s]1λ = (−vij)
r
Fj,r+s1λ.

can be proven in a similar way. Since Q is a (−)-compatible choice of scalars arising from a coloring of
the graph Γ, our color dependent rescaling in (5.2) gives axiom C3.

C4 follows from the relations (4.7) and (4.9), which imply

[Ei,r+1,Ej,s]1λ = −vij [Ei,r,Ej,s+1]1λ.

If we reverse the arrows in the preceding equation, they still hold:

[Fi,r+1,Fj,s]1λ = −vij [Fi,r,Fj,s+1]1λ.
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The choice of signs in (5.2) corresponds to

[x±i,r+1, x
±
j,s] = [x±i,r , x

±
j,s+1].

The relation C5 for the case i 6= j follows from (4.12) which can be used to show

Ei,rFj,s1λ = Fj,sEi,r1λ.

To verify axiom C6 in the case when aij = −1, the color dependent rescalings play no role. By a direct
computation we get

Ei,r1Ej,sEi,r21λ + Ei,r2Ej,sEi,r11λ = Ei,r1Ei,r2Ej,s1λ + Ej,sEi,r1Ei,r21λ.

When aij = 0 axiom C6 follows since

x+i,rx
+
j,s = (−1)c(i)r(−1)c(j)sEi,rEj,s = (−1)c(j)s(−1)c(i)rt−1

ij tjiEj,sEi,r = x+i,rx
+
j,s,

since tij = tji when aij = 0. The case [x−i,r, x
−
j,s] is proven similarly. �

5.1. Triangular decomposition. Let U+
tr = U+

tr,Q denote the k-linear subcategory of Tr(U∗
Q(g)) with

objects indexed by the weight lattice Ob(U+
tr ) = X , and with morphisms generated by composites of

Ei,a for i ∈ I and a ≥ 0. Similarly, let U−
tr = U−

tr,Q denote the k-linear subcategory of Tr(U∗
Q(g)) with

objects Ob(U−
tr ) = X and morphisms generated by Fj,b for j ∈ I and b ≥ 0. We define U0

tr = U0
tr,Q as

the k-linear subcategory of Tr(U∗
Q(g)) with objects Ob(U0

tr) = X and morphisms generated by bubbles.

So we have U0
tr
∼= Sym|I|, where |I| is the cardinality of I.

Proposition 5.2. U0
tr is isomorphic to U̇0(g[t]).

Proof. For any k of characteristic 0, the map ρ restricted to U̇0(g[t]) is an isomorphism, since power
sums form aQ-basis of symmetric functions. To show the result for a finite field k, we first construct an
isomorphism over Z and then tensor it with k. For that we use Garland’s integral basis of the current
algebra defined in [19]. Since U̇0(g[t]) is isomorphic to the tensor product of |I| copies of U̇0(sl2[t]),
we apply Lemma 8.2 in [4] to get an isomorphisms between Sym and Garland’s Z-basis of the Cartan
part for each copy of sl2. �

Proposition 5.3. Let [f ] be the class of a 2-endomorphism in Tr(U∗(g)). Then [f ] can be expressed
as a sum

[f ] =
∑

[f0][f+][f−]

where f±, and f0 are 2-endomorphisms in U±
tr , U

0
tr, respectively.

Proof. Assume f is a 2-endomorphism of a sequence i ∈ I |i | of generating 1-morphisms Ei1λ and Fi1λ

in U∗ of length |i|. To make 1-morphisms to be determined by such sequences, we will use negative
labels for F ’s, i.e. E−i1λ := Fi1λ. We need to show that the trace class [f ] decomposes as a k-linear
combination of elements of the form [f0][f+][f−]. Note that using bubble slide relations we can move
all bubbles at any place of the diagram, so let us assume that they are at the far left in what follows.

We first claim that [f ] belongs to the span of 2-endomorphisms of Ei+Ei− , where i
+ are all positive

and i
− are all negative so that all E ’s are to the left of F ’s. We prove this by induction on the length

|i | of i and the number of inversions needed to bring i into the form i
+
i
−.

To illustrate the argument assume |i | = 2 and the number of inversions is 1. If f contains cap and
cup, then its trace class is in the span of bubbles. Let f be the identity morphism of FiEj1λ. Using
(4.12) if i 6= j, and (4.19) if i = j, together with the trace relation we can decompose [f ] into an
endomorphism of EjFi plus terms with |i | = 0. The same holds if f contains crossings. More generally,
if f is any 2-endomorphism of Ei1λ, then if some Fj appears left of an Ei observe that using (4.12) or



24 ANNA BELIAKOVA, KAZUO HABIRO, AARON D. LAUDA, AND BEN WEBSTER

(4.19) and trace relations as before, we can write [f ] as a sum of [g] which has one inversion less than
f and terms of length less that |i |.

Hence, it remains to show that any endomorphism f of Ei1λ = Ei+Ei−1λ is of the desired form. It
is not hard to show that any such f can be written as a sum of diagrams containing no caps and cups
using the trace condition and the relations in U∗, so the result follows.

�

6. Surjectivity results

6.1. Surjectivity of ρ.

Theorem 6.1. The natural map ρ− : U̇−(g[t]) → U−
tr is a surjection.

Choose any infinite sequence i = (i1, i2, . . . ) ∈ IZ>0 such that every element of I appears an infinite
number of times. For any infinite word in the integers, a = (a1, a2, . . . ) with almost all ai = 0, we let
ia be the concatenated word ia1

1 i
a2

2 · · · , and let Fa be the associated 1-morphism in U−.
Use induction over the lexicographic order on sequences to show that U−

tr is spanned by dots.

Proof. We’ll give an inductive proof of the following statement:

(∗a) The image of End(Fa) in U−
tr lies in the sum of images of the polynomial endomorphisms of

End(Fb) for b ≥ a.

Since every 2-morphism in U− factors through a finite sum of Fa’s, establishing this for every a will
complete the proof.

First, assume that only one entry of a is non-zero. In this case, End(Fa) is a nil-Hecke algebra, and
thus has trace generated by its polynomial subalgebra, as proven in [4, 9.8].

Now assume that a is arbitrary. Every endomorphism of Fa can be written as a sum of diagrams,
so we may as well consider the case of a single diagram D. If the diagram has no crossings, it is
polynomial, and we are done. Now having fixed a, we induct on the number of crossings. Modulo
elements with a lower number of crossings than D, we can isotope the strands of D though crossings.
In particular, for some k, we can assume that the leftmost k−1 strands have no crossings, and that the
strands which kth from the left at the top and bottom cross. Let us call these strands U and V . We
can further assume that all crossings occur to the right of U and of V (or on the strands themselves),
in the region marked D′ in the diagram below. We’ll now also induct (upward) on k.

i1

i1

· · ·

im

im

im

im

im

im

· · ·

· · ·

im

im

im+1

im+1

· · ·

· · ·

D′

k strands

k′ strands

Let m be the smallest integer such that k′ = a1 + · · ·+ am ≥ k. Note that by definition, the strands
between the kth and k′th from the left are the same color by definition. Thus, if the strands U and
V have both ends left of the k′th strand, we can get rid of their crossing, and increase k. Thus, we
can assume that U and V do have one end at the kth terminal from left and their other at a terminal
further right than the k′th.

We wish to show that D factors through Fb, where b = (a1, a2, . . . , am+1, . . . ), which is thus higher
in lexicographic order. Consider that after crossing V , the strand U crosses the k + 1st strand from
the left, the k+2nd, etc. until it reaches the k′th. Below U , these other strands don’t cross; thus, they
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all have the same label at U , that is im. Thus, at the y-value just below the crossing of U and k′th
strand, we see a1 strands with label i1, etc. up until am strands with label im, followed by U which
also has this label. Thus, indeed, this slice is associated to b = (a1, a2, . . . , am + 1, . . . ), which is, of
course, greater in lexicographic order than a.

Following through the induction on k, this shows (∗a) and thus the desired statement. �

Theorem 6.2. The homomorphism ρ : U̇(g[t]) −→ Tr(U∗
Q(g)), is surjective for all g.

Proof. By the triangular decomposition of Proposition 5.3, it suffices to show that the image contains
any class [f±] or [f0] where f±, and f0 are in U±

tr , U
0
tr, respectively. For [f

±], this follows immediately

from Theorem 6.1. For f0, this is clear by the isomorphism between 1λU̇
0(g[t])1λ ∼= End(1λ) = Sym|I|

for any weight λ. �

Note that even if Q is not a (−)-compatible choice of scalars, we can use the argument of Theorem
6.2 to show the weaker statement:

Corollary 6.3. For any symmetrizable Kac-Moody algebra g and choice of scalars Q, the elements

E
(n)
i,r 1λ,F

(n)
i,r 1λ for i ∈ I, r ≥ 0, n ≥ 1 and λ ∈ X . generate Tr(U∗

Q(g)) as an algebra.

It would be quite interesting to obtain a uniform description of these algebras in terms of a Drinfeld-
type presentation.

7. Injectivity results

7.1. Cyclotomic quotients. Fix a highest weight λ. The 2-category U̇∗
Q has a principal representation

U̇∗
Q(λ, ∗) which sends the weight µ to the graded category of 1-morphisms λ→ µ as defined in [47].

We wish to consider two natural quotients of U̇∗
Q(λ, ∗):

• Ǔλ is the quotient of U̇∗
Q(λ, ∗) by the subrepresentation generated by 1λ+αi

for all i ∈ I. That
is, we set to 0 any 2-morphism factoring through a 1-morphism of the form AEi idλ for A
arbitrary.

• Uλ is the quotient of Ǔλ by all positive degree endomorphisms of 1λ.

These categories also have explicit realizations in terms of finite dimensional algebras.
Recall that the KLR algebra R = RQ from Definition 4.2 has an algebraic realization where e(i) are

idempotents corresponding to sequences i = (i1, . . . , im), and yre(i) denotes a dot on the rth strand.
Let λ be a dominant weight, and recall the cyclotomic quotient Rλ from [24] defined as the quotient
of R by the two sided ideal generated by the relations

(7.1)
{
y
〈i,λ〉
1 e(i) = 0 | for all sequences i .

}

Likewise, we will also consider the the deformed cyclotomic quotient Řλ defined in [47, 3.24]; this is a
quotient of the usual KLR algebra by the relation

(7.2)
(
y
〈i,λ〉
1 + q

(i)
1 y〈i,λ〉−1 + · · ·+ q

(i)
〈i,λ〉

)
e(i) = 0

where each q
(i)
k is a free deformation parameter of degree 2k. We let Rλ

µ (respectively Řλ
µ) denote the

summand of this algebra categorifying the µ-weight space, that is, that where the labels on strands
add up to λ− µ. The categories of modules over both Rλ and Řλ each have a categorical action of g,
where each Fi is an induction functor and Ei a restriction functor [22, 47].

Theorem 7.1 ([47, 3.20, 3.25]). The category Uλ(µ) (resp. Ǔλ(µ)) is equivalent to the projective
modules over the ring Řλ

µ (resp. Rλ
µ). The Grothendieck groups of

⊕
µ≤λ U

λ(µ) and
⊕

µ≤λ Ǔ
λ(µ) are

canonically isomorphic, and both isomorphic to the simple integrable representation V (λ).
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Note that this implies that these categorical modules are integrable in the sense of Chuang-Rouquier:
any object M is killed by Em

i or Fm
i for m≫ 0, since the resulting object lies in a trivial weight space.

Then we have a composite of surjections

U(g[t]) // Tr(U(g)) // Tr(Ǔλ(g)) // Tr(Uλ(g)).

Proposition 7.2. There are surjective homogeneous maps of U(g[t])-modules

W (λ) −→ Tr(Uλ(g)) W(λ) −→ Tr(Ǔλ(g))

for all simply laced Kac-Moody algebras g containing no odd cycles. (More generally, the result holds
for any choice of scalars as in Proposition 5.1.)

Proof. The trace of Uλ(g) or Ǔλ(g) is an integrable representation of the current algebra U(g[t]). This
representation is generated as a g[t]-module by the trace of the empty diagram in weight λ, which
is homogeneous of degree 0. Furthermore, the cyclotomic relation (7.1) or (7.2) implies that n+ acts
trivially on this vector. By the presentation [14, (3.5)], any integrable g[t]-module V generated by an
element v ∈ V satisfying the relations

(7.3) n+[t]v = 0, hv = λ(h)v

is a quotient of the global Weyl module W(λ). This shows the result for Tr(Ǔλ(g)). In Uλ(g), by
definition, all higher degree bubbles act trivially on v. Thus, the surjection of the global Weyl module
factors through the quotient by the relation ht[t]v = 0. That is, V is a quotient of the local Weyl
module W (λ). �

7.2. Injectivity of ρ in types ADE.

Theorem 7.3. For g of type ADE, the surjective map W (λ) −→ Tr(Uλ(g)) is an isomorphism.

Proof. Let λmin be the unique minimal dominant weight amongst those ≤ λ. If λ lies in the root
lattice, then λmin = 0; if λ does not lie in the root lattice, then λmin will be the unique highest weight
of a minuscule representation in that coset of the root lattice. If g = sln, then V (λmin) =

∧
kCn where

0 ≤ k < n is chosen so that the scalar matrix e2πi/nI ∈ SL(n) acts by e2πik/n on V (λ). For g = so2n,
we have that

• V (λmin) = C is the trivial representation if V (λ) is a representation of SO(2n) on which
−I ∈ SO(2n) acts trivially,

• V (λmin) = C2n is the vector representation if V (λ) is a representation of SO(2n) on which
−I ∈ SO(2n) acts by −1,

• V (λmin) = S± is one of the two half-spinor representations if V (λ) is a representation of
Spin(2n) not factoring through SO(2n) (determined by having the same action of the center of
Spin(2n) as V (λ)).

By [26, 3.9], the socle filtration of the local Weyl module of type λ coincides with the degree filtration. In
particular, by [26, 3.14], the socle itself is given by the homogeneous elements of degree 〈λ, λ〉−〈λm, λm〉
and this is a single copy of the simple module V (λm). By its universal property, any graded module
M over the current algebra which is generated by a single highest weight element of weight λ and
degree 0 receives a surjective map from the local Weyl module. Thus, if M also contains a non-zero
element of degree 〈λ, λ〉− 〈λmin, λmin〉, this map is not zero on the socle of the Weyl module. Since the
Weyl module has finite length, every submodule contains a simple submodule, which lies in the socle
by definition. By [26, 3.8], the socle of W (λ) is simple, so any non-zero submodule of W (λ) contains
soc(W (λ)). However, the kernel of the map to M does not contain this submodule, and thus is 0.

By Proposition 7.2, Tr(Uλ(g)) is generated by such an element. Furthermore, using the isomorphism
of Theorem 7.1, the symmetric Frobenius trace (described in [47, Rk. 3.19]) on the algebra Rλ

λmin
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induces a non-zero functional on Tr(Uλ(g)) of degree −〈λ, λ〉+〈λmin, λmin〉, which shows that this space
has non-zero elements of degree 〈λ, λ〉−〈λmin, λmin〉. Thus, we must have the desired isomorphism. �

The map W(λ) −→ Tr(Ǔλ(g)) induces a surjective homogeneous ring homomorphism Aλ → Řλ
λ. By

the definition [47, 3.24], Řλ
λ is a polynomial ring over the fake bubbles. Thus, these rings have the

same Hilbert series, and this map must be an isomorphism.

Theorem 7.4. For g of type ADE, the surjective map W(λ) −→ Tr(Ǔλ(g)) is an isomorphism.

Proof. The induced map is an isomorphism modulo the unique maximal homogeneous ideal by Theorem
7.3. At a generic maximal ideal, the specialization of W(λ) is isomorphic to a tensor product of
shifted local Weyl modules for fundamental weights, with ωi appearing with multiplicity mi = 〈i, λ〉
by [14, 5.8]. Similarly, the specialization of Řλ is a tensor product of shifted cyclotomic quotients for
fundamental weights with Rωi appearing with multiplicity mi by [44, 2.23]. Thus, the same is true on
the level of traces. Theorem 7.3 applied to the fundamental weights shows that these modules over
Aλ

∼= Řλ
λ have the same generic rank. Thus, any surjective map from one to the other is necessarily

an isomorphism. �

8. Trace categorification results

8.1. A trace decategorification of UQ(g).

Theorem 8.1. The Chern character map hUQ(g) : K0(U̇Q(g)) ⊗Z k ∼= U̇q(g) → Tr(UQ(g)) is an iso-
morphism.

Proof. By Lemma 2.4, this map is injective. On the other hand, the elements E
(n)
i,0 1λ,F

(n)
j,0 1λ are the only

degree 0 elements of the generating set of Corollary 6.3, with all others of positive degree. Thus, they

must generate Tr(UQ(g)). The elements E
(n)
i,0 1λ,F

(n)
j,0 1λ are given by idempotents, and thus obviously

in the image of hUQ(g). This shows the map is surjective as well. �

The special cases of Theorem 8.1 for g = sl2, sl3 are proved in [4, 48], where the Chern character
maps are defined over Z.

Remark 8.2. The notion of a strongly upper-triangular category was defined in [4, Section 4.1]. Such
categories possess a distinguished basis of objects B and the results of [4, Proposition 4.6] imply that
Tr(C) = HH0(C) ∼= kB and that all higher Hochschild homology vanishes, HHi(C) = 0, for i > 0. It
follows from results in [46] that the basis of indecomposables in UQ(g) is strongly upper-triangular, if
k has characteristic 0 and tijtji = −1 whenever 〈αi, αj〉 = −1. Hence, Theorem 8.1 can be extended
to include the fact that HHi(UQ(g)) = 0 for i > 0 under the same hypotheses.

8.2. A trace decategorification of U∗
Q(g).

Theorem 8.3. For any choice of (−)-compatible choice of scalars Q arising from a coloring c : Γ → Z2

of the graph Γ associated to the simply-laced Kac-Moody algebra g of type ADE, the homomorphism

(8.1) ρ : U̇(g[t]) −→ Tr(U∗
Q(g)),

is an isomorphism.

Proof. Lemma 3.5 implies that the map ρ must be injective, since any element of its kernel would kill
all global Weyl modules. Combining with Theorem 6.2 completes the proof. �
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9. An action on centers of 2-representations

9.1. Cyclic 2-categories and the center. Given a linear 2-category C we define the center Z(λ)
of an object λ ∈ Ob(C) as the commutative ring of endomorphisms C(1λ, 1λ), see [18]. Note that in
the linear 2-category AdCat of additive categories, additive functors, and natural transformations,
the center Z(C) of an object C is the endomorphism ring of the identity functor IdC on C. Define the
center of objects of the 2-category C as the Z(C) =

⊕
λ∈Ob(C) Z(λ).

There is a fairly general framework under which the trace of a linear 2-categoryC acts on the center
of objects Z(K) of any 2-representation F : C → K. This happens whenever the 2-category C has
enough “coherent” duality. This idea is captured by the notion of a cyclic 2-category [17, 27]. In a
cyclic 2-category C every one morphism x : λ → λ′ is equipped with a specified biadjoint morphism
x∗ : λ′ → λ and 2-morphisms

evx : x
∗x→ 1λ coevx : 1λ′ → xx∗

ẽvx : xx
∗ → 1λ′ c̃oevx : 1λ → x∗x

satisfying the adjunction axioms. Then given a 2-morphism f : x→ y in C we can define the left and
right dual of f :

f∗ := (evy ⊗ Idx∗)(Idy ⊗ f ⊗ Idx∗)(Idy∗ ⊗ coevx) : y
∗ → x∗

∗f := (Idx∗ ⊗ ẽvy)(Idx∗ ⊗ f ⊗ Idy∗)(c̃oevx ⊗ Idy∗) : y∗ → x∗.

(Here we are using ⊗ to denote the horizontal composition of 2-morphisms.) A 2-category C where
all 1-morphisms have specified biadjoints is said to be cyclic with respect to the biadjoint structure, or
simply a cyclic 2-category 3, when the left and right dual agree f∗ =∗ f , or equivalently f∗∗ = f .

For x : λ→ λ′ a 1-morphism in C and f : x→ x a 2-endomorphism in C representing a class [f ] in
Tr(C), then [f ] defines an operator Z(F (λ)) → Z(F (λ′)) sending the element c : 1F (λ) → 1F (λ) to the
element given by the composite

(9.1) ẽvF (x) ◦ (F (f)⊗ c⊗ IdF (x∗)) ◦ coevF (x) : 1F (λ′) → 1F (λ′) ∈ Z(λ′).

The following proposition is immediate.

Proposition 9.1. A 2-representation F : C → K from a cyclic 2-category C into an linear 2-category
K induces an action of Tr(C) on the center of objects Z(K) given by (9.1).

In terms of graphical calculus, an element c : 1λ → 1λ of Z(λ) can be represented by a closed diagram
in weight λ. A class [f ] is represented by a diagram on an annulus with interior region labelled λ and
exterior region labelled λ′. The action of [f ] on c is given by forgetting the annulus and placing the
diagram for c into the interior region.

9.2. Cyclicity for the 2-category UQ(g). The Q-cyclic relation 4.4 implies that whenever tij 6= 1
the 2-category UQ(g) is not cyclic. However, in this section we will show that it is often possible to
rescale this 2-category so that it is cyclic and Proposition 9.1 applies.

Using rescaling 2-functors defined in [28] it is possible to rescale the 2-category UQ(g) so that the
values of i-colored degree zero bubbles take arbitrary values

i
��MM

•
〈i,λ〉−1

λ

= c+i,λId1λ
for 〈i, λ〉 ≥ 1,

i
QQ��

•
−〈i,λ〉−1

λ

= c−i,λId1λ
for 〈i, λ〉 ≤ −1,

3 A cyclic 2-category is the same thing as a pivotal 2-category [35]. This can be seen as a many object version of a
pivotal monoidal category, see [20] where traces in this context are studied. Müger points out in [35, page 11] a strict
pivotal 2-category can be defined from Mackaay’s work [31] on spherical 2-categories by ignoring the monoidal structure.
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and i-labelled curls in weights λ with 〈i, λ〉 = 0 satisfy

(9.2)

λKK

LL

RR

VV

i

= −c+i,λ

λ

OO

i

λ SS

RR

LL

HH

i

= c−i,λ

λ

OO

i

.

Consistency of the graphical calculus requires that these coefficients satisfy

c+i,λ+αj
= c+i,λ, c−i,λ−αj

= ci,λ, for all i, j ∈ I,

and

c+i,λc
−
i,λ = 1 when 〈i, λ〉 = 0.

In particular, the coefficients c±i,λ only depend on 〈i, λ〉 and are completely determined by the coefficients

with 〈i, λ〉 = 0 and 〈i, λ〉 = 1, which we denote by c+i,0 and c+i,1, respectively.
The rescaling 2-functors are given by a weight dependent rescaling of caps and cups. They fix all

sl2 and KLR-relations. The mixed relations (4.12) change in the following way,

(9.3) OO��

��

OO

λ

i j

=
cj,λ

cj,λ+αi

tji ��OO λ

i j

��

��

OO

OO

λ

i j

=
ci,λ

ci,λ+αj

tij OO�� λ

i j

and the Q-cyclic relation 4.4 for crossings also depend on the parameters c+i,0 and c+i,1. Values of these
parameters can be chosen so that the Q-cyclic relation becomes the usual cyclicity relation if and only
if the equation

(9.4) vij = c+i,0c
+
i,1c

+
j,0c

+
j,1

holds for all pairs i, j ∈ I with (αi, αj) = −1. Note that when (αi, αj) 6= 1 cyclicity already holds.

Proposition 9.2. Let Γ be the graph associated to a simply laced Kac-Moody algebra. Suppose
that Q is an integral choice of scalars arising from the (+)-compatible choice of scalars associated to a
coloring of the graph Γ. Then the rescaling

c+i,0 = 1, c+i,1 = (−1)c(i) for all i ∈ I,

makes the 2-category UQ(g) a cyclic 2-category.

Remark 9.3. Only the case of Γ with odd cycles all chosen with scalars vij = −1 is excluded by the
(+)-compatibility requirement.

Proof. It is evident that the rescaling satisfies equation (9.4). �

Corollary 9.4. Let Γ be the graph associated to a simply laced Kac-Moody algebra. Suppose that
Q is an integral choice of scalars arising from the (+)-compatible choice of scalars associated to a
coloring of the graph Γ. Then Tr(UQ(g)) acts on the center of objects Z(K) in any 2-representation

UQ(g) → K. Under this action, Z(Uλ(g)) and Z(Ǔλ(g)) can be identified with the dual local and global
Weyl modules, respectively.

Proof. Only the last statement needs a proof. By Theorem 3.18 in [47], Tr(Uλ) is Frobenius, the
non-degenerate pairing induces an isomorphism between 0th homology and 0th cohomology of the
cyclotomic quotients. Moreover, the action of current algebra on the trace induces the adjoint action
on the center, where the adjoint of Ei1λ is 1λFi up to degree shift, compare Definition 1.2 in [15].
In particular, the empty diagram in the highest weight cogenerates the center, in the sense that any
submodule contains it. The result follows. �
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[9] A. Căldăraru and S. Willerton. The Mukai pairing. I. A categorical approach. New York J. Math., 16:61–98, 2010.

arXiv:0707.2052.
[10] S. Cautis. Rigidity in higher representation theory. 2014. arXiv:1409.0827.
[11] S. Cautis, J. Kamnitzer, and A. Licata. Coherent sheaves on quiver varieties and categorification. arXiv:1104.0352.
[12] S. Cautis and A. D. Lauda. Implicit structure in 2-representations of quantum groups. Selecta Mathematica, pages

1–44, 2014. arXiv:1111.1431.
[13] S. Cautis and A. Licata. Vertex operators and 2-representations of quantum affine algebras. 2011. arXiv:1112.6189.
[14] V. Chari, G. Fourier, and K. Tanusree. A categorical approach to Weyl modules. Transform. Groups, 15(3):517–549,

2010.
[15] V. Chari and S. Loktev. Weyl, demazure and fusion modules for the current algebra of slr+1. Adv. Math., 207:928–

960, 2006. arXiv:RT/0608235.

[16] J. Chuang and R. Rouquier. Derived equivalences for symmetric groups and sl2-categorification. Ann. of Math. (2),
167(1):245–298, 2008.

[17] J. R. B. Cockett, J. Koslowski, and R. A. G. Seely. Introduction to linear bicategories. Math. Structures Comput.
Sci., 10(2):165–203, 2000. The Lambek Festschrift: mathematical structures in computer science (Montreal, QC,
1997).

[18] N. Ganter and M. Kapranov. Representation and character theory in 2-categories. Adv. Math., 217(5):2268–2300,
2008. arXiv:math/0602510.

[19] H. Garland. The arithmetic theory of loop algebras. J. Algebra, 53(2):480–551, 1978.
[20] N. Geer, B. Patureau-Mirand, and A. Virelizier. Traces on ideals in pivotal categories. Quantum Topol., 4(1):91–124,

2013.
[21] D. Hill and J. Sussan. The Khovanov-Lauda 2-category and categorifications of a level two quantum sln representa-

tion. Int. J. Math. Math. Sci., pages Art. ID 892387, 34, 2010.
[22] S.-J. Kang and M. Kashiwara. Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras.

2011. arXiv:1102.4677.
[23] G. M. Kelly. On the radical of a category. J. Austral. Math. Soc., 4:299–307, 1964.
[24] M. Khovanov and A. Lauda. A diagrammatic approach to categorification of quantum groups I. Represent. Theory,

13:309–347, 2009. arXiv:0803.4121.
[25] M. Khovanov and A. Lauda. A diagrammatic approach to categorification of quantum groups III. Quantum Topology,

1:1–92, 2010. arXiv:0807.3250.
[26] R. Kodera and K. Naoi. Loewy series of weyl modules and the poincare polynomials of quiver varieties, 2011.

arXiv:1103.4207.
[27] A. D. Lauda. A categorification of quantum sl(2). Adv. Math., 225:3327–3424, 2008. arXiv:0803.3652.
[28] A. D. Lauda. An introduction to diagrammatic algebra and categorified quantum sl2. Bulletin Inst. Math. Academia

Sinica, 7:165–270, 2012. arXiv:1106.2128.
[29] A.D. Lauda, H. Queffelec, and D. Rose. Khovanov homology is a skew howe 2-representation of categorified quantum

sl(m). arXiv:1212.6076.
[30] I. G. Macdonald. Symmetric functions and Hall polynomials. The Clarendon Press Oxford University Press, New

York, 1979. Oxford Mathematical Monographs.
[31] M. Mackaay. Spherical 2-categories and 4-manifold invariants. Adv. Math., 143(2):288–348, 1999.

arXiv:math/9805030.

http://arxiv.org/abs/1308.2347
http://arxiv.org/abs/arXiv:1409.1198 
http://arxiv.org/abs/arXiv:1404.1806
http://arxiv.org/abs/0608235
http://arxiv.org/abs/0808.2032
http://arxiv.org/abs/0812.1090
http://arxiv.org/abs/arXiv:0707.2052
http://arxiv.org/abs/1409.0827
http://arxiv.org/abs/1104.0352
http://arxiv.org/abs/arXiv:1111.1431
http://arxiv.org/abs/1112.6189
http://arxiv.org/abs/RT/0608235
http://arxiv.org/abs/math/0602510
http://arxiv.org/abs/1102.4677
http://arxiv.org/abs/0803.4121
http://arxiv.org/abs/0807.3250
http://arxiv.org/abs/1103.4207
http://arxiv.org/abs/arXiv:0803.3652
http://arxiv.org/abs/arXiv:1106.2128
http://arxiv.org/abs/arXiv:1212.6076
http://arxiv.org/abs/math/9805030


CURRENT ALGEBRAS AND CATEGORIFIED QUANTUM GROUPS 31

[32] B. Mitchell. Rings with several objects. Advances in Math., 8:1–161, 1972.
[33] M.Mackaay. sl(3)-foams and the Khovanov-Lauda categorification of quantum sl(k). 2009. arXiv:0905.2059 .
[34] M.Mackaay and Y. Yonezawa. sl(N)-Web categories. 2013. arXiv:1306.6242 .
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