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STEENROD STRUCTURES ON CATEGORIFIED QUANTUM

GROUPS

ANNA BELIAKOVA AND BENJAMIN COOPER

Abstract. Categorified quantum groups play an increasing role in quantum topol-
ogy and representation theory. The Steenrod algebra is a fundamental component
of algebraic topology. In this paper we show that categorified quantum groups can
be extended to module categories over the Steenrod algebra in a natural way. This
yields an intepretation of the small quantum group by Khovanov and Qi.

1. Introduction

Since their introduction quantum groups have played an important role in quantum
topology and representation theory. The language of categorification has emerged
as a mechanism for increasing the power of the topological invariants associated to
these objects. These new invariants replace polynomials with homology groups which
contain torsions and symmetries that are not detectible the older setting.

In algebraic topology the Steenrod algebra Ap is a powerful tool for understand-
ing p-torsion information. Each space X determines a module H∗(X ;Fp) over the
Steenrod algebra and the Adam’s spectral sequence establishes a relationship be-
tween Ext groups of the module H∗(X ;Fp) and the homotopy groups of X . As such
the homological algebra of modules over the Steenrod algebra has a long history, see
[Ste62, Mar83, Pal01, Sch94].

The main goal of this paper is to introduce and study a Steenrod algebra structure
in the context of the categorifed quantum groups, see [KL09, Rou]. Our focus is on
the categorification U+ of the positive half U+ of Uq sl(2) and the 2-categories U+

Fp

obtained from U+ by taking coefficients in the finite fields Fp .

Theorem. When coefficients are taken in the finite field Fp , the categorification U+

of the positive half U+ of the quantum group sl(2) can be extended to a 2-category
enriched in modules over the Steenrod algebra.

As a consequence, the category of modules over the Steenrod algebra acts on the
categorification

Ap -mod⊗U+
Fp
→ U+

Fp
.

Since this extension is obtained in a canonical way it is expected to apply to many
of the algebraic structures associated to categorified quantum groups, such as knot
homology theories.

1

http://arxiv.org/abs/1304.7152v1


2 BELIAKOVA AND COOPER

This new structure is studied in Section 4.4. In particular, we observe that the
structure of a module category over the Steenrod algebra gives rise to a natural
family of differentials on U+

Fp
called Margolis differentials.

Khovanov and Qi have proposed a means by which categorified quantum groups can
be evaluated at a root of unity [KQ]. The authors prove that, after passing to a finite
field Fp , one can introduce a differential on the 2-category U+

Fp
which reduces it to a

categorification of U+ in which the variable q is set to a root of unity. In Section 6
we prove that the differential introduced in [KQ] is a Margolis differential.

Theorem. There exists a twisted Steenrod module structure on the nilHecke algebras
NH⊗Fp which extends the p-differential graded structure defining the categorification
of the small quantum group.

This result can be viewed as one explanation for the definitions appearing in [KQ].

This paper is organized in the following way. In Section 2 basic properties of the
Steenrod algebra Ap are reviewed. Section 2.7 contains a discussion of the relation-
ship between p-differential graded structures and Steenrod module algebra structures.
Section 3 contains an introduction to the nilHecke algebras which are used to define
the categorification of U+ . In Section 4 a standard Steenrod structure on the nil-
Hecke algebras is constructed and explored. Section 5 summarizes the construction
in [Kho, Qi] and discusses some of the consequences of the existence of Steenrod
structures from this perspective. In Section 6 we establish a relationship between
the Steenrod algebra and the small quantum groups of Khovanov and Qi. Section 7
contains a number of proofs.

2. Steenrod algebras

In this section we define the Steenrod algebra Ap and recall some of its basic prop-
erties. Full details can be found in the references, see [Ste62, Mar83, Pal01].

Note that the algebras Ap defined below are not the full Steenrod algebras. When p
is odd, we do not include the Bockstein β and, when p is even, we set P n = Sq2n . In
this paper, β and Sq2n+1 will always be zero unless otherwise noted. This is because
modules will only have graded elements of even degree.

A stable cohomology operation is a natural transformation of the cohomology functor
H∗(−;R) which commutes with the suspension isomorphisms:

H∗(ΣX ;R) ∼= H∗+1(X ;R).

When R is the finite field Fp of order p, stable cohomology operations are called
mod p Steenrod operations. There are basic operations,

P n : H∗(X ;Fp)→ H∗+2n(p−1)(X ;Fp) where n ≥ 0,

called reduced pth powers. The axioms below suffice to characterize the stable oper-
ations on cohomology rings H∗(X ;Fp) .
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Definition 2.1. (Steenrod axioms)

(1) P 0 = Id .
(2) If |x| = 2n then P nx = xp.
(3) If 2n > |x| then P nx = 0.
(4) The Cartan formula:

P n(xy) =
∑

i+j=n

P ix · P jy.

(5) The Adem relations: if a, b > 0 and a < pb then

P aP b =

[a/p]
∑

j=0

(−1)a+j

(

(p− 1)(b− j)− 1

a− pj

)

P a+b−jP j,

where the binomial coefficient is interpreted modulo p.

The example below follows from the axioms in Definition 2.1 above.

Example 1. If y ∈ H2(X ;Fp) is a cohomology class of degree 2 then

(2.1) P kyn =

(

n

k

)

yn+k(p−1) if k ≤ n

and P kyn = 0 otherwise.

The algebra Ap is formed by grouping together all of the reduced pth power opera-
tors.

Definition 2.2. The Steenrod algebra Ap is the free Fp algebra on the generators
P n , n ≥ 0 , subject to the Adem relations (5) above.

By construction the algebra Ap acts on the cohomology groups H∗(X ;Fp) of any
topological space X . However, it is important to note that not every Ap module
comes from the cohomology of a space, see Section 6.2.1.

A grading on the algebra Ap is determined by setting |P k| = 2k(p− 1) . There is a
cocommutative coproduct, ∆ : Ap → Ap ⊗Ap , defined by,

∆(P n) =
∑

i+j=n

P i ⊗ P j.

This choice is determined by the Cartan formula in Definition 2.1 and makes Ap

into a Hopf algebra. If ∆(x) =
∑

x(1) ⊗ x(2) then the antipode S : Ap → Ap is
determined recursively by the relations

S(1) = 1 and
∑

S(x(1))x(2) = 0.

The dual Steenrod algebra Ap is the graded dual of the Steenrod algebra Ap . In
degree n, Ap consists of Fp -valued functions on degree n elements of Ap . Since
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Ap is a cocommutative Hopf algebra, the dual algebra Ap is a commutative Hopf
algebra. In [Mil58], Milnor proved that Ap is a polynomial ring,

Ap ∼= Fp[ξ0, ξ1, ξ2, . . .].

The first generator is ξ0 = 1 and the nth generator ξn is dual to the element
P pn−1

P pn−2

· · ·P pP 1 ∈ Ap . A grading on Ap is determined by setting |ξn| = 2(pn−1) .
The coproduct ∆ : Ap → Ap ⊗Ap is given by,

∆(ξn) =
∑

i+j=n

ξp
j

i ⊗ ξj.

2.3. Margolis Differentials. There is a family of special elements dt in the Steen-
rod algebra Ap called Margolis differentials.

Definition 2.4. The (s, t)th Margolis differential P s
t is the element of Ap which is

dual to ξp
s

t ∈ A
p .

When s < t, one can show that (P s
t )

p = 0 [Mar83]. Primitive Margolis differentials
determine p-differentials on the cohomology rings H∗(X ;Fp) of spaces X , see Section
2.7. These primitive differentials dt = P 0

t can be defined recursively in terms of the
reduced power operations using the recurrence,

(2.2) d1 = P 1 and di+1 = diP
pi − P pidi.

Example 2. The comodule structure on the polynomial ring H∗(CP∞;Fp) ∼= Fp[x],
is given by the equation,

ϕ(xps) =
∑

k≥0

xpk+s

⊗ ξp
s

k ,

which implies that Margolis differentials act according to the formula,

P s
t (x

pi) =

{

xpk+s

i = s
0 i 6= s.

If M is an Ap module then the quotient ker (P s
t )

p−1/im(P s
t ) is called Margolis ho-

mology, see [AM71]. This is akin to the slash homology considered in [KQ].

2.5. Sub-Hopf Algebras. In this section we recall the classification of sub-Hopf
algebras of the Steenrod algebra. This is the same as the classification of quotient
Hopf algebras of the dual Steenrod algebra Ap .

Theorem 2.6. ([AM74]) Every quotient Hopf algebra B of the dual Steenrod algebra
Ap is of the form,

(2.3) B = Ap/(ξp
n1

1 , ξp
n2

2 , ξp
n3

3 , . . .)

where {ni}
∞
i=1 is a sequence of integers, ni ≥ 0, such that for 0 < j < m either

nm > nm−j − j or nm ≥ nj .



STEENROD STRUCTURES ON QUANTUM GROUPS 5

This theorem yields a large family of finite dimensional sub-Hopf algebras H . For
instance, Ap is filtered:

(2.4) · · · ⊂ Ap(n) ⊂ Ap(n + 1) ⊂ · · · ⊂ Ap(∞) = Ap,

where the algebras Ap(n) are dual to the algebras

Ap(n) = Ap/(ξp
n

1 , ξp
n−1

2 , ξp
n−2

3 , . . . , ξpn, ξn+1, ξn+2, . . .).

The subalgebra Ap(n) is generated by P 0 = 1 and the first n indecomposible Steen-

rod reduced pth powers, Ap(n) = Fp〈P
pj : 0 ≤ j < n〉.

If dt is a primitive Margolis differential from Section 2.3 then

Mt = Fp〈dt〉 ∼= Fp[∂]/(∂
p)

is a sub-Hopf algebra. When t = 1 , d1 = P 1 and M1 = Ap(1) .

2.7. p-DG structures. In this section we discuss the relationship between the p-
differential graded (p-DG) structures introduced in [KQ] and the Steenrod algebra.

Definition 2.8. ([KQ] §2.2) Suppose that k is a field of characteristic p and A is
a k algebra. Then a p-DG structure on A is a map ∂ : A → A which satisfies the
properties:

∂p = 0 and ∂(a · b) = ∂(a) · b+ a · ∂(b).

Suppose that we choose the field k to be Fp . Then a p-DG structure on an algebra
A is the same as an H module algebra structure on A when H is the Hopf algebra
Fp[∂]/(∂

p) . We will refer to any grading of H as a p-DG structure.

In Sections 2.3 and 2.5 we saw that the sub-Hopf algebra Mt spanned by the Mar-
golis differential dt is isomorphic to Fp[∂]/(∂

p) . This suggests the following two
observations.

(1) A Steenrod module structure on an algebra A restricts to a natural family of
p-differential graded structures given by the Margolis differentials described
in Section 2.3.

(2) Conversely, identifying a given p-differential graded structure as the restric-
tion of a Steenrod structure yields families of extensions along sub-Hopf alge-
bras of the Steenrod algebra described in Section 2.5.

In Section 4 we show that the geometry underlying the nilHecke algebras discussed
in Section 3 determines Steenrod structures on these algebras in a natural way. In
Section 5 the homological algebra developed in the papers [Kho, Qi] is used to define
analogues U+

A of the categorified quantum group U+ which have been extended by
this module structure.
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An F2 Steenrod structure on Khovanov homology was introduced by Lipshitz and
Sarkar, see [LS]. The comparison above implies that these results yield families of
p-DG algebra structures on Khovanov homology.

In Section 6 the p-DG algebra structures on the nilHecke algebras defined by Kho-
vanov and Qi are interpreted homologically.

3. nilHecke Algebras

In this section we recall the nilHecke algebras and some of their basic properties.

3.1. Algebraic Formulation.

Definition 3.2. (nilHecke algebra NHn ) For each n ≥ 0 , the nilHecke algebra NHn

is the graded ring generated by operators xi in degree 2 , 1 ≤ i ≤ n, and δj in degree
−2 , 1 ≤ j < n, subject to the relations:

δ2i = 0, δiδi+1δi = δi+1δiδi+1,
xiδi − δixi+1 = 1, δixi − xi+1δi = 1.

The operators also satisfy far commutativity relations,

δixj = xjδi if |i− j| > 1, δiδj = δjδi if |i− j| > 1,
xixj = xjxi for 1 ≤ i, j ≤ n.

The generators xi are called polynomial generators and the generators δi are called
divided difference operators. There is a nice diagrammatic presentation for these
algebras in which a crossing is used to depict δi and a dot is used to denote xi , see
[KL09].

The polynomial algebra Pn on n variables,

Pn = Fp[x1, . . . , xn] where |xi| = 2,

serves as a defining representation for the nilHecke algebra NHn . The symmetric
group Σn acts on Pn by σ(xi) = xσ(i) for σ ∈ Σn . Let σj denote the transposition
(j, j + 1) ∈ Σn . The nilHecke algebra NHn action on the polynomial algebra Pn is
defined on generators by letting xi act by multiplication and δj act on f ∈ Pn by
the rule,

(3.1) δj(f) =
f − σj(f)

xj − xj+1
.

The divided difference operators act on products according to the formula

(3.2) δi(fg) = δi(f)g + σi(f)δi(g).

The ring of symmetric polynomials,

Symn = Fp[x1, . . . , xn]
Σn = Fp[e1, . . . , en] where |ei| = 2i
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is the ring of polynomials in n variables which are invariant under the action of the
symmetric group. It is a polynomial algebra on the elementary symmetric functions:
e1, . . . , en . The subalgebra of polynomials invariant under the subgroup Z/2 = 〈σj〉 ⊂
Σn will be denoted by

Pσj
n = {f ∈ Pn : σjf = f} so that Symn ⊂ P

σj
n ⊂ Pn,

for each n > 0 and for each j = 1, . . . , n− 1 . Equation (3.1) implies that δi(e) = 0
when e ∈ P

σj
n , δi(f) ∈ P

σj
n and f ∈ Pn is any polynomial. Using (3.2) above this is

equivalent to the Symn -equivariance of each divided difference operator:

δi(ef) = eδi(f) where e ∈ Symn and f ∈ Pn.

The same is true for multiplication by xj . In fact, the nilHecke algebra is the algebra
of Symn linear operations on the ring Pn .

Definition 3.3. (NHn )
NHn

∼= EndSymn
(Pn)

See Section 2.5 [KLMS12] or Proposition 3.5 [Lau10].

3.4. Geometric Formulation. In this section we review one geometric interpreta-
tion for the algebraic material in Section 3.1. This is used to motivate the construc-
tion in Section 4. Standard references include [BGG73, Dem74], also the surveys
[Man01, Hil82].

A complete flag is a sequence of nested spaces

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = Cn where dimC Vi = i.

If Fln denotes the set of complete flags in Cn then the stabilizer of the induced
U(n) action on Fln is the n-torus T ⊂ U(n) consisting of diagonal matrices. The
identification,

Fln ∼= U(n)/T

endows Fln with the structure of a manifold. The cohomology H∗(Fln;Fp) of each
flag variety admits two descriptions. The Borel description,

(3.3) H∗(Fln;Fp) ∼= Fp[x1, . . . , xn]Σn
∼= Fp[x1, . . . , xn]/ Sym

+
n

where Sym+
n consists of non-constant symmetric polynomials, is obtained using Chern

classes. A different description can be given using a cellular decomposition of the
space of flags,

Fln =
∐

w∈Σn

Xw.

If l(w) is the length of the word w ∈ Σn then duals [Xw] ∈ H2l(w)(Fln;Fp) to the
cycles determined by each cell form a basis for the cohomology.
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The nilHecke algebra arises when one attempts to relate these two descriptions. Let
Ti be the subgroup of U(n) associated to the Lie algebra obtained by adjoining the
ith root to the torus: if t and ti denote the complexified Lie algebras of T and Ti

respectively then

ti = gαi
⊕ t⊕ g−αi

.

The bundles πi : U(n)/T → U(n)/Ti determine the divided difference operators,

δi = πi
∗πi∗ : H

∗(Fln;Fp)→ H∗−2(Fln;Fp)

which act by (3.1) on the cohomology ring (3.3). The relations satisfied by δi imply
that if w ∈ Sn is expressed as a reduced product of transpositions, w = σi1σi2 · · ·σim ,
then operator δw = δi1δi2 · · · δim depends only on the element w ∈ Σn . The theo-
rem below uses the nilHecke algebra to articulate the relationship between the two
descriptions of (3.3) given above.

Theorem 3.5.

[Xw] = δw−1w0
xδ

where xδ = xn−1
1 xn−2

2 · · ·xn−1 and w0 ∈ Σn is the longest word in the symmetric
group Σn .

See [BGG73, Dem74].

3.5.1. Polynomial Rings. The bundle U(n)→ Fln is classified by a map

f : Fln → BT.

The map f ∗ which is induced by f on cohomology is the quotient map from the
polynomial ring Pn to its Σn -coinvariants,

Fp[x1, . . . , xn]→ Fp[x1, . . . , xn]Σn
.

The Ti bundles U(n) → U(n)/Ti are classified by maps ϕi : U(n)/Ti → BTi and
there is a diagram

Fln BT

U(n)/Ti BTi

πi ϕi

from which it follows that the operators δi = ϕi
∗ϕi∗ determine the action of divided

difference operators on the polynomial ring Pn discussed in Section 3.1.
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4. Standard Steenrod Structures on nilHecke Algebras

In this section we study an action of the Steenrod algebra Ap on the nilHecke algebras
NHn⊗Fp . The existence of this structure derives from the geometric interpretation
in Section 3.4. An extension of the categorified quantum groups by this structure is
found in Section 5. A non-standard Steenrod module structure on NHn⊗Fp will be
defined in Section 6.

The map i : T → U(n) induces a map

(4.1) i∗ : H∗(BU(n);Fp)→ H∗(BT ;Fp)

between cohomology rings of classifying spaces. This is the inclusion i∗ : Symn → Pn .
Since they are cohomology rings, both rings in (4.1) are Ap module algebras and i∗ is
a homomorphism of Ap module algebras. The map i∗ makes the polynomial algebra
Pn into a module over the algebra of symmetric polynomials Symn .

The next proposition tells us that the collection of Symn equivariant endomorphisms
of Pn is also a module over Ap .

Proposition 4.1. Suppose that H is a commutative or cocommutative Hopf algebra.
If A is a H module algebra and M,N are H module left A modules then the space
of maps HomA(M,N) is an H module.

See Section 7.1 for a proof. If the objects above are graded then the statement
above remains true. The corollary below follows by combining Proposition 4.1 and
Definition 3.3. This is the starting point for Section 5. A different proof of this
corollary is provided by Proposition 4.8.

Corollary 4.2. For each prime p, the nilHecke algebra NHn⊗Fp with coefficients
in the field Fp is a graded Ap module algebra.

Proof. Recall from Definition 3.3 that the nilHecke algebra NHn is the subalgebra of
the endomorphism algebra of the polynomial ring Pn consisting of Symn -equivariant
endomorphisms. After identifying the polynomial ring Pn with the cohomology ring
H∗(BT ;Fp) and the ring of symmetric polynomials Symn with the cohomology ring
H∗(BU(n);Fp) both become module algebras over the Steenrod algebra. The inclu-
sion (4.1) makes Pn a module over Symn and the result follows from Proposition 4.1
above by setting, A = Symn , M = Pn and N = Pn . �

Corollary 4.3. Suppose that H is a commutative or cocommutative Hopf algebra
over k and there is a map

H ⊗ k[x]→ k[x]

which determines an H module algebra structure on the polynomial rings Pn =
k[x]⊗n . If the inclusion Symn →֒ Pn is a map of H module algebras then there
is an induced H module algebra structure on the nilHecke algebras NHn⊗k .

The corollary above follows from the preceding discussion. It will be used in the proof
of Theorem 6.4.
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4.4. Explicit Computations. The cohomology ring H∗(BU(n);Fp) is isomorphic
to the Fp algebra of symmetric polynomials in n variables.

H∗(BU(n);Fp) ∼= Symn

It follows that if P ∈ Ap is an element of the Steenrod algebra and e ∈ Symn

is a symmetric polynomial then Pe can be expressed as a function of elementary
symmetric polynomials. For instance, when ej ∈ Symn is an elementary symmetric
polynomial and p = 2 the formula for P nej is called the Wu formula,

(4.2) P nei =
∑

k

(

i− n

k

)

en−kei+k

see [Wu50]. For other primes p, this formula is more complicated, see [Pet75, Sha77,
Lan83].

Since the elementary symmetric polynomials ei ∈ H∗(BU(n);Fp) represent Chern
classes, the Wu formulas are universal relations satisfied by these invariants of com-
plex vector bundles.

Notation. The following polynomial will appear in many of our statements and
computations.

(4.3) si = δi(P
1xi) = δi(x

p
i ) =

xp
i − xp

i+1

xi − xi+1
=

∑

k+l=p−1

xk
i x

l
i+1.

We will consistently use the symbol si to denote this polynomial.

The next proposition relates the Steenrod operations P d and the divided difference
operators δi . This equation holds among operators on the polynomial ring Pn .

Proposition 4.5. If d is a positive integer, then

P dδi − δiP
d =

d
∑

j=1

(−1)jsjiδiP
d−j

where si = δi(P
1xi).

For a proof, see Section 7.2.

Proposition 4.5 allows us to establish a formula for the action of Steenrod reduced
pth power operations on the polynomials si = δi(P

1xi) .

Proposition 4.6. For each d ≥ 0,

P dsi =

{

(−1)dsd+1
i d < p

0 d ≥ p

where si = δ(P 1xi).

For a proof of this proposition, see Section 7.3.
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4.7. The nilHecke algebra NHn as a module. The action of the Steenrod algebra
on polynomials Pn is described by Equation (2.1). Since Ap is a Hopf algebra, there
is an induced action on End(Pn) . If we write the comultiplication and antipode as

∆(P n) =
∑

P n
(1) ⊗ P n

(2) =

n
∑

i=0

P i ⊗ P n−i and S(P d) = −P d −

d−1
∑

i=1

P iS(P d−i)

repectively, then P n ∈ Ap acts on f ∈ End(Pn) by f 7→ P
n
f where

(P
n
f)(y) = P n

(2)f(S(P
n
(1))(y))

for any polynomial y ∈ Pn .

This formula agrees with the standard one in which S is replaced by S−1 . If H is a
commutative or cocommutative Hopf algebra then the antipode S satisfies S = S−1 ,
see Proposition 8.8 [MM65].

Proposition 4.8. Let P n ∈ Ap be the nth Steenrod reduced power operation and
δi ∈ NHm a divided difference operator in the nilHecke algebra. Then

P
n
δi = (−1)nsni δi and P

n
xi = P nxi,

where si = δi(P
1xi). In particular, the action of Ap on End(Pn) restricts to NHn .

For an argument, see Section 7.4.

Remark. This proposition can be used to compute the action of the Steenrod reduced
power operations on the Schubert polynomials δw−1w0

xδ mentioned in Theorem 3.5.

In Section 2.7 we saw that every Steenrod algebra structure gives rise to a family
of p-differential graded algebra structures defined by Margolis differentials. When
coefficients are taken in the field Fp Corollary 4.2 and Proposition 4.8 state that
there is a standard Steenrod algebra structure on the nilHecke algebras. In Theorem
4.9 below, Propositions 4.6 and 4.8 will be used to derive explicit formulas for these
Margolis differentials.

Theorem 4.9. There exists a standard family of p-differentials {dk}
∞
k=1 on the nil-

Hecke algebras NHn⊗Fp . Each differential dk is uniquely determined by its values
on generators:

dkxi = xpk

i and dkδi = (−1)lnslni δi.

where ln = pn + pn−1 + · · ·+ p+ 1.

In light of the discussion in Section 2.3, it is only necessary to verify the last equation.
A proof is given in Section 7.5.
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5. Stable Module Structures on Categorified Quantum Groups

In Sections 4.2 and 6, Steenrod module structures are defined on the nilHecke alge-
bras. In this section, we review how this gives rise to extensions of the categorification
U+ of the positive part of Uq sl(2) . Material included here summarizes the references,
see [Kho, Qi, KQ] and [Mar83, Pal01].

In what follows, we fix a finite dimensional Hopf algebra H and an H module algebra
A.

5.1. Categories over Module Categories. Since A is an object of the category
H -gmod of graded H modules, we use the symbol A|H to denote A endowed with
the H structure. There is a category A|H -gmod of left A|H module objects in the
category H -gmod and there is tensor product,

(5.1) ⊗ : H -gmod×A|H -gmod→ A|H -gmod .

If M is an H module and N is a A|H module then M ⊗ N is an object in the
category A|H -gmod. It is an H module because N is also an H module and it is
an A|H module because if m⊗ n ∈M ⊗N and a ∈ A then the rule

a · (m⊗ n) = m⊗ (a · n)

determines an A|H module structure on M ⊗ N . Equation (5.1) allows us to think
of the category A|H -gmod as a module over the category H -gmod.

When A is a finite dimensional sub-Hopf algebra of the Steenrod algebra Ap , Corol-
lary 4.2 implies the nilHecke algebra NHn can be endowed with an Ap module struc-
ture. It follows that there is a functor,

⊗ : A -gmod×NHn|A -gmod→ NHn|A -gmod .

The relationship between these two abelian categories is quite interesting. It may be
best explored using other language, see [Sch94, KL01]. However, the small quantum
group in [KQ] cannot be constructed without the relations introduced by a passage
to the stable category. This is the next step in our discussion.

5.2. Stable and Derived Stable Categories.

Definition 5.3. For any finite dimensional Hopf algebra H , the category H -gmod
has a quotient H -gmod, called the category of stable modules, which is obtained
by declaring a map f : M → N in H -gmod to be zero when it factors through a
projective H module.

One consequence of this definition is that two H modules M and N become isomor-
phic in the stable category H -gmod if and only if there exist projective modules P
and Q so that

(5.2) M ⊕ P ∼= N ⊕Q
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in the category H -gmod. Since H is a finite dimensional Hopf algebra, P and Q
can be taken to be free modules or injective modules.

If A is an H module algebra and A|H -gmod is the associated category of A modules
(see Section 5.1) then for any K ∈ A|H -gmod, the module H ⊗ K is free [Mon93]
and so

H ⊗K ∼= 0,

in the stable category H -gmod. This observation suggests the next definition.

Definition 5.4. Let H be a finite dimensional Hopf algebra. Then, for any H
module algebra A, the category of stable A modules is given by the quotient

A|H -gmod = A|H -gmod /I,

where I is the ideal of A|H module maps f : M → N which factor through an A|H

module of the form H⊗K . The above category is sometimes denoted in other ways,
see [Qi] Sections 2.8 and 4.1.

The quotient in Definition 5.4 is compatible with Definition 5.3 in the sense that the
tensor product (5.1) descends to a functor between stable categories.

Given an A|H module M the forgetful functor determines an H module Forget(M) .
This induces a functor between stable categories,

Forget : A|H -gmod→ H -gmod .

Definition 5.5. A map f : M → N in the category A|H -gmod is a quasi-isomorphism
when the map Forget(f) is an isomorphism.

Proposition 4 of [Kho] shows that quasi-isomorphisms Q in A|H -gmod form a local-
izing class; they can be inverted, see [GM03] Section 3.2.

Definition 5.6. The derived category of stable A modules is the category obtained
from the stable category of A modules by inverting quasi-isomorphisms.

D(A,H) = A|H -gmod[Q−1]

The tensor product descends to the quotient.

⊗ : D(k,H)×D(A,H)→ D(A,H)

A theorem of Qi below shows that maps between algebras define induction and re-
striction functors between derived categories.

Theorem 5.7. Suppose that A and B are H module algebras. Then a map f : A→
B determines induction and restriction functors,

IndB
A : D(A,H) ⇄ D(B,H) : ResBA

which form an adjunction,

HomD(A,H)(Ind
B
A(M), N) ∼= HomD(B,H)(M,ResBA(N)).
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Moreover, when f is a quasi-isomorphism the induction and restriction functors de-
fine an equivalence of categories.

See [Qi] Section 8.

5.8. Extending the Categorification. In this section we recall how to apply the
material reviewed in Sections 5.1 and 5.2 to produce 2-categories U+

A which are
extensions the categorification U+

Fp
of U+ by finite dimensional sub-Hopf algebras A

of the Steenrod algebra.

Fix a finite dimensional sub-Hopf algebra A ⊂ Ap and a Steenrod module structure
on the nilHecke algebras NHn ; either the standard one in Corollary 4.2 or the one
from Section 6. Since the nilHecke algebras NHn are A module algebras. There are
derived categories of the form D(NHn,A) . A proposition is needed to relate these
categories to one another.

Proposition 5.9. There is an A module algebra homomorphism

in+m : NHn⊗NHm → NHn+m

which determines induction and restriction functors,

Ind : D(NHn⊗NHm,A) ⇄ D(NHn+m,A) : Res

Proof. After labelling the generators xi, δi of NHn by i = 1, ..., n and the generators
xj , δj of NHm by j = n+ 1, ..., n+m the map in+m is defined by, a⊗ b 7→ ab. The
map in+m is an algebra homomorphism. It suffices to check to check that it is an Ap

module map. This follows from the Cartan formula, see Definition 2.1. �

The 2-categories U+
A defined below extend the 2-category U+

Fp
which categorifies the

positive half of the quantum group Uq sl(2) .

Definition 5.10. (U+
A ) For each finite dimensional sub-Hopf algebra A of the Steen-

rod algebra there is a 2-category,

U+
A =

⊕

n

D(NHn,A)

with objects corresponding to the categories D(NHn,A) , morphisms are generated
by compositions of the induction and restriction functors defined in Proposition 5.9
and 2-morphisms given by natural transformations.

The standard Steenrod structure explored in Section 4 restricts to a countable family
of p-DG structures on the nilHecke algebras. Choosing an appropriate subset of
the differentials generates a sub-Hopf algebra of the Steenrod algebra over which the
categorification persists.
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In Section 6 the standard Steenrod structure is modified to agree with choices made
in the Khovanov and Qi construction [KQ]. A similar picture may hold for this
construction, see Section 6.1.1.

It is not necessarily true that presentations of the nilHecke algebras NHn suffice to
present the 2-category U+

A . Since the derived tensor product is used to define the
induction and restriction functors, there may be other natural transformations arising
from the Bar construction.

In light of the construction outlined above, the discussion found in Section 2.7 rep-
resents an appealing picture.

5.11. Grothendieck Groups. There is an analogue U c+
A of U+

A in Definition 5.10
above defined by using derived categories of compact objects Dc(NHn,A) in place
of the categories D(NHn,A) , see [Qi]. A direct analogue of Proposition 3.28 [KQ]
implies that the functors in Definition 5.10 above descend to functors defined on
derived categories of compact objects. The Grothendieck group of these categories
can be defined.

Conjecture. Suppose that U c+
A is the compact analogue of Definition 5.10, defined

using the natural Steenrod structure in Corollary 4.2. Then any such extension de-
categorifies an extension of the ground field,

K0(U
c+
A ) ∼= U+ ⊗K0(D(k,A)),

and no two extensions are equivalent as categories,

A 6∼= A′ ⇒ UA 6∼= UA′ .

5.11.1. The Base Category. In this section we determine the Grothendieck group of
the category of stable modules over a finite dimensional sub-Hopf algebra of the Steen-
rod algebra. These categories are the base categories over which the constructions in
Section 5 were performed.

The letters H or A will be used in statements which hold for any finite dimensional
Hopf algebra or algebra respectively. The letter A will represent a finite dimensional
sub-Hopf algebra of the Steenrod algebra Ap .

The category of positively graded finite dimensional left A modules is denoted A -gfmod.
The translation functor −[1] is an endomorphism which makes the Grothendieck
group K0(A -gfmod) a module over the ring Z[q] where q = K0(−[1]) .

Lemma 5.12. Suppose that A -gfmod is the category of positively graded modules
over a finite dimensional sub-Hopf algebra A of the Steenrod algebra. Then the
Grothendieck group K0(A -gfmod) is isomorphic to the polynomial ring,

K0(A -gfmod) ∼= Z[q].
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Proof. Any such module M = ⊕l>0Ml, is filtered by setting, M≥t = ⊕l≥tMl . The
associated graded module ⊕tM≥t/M≥t+1 is equal to M in the Grothendieck group
K0(A -gfmod) and A acts trivially on each summand for grading reasons. �

The stable derived category S(H -mod) is the Verdier quotient K♭(H -mod)/(InjH)
of the homotopy category of chain complexes of H modules by the thick subcategory
of complexes consisting of injective modules. When H is a finite dimensional Hopf
algebra, Theorem 8.2 [Kra05] implies that the stable module category and the stable
derived category are equivalent as triangulated categories.

(5.3) H -mod ∼= S(H -mod)

Switching to finite dimensional graded modules and combining (5.3) with Heller’s
Theorem [Weied] implies that there is a short exact sequence,

(5.4) K0(InjH)→ K0(K
♭(H -gfmod))→ K0(H -gfmod)→ 0.

The Grothendieck group of the homotopy category of chain complexes is isomorphic
to the Grothendieck group of the underlying category. Since the Hopf algebra H is
finite dimensional, injective modules are free modules and there is an isomorphism,

(5.5) K0(InjH) ∼= 〈[H ]〉.

Corollary 5.13.

K0(A -gfmod) ∼= Z[q]/ ([A]) ,

where [A] = dimqA is the image of A in the Grothendieck group.

Proof. This follows by combining the Lemma 5.12 with (5.4) and (5.5). Alternatively,
one could argue this directly from the definition of A -gfmod, see (5.2). �

The sub-Hopf algebra A of Ap is dual to a quotient Hopf algebra A∨ of Ap . By
Theorem 2.6, A∨ is determined by a sequence of integers, n1, n2, n3, . . . , nN ,

(5.6) A∨ ∼= Fp[ξ1, ξ2, . . . , ξN ]/ (ξ
n1

1 , ξn2

2 , . . . , ξnN

N ) .

As a vector space A∨ is isomorphic to a tensor product of cyclic quotients of poly-
nomial rings on one generator. Keeping track of the grading yields the formula,

dimqA =

N
∏

k=1

1− qnk|ξk|

1− q|ξk|
.

We have proven the following theorem.

Theorem 5.14. Let A be a finite dimensional sub-Hopf algebra of the Steenrod
algebra Ap . Then the Grothendieck group of the category A -gfmod of positively
graded stable modules is given by,
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K0(A -gfmod) ∼=
Z[q]

(

∏N
k=1

1−qnk |ξk|

1−q|ξk |

) ,

for some sequence of integers {nk}
N
k=1 satisfying the criteria of Theorem 2.6.

The integers nk are always of the form prk and |ξk| = 2(pk − 1) is the degree of the
generator ξk in the dual Steenrod algebra.

The quotient above can be written in terms of cyclotomic polynomials,

(5.7)
1− qnk|ξk|

1− q|ξk|
=

∏

d|nk|ξk|
d∤|ξk |

Φd(q)

where Φd(q) ∈ Z[q] is the dth cyclotomic polynomial.

Remark. It is possible to regrade the Steenrod algebra Ap . For instance, setting
|P k| = 2k changes the grading of the dual Steenrod algebra Ap to one determined
by the rule |ξk| = 2(pk − 1)/(p− 1) . In this way, different versions of Theorem 5.14
can be produced.

Remark. Suppose that T ⊂ Φ = {Φ1(q),Φ2(q),Φ3(q), . . .} . The Habiro ring [Hab04]
associated with such a subset is the inverse limit,

Z[q]T = lim
←−

f∈Π(T )

Z[q]/ (f) ,

where Π(T ) is the set multiplicatively generated by T . It would be interesting to
develop a relationship between Habiro rings and the Steenrod algebra by combining
the categories A -mod in some fashion.

6. Relation to Small Quantum Groups

The standard Steenrod structure from Section 4 does not always restrict to the p-
differential graded structure used by Khovanov and Qi. In this section a different
Steenrod structure is defined on the nilHecke algebras. This module structure is
shown to restrict to a p-differential graded structure which agrees, up to sign, with
the one used to define the small quantum groups in [KQ].

6.1. Hopf Algebra Structures for the Small Quantum Group. In this section
we review some definitions from Khovanov and Qi [KQ].

For each prime p, there is a Hopf algebra H ,

(6.1) H = Fp[∂]/(∂
p).

The grading on H is determined by |∂| = 2 , the coproduct is given by ∆(∂) =
∂ ⊗ 1 + 1⊗ ∂ and the antipode is S(∂) = −∂ .



18 BELIAKOVA AND COOPER

The polynomial algebra,

Pn = Fp[x1, . . . , xn],

with grading |xi| = 2 is given an H module structure by choosing the p-differential
∂ which is determined by the rules

(6.2) ∂(xi) = x2
i and ∂(xy) = ∂(x)y + x∂(y).

The algebra of symmetric polynomials, Symn , inherits an H module structure which
is determined by the equations

(6.3) ∂(ei) = e1ei − (i+ 1)ei+1

when i < n and ∂(en) = e1en otherwise, where ei is the ith elementary symmetric
polynomial.

Together Definition 3.3 and Proposition 4.1 imply that NHn becomes an algebra in
the category H -mod. The module structure on NHn is determined by its values on
the generators.

∂(xi) = x2
i and ∂(δi) = (xi + xi+1)δi

6.1.1. Twisted Structure. Instead of considering the ring of polynomials Pn as a
module over H , the ideal

(6.4) Pn(a) = 〈x
a
2x

2a
3 · · ·x

(n−1)a
n 〉 ⊂ Pn where a ∈ Z+

is used instead. The H module structure on the polynomial ring Pn induces an H
module structure on the module Pn(a) . The isomorphism Pn(a) ∼= Pn implies that

NHn
∼= EndSymn

(Pn(a)).

The algebra NHn does not change, but the H module structure on NHn does change.
This deformed structure is determined by the equations,

∂a(xi) = x2
i and ∂a(δi) = a + (a+ 1)xiδi + (a− 1)xi+1δi.

6.2. Interpretations of the Small Quantum Group. In this section the con-
struction of the standard Steenrod module structure from Section 4 is modified to
obtain a structure which restricts, up to sign, to the p-differential graded structure
found in Section 6.1.

The Hopf algebra H in Section 6.1 is the same as the Hopf algebra Ap(1) = Fp〈P
1〉

in Section 2.5.

In Section 4, the polynomial ring, Pn , inherits an H module structure after it has
been identified with the cohomology ring H∗(BT ;Fp) . This standard H module
structure is determined by the equations,

(6.5) P 1yi = ypi and P 1(xy) = (P 1x)y + x(P 1y).
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When the prime p = 2 this agrees with Section 6.1. For instance, (6.3) is a special
case of the Wu formulas in Section 4.4. For odd primes, the equations (6.5) differ
from those of (6.2).

In Section 6.2.1 we introduce a Steenrod structure which restricts to one which agrees,
up to sign, with (6.2) for all primes. In Section 6.5.1 this choice is interpreted
topologically. In Section 6.6.1 the twisted structures in Section 6.1.1 are addressed.

6.2.1. A Stable Module Structure. In this section we describe a Steenrod module
structure on the nilHecke algebras which restricts to the p-differential defined in
Khovanov and Qi. This algebraic construction is obtained from topological consider-
ations in Section 6.6.1.

Definition 6.3. There is a grading on the Steenrod algebra Ap obtained by setting
|P k| = 2k . The corresponding grading on the dual Steenrod algebra Ap is determined
by the rule |ξk| = 2(pk − 1)/(p− 1) .

The Adem relations respect any grading of the form |P k| = Ck for C ∈ Z. The
grading above is chosen to make the gradings compatible in the theorem below.

Theorem 6.4. Suppose that Pn is the graded polynomial ring

Pn = Fp[x1, . . . , xn]

with |xi| = 2. Then the equations

P kxi =

{ (

p−1
k

)

xk+1
i 0 ≤ k < p

0 otherwise

determine a Steenrod module algebra structure on Pn .

Moreover, this structure induces a Ap module algebra structure on the nilHecke al-
gebras NHn⊗Fp . Up to sign, the p-DG structure used by Khovanov and Qi agrees
with a restriction of this induced structure.

Proof. This is a Steenrod structure because it a regrading of the structure defined
topologically in Section 6.5.1.

Alternatively, Corollary 4.3 implies that this choice induces a structure on the nil-
Hecke algebras when the map i : Symn →֒ Pn is a homomorphism of Ap module
algebras. The algebra Symn is a Ap module algebra because the symmetric powers
pk = xk

1 + · · ·+ xk
n generate Symn and satisfy the equation,

P dpk =

(

n(p− 1)

k

)

pd+k.

Since i ◦ P d = P d ◦ i, Pn is a left Symn module object in the category of modules
over the Steenrod algebra. We conclude by observing that, up to sign, the operation
P 1 acts agrees with equation (6.2). �
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In Definition 2.1 axioms for the action of the Steenrod algebra Ap on modules of the
form H∗(X ;Fp) were given. It is not the case that every Ap module M satisfies all
of these axioms. Modules which comes from cohomology rings are always unstable
in the sense of the following definition.

Definition 6.5. A module M over the Steenrod algebra Ap is unstable when prop-
erty

(3) If 2n > |x| then P nx = 0

from Definition 2.1 holds.

The category of unstable modules over the Steenrod structure has been studied ex-
tensively [Sch94]. The standard Steenrod algebra structure is unstable, but there is
no reason to demand that the choice (6.2) extends to an unstable module structure.
The structure defined in Theorem 6.4 is not unstable.

6.5.1. p-Tori. Suppose that no change is made to the grading of the Steenrod algebra
Ap . If the equation P 1y = ±y2 is to hold then the degree |P 1| = 2(p − 1) implies
|y| = 2(p− 1) . There is a choice of space X which has cohomology ring Fp[y] with
|y| = 2(p− 1) . Instead of using the spaces found in Section 3.4 we could attempt to
use this space instead.

Consider the system of inclusions,

(6.6) Z/(p)→ Z/(p2)→ Z/(p3)→ · · ·

between cyclic groups. Taking the limit of this system gives a group,

SS1
p = Z/(p∞) = lim

−→
l

Z/(pl),

which we call the super p-circle. The Z/(p) action on each factor in equation (6.6)
yields a Z/(p) action on SS1

p . Define the p-circle by S1
p = SS1

p/(Z/(p)) . These
definitions are motivated by the following proposition.

Proposition 6.6. The cohomology of the classifying space of the super p-circle and
its quotient by Z/(p) are given by,

H∗(BSS1
p ;Fp) ∼= Λ(x)⊗ Fp[y] and H∗(BS1

p ;Fp) ∼= Fp[y],

where |x| = 2p− 3 and |y| = 2(p− 1).

If the polynomial algebra Pn is defined to be

(6.7) Pn = H∗((BS1
p)

×n;Fp) = Fp[y1, . . . , yn].

Then restricting to the sub-Hopf algebra Ap(1) = Fp〈P
1〉 yields the following equa-

tions,

(6.8) P 1yi = −y
2
i and P 1(xy) = (P 1x)y + x(P 1y).
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This agrees with (6.2) up to sign. The Steenrod module structure on Pn is a regrading
of the one described by Theorem 6.4.

Remark. One might replace BS1
p by BSS1

p . Since elements can now have odd degree,
a study of this variation would require the full Steenrod algebra.

6.6.1. Twisted Structures. In order to obtain the twisted formulas described in Sec-
tion 6.1.1 in the setting of Section 6.2.1 above, we use the Thom space of the line bun-
dle associated to the value of the twisting parameter. An n-tuple v = (t1, . . . , tn) ∈
Zn determines a representation χ : T n → C× by the assignment

(z1, . . . , zn) 7→ zt11 · · · z
tn
n .

After extending χ to C, the Borel construction Xχ = ET n×Tn C gives a line bundle
over BT n . The Thom isomorphism implies that the cohomology of the Thom space
H∗(XC

χ ) of this line bundle is isomorphic to the ideal 〈zt11 · · · z
tn
n 〉 ⊂ H∗(BT n) .

For a fixed value of a, the formulas in Section 6.1.1 for P 1 follow when the vector

(t1, . . . , tn) = (0, a, 2a, . . . , (n− 1)a)

is used to determine the line bundle. The structure defined is quite complicated. It
would be interesting to explore this perspective further.

7. Proofs

In this section we prove some of the results which appear in earlier sections. The
arguments here are meant to be read in conjunction with prior statements and dis-
cussion.

7.1. Proof of Proposition 4.1.

Proof. Recall the Sweedler notation,

∆(n)(x) = (∆⊗ Id) ◦∆(n−1)(x) = x(1) ⊗ · · · ⊗ x(n+1) .

in which the summation sign preceding the right hand side is dropped.

In the statement of the proposition, H is a Hopf algebra, A is an algebra in H -mod
and M,N are left A modules in the category H -mod. Suppose that h ∈ H , a ∈ A,
m ∈ M and f ∈ HomA(M,N) . Then Proposition 4.1 is equivalent to the identity,

(h · f)(a ·m) = a(h · f)(m).

The left hand side of this equation is equal to the first term below.

h(2)f(S(h(1))(a ·m) = h(2)f((S(h(1))(1)a) · (S(h(1))(2)m))

= h(2) · (S(h(1))(1)a · f(S(h(1))(2)m)

= (h(2)(1)
S(h(1))(1)a) · (h(2)(2)

f(S(h(1))(2)m))(7.1)
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Since S(h(1)) = S(h)(2) and S(h(2)) = S(h)(1) , equation (7.1) becomes the equality
below.

(h(3)S(h(2))a) · (h(4)f(S(h(1))m)) = a(h · f)(m)

The last equality follows from the identity, (Id⊗ S)∆ = Id .

�

7.2. Proof of Proposition 4.5. This first argument establishes a commutation
relation between the action of Steenrod reduced pth powers and the action of divided
difference operators on the polynomial ring.

Proof. Without loss of generality, we may consider δ = δ1 in NH2 acting on P2 . We
claim that,

δP d −
∑

i+j=d

(−1)isiδP j ∈ NH2

where s = s1 is a polynomial defined in the statement of the proposition. By Defini-
tion 3.3 it suffices to show that the expression above is Sym2 -linear. The proof is by
induction using the Cartan formula in Definition 2.1 and the Sym2 -linearity of δ .

If e ∈ Sym2 and x ∈ P2 then

P dδ(ex)−
∑

i+j=d

(−1)isiδP j(ex)

=
∑

n+m=d

P n(e)Pm(δ(x))−
∑

i+n+m=d

(−1)isiP n(e)δPm(x)

= e[P d, δ](x) +
∑

n+m=d
n>0

P n(e)[Pm, δ](x)−
∑

i+n+m=d
i>0

(−1)isiP n(e)δPm(x)

= e[P d, δ](x) +
∑

i+n+m=d
i,n>0

(−1)isiP n(e)δP β(x)−
∑

i+n+m=d
i>0

(−1)isiP n(e)δPm(x)

= eP dδ(x)− e
∑

i+j=d

(−1)isiδP j(x) .

Here we used that P ne ∈ Sym2 , this follows from the Wu formula in Section 4.4.

Our claim implies that the equation,

P dδ −
∑

i+j=d

(−1)isiδP j = r + tδ

holds for some unique choice of polynomials r, t ∈ P2 . Applying both sides of the
above equation to the polynomial 1 shows that r = 0 and acting on x1 shows that
t = 0 . �
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7.3. Proof of Proposition 4.6. Recall the special polynomial si = δi(P
1xi) from

(4.3). The next proof establishes a formula for the action of Steenrod reduced pth
powers on si for each i > 0 .

Proof. If we omit subscripts and set s = δ(P 1x) = δ(xp) then we wish to show that
for each d ≥ 0 ,

P ds =

{

(−1)dsd+1 d < p
0 d ≥ p

We begin by combining all of the Steenrod operations into a new operator

P̂ =
∑

k≥0

P k.

The proof consists of an application of Proposition 4.5 and changing the order of
summation.

P̂ s =
∑

k≥0

P kδ(xp) =
∑

k≥0

k
∑

i=0

(−1)k−isk−iδ(P ixp)

=
∑

i≥0

δ(P ixp)
∑

k≥i

(−1)k−isk−i.

So that P̂ s = δ(P̂ xp)/(1 + s) . The Cartan relation in Definition 2.1 implies that

P̂ (xp) = (P̂ x)p = (x+ xp)p = xp + xp2 ,

and δ(xp + xp2) = s+ sp+1 which allows us to conclude that,

P̂ s = s
1 + sp

1 + s
=

p−1
∑

k=0

(−1)ksk+1.

Examining the graded components of each expression establishes Proposition 4.6. �

7.4. Proof of Proposition 4.8. In this section we justify the formulas for the action
of the Steenrod algebra Ap on the nilHecke algebras NHn . Recall that an element

P ∈ Ap in the Steenrod algebra acts on f ∈ End(Pn) by f 7→ P
n
f where

(7.2) (P
n
f)(y) = P n

(2)f(S(P
n
(1))(y))

for any polynomial y ∈ Pn .

Proof. Let us compute the action of P n ∈ Ap on δi ∈ NHm . We set δ = δi and
s = si where si = δi(P

1xi) . Equation (7.2) implies that

P
n
(δ) = P nδ +

n−1
∑

j=1

P jδS(P n−j)− δ(S(P n)) = [P n, δ] +
n−1
∑

j=1

[P j, δ]S(P n−j) .
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Proposition 4.5 above yields the equation

P̄ n(δ) =
n

∑

j=1

(−1)jsjδP n−j +
n−1
∑

i=1

i
∑

j=1

(−1)jsjδP i−jS(P n−i).

Separating the terms with i = j in the second summation we obtain,

P
n
(δ) =

n
∑

j=1

(−1)jsjδP n−j +

n−1
∑

j=1

(−1)jsjδS(P n−j) +

n−1
∑

i=2

i−1
∑

j=1

(−1)jsjδP i−jS(P n−i)

= (−1)nsnδ −

n−1
∑

j=1

n−j
∑

i=1

(−1)jsjδP iS(P n−i−j) +

n−1
∑

i=2

i−1
∑

j=1

(−1)jsjδP i−jS(P n−i) .

After a change of variables the last two sums cancel implying the desired result. The
action of P n ∈ Ap on xi ∈ NHm is left as an exercise to the reader. �

7.5. Proof of Theorem 4.9. The proof of the theorem will hinge upon formula
from Euler’s oeuvre [Eul],

(7.3)

(

1− xp

1− x

)n

= (1 + x+ · · ·+ xp−1)n =

np
∑

k=0

(

n

k

)p

xk,

where the symbol
(

n
k

)p
is equal to the usual binomial coefficient when p = 2 and
(

n

λ

)p

=

λ
∑

k=0

(

n

λ− k

)2(
λ− k

k

)p−1

when p > 2 .

Lemma 7.6.

P ksn =

{ (

n
k

)p
(−1)ksk+n k ≤ np

0 k > np.

Proof. If P̂ =
∑

k≥0 P
k then Lemma 4.6 implies that

P̂ s =
∑

k

P ks =

p−1
∑

k=0

(−1)ksk+1 = s
1− (−s)p

1− (−s)
.

The Cartan formula implies that

P̂ sn = (P̂ s)n = sn
(

1− (−s)p

1− (−s)

)n

,

and using Euler’s formula above yields the statement of the lemma. �

We now use Lemma 7.6 to compute what the primitive Margolis differentials dk do
to the divided difference operators δi ∈ NHn .
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Proof. Let δ = δi and s = si . The differentials are defined recursively by the formula,

(7.4) d1 = P 1 and dn+1 = [dn, P
pn].

Proposition 4.8 implies that
d1δ = −sδ.

It follows from the recursion (7.4) and induction that,

dn+1δ = Cn(−1)
lnslnδ,

where ln = (pn+1 − 1)/(p− 1) = pn + pn−1 + · · ·+ p+ 1 and

(7.5) Cn = Cn−1 − Cn−1

pn
∑

i=0

(

ln−1

i

)p

.

The sum above is equal to zero because setting x = 1 in (7.3) implies that

n(p−1)
∑

i=0

(

n

i

)p

≡ 0 (mod p).

If n = ln−1 then the sum becomes

pn−1
∑

i=0

(

ln−1

i

)p

≡ 0 (mod p)

Since
(

ln−1

pn

)p
is zero the sum in (7.5) is zero and Cn = 1 for all n > 0 . �
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[BGG73] I. N. Bernštĕın, I. M. Gel ′ fand, and S. I. Gel ′ fand. Schubert cells and the cohomology
of a flag space. Funkcional. Anal. i Priložen., 7(1):64–65, 1973.

[Dem74] M. Demazure. Désingularisation des variétés de Schubert généralisées. Ann. Sci. École
Norm. Sup. (4), 7:53–88, 1974.

[Eul] L. Euler. On the expansion of the power of any polynomial (1+x+x2 +x3 +x4 + etc.) .
arXiv:math/0505425v1.

[GM03] S. I. Gelfand and Y. I. Manin. Methods of homological algebra. Springer Monographs in
Mathematics. Springer-Verlag, Berlin, second edition, 2003.



26 BELIAKOVA AND COOPER

[Hab04] K. Habiro. Cyclotomic completions of polynomial rings. Publ. Res. Inst. Math. Sci.,
40(4):1127–1146, 2004.

[Hil82] H. Hiller. Geometry of Coxeter groups, volume 54 of Research Notes in Mathematics.
1982.

[Kho] M. Khovanov. Hopfological algebra and categorification at a root of unity: the first steps.
arXiv:math/0509083v2.

[KL01] T. Kerler and V. V. Lyubashenko. Non-semisimple topological quantum field theories for
3-manifolds with corners, volume 1765 of Lecture Notes in Mathematics. Springer-Verlag,
Berlin, 2001.

[KL09] M. Khovanov and A. D. Lauda. A diagrammatic approach to categorification of quantum
groups. I. Represent. Theory, 13:309–347, 2009.

[KLMS12] M. Khovanov, A. D. Lauda, M. Mackaay, and M. Stošić. Extended graphical calculus for
categorified quantum sl(2) . Mem. Amer. Math. Soc., 219(1029):vi+87, 2012.

[KQ] M. Khovanov and Y. Qi. An approach to the categorification of some small quantum
groups. arXiv:1208.0616v2.

[Kra05] H. Krause. The stable derived category of a Noetherian scheme. Compos. Math.,
141(5):1128–1162, 2005.

[Lan83] T. Lance. Steenrod and Dyer-Lashof operations on BU . Trans. Amer. Math. Soc.,
276(2):497–510, 1983.

[Lau10] A. D. Lauda. A categorification of quantum sl(2). Adv. Math., 225(6):3327–3424, 2010.
[LS] R. Lipshitz and S. Sarkar. A Steenrod square on Khovanov homology. arXiv:1204.5776.
[Man01] L. Manivel. Symmetric functions, Schubert polynomials and degeneracy loci, volume 6

of SMF/AMS Texts and Monographs. American Mathematical Society, Providence, RI,
2001.

[Mar83] H. R. Margolis. Spectra and the Steenrod algebra, volume 29 of North-Holland Mathe-
matical Library. North-Holland Publishing Co., Amsterdam, 1983.

[Mil58] J. W. Milnor. The Steenrod algebra and its dual. Ann. of Math. (2), 67:150–171, 1958.
[MM65] J. W. Milnor and J. C. Moore. On the structure of Hopf algebras. Ann. of Math. (2),

81:211–264, 1965.
[Mon93] S. Montgomery. Hopf algebras and their actions on rings, volume 82 of CBMS Series in

Mathematics. Published for the Conference Board of the Mathematical Sciences, 1993.
[Pal01] J. H. Palmieri. Stable homotopy over the Steenrod algebra. Mem. Amer. Math. Soc.,

151(716):xiv+172, 2001.
[Pet75] F. P. Peterson. A mod p Wu formula. Bol. Soc. Mat. Mexicana (2), 20(2):56–58, 1975.
[Qi] Y. Qi. Hopfological algebra. arXiv:1205.1814v1.
[Rou] R. Rouquier. 2-Kac-Moody algebras. arXiv:0812.5023.
[Sch94] L. Schwartz. Unstable modules over the Steenrod algebra and Sullivan’s fixed point set

conjecture. Chicago Lectures in Mathematics. University of Chicago Press, 1994.
[Sha77] P. B. Shay. mod p Wu formulas for the Steenrod algebra and the Dyer-Lashof algebra.

Proc. Amer. Math. Soc., 63(2):339–347, 1977.
[Ste62] N. E. Steenrod. Cohomology operations. Annals of Mathematics Studies, No. 50. Prince-

ton University Press, Princeton, N.J., 1962.
[Weied] C. Weibel. The K-book: An introduction to algebraic K-theory.

http://www.math.rutgers.edu/∼weibel/Kbook.html. Unpublished.
[Wu50] W. Wu. Les i -carrés dans une variété grassmannienne. C. R. Acad. Sci. Paris, 230:918–

920, 1950.



STEENROD STRUCTURES ON QUANTUM GROUPS 27

Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057

Zürich

E-mail address : anna@math.uzh.ch

E-mail address : benjamin.cooper@math.uzh.ch


