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SKEIN CONSTRUCTION OF IDEMPOTENTS IN

BIRMAN-MURAKAMI-WENZL ALGEBRAS

ANNA BELIAKOVA AND CHRISTIAN BLANCHET

Abstract. We give skein theoretic formulas for minimal idempotents in the

Birman-Murakami-Wenzl algebras. These formulas are then applied to derive va-

rious known results needed in the construction of quantum invariants and modular

categories. In particular, an elementary proof of the Wenzl formula for quantum

dimensions is given. This proof does not use the representation theory of quantum

groups and the character formulas.

Introduction

The Birman-Murakami-Wenzl algebras are deformations of the Brauer centralizer

algebras [4, 13]. They are quotients of the Artin braid groups algebras, and have

appeared in connection with the Kauffman link invariant and the quantum groups

of types B, C and D. The Birman-Murakami-Wenzl algebras are generically semi-

simple, and their structure was given by Wenzl [20]. They play a key role in the

construction of quantum invariants, modular categories and Topological Quantum

Field Theories, as was shown by Turaev and Wenzl [18, 19]. Our purpose here is to

study the structure of these algebras without using their representation theory. In

a separate article, we will pursue Turaev and Wenzl’s program and construct four

series of modular categories. Together with the present paper this construction will

be reasonably self-contained.

Our main results are the following.

• We give explicit formulas for minimal idempotents in the Birman-Murakami-

Wenzl algebras Kn. These are then used to obtain the semi-simple decomposi-

tion of Kn, together with a basis of matrix units. Similar results were obtained

by Ram and Wenzl [15] using Jones basic construction.

• We give a skein theoretic proof of the Wenzl formula for the quantum dimen-

sions of these minimal idempotents. The key point is here the proof of the

Key words and phrases. Knot, braid, skein theory, ribbon category, quantum invariant, quantum

dimension.
The second author wishes to acknowledge the hospitality of the Mathematisches Institut, Uni-
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2 ANNA BELIAKOVA AND CHRISTIAN BLANCHET

recursive formula (8). This formula is further used to derive versions of the

Wenzl formula corresponding to the quantum group specializations and to dis-

cuss the existence of idempotents in the non generic case.

Conventions. Throughout this paper, the manifolds are compact, smooth and

oriented. By a link we mean an isotopy class of an unoriented framed link. Here,

a framing is a non-singular normal vector field up to homotopy. By a tangle in a

3-manifold M we mean an isotopy class of a framed tangle relative to the boundary.

Here the boundary of the tangle is a finite set of points in ∂M , together with a non

zero vector tangent to ∂M at each point. Note that a framing together with an

orientation is equivalent to a trivialization of the normal bundle up to homotopy.

By an oriented link we mean an isotopy class of a link together with a trivialization

of the normal bundle up to homotopy. By an oriented tangle we mean an isotopy

class of a tangle together with a trivialization of the normal bundle, up to homotopy

relative to the boundary. Here the boundary of the tangle is a finite set of points

in ∂M , together with a trivialization of the tangent space to ∂M at each point. In

the figures, a preferred convention using the plane gives the framing (blackboard

framing).

1. The Birman-Murakami-Wenzl ribbon category

1.1. Kauffman skein relations. Let M be a 3-manifold (possibly with a given

finite set l of framed points on the boundary). We denote by K(M) (resp. K(M, l))

the k-module freely generated by links in M (and tangles in M that meet ∂M in l)

modulo (the relative isotopy and) the Kauffman skein relations in Figure 1.

− = (s− s−1)

( )

= α , = α−1

L ∐ © =

(
α− α−1

s− s−1
+ 1

)
L

Figure 1. Kauffman skein relations

We suppose that k is an integral domain containing the invertible elements α, s

and that α−α−1

s−s−1 lives in k. We call K(M) the skein module of M .

For example, K(S3) ∼= k. The isomorphism sends any link L in S3 to its Kauffman

polynomial 〈L〉, normalized by 〈∅〉 = 1.
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1.2. The Birman-Murakami-Wenzl category. The Birman-Murakami-Wenzl

category K is defined as follows. An object of K is a disc D2 equipped with a

finite set of points and a non zero tangent vector at each point. Unless otherwise

specified, we will use the second vector of the standard basis (the vector
√
−1 in

complex notation). If β = (D2, l0) and γ = (D2, l1) are two objects, the module

HomK(β, γ) is K(D2 × [0, 1], l0 × 0 ∐ l1 × 1). The notation K(β, γ) and Kβ will

be used for HomK(β, γ) and EndK(β), respectively. For composition, we use the

covariant notation:

K(β, γ) ×K(γ, δ) → K(β, δ)

(f, g) 7→ fg

In our figures the time parameter goes upwards, so that the morphism fg is depicted

with g lying above f , and the normal vector field is orthogonal to the plane and

points ‘inside the blackboard’.

The Birman-Murakami-Wenzl category is a ribbon Ab-category (see [16, Ch II]).

Ribbon categories admit a theory of traces of morphisms and dimensions of objects

for which we will use the terminology quantum trace and quantum dimension. In

the case of the category of finite dimensional vector spaces, equipped with trivial

braiding and twist, these traces and dimensions coincide with the usual ones [16,

Section I.1.7 and Lemma II.4.3.1]. We will use the notation 〈f〉 for the quantum

trace of f ∈ Kβ. This quantum trace is equal to the value of the closure of f in

K(S3) ∼= k obtained by gluing of D2 × {0} and D2 × {1} in Kβ along the identity

map.

We denote by n the object formed by the n points {(2j−1)/n −1 : j = 1, ..., n}
(0 is the trivial object). If we consider only these standard objects n, n ≥ 0, we

obtain a full subcategory equivalent to K, which was named the Kauffman category

by Turaev who first introduced it in [17, Section 7.7].

The algebra Kn = EndK(n) is isomorphic to the Birman-Murakami-Wenzl alge-

bra which is the quotient of the braid group algebra k[Bn] by the Kauffman skein

relations [7, 13]. For a proof of the above isomorphism, see [12] or [17]. This algebra

is a deformation of the Brauer algebra (i.e. the centralizer algebra of the semi-simple

Lie algebras of types B,C and D). If k is a field, then the algebra Kn is known to

be semi-simple [20], except possibly if s is a root of unity, or α = ±sn for some

n ∈ Z. Its simple components correspond to the partitions λ = (λ1, ..., λp) with

|λ| =
∑

i λi = n− 2r, r = 0, 1, ..., [n/2].

The Birman-Murakami-Wenzl algebra Kn is generated by the identity 1n, positive

transpositions e1, ..., en−1 and hooks h1, ..., hn−1 drawn in Figure 2.
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1i+

1i+

... ...e

h

i

i

i ... ...
i

Figure 2. Generators of Kn

If the ei are supposed to be invertible, then a complete system of relations [20] is

given by

(B1) eiei+1ei = eiei+1ei
(B2) eiej = ejei, for |i− j| ≥ 2

(R1) hiei = α−1hi
(R2) hie

±1
i−1hi = α±1hi

(K) ei − e−1
i = (s− s−1)(1n − hi) .

The quotient of Kn by the ideal In generated by hn−1 is isomorphic to Hecke algebra

Hn. We will use the knowledge of this Hecke algebra Hn to study Kn. Note that

In = {(a⊗ 11)hn−1(b⊗ 11) : a, b ∈ Kn−1}.

2. Hecke algebras

The Hecke category H is defined similarly as above, using the Homfly skein the-

ory. An object in this category is a disc D2 equipped with a set of points with a

trivialization of the tangent space at each point. If β = (D2, l0) and γ = (D2, l1)

are two objects, the module HomH(β, γ) = H(β, γ) is the Homfly skein module

H(D2 × [0; 1], l0 × 0 ∐ l1 × 1). Here the Homfly skein module in M is freely gener-

ated by oriented framed tangles in M modulo (the relative isotopy and) the Homfly

relations given in Figure 3. Note that there we have specialized the three variable

Homfly skein theory for framed links.

We also simply denote by n the object formed by the n points {(2j − 1)/n − 1 :

j = 1, ..., n}, equipped with the standard trivialization.

The positive permutation braids wπ represent a basis of the module Hn, indexed

by permutations π. The symmetrizers and antisymmetrizers in Hn are represented

respectively by the following elements fn and gn of the braid group algebra.

fn =
1

[n]!
s−

n(n−1)
2

∑

π∈Sn

sl(π)wπ ,
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− = (s− s−1)

= α = α−1

L ∪ = α−α−1

s−s−1 L

Figure 3. Homfly skein relations

gn =
1

[n]!
s

n(n−1)
2

∑

π∈Sn

(−s)−l(π)wπ .

Here l(π) is the length of the permutation π. We work in the generic case. This

means that, in the domain k, the quantum integers [j] = sj−s−j

s−s−1 are asked to be

invertible for every j > 0.

For a Young diagram λ of size n, we denote by �λ the object of the category H

formed with one point for each cell c of λ, equipped with the standard trivialization.

If c has index (i, j) (i-th row, and j-th column), then the corresponding point inD2 is
j+i

√
−1

n+1
. Following Aiston and Morton [1], we can define inH2λ

a minimal idempotent

yλ which is a version of the corresponding Young idempotent of the symmetric

group algebra. The idea of the construction is to insert symmetrizers along rows

and antisymmetrizers along columns, and then to normalize. A skein computation

of the normalizing coefficient (of slightly different idempotents) appeared in [24].

Details about the construction of these idempotents can also be found in [5].

A standard tableau t with shape a Young diagram λ = λ(t) is a labeling of the

cells, with the integers 1 to n, which is increasing along rows and columns. We

denote by t′ the tableau obtained by removing the cell numbered by n. We define

αt ∈ H(n,�λ) and βt ∈ H(�λ, n) by

α1 = β1 = 11 ,

αt = (αt′ ⊗ 11)̺tyλ ,

βt = yλ̺
−1
t (βt′ ⊗ 11) .

Here ̺t ∈ H(�λ(t′) ⊗ 1,�λ) is a standard isomorphism.

The following theorems are shown in [5].
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Theorem 2.1. The family αtβτ for all standard tableaus t, τ such that λ(t) = λ(τ)

forms a basis for Hn, and (here δτs is the Kronecker delta)

αtβταsβσ = δτsαtβσ .

This gives explicitly an algebra isomorphism
⊕

|λ|=n
Mdλ

(k) ≈ Hn ,

where dλ is the number of standard tableaus with shape λ, and Mdλ
(k) is the algebra

of dλ × dλ matrices with coefficients in k. The diagonal elements pt = αtβt are the

path idempotents described in [21]. The minimal central idempotent corresponding

to the partition λ is

zλ =
∑

λ(t)=λ

pt .

The minimal idempotents yλ and the path idempotents pt satisfy the following

branching formula.

Theorem 2.2 (Branching formula).

yλ ⊗ 11 =
∑

λ⊂µ
|µ|=|λ|+1

(yλ ⊗ 11)yµ(yλ ⊗ 11) ,

pt ⊗ 11 =
∑

τ ′=t

pτ .

We have omitted in these formulas the standard isomorphisms respectively between

�λ ⊗ 1 and �µ, and between (n− 1) ⊗ 1 and n.

The result for the quantum dimensions is given in the following theorem [21].

Here we denote by 〈 〉h the quantum trace in the ribbon Hecke category.

Theorem 2.3 (Quantum dimension).

〈yλ〉h =
∏

cells

αscn(c) − α−1s−cn(c)

shl(c) − s−hl(c)

The assertion above can be proven by a skein calculation (see [24, Prop.2.4] or

[2]). Here is a sketch of the proof. We first check the formula for columns 1n, by

using the recursive formula for the antisymmetrizers y1n . We note [11, Ch.1] that

the right hand side in Theorem 2.3 is the Schur polynomial in the 〈y1n〉h. We then

proceed recursively on the number of cells.

If λ contains two distinct sub-diagrams µ and ν with |µ| = |ν| = |λ|−1, then we get

the result by considering (yµ⊗11)(yν⊗11) (considered as a composition of morphisms

in H2λ
). This defines a quasi-idempotent which can be normalized. Whence we get
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a minimal idempotent which belongs to the simple component indexed by λ, whose

quantum trace gives the required formula.

We obtain the remaining cases, namely the rectangular diagrams, λ = (j, . . . , j)

by using the branching formula for µ = (j, . . . , j, j − 1).

3. Idempotents in Birman-Murakami-Wenzl algebras

The quotient of Kn by the ideal In generated by hn−1 is isomorphic to the Hecke

algebra Hn. We denote by πn the canonical projection map

πn : Kn−→Hn .

The main idea of our construction is to define a multiplicative section sn : Hn → Kn

and to use it for the transport of the idempotents from the Hecke algebra to the

Birman-Murakami-Wenzl one. In this section, we suppose that the ground ring k

is the field Q(α, s). The computation of the quantum dimensions in Section 7 will

permit to discuss the non generic case.

Theorem 3.1. There exists a unique multiplicative homomorphism sn : Hn → Kn,

such that

πn ◦ sn = idHn
and

sn(x)y = ysn(x) = 0 for ∀x ∈ Hn and ∀y ∈ In

Corollary 3.2. Kn
∼= In ⊕Hn

∼= In ⊕
(
⊕|λ|=nMdλ

(k)
)
.

The theorem above gives minimal central idempotents in Kn,

z̃λ = sn(zλ) ,

and also minimal path idempotents,

p̃t = sn(pt) .

The quantum trace of p̃t depends only on λ = λ(t); it is denoted by 〈λ〉. As we

did in Section 2, for each Young diagram λ, we consider an object 2λ whose points

correspond to the cells of λ. From Theorem 3.1, we get the section s2λ
: H2λ

→ K2λ
,

and we obtain a minimal idempotent in K2λ
,

ỹλ = s2λ
(yλ) ∈ K2λ

.

Lemma 3.3. If λ and µ are two distinct Young diagrams with the same size |λ| =

|µ| = n, then for every x ∈ K(2λ,2µ) one has ỹλxỹµ = 0 .



8 ANNA BELIAKOVA AND CHRISTIAN BLANCHET

Proof. We have x = h̃ + y with h̃ = sn(h), h ∈ Hn and y ∈ In. We omit here the

isomorphisms between K(n,2λ) and K(n,2µ). Then

sn(yλ)xsn(yµ) = sn(yλ)h̃sn(yµ) = sn(yλhyµ).

The result follows from the corresponding property in the category H .

We will need the following absorbing property which also results from computation

in the Hecke algebra [5, Cor.1.10].

Lemma 3.4. If ν is a Young diagram obtained from the Young diagram λ by re-

moving one cell, then one has:

ỹλ(ỹν ⊗ 11)ỹλ = ỹλ .

Proof of Theorem 3.1. If the section sn exists, then it is unique. This can be seen

as follows. Let Un be the central idempotent corresponding to the factor In. If s′n is

another section, then we have for every x ∈ Hn

sn(x) − s′n(x) = (sn(x) − s′n(x))Un = 0 .

We will construct the section sn by induction on n. The result is certainly true

for n = 1, since we have that K1 ≈ H1 ≈ k.

Let us assume that we have constructed sm satisfying the conditions of the theo-

rem, for every m < n, so that we have minimal idempotents, p̃t, for every t such

that |λ(t)| < n.

Let λ be a Young diagram whose size is |λ| = n − 1, then we have a minimal

idempotent ỹλ ∈ K2λ
. If ν is a Young diagram included in λ, such that |ν| = n− 2,

then we define ỹ(λ,ν) ∈ K2λ⊗1, by

ỹ(λ,ν) =
〈ν〉
〈λ〉(ỹλ ⊗ 11)(ỹν ⊗ h1)(ỹλ ⊗ 11) .(1)

Here, the standard isomorphisms between 2λ⊗ 1 and 2ν ⊗ 2 are omitted. We need

that the quantum dimensions 〈λ〉, with |λ| = n− 1 are not zero. This result follows

from [7, Theorem 3.7], and will also be proved, by considering the specializations

corresponding to Brauer algebras in the next section.

Lemma 3.5. a) If ν and µ are two distinct Young diagrams of size n− 2, included

in λ, then ỹ(λ,ν)ỹ(λ,µ) = 0 .

b) If ν is a Young diagram of size n− 2, included in λ, then ỹ(λ,ν) is an idempotent.

Proof. By the induction hypothesis we can apply Lemmas 3.3 and 3.4 to Young

diagrams of size m < n. The statement a) follows then from Lemma 3.3 applied to

ν and µ with |ν| = |µ| = n− 2.



IDEMPOTENTS IN BMW ALGEBRAS 9

The square of ỹν is equal to
(

〈ν〉
〈λ〉

)2

times the skein element represented by the

following tangle.

y~

λ

ν

λ

yλ

ν

y

~

~y

y

~

~

Let us consider the intermediate morphism

(ỹν ⊗∪λ/ν)(ỹλ ⊗ 11)(ỹν ⊗ ∩λ/ν)
(the subscript in ∪λ/ν and ∩λ/ν indicate which isomorphism in K(2λ ⊗ 1,2ν ⊗ 2)

is used). The minimality of the idempotent ỹν implies that this morphism is equal

to ỹν , up to a coefficient which is obtained by considering the trace (we use the

absorbing property 3.4).

(ỹν ⊗ ∪λ/ν)(ỹλ ⊗ 11)(ỹν ⊗ ∩λ/ν) =
〈λ〉
〈ν〉 ỹν .(2)

Statement b) follows.

Let t be a standard tableau whose size is n− 1 , with shape λ(t) = λ. We define

at ∈ K(n− 1,�λ) and bt ∈ K(�λ, n− 1) by lifting to the category K the elements

αt and βt defined in Section 2. If αt and βt are represented by linear combinations of

‘braids’ (elements of the braid groupoid), then at and bt are given by the following

formulas.

at = sn−1(1n−1)αt = αtỹλ ,

bt = βtsn−1(1n−1) = ỹλβt .

We then have the formula

p̃t = sn−1(pt) = atbt .

For a Young diagram ν with n − 2 cells, included in λ = λ(t), we define p̃(t,ν) and

p̃+
t ∈ Kn, by

p̃(t,ν) = (at ⊗ 11)ỹ(λ,ν)(bt ⊗ 11) ,

p̃+
t = p̃t ⊗ 11 −

∑

ν⊂λ(t)
|ν|=n−2

p̃(t,ν) .

Using Lemma 3.5, we get the following.
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Lemma 3.6. i) p̃(t,ν)p̃(τ,µ) = δtτδνµp̃(t,ν); ii) p̃+
t p̃

+
τ = δtτ p̃

+
t .

We define a linear homomorphism s′n from the braid group algebra k[Bn] to Kn

by

∀x ∈ k[Bn] s′n(x) =
∑

|λ(t)|=|λ(τ)|=n−1

p̃+
t x p̃

+
τ .(3)

We will show that this homomorphism induces a well defined linear map sn :

Hn → Kn which is a section of πn, and prove multiplicativity. The proof will be

complete with the two following lemmas. 2

Lemma 3.7. p̃+
t y = yp̃+

t = 0 for ∀y ∈ In.

Proof. We want to show that p̃+
t y = 0 for any y ∈ In. We write

y = (a⊗ 11)hn−1(b⊗ 11) .

By the induction hypothesis, we have the result if a is in In−1. So it is enough

to consider the case where a = sn−1(x) for x an element of the matrix units basis

described in Section 2, i.e. for a = aσbτ , where τ and σ are standard tableaus with

the same shape, whose size is n− 1. If σ 6= t, then we have p̃taσ = 0 and the result

follows. It remains to check the case where σ = t.

p̃+
t (atbτ ⊗ 11)hn−1 = p̃+

t (at ⊗ 11)(bτ ′ ⊗ h1)

= (p̃t ⊗ 11)(at ⊗ 11)(bτ ′ ⊗ h1)

−
∑

ν⊂λ

|ν|=n−2

〈ν〉
〈λ(t)〉(at ⊗ 11)(ỹν ⊗ h1)(bt ⊗ 11)(at ⊗ 11)(bτ ′ ⊗ h1)

= (at ⊗ 11)(bτ ′ ⊗ h1)

−〈λ(τ ′)〉
〈λ(t)〉 (at ⊗ 11)(ỹλ(τ ′) ⊗ h1)(ỹλ(t) ⊗ 11)(bτ ′ ⊗ h1)

= 0

The result p̃+
t y = 0 follows; yp̃+

t = 0 can be obtained similarly.

Lemma 3.8. The map s′n induces a well defined multiplicative homomorphism

sn : Hn → Kn

such that πn ◦ sn = idHn
.
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Proof. From Lemma 3.7, we can see that the Homfly skein relation is respected,

whence we have that sn is well defined. We have that πn(p̃
+
t ⊗ 11) = pt ⊗ 11. This

implies that πn ◦ sn = idHn
. The computation below shows the multiplicativity.

sn(x)sn(y) =
∑

t,σ,τ

p̃+
t xp̃

+
σ yp̃

+
τ

=
∑

t,σ,τ

p̃+
t x(p̃σ ⊗ 11)yp̃

+
τ

= sn

(
∑

σ

x(pσ ⊗ 11)y

)

= sn(xy) .

4. Brauer algebras

Brauer centralizer algebras were introduced in [8] in relation with the representa-

tion theory of the orthogonal and symplectic groups (see also [23]). Their structure

was obtained by Wenzl in [22]. We emphasize also Nazarov’s computations of the

action of generators on their irreducible representations in [14]. His work includes

the dimension formulas and inspired our computation of the quantum dimensions

in Section 7.

We have defined the Birman-Murakami-Wenzl algebras Kn by using Kauffman

skein theory. Brauer algebras can be defined in a similar way by using the classical

version of Kauffman relations given in Figure 4.

=

=

L ∐ © = N L

Figure 4. Classical Kauffman skein relations

Here any coefficient ring is allowed, and N could be an indeterminate. If N is

a natural number, then we obtain Brauer algebras with complex coefficients as a

specialization of Birman-Murakami-Wenzl algebras, with coefficient ring C[s±1] and

α = sN−1, by setting s = 1. It is a classical fact [23, Ch.5], that there exists

an algebra homomorphism Φn from this Brauer algebra, denoted by Dn(N), to the

centralizer algebra EndO(N)(V
⊗n), where V = CN is the fundamental representation
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of the orthogonal group O(N). If we denote by (u1, . . . , uN) the canonical basis of

V , then Φn is defined on the generators by

Φn(ei).uj1 ⊗ . . . uji ⊗ uji+1
⊗ . . . ujn = uj1 ⊗ . . . uji+1

⊗ uji ⊗ . . . ujn ,

Φn(hi).uj1 ⊗ . . . uji ⊗ uji+1
⊗ . . . ujn = δjiji+1

n∑

ν=1

uj1 ⊗ . . . ujν ⊗ ujν ⊗ . . . ujn .

In the above, δ is the Kronecker delta. For N ≥ n, this homomorphism is injective.

In fact the above assignment extends to a monoidal functor from the specialized

BMW category, to the linear category. This functor is compatible with the (trivial)

ribbon structures on these categories, and so it respects the ‘quantum’ traces. In

the case of the linear category the quantum trace coincides with the usual one. We

get that, with the given specializations,

∀x ∈ Dn(N) 〈x〉 = trace(Φn(x)) .

In particular, if x is a non trivial idempotent, then its quantum dimension is a non

zero natural number.

The quotient of Dn(N) by the ideal In generated by hn−1 is isomorphic to the

symmetric group algebra C[Sn], the classical counterpart of the Hecke algebra. We

denote by πn the canonical projection map

πn : Dn(N) −→ C[Sn] .

Theorem 4.1. If N is an integer greater or equal to n, then, there exists a multi-

plicative homomorphism sn : C[Sn] → Dn(N), such that

πn ◦ sn = idC[Sn] and

∀x ∈ C[Sn] ∀y ∈ In sn(x)y = ysn(x) = 0 .

Remark 4.2. As a corollary we get a non trivial minimal idempotent p̃t = sn(pt) for

every standard tableau of size n, whose quantum trace is a non zero natural number.

Here pt is the minimal path idempotent in the symmetric group algebra.

Proof. The recursive construction of the preceding section can be done. The only

point to check is that at each step the quantum dimensions 〈λ〉 are not zero. By

the induction hypothesis, we have non trivial minimal idempotents p̃t = sn(pt) for

every standard tableau of size n − 1. If the shape of t is λ, then we have that

〈λ〉 = 〈p̃t〉 = trace(Φ(p̃t)) is a non zero integer.
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Remark 4.3. The above completes the proof of Theorem 3.1. At each step of the

recursive construction, we needed that the quantum dimensions 〈λ〉 with |λ| = n−1

are non zero. This is the case, because they become non zero integers if we apply

the rank N ≥ n Brauer specialization. The same remark shows that Theorem 4.1

holds if N is generic (e.g. for the Brauer algebra with ground field Q(N)).

5. Matrix units in Birman-Murakami-Wenzl algebras

In this section we will describe a matrix units basis in Kn (compare with [15]),

and show the branching formula. Recall that in the categories H and K, for each

Young diagram λ, we have defined an object 2λ whose points correspond to the

cells of λ. In the proof of Theorem 3.1, we have used the section s2λ
: H2λ

→ K2λ

to define a minimal idempotent ỹλ = s2λ
(yλ) ∈ K2λ

.

A sequence Λ = (Λ1, . . . ,Λn) of Young diagrams, in which two consecutive dia-

grams Λi and Λi+1 differ by exactly one cell will be called an up and down tableau of

length n, and shape Λn. Those up and down tableaus of length n such that n = |Λn|
(up tableaus) correspond bijectively with standard tableaus as described in Section

2.

For an up and down tableau Λ of length n, we denote by Λ′ the tableau of length

n − 1 obtained by removing the last Young diagram in the sequence Λ. We define

aΛ ∈ K(n,�Λ) and bΛ ∈ K(�Λ, n) by

a1 = b1 = 11 ,

if |Λn| = |Λn−1| + 1, then

aΛ = (aΛ′ ⊗ 11)ỹΛn

bΛ = ỹΛn
(bΛ′ ⊗ 11) ,

if |Λn| = |Λn−1| − 1, then

aΛ =
〈Λn〉
〈Λn−1〉

(aΛ′ ⊗ 11)(ỹΛn
⊗∩)

bΛ = (ỹΛn
⊗ ∪)(bΛ′ ⊗ 11) .

Here we have omitted the standard isomorphism in K(�Λn−1 ⊗ 1,�Λn
) and in

K(�Λn−1 ⊗ 1,�Λn
⊗ 2). Note that for an up tableau, the definition is coherent with

the one given for the corresponding standard tableau in the proof of Theorem 3.1.

Theorem 5.1. a) The family aΛbΞ for all up and down tableaus Λ,Ξ of length n,

such that Λn = Ξn forms a basis for Kn, and

aΛbΞaLbX = δΞL aΛbX .
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b) There exists an algebra isomorphism
⊕

|λ|=n,n−2,...

M
d
(n)
λ

(k) ≈ Kn ,

where d
(n)
λ is the number of the up and down tableaus of length n with shape λ, and

Md(k) is the algebra of d× d matrices with coefficients in k.

The diagonal elements qΛ = aΛbΛ are the path idempotents associated with the

inclusions Ki ⊂ Ki+1 the minimal central idempotent corresponding to the partition

λ is

z
(n)
λ =

∑

Λn=λ

qΛ .

If Λ corresponds to a standard tableau t (Hecke part), then one has qΛ = p̃t, and if

|λ| = n then z
(n)
λ = z̃λ.

Proof. From Lemma 3.3 if |λ| = |µ|, and from Lemma 3.6 if |λ| 6= |µ|, we get

ỹλK(2λ,2µ)ỹµ = 0 .(4)

This implies that bΛaΞ = 0 if Λ 6= Ξ.

Using the properties 3.4 and 2, we show that, if n is the length of Λ, we have

bΛaΛ = ỹΛn
.

Hence we have that

aΛbΞaLbX = δΞL aΛbX .

The independence follows.

To show that the family aΛbΞ generate Kn, we proceed recursively on n. Using

the map sn, we see from the known result in Hn that the aΛbΞ, where Λn and Ξn
is the same Young diagram with n cells, generate the Hecke part H̃n = sn(Hn) of

Kn. It remains to consider In. From the induction hypothesis, we get that In is

generated by the following elements

(aΛ ⊗ 11)(bΞ ⊗ 11)hn−1(aL ⊗ 11)(bX ⊗ 11) .

These are zero if Ξ′ 6= L′, and else are equal to

〈Λn−1〉
〈λ〉 a(Λ,λ)b(X,λ) ,

where λ = Ξ′
n−2 = L′

n−2.

The path idempotents qΛ satisfy the following branching formula.
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Theorem 5.2 (Branching formula).

qΛ ⊗ 11 =
∑

Ξ′=Λ

qΞ .

We recall that in the above formula the shape of Ξ is either one cell more, either

one cell less than the shape of Λ.

Proof. The coordinates of qΛ ⊗ 11 in the standard basis are obtained by computing

bΞ(qΛ ⊗ 11)aL. The result is zero unless Ξ and L have the same shape µ and

L′ = Ξ′ = Λ; and in the latter case the result is ỹµ.

As a corollary we also have a branching formula for the minimal idempotents ỹλ
(the obvious isomorphisms are omitted).

Corollary 5.3.

ỹλ ⊗ 11 =
∑

λ⊂µ

|µ|=|λ|+1

(ỹλ ⊗ 11)ỹµ(ỹλ ⊗ 11) +
∑

ν⊂λ

|ν|=n−1

ỹ(λ,ν) .

Proof. We can decompose ỹλ⊗1 by using the minimal central idempotents in K|λ|+1.

We get

ỹλ ⊗ 1 =
∑

Ξ

(ỹλ ⊗ 11)qΞ(ỹλ ⊗ 11) .

In the above, only those up and down tableaus Ξ with Ξ|λ| = λ contribute.

6. Braiding and twist coefficients

Proposition 6.1. i) (Twist coefficient) Let ỹµ ∈ K2µ
be the minimal idempotent,

then

y~µ
= α|µ|s2

∑
c⊂µ cn(c)ỹµ .(5)

Here the content of a cell c in the i-th row and the j-th column of µ is defined by

cn(c) := j − i.
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ii) (Braiding coefficient) Suppose that λ ⊂ µ and µ − λ contains only one cell c.

Then

~y

y~

~y

µ

µ

λ = s2cn(c)ỹµ .(6)

Suppose that µ ⊂ λ and λ− µ contains only one cell c, then

y~

~yλ

~y(λ,µ)

(λ,µ)

= α−2s−2cn(c)ỹ(λ,µ) .(7)

Proof. The statements (5) and (6) follow from the corresponding in the Hecke algebra

(see [5, Prop.1.11]). Using the definition of the idempotent ỹ(λ,µ), we can bring (7)

to the form (〈µ〉
〈λ〉

)2

(ỹλ ⊗ 11)
(
(ỹµxỹµ) ⊗ hλ/µ

)
(ỹλ ⊗ 11) ,

where x ∈ K2µ
is depicted below.

~

~

yλ

yλ

By the Schur lemma, ỹµxỹµ = cỹµ with c ∈ k. Taking the quantum trace of this

morphism, we get

〈ỹµxỹµ〉 = α−2s−2cn(c)〈λ〉 = c〈µ〉 .
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The first equality is due to the Kauffman skein relations and the statement (6)

above.

7. Quantum dimension

The formula for the quantum dimension 〈λ〉 was obtained by Wenzl [20, Theorem

5.5]. The proof there rests on the representation theory of the quantum group

Uqso(2n + 1). We give below an alternative proof for this formula. Our method is

inspired by the Nazarov computation of the matrix elements of the action of the

hook generators on the canonical basis of the irreducible representations of Brauer

algebras [14]. Here we work with scalar field k = Q(s, α), hence we have that all the

quantum dimensions 〈λ〉 are invertible.

Suppose that λ = (λ1, . . . , λm) is obtained from µ by adding one cell in the ith

row. Let l be the number of pairwise distinct rows in the diagram µ. Then one can

obtain l+ 1 diagrams by adding a cell to µ, and l diagrams by removing a cell from

µ. Let c1, . . . , cl+1 and d1, . . . , dl be the contents (defined in Prop.6.1) of these cells

respectively. Denote by b1, . . . , b2l+1 the scalars

αs2c1, . . . , αs2cl+1,

α−1s−2d1 . . . , α−1s−2dl,

and by b the value among b1, . . . , bl+1 corresponding to the diagram λ.

Theorem 7.1. One has

〈λ〉
〈µ〉 = αb−1

(
b− b−1

s− s−1
+ 1

)∏

bj 6=b

b− b−1
j

b− bj
.(8)

Proof. Let τn be the element of the algebra Kn defined below.

τn =

...

...

For i > 0 the equation in Kn+1,

hn(τ
i
n ⊗ 11)hn = Z(i)

n ⊗ h1 ,
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defines a central element Z
(i)
n in Kn−1. We consider the formal power series in u−1,

Zn(u) =
∑

i≥0

Z(i)
n u

−i .

We have that

Zn(u) ⊗ h1 = hn

(
u

u− τn
⊗ 11

)
hn .

We denote by Zn(µ, u) the series given by the action of Zn(u) on the simple compo-

nent of Kn−1 indexed by µ.

A canonical basis of Kn is given in Theorem 5.1. Let Λ be an up and down

tableau, whose length is n + 1, and such that

Λn−1 = Λn+1 = µ and Λn = λ .

Write the products hnqΛ and qΛhn in the canonical basis.

hnqΛ =
∑

Ξn+1=µ

hn(Ξ,Λ)aΞbΛ and qΛhn =
∑

Ξn+1=µ

h′n(Λ,Ξ)aΛbΞ .

Let JΛ be the set of up and down tableaus Ξ = (Ξ1, . . . ,Ξn+1) such that Ξm = Λm

for every m 6= n. By considering qΞhnqΛ (resp. qΛhnqΞ), we get

hnqΛ =
∑

Ξ∈JΛ

hn(Ξ,Λ)aΞbΛ and qΛhn =
∑

Ξ∈JΛ

h′n(Λ,Ξ)aΛbΞ .

Using the three lemmas below the proof can be accomplished as follows. From

Lemma 7.2, Lemma 7.3 and (10) we have

〈λ〉
〈µ〉 = resu=b

Z(µ, u)

u
= resu=b

Q(µ, u)

u

The required formula follows now from (12).

Lemma 7.2. One has

hn(Λ,Λ) = h′n(Λ,Λ) =
〈λ〉
〈µ〉 .

Proof. Let Λ′ be as usual obtained by removing the last term in the sequence Λ. We

have

qΛ = aΛbΛ =
〈µ〉
〈λ〉 (aΛ′ ⊗ 1)(ỹµ ⊗ hλ/µ)(bΛ′ ⊗ 1)

We will obtain the diagonal term hn(Λ,Λ) by computing the quantum trace of hnqΛ.

hn(Λ,Λ)〈µ〉 = 〈hnqΛ〉 =
〈µ〉
〈λ〉〈T 〉 ,

where T is represented in the picture below.
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T =
aΛ

bΛ

Clearly, 〈T 〉 = 〈λ〉2〈µ〉−1 and we get the required result for hn(Λ,Λ); h′n(Λ,Λ) is

calculated similarly.

Let us denote by resu=b
Z(µ,u)
u

the residue of Z(µ,u)
u

at u = b, i.e. the coefficient by

(u− b)−1 in the Laurent expansion of this function in the neighborhood of the point

u = b.

Lemma 7.3.

hn(Λ,Λ) = resu=b
Z(µ, u)

u

Proof. We have that

hn(Zn(u) ⊗ 12)u
−1 = hn((u− τn)

−1 ⊗ 11)hn .

Multiplying on the left by qΛ, we can express the above formula in the canonical

basis. We denote by ζΛ the diagonal term of index Λ. From the left hand side, we

get

ζΛ = hn(Λ,Λ)Z(µ, u)u−1 .

Let us compute the coefficient from the right hand side.

ζΛqΛ = qΛhn((u− τn)
−1 ⊗ 11)hnqΛ

=
∑

L∈JΛ

∑

Ξ∈JΛ

h′n(Λ, L)hn(Ξ,Λ)aΛbL((u− τn)
−1 ⊗ 11)aΞbΛ

.

In the the above sum, the term of indices L and Ξ is zero unless L = Ξ, and in this

case the action of τn multiplies by the coefficient among b1, . . . , b2l+1 corresponding to

the Young diagram Ξn. These coefficients are distinct, and we know that hn(Λ,Λ) =
〈λ〉
〈µ〉 is not zero. This implies that Z(µ, u)u−1 is a rational function in u, whose residue

at u = b is equal to hn(Λ,Λ).

The problem is now to compute the series Z(µ, u). We set

Qn(u) = Zn(u) +
α−1

s− s−1
− u2

u2 − 1
,(9)

Q(µ, u) = Z(µ, u) +
α−1

s− s−1
− u2

u2 − 1
.(10)
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Lemma 7.4.

Qn+1(u)

(
1

u
− (s− s−1)2 τn

(u− τn)2

)
= (Qn(u) ⊗ 11)

(
1

u
− (s− s−1)2 τ−1

n

(u− τ−1
n )2

)(11)

Q(µ, u) =

(
α

s− s−1
+

uα

u2 − 1

)∏

j

u− b−1
j

u− bj
(12)

Proof. In the following computations, we will drop some 11. This means that by

drawing the figures corresponding to these computation, one may have to add a

vertical string on the right in order to get coherent equalities. For example, we

write

e−1
n τn+1 = τnen .(13)

From the above, using the skein relation, we obtain

e−1
n (u− τn+1) = (u− τn)e

−1
n − (s− s−1)τn(1n+1 − hn) ,(14)

(u− τn)en = en(u− τn+1) + (s− s−1)(1n+1 − hn)τn+1 .(15)

This implies the following equalities for the formal series

1

u− τn
e−1
n = e−1

n

1

u− τn+1

− (s− s−1)
τn

u− τn
(1n+1 − hn)

1

u− τn+1

,(16)

en
1

u− τn+1
=

1

u− τn
en + (s− s−1)

1

u− τn
(1n+1 − hn)

τn+1

u− τn+1
.(17)

We also have the formula symmetric to (17)

1

u− τn+1
en = en

1

u− τn
+ (s− s−1)

τn+1

u− τn+1
(1n+1 − hn)

1

u− τn
.(18)

We note that τn and τn+1 commute, and that

hnτ
i
n+1 = hnτ

−i
n .

Multiplying (16) on the left by en, we get

en
1

u−τn e
−1
n = 1

u−τn+1
− (s− s−1)en

1
u−τn+1

τn
u−τn

+(s− s−1)en
u

u−τnhn
1

u−τ−1
n

− (s− s−1)enhn
1

u−τ−1
n

.



IDEMPOTENTS IN BMW ALGEBRAS 21

Using (17), (18) and the skein relations, we get

en
1

u−τn e
−1
n = 1

u−τn+1
− (s− s−1)α−1hn

1
u−τ−1

n

−(s− s−1) 1
u−τn en

τn
u−τn − (s− s−1)2 1

u−τn
τn+1

u−τn+1

τn
u−τn

+(s− s−1)2 1
u−τnhn

τ−1
n

u−τ−1
n

τn
u−τn + (s− s−1) u

u−τn+1
α−1hn

1
u−τ−1

n

−(s− s−1)2u τn+1

u−τn+1

1
u−τnhn

1
u−τ−1

n
+ (s− s−1)2u τ−1

n

u−τ−1
n
hn

1
u−τnhn

1
u−τ−1

n
.

We multiply on each side by hn+1, and use the relations

hn+1hnhn+1 = hn+1 , hn+1enhn+1 = αhn+1 and τnhn+1 = hn+1τn .

Zn(u)
u
hn+1 =

(
Zn+1(u)

u
− (s− s−1)α−1 1

u−τ−1
n

−(s− s−1)α τn
(u−τn)2

− (s− s−1)2 τn
(u−τn)2

(Zn+1(u) − α−α−1

s−s−1 − 1)

+(s− s−1)2 1
(u−τn)2(u−τ−1

n )
+ (s− s−1) uα−1

(u−τ−1
n )2

− (s− s−1)2u τ−1
n

(u−τn)(u−τ−1
n )2

+ (s− s−1)2 τ−1
n

(u−τ−1
n )2

Zn(u)
)
hn+1 .

The recursive formula (11) can be deduced. It can be written

Qn+1(u) = Qn(u)

(
(u− τn)

2

(u− τ−1
n )2

(u− s−2τ−1
n )(u− s2τ−1

n )

(u− s−2τn)(u− s2τn)

)
.

Hence we have that

Q(λ, u) = Q(µ, u)

(
(u− b)2

(u− b−1)2

(u− s−2b−1)(u− s2b−1)

(u− s−2b)(u− s2b)

)
.

Recall that b = αs2cn(λ/µ) is the eigenvalue of τn corresponding to qΛ′ . The formula

(12) is then established recursively. Note that

Z(1, u) =
u

u− α

(
α− α−1

s− s−1
+ 1

)
.

Whence we have the formula for Q(1, u).

Using Theorem 7.1 we can deduce Wenzl’s dimension formula [20, Theorem 5.5].

Here λ∨ denote the transposed Young diagram, so that λ∨j is the length of the jth

column of λ. Let n ∈ N and d ∈ Z, we set

[y + d] =
αsd − α−1s−d

s− s−1
, [n] =

sn − s−n

s− s−1
.

Theorem 7.5 (Wenzl’s formula).

〈λ〉 =
∏

(j,j)∈λ

[y + λj − λ∨j ] + [hl(j, j)]

[hl(j, j)]

∏

(i,j)∈λ
i6=j

[y + dλ(i, j)]

[hl(i, j)]
(19)
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Here, hl(i, j) denote the hook-length of the cell (i, j), i.e. hl(i, j) = λi+λ
∨
j−i−j+1,

and dλ(i, j) is defined by

dλ(i, j) =

{
λi + λj − i− j + 1 if i ≤ j

−λ∨i − λ∨j + i+ j − 1 if i > j .

If we define d′λ(i, j) by

d′λ(i, j) =

{
λi + λj − i− j + 1 if i < j

−λ∨i − λ∨j + i+ j − 1 if i ≥ j,

then we can write Wenzl’s formula as follows.

〈λ〉 =
∏

(i,j)∈λ

α
1
2 s

1
2
dλ(i,j) − α− 1

2s−
1
2
dλ(i,j)

s
1
2
hl(i,j) − s−

1
2
hl(i,j)

∏

(i,j)∈λ

α
1
2 s

1
2
d′

λ
(i,j) + α− 1

2 s−
1
2
d′

λ
(i,j)

s
1
2
hl(i,j) + s−

1
2
hl(i,j)

(20)

Note. It would be nice to interpret the above formula by decomposing λ as a tensor

product of two objects in some bigger category.

Proof. We will prove the formula (20). We first write the recursive formula (8) in

a more convenient form. We denote by (i, λi) = (λ∨i′, i
′) the unique cell in the skew

diagram λ/µ.

〈λ〉
〈µ〉 =

(
αs2λi−2i−α−1s−2λi+2i

s−s−1 + 1
)

×∏j<i
(αsλi−i+λj−j+1−α−1s−λi+i−λj+j−1)(sλi−i−λj+j−s−λi+i+λj−j)

(αsλi−i+λj−j−α−1s−λi+i−λj+j)(sλi−i−λj+j−1−s−λi+i+λj−j+1)

×∏j′<i′
(αs

−λ∨
i′

+i′−λ∨
j′

+j′−1−α−1s
λ∨

i′
−i′+λ∨

j′
−j′+1

)(s
−λ∨

i′
+i′+λ∨

j′
−j′−sλ∨

i′
−i′−λ∨

j′
+j′

)

(αs
−λ∨

i′
+i′−λ∨

j′
+j′

−α−1s
λ∨

i′
−i′+λ∨

j′
−j′

)(s
−λ∨

i′
+i′+λ∨

j′
−j′+1

−s
λ∨

i′
−i′−λ∨

j′
+j′−1

)

(21)

Here the first big product gives the contribution of the coefficients bξ corresponding

to cells in the rows 1 to i − 1. Note that some factors cancel if two among these

rows have equal length.

We can write 〈λ〉 = ψλ(α
1
2 , s

1
2 )ψ′

λ(α
1
2 , s

1
2 ), where ψλ and ψ′

λ satisfy the following

recursive formulas.
ψλ(β,t)
ψµ(β,t)

= βt2λi−2i+1−β−1t−2λi+2i−1

t−t−1

×∏j<i
(βtλi−i+λj−j+1−β−1t−λi+i−λj+j−1)(tλi−i−λj+j−t−λi+i+λj−j)

(βtλi−i+λj−j−β−1t−λi+i−λj+j)(tλi−i−λj+j−1−t−λi+i+λj−j+1)

×∏j′<i′
(βt

−λ∨
i′

+i′−λ∨
j′

+j′−1−β−1t
λ∨

i′
−i′+λ∨

j′
−j′+1

)(t
−λ∨

i′
+i′+λ∨

j′
−j′−tλ

∨
i′
−i′−λ∨

j′
+j′

)

(βt
−λ∨

i′
+i′−λ∨

j′
+j′

−β−1t
λ∨

i′
−i′+λ∨

j′
−j′

)(t
−λ∨

i′
+i′+λ∨

j′
−j′+1

−t
λ∨

i′
−i′−λ∨

j′
+j′−1

)

ψ′
λ
(β,t)

ψ′
µ(β,t)

= βt
−2λ∨

i′
+2i′−1

+β−1t
2λ∨

i′
−2i′+1

t+t−1

×∏j<i
(βtλi−i+λj−j+1+β−1t−λi+i−λj+j−1)(tλi−i−λj+j+t−λi+i+λj−j)

(βtλi−i+λj−j+β−1t−λi+i−λj+j)(tλi−i−λj+j−1+t−λi+i+λj−j+1)

×∏j′<i′
(βt

−λ∨
i′

+i′−λ∨
j′

+j′−1
+β−1t

λ∨
i′
−i′+λ∨

j′
−j′+1

)(t
−λ∨

i′
+i′+λ∨

j′
−j′

+t
λ∨

i′
−i′−λ∨

j′
+j′

)

(βt
−λ∨

i′
+i′−λ∨

j′
+j′

+β−1t
λ∨

i′
−i′+λ∨

j′
−j′

)(t
−λ∨

i′
+i′+λ∨

j′
−j′+1

+t
λ∨

i′
−i′−λ∨

j′
+j′−1

)
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By induction, we can obtain the general formulas for ψλ(β, t) and ψ′
λ(β, t).

ψλ(β, t) =
∏

(i,j)∈λ

βtdλ(i,j) − β−1t−dλ(i,j)

thl(i,j) − t−hl(i,j)

ψ′
λ(β, t) =

∏

(i,j)∈λ

βtd
′
λ
(i,j) + β−1t−d

′
λ
(i,j)

thl(i,j) + t−hl(i,j)

Whence we get (20).

The following proposition gives the quantum dimension formulas for the special-

izations corresponding to the quantum groups of B,C,D series (compare [9]). We

consider here only partitions with at most n rows.

Proposition 7.6. a) For α = s2n (Bn specialization), one has for a partition λ =

(λ1, ..., λn) (which may have zero coefficients),

〈λ〉 =

n∏

j=1

[n + λj − j + 1/2]

[n− j + 1/2]

∏

1≤i<j≤n

[2n+ λi − i+ λj − j + 1][λi − i− λj + j]

[2n− i− j + 1][j − i]

b) For α = s2n−1 (Dn specialization), one has for a partition λ = (λ1, ..., λn),

〈λ〉 =
∏

1≤i<j≤n

[2n+ λi − i+ λj − j][λi − i− λj + j]

[2n− i− j][j − i]
if λn = 0;

〈λ〉 = 2
∏

1≤i<j≤n

[2n+ λi − i+ λj − j][λi − i− λj + j]

[2n− i− j][j − i]
if λn 6= 0;

c) For α = −s2n+1 (Cn specialization), one has for a partition λ = (λ1, ..., λn),

〈λ〉 = (−1)|λ|
n∏

j=1

[2n + 2 + 2λj − 2j]

[2n+ 2 − 2j]

∏

1≤i<j≤n

[2n+ 2 + λi − i+ λj − j][λi − i− λj + j]

[2n+ 2 − i− j][j − i]

Note. Observing that 〈λ〉α,s = 〈λ∨〉α,−s−1 = 〈λ∨〉−α−1,s , we get formulas for the

specializations which are symmetric to the above ones (compare with [9]). For

example, for α = s−2n−1, one has for a partition λ whose first part λ1 is at most n,

and whose transposed partition is λ∨ = (λ∨1, ..., λ
∨
n),

〈λ〉 = (−1)|λ|
n∏

j=1

[2n + 2 + 2λ∨j − 2j]

[2n+ 2 − 2j]

∏

1≤i<j≤n

[2n+ 2 + λ∨i − i+ λ∨j − j][λ∨i − i− λ∨j + j]

[2n + 2 − i− j][j − i]

Proof. Suppose that λ = (λ1, . . . , λn), and that µ is obtained from the Young di-

agram λ by removing one cell from the ith row, then we can write the recursive

formula (21) as follows.
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If i = n and λn = 1, then

〈λ〉
〈µ〉 =

(
αs2−2n−α−1s−2+2n

s−s−1 + 1
)

×∏j<n
(αsλn−n+λj−j+1−α−1s−λn+n−λj+j−1)(sλn−n−λj+j−s−λn+n+λj−j)

(αsλn−n+λj−j−α−1s−λn+n−λj+j)(sλn−n−λj+j−1−s−λn+n+λj−j+1)
,

(22)

else

〈λ〉
〈µ〉 =

(
αs2λi−2i−α−1s−2λi+2i

s−s−1 + 1
)

×∏1≤j≤n
j 6=i

(αsλi−i+λj−j+1−α−1s−λi+i−λj+j−1)(sλi−i−λj+j−s−λi+i+λj−j)

(αsλi−i+λj−j−α−1s−λi+i−λj+j)(sλi−i−λj+j−1−s−λi+i+λj−j+1)

× (s−s−1)

(αs2λi−2i−1−α−1s−2λi+2i+1)
× (αs−n+λi−i−α−1sn−λi+i)

(sn+λi−i−s−n−λi+i)

(23)

In the a) case, α = s2n, if i = n and λn = 1, we get

〈λ〉
〈µ〉 = (s+ 1 + s−1)

∏

1≤i<n

[n+ λj − j + 2][1 − n− λj + j]

[n + λj − j + 1][−n− λj + j]
,

else

〈λ〉
〈µ〉 =

[n + λi − i+ 1/2]

[n+ λi − i− 1/2]

∏

1≤j≤n
j 6=i

[2n+ λi − i+ λj − j + 1][λi − i− λj + j]

[2n+ λi − i+ λj − j][λi − i− λj + j − 1]
.

The announced result follows. In the b) case, α = s2n−1, if i = n and λn = 1, we get

〈λ〉
〈µ〉 = 2

∏

1≤i<n

[n+ λj − j + 1][1 − n− λj + j]

[n+ λj − j][−n− λj + j]
,

else
〈λ〉
〈µ〉 =

∏

1≤j≤n
j 6=i

[2n + λi − i+ λj − j][λi − i− λj + j]

[2n+ λi − i+ λj − j − 1][λi − i− λj + j − 1]
.

The formulas in b) follow. In the c) case, α = −s2n+1, if i = n and λn = 1, we get

〈λ〉
〈µ〉 = −(s2 + s−2)

∏

1≤i<n

[n+ 3 + λj − j][1 − n− λj + j]

[n + 2 + λj − j][−n− λj + j]
,

else

〈λ〉
〈µ〉 = − [2n + 2 + 2λi − 2i]

[2n+ 2λi − 2i]

∏

1≤j≤n
j 6=i

[2n+ 2 + λi − i+ λj − j][λi − i− λj + j]

[2n+ 1 + λi − i+ λj − j][λi − i− λj + j − 1]
.

The formula follows.
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8. Formulas for the idempotents and the non generic case

We conclude this paper with a summary of conditions needed to define our mini-

mal idempotents p̃t and ỹλ. This is of importance in the non generic case where α

and s are roots of unity and some of quantum integers [m] are non invertible.

Let µ is a Young diagram obtained from λ by removing one cell. From Corollary

5.3 we get a formula for the idempotent ỹλ. Here we denote by ŷλ ∈ K2λ
any lifting

of yλ ∈ H2λ
. We have

ŷλ(ỹµ ⊗ 11)ŷλ =
∑

µ⊂ν
|ν|=|λ|

ŷλ(ỹµ ⊗ 11)ỹν(ỹµ ⊗ 11)ŷλ +
∑

ν⊂µ
|ν|=|λ|−2

ŷλỹ(µ,ν)ŷλ .

Note that the first sum on the right hand side lives in the Hecke summand of K2λ
,

hence in each term we can replace ŷλ by ỹλ. By using Lemmas 3.3 and 3.4 we get:

ỹλ = ŷλ(ỹµ ⊗ 11)ŷλ −
∑

ν⊂µ

|ν|=|λ|−2

ŷλỹ(µ,ν)ŷλ(24)

From the above formula we obtain a minimal idempotent ỹλ if the following three

conditions are satisfied:

• the quantum integer [m] is non zero for any m < λ1 + λ∨1 ;

• the idempotent ỹµ is defined for some µ ⊂ λ, |µ| = |λ| − 1;

• the coefficient 〈µ〉
〈ν〉 given in Theorem 7.1 is nonzero for any ν ⊂ µ ⊂ λ, |ν| =

|µ| − 1 = |λ| − 2.

Let t be a standard tableau, with shapes λ(t) = λ, and λ(t′) = µ. Then from the

general formula 3 for the section sn (n = |λ|), we get

p̃t = p̃+
t′ p̂t p̃

+
t′ .(25)

Here p̂t is any lifting in Kn of the path idempotent pt ∈ Hn. We obtain a minimal

idempotent p̃t if the following three conditions are satisfied:

• the quantum integer [m] is non zero for any m < λ1 + λ∨1 ;

• the idempotent ỹµ is defined;

• the coefficient 〈µ〉
〈ν〉 given in Theorem 7.1 is nonzero for any ν ⊂ µ ⊂ λ, |ν| =

|µ| − 1 = |λ| − 2.
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