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Introduction

These notes grew out of four introductory lectures on Local Cohomology, held at the

International Workshop
on Commutative Algebra and Algebraic Geometry

St. Joseph’s College, Irinjalakuda, 18. - 23. July 2005

The aim of these lectures was to give a first introduction to Local Cohomology, encouraging
the audience to penetrate further in the subjects along the lines of the lecture notes [B] and
[B-F] and the textbook [B-S].

In particular we suggest to the reader, which is not familiar yet with the subject, to consult
in a next step the lecture notes [B-F], which are available as PDF. For those readers, who
have already a more extended background in Commutative Algebra, we suggest to go on
directly with [B-S].

Concerning Commutative Algebra we tried to use as far as possible only things which were
treated at the Workshop by introductory lectures, notably: Basics of noetherian rings and
modules, associated primes, Krull dimension, polynomial rings, localization, completion,
graded rings and modules.

We also did use a number of basic results from Algebraic Geometry without giving their
proves. For these results we recommend as a reference [H] or [R]. Moreover, we did state
and use a number of results on Local Cohomology whose proves are found in [B-F] or in
[B-S].
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We also added a number of examples (which in full detail are treated in [B-S]) in order to
illustrate the main results in concrete situations.

As basic references in Commutative Algebra we suggest [E], [M] or [S]. Moreover we added
a few basic references to each of the four lectures in our final bibliography.

Finally, we express our very best thanks to the organizers of the Workshop and the Sisters
of the Congregation of the Holy Family for their kind and generous hospitality during and
after the workshop.

First Lecture: Torsion and Local Cohomology

1 Torsion Functors

Notation 1.1 Let R be a noetherian ring and let a ⊆ R be an ideal. For an R-module M
and a submodule N ⊆M let(

N :
M

a
)

:=
{
m ∈M

⏐⏐am ∈M, ∀a ∈ a
}
.

Observe, that N :
M

a is a submodule of M and that N ⊆ N :
M

a. •

Definition 1.2 The a-torsion submodule of an R-module M is defined by

Γa(M) :=
⋃
n∈N

(
0 :

M
an

)
=

{
m ∈M

⏐⏐∃n ∈ N : anm = 0
}
.

•

Remark and Exercises 1.3 A) Let a, b ⊆ R ideals and let M be an R-module. Then:

a) Γ0(M) = M,ΓR(M) = 0;

b) a ⊆ b =⇒ Γb(M) ⊆ Γa(M);

c) Γ√a(M) = Γa(M);

d) Γa+b(M) = Γb(M) ∩ Γb(M).

B) Moreover
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a) If h : M → N is a homomorphism of R-modules, then h(Γa(M)) ⊆ Γa(N);

b) Γa(M/Γa(M)) = 0.

C) Finally, if the R-module M is finitely generated we can say:

a) ∃n ∈ N : anΓa(M) = 0;

b) ∃m ∈ N : amM ∩ Γa(M) = 0. •

Notation 1.4 A) Let M be an R-module. The set of zero divisiors of R with respect to
M is denoted by ZDR(M), whereas the set of non-zero divisors of R with respect to M is
denoted by NZDR(M), thus:

ZDR(M) := {x ∈ R
⏐⏐∃m ∈M\{0} : xm = 0}; NZDR(M) := R\ZDR(M).

B) The set of prime ideals of R is called the spectrum of R and denoted by Spec(R). If a ⊆ R
is an ideal, the variety of a in Spec(R) is denoted by Var(a), thus:

Var(a) := {p ∈ Spec(R)
⏐⏐a ⊆ p}.

Keep in mind, that the set of all varieties {Var(a)|a ⊆ R an ideal} is the family of closed
sets of a topology on Spec(R): the Zariski topology.

C) If M is an R-module we denote by AssR(M) the set of associated primes of M , thus

AssR(M) :=
{
p ∈ Spec(R)

⏐⏐∃m ∈M :
(
0 :

R
m

)
= p

}
.

Keep in mind that

NZR(M) =
⋃

p∈AssR(M)

p

and that AssR(M) is finite, if M is finitely generated. •

Proposition 1.5 Let M be a finitely generated R-module. Then

a) AssR(Γa(M)) = AssR(M) ∩ Var(a).

b) AssR(M/Γa(M)) = AssR(M)\Var(a).

Proof: [B-F, 1.8]. �
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Remark and Exercise 1.6 A) Fix the ideal a of the noetherian ring R. Let h : M → N
be a homomorphism of R-modules. Then h(Γa(M)) ⊆ Γa(N) (cf 1.3 B) a) ), so that we may
define a homomorphism of R-modules

Γa(h) : Γa(M) → Γa(N), m �→ h(m) =: Γa(h)(m).

B) Using the notation of part A), one easily verifies:

a) Γa(idM) = idΓa(M), where idU denotes the identity map U → U of a set U .

b) Γa(h ◦ �) = Γa(h) ◦ Γa(�), where � : L → M and h : M → N are homomorphisms of
R-modules.

c) Γa(xh) = xΓa(h), where x ∈ R and h : M → N is a homomorphism of R-modules.

C) Moreover it is easy to check that for any exact sequence of R-modules 0 → L
�→M

h→ N ,
the induced sequence of R-modules

0 �� Γa(L)
Γa(�) �� Γa(M)

Γa(h) �� Γa(N)

is exact.

D) Statements a) - d) of part B) tell us, that the assignment

Γa(•) = Γa : (M
h ��N) � �� �� ��(Γa(M)

Γa(h) ��Γa(N))

defines a covariant linear functor in the category of R-modules or – for short – a covariant
functor of R-modules Γa(•) = Γa. By part C), this functor is left exact. •

Definition 1.7 The left exact covariant functor Γa = Γa(•) of 1.6 D) is called the a-torsion
functor. •

Remark and Exercise 1.8 Consider the exact sequence of Z-modules

0 → 2Z → Z → Z/2Z → 0

and show that the 2-torsion functor Γ2Z is not an exact functor. •
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2 Local Cohomology Functors

Again, let R be a noetherian ring and let a ⊆ R be an ideal. Let i ∈ N0. We define the i-th
local cohomology functor with respect to a as the i-th right derived functor of the torsion
functor Γa. We briefly recall this construction:

Reminders 2.1 A) An R-module I is said to be injective, if for each injective homomor-

phism of R-modules M �� h �� N and each homomorphism of R-modules � : M → I there is

a homomorphism of R-modules �̃ : N → I such that �̃ ◦ h = �.

B) The Lemma of Eckmann-Schopf says, that each R-module M is a submodule of an
injective R-module. •

Reminder 2.2 A) A cocomplex of R-modules (M•, d•) is a sequence of R-modules

· · · �� M i−1 di−1
�� M i di

�� M i+1 di+1
�� M i+2 �� · · ·

such that Im(di−1) ⊆ Ker(di) for all i ∈ Z. A cocomplex of the form

· · ·0 �� 0 �� 0 · · · �� 0 �� M i di
�� M i+1 �� · · ·

shall be written as 0 �� M i di
�� M i+1 �� · · · .

B) Let (M•, d•) and (N•, e•) be cocomplexes of R-modules. By a homomorphism of cocom-
plexes (of R-modules)

h• : (M•, d•) → (N•, e•)

we mean a family (hi)i∈Z of homomorphism of R-modules which give rise to the following
commutative diagram:

. . . �� M i−1 di−1
��

hi−1

��

M i di
��

hi

��

M i+1 ��

hi+1

��

. . .

. . . �� N i−1 ei−1
�� N i ei

�� N i+1 �� . . .

.

Observe, that we have the identity homomorphism

(idMn)n∈Z =: id(M•,d•) : (M•, d•) → (M•, d•)

of cocomplexes and the composition

h• ◦ �• := (hn ◦ �n) : (L•, f •) → (N•, e•)
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of two homomorphisms of cocomplexes �• : (L•, f •) → (M•, d•) and h• : (M•, d•) → (N•, e•).
Moreover, we define the sum

h• + �• := (hn + �n)n∈Z : (M•, d•) → (N•, e•)

of two homomorphisms of cocomplexes

h•, �• : (M•, d•) → (N•, d•)

and the product
xh• = (xhn)n∈Z : (M•, d•) → (N•, e•)

of the homomorphism of cocomplexes h• : (M•, d•) → (N•, e•) with x ∈ R.

It turns out that the cocomplexes of R-modules form a category. Moreover, if (M•, d•) and
(N•, e•) are cocomplexes of R-modules, the set

HomR((M•, d•), (N•, e•)) =

{
h•

⏐⏐⏐⏐⏐ h• : (M•, d•) → (N•, d•) is a
homomorphism of cocomplexes

}

carries a natural structure of R-module. This structure is compatible with composition in
the obvious sense. So, the category of cocomplexes of R-modules is an R-linear category . . .

C) Let (M•, d•) be a cocomplex of R-modules and let n ∈ Z. The n-th cohomology of
(M•, d•) is defined by

Hn(M•, d•) := Ker(dn)/Im(dn−1).

If (N•, e•) is a second cocomplex of R-modules and h• : (M•, d•) → (N•, e•) is a homomor-
phism of cocomplexes, there is an induced homomorphism

Hn(M•, d•)
Hn(h•) �� Hn(N•, e•)

Ker(dn)/Im(dn−1)⋃
�

Ker(en)/Im(en−1)⋃
�

m+ Im(dn−1) � �� hn(m) + Im(en−1)

It is easy to verify, that induced homomorphisms behave well under taking compositions,
sums and products with elements of R:

a) Hn(id(M•,d•)) = idHn(M•,d•);

b) Hn(�• ◦ h•) = Hn(�•) ◦Hn(h•);
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c) Hn(�• + h•) = Hn(�•) +Hn(h•);

d) Hn(x�•) = xHn(�•), (x ∈ R).

So, for fixed n ∈ Z, the assignment

Hn(•) = Hn : ((M•, d•) h•
��(N•, e•)) � �� �� ��

(
Hn(M•, d•)

Hn(h•) ��Hn(N•, e•)
)

defines a (covariant linear) functor from (the category of) cocomplexes of R-modules to (the
category of) R-modules: the n-th cohomology functor. •

Reminder and Exercise 2.3 A) Let h•, �• : (M•, d•) → (N•, e•) be two homomorphisms
of cocomplexes. A homotopy from h• to �• is a family of homomorphisms of R-modules
ti : M i → N i−1 such that

hi − �i = ti+1 ◦ di + ei−1 ◦ ti, (∀i ∈ Z).

If there is such a homotopy from h• to �•, we say that h• is homotopic to �• and write h• ∼ �•.
This defines an equivalence relation on the R-module HomR((M•, d•), (N•, e•)).

B) It is most important for us, that “homotopic homomorphisms of cocomplexes are coho-
mologeous”

h• ∼ �• =⇒ Hn(h•) ∼ Hn(�•),
(
h•, �• ∈ HomR((M•, d•), (N•, e•))

n ∈ Z

)
.

C) Let F be a covariant linear functor of R-modules. Then, for each cocomplex of R-modules

(M•, d•) : · · · �� M i−1 di−1
�� M i di

�� M i+1 �� · · · we get an induced cocomplex

(F (M•), F (d•)) : · · · �� F (M i−1)
F (di−1) �� F (M i)

F (di) �� F (M i+1) �� · · · .

Moreover, if h• : (M•, d•) → (N•, e•) is a homomorphism of cocomplexes, there is an induced
homomorphism of cocomplexes

F (h•) = (F (hn))n∈Z : (F (M•), F (d•)) → (F (N•), F (e•)).

Now, let h•, �• ∈ HomR((M•, d•), (N•, e•)). Then:

a) h• ∼ �• =⇒ F (h•) ∼ F (�•);

b) h• ∼ �• =⇒ Hn(F (h•)) = Hn(F (�•)), (∀n ∈ Z). •
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Reminder and Exercise 2.4 A) Let M be an R-module. A right resolution ((E•, e•); b) of
M consists of a cocomplex of R-modules (E•, e•) for which Ei = 0 for all i < 0, and a homo-

morphism b : M → E0 such that the sequence 0 �� M
b �� E0 d0

�� E1 d1
�� E2 �� · · ·

is exact. (E•, e•) is called a resolving complex for M and b is called a coaugmentation.

B) Let h : M → N be a homomorphism of R-modules, let ((D•, d•); a) be a right resolution
of M and let (E•, e•); b) be a right resolution of N . Then, a right resolution of h between
(D•, d•) and (E•, e•) is a homomorphism of cocomplexes h• : D• → E• such that h0◦a = b◦h.
C) An injective resolution of the R-module M is a right resolution ((I•, d•); a) of M such
that all the R-modules I i are injective. It follows from the Lemma of Eckmann-Schopf (cf
2.1 B) ):

a) Each R-module M has an injective resolution ((I•, d•); a).

Using the defining property of injective modules, we also may prove:

b) Let M
h−→ N be a homomorphism of R-modules, let ((E•, e•); b) be a right resolution

of M and let ((I•, d•); a) be an injective resolution of N . Then, h has a resolution
h• : (E•, e•) → (I•, d•). Moreover, if �• : (E•, e•) → (I•, d•) is a second resolution of
h, then h• ∼ �•.

D) Now, let F = F (•) be a covariant functor of R-modules. It then follows easily by
statement b) of part C) and by 2.3 C) b):

a) Let h : M → N, ((E•, e•); b) and ((I•, d•); a) be as above. Let h•, �• : (E•, e•) → (I•, d•)
be the right resolutions of h. Then Hn(F (h•)) = Hn(F (�•)) for all n ∈ Z.

From this we may deduce:

b) Let ((I•, d•); a) and ((J•, e•); b) be two injective resolutions of the R-mlodule M and
let i• : (I•, d•) → (J•, e•) be a resolution of idM : M → M (which exists by C) a) ).
Then, for each n we have isomorphisms of R-modules

Hn(F (i•)) : Hn(F (I•), F (d•))
∼=−→ Hn(F (J•), F (e•)).

Moreover, if j• : (I•, d•) → (J•, e•) is a second resolution of idM , then

Hn(F (i•)) = Hn(F (j•)) for all n ∈ Z.

•
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Construction and Exercise 2.5 A) By a choice of injective resolutions of R-modules I�

we mean an assignment M � �� �� ��IM = ((I•M , d
•
M); aM) which, to each R-module M assigns an

injective resolution of M . (Such assignments exist by 2.4 C).)

B) Fix a choice of injective resolutions of Rmodules I�. Let F be a covariant functor of
R-modules. For each n ∈ Z set

Rn
I�
F (M) := Hn(F (I•M), F (d•M)).

Let J∗ be a second choice of injective resolutions. For each R-module M let i•M : (I•M , d
•
M) →

(J•M , e
•
M) be a resolution of idM : M → M between IM = ((I•M , d

•
M); aM) and JM =

((J•M , e
•
M); bM ). Then, according to 2.4 D) b) we have isomorphisms

a) Hn(F (i•M)) : Rn
I∗F (M)

∼=−→ Rn
J∗F (M), (∀n ∈ Z)

which in addition depend only on I� and J�. So, up to the isomorphisms of a), the module
Rn

I�
F (M) is independent of the choice of injective resolution I�. Therefore we write

RnF (M) := Rn
I�
F (M).

C) Let I� be as above and let h : M → N be a homomorphism of R-modules. Let h• :
(I•M , d

•
M) → (I•N , d

•
N) be a right resolution of h. By 2.4 D) a), the induced homomorphisms

of R-modules

Hn(F (h•)) :

⎧⎪⎪⎨⎪⎪⎩
Hn(F (I•M), F (d•M)) �� Hn(F (I•N), F (d•N))

RnF (M) RnF (N)

depend only on h and not on the chosen resolution of h. We therefore set

RnF (h) := Hn(F (h•)), (∀n ∈ Z).

It is not hard to verify, that the assignment

RnF (•) = RnF : (M
h ��N) � �� �� ��(RnF (M)

RnF (h) ��RnF (N))

defines a covariant functor of R-modules: the n-th right derived functor RnF of F, (n ∈ Z).
•

Definition 2.6 Let a be an ideal of the noetherian ring R. Let n ∈ Z. The n-th local
cohomology functor Hn

a (•) = Hn
a with respect to a is defined as the n-th right derived functor

of Γa:
Hn

a (•) = Hn
a := RnΓa(•) = RnΓa.

If M is an R-module, Hn
a (M) is called the n-th local cohomology module of M with respect

to a. •
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3 Basic Properties

Remark and Exercise 3.1 A) Let F be a functor of R-modules. Then one has:

a) RnF (M) = 0 for all n < 0 and all R-modules M .

b) If I is an injective R-module, then RnF (I) = 0 for all n > 0.

c) If F is an exact functor, then RnF (M) = 0 for all n > 0 and all R-modules M .

d) If F is left exact, for each R-module M , there is an isomorphism

αM
F : F (M)

∼=−→ R0F (M).

B) Let a be an ideal of the noetherian ring R. Then, by translation we get from the above
statements:

a) Hn
a (M) = 0 for all n < 0 and all R-modules M .

b) If I is an injective R-module, then Hn
a (I) = 0 for all n > 0.

c) For each R-module M , there is an isomorphism of R-modules αM
a : Γa(M)

∼=−→ H0
a(M).

•

C) By 1.3 A) c) we clearly have

a) Hn
a (M) = Hn√

a
(M) for all n ∈ Z and all R-modules M .

Remark and Construction 3.2 A) Let F be a covariant functor of R-modules. Moreover,
let

S : 0 → N
h−→M

�−→ P → 0

be a short exact sequence. Then, one may construct a family of homomorphisms of R-
modules

δn,F
S

:
(RnF (P ) → Rn+1F (N)

)
n∈N0

such that the sequence

a)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 �� R0F (N)

R0F (h) �� R0F (M)
R0F (�) �� R0F (P )

δ0,F
S �� R1F (N)

R1F (h) �� R1F (M)
R0F (�) �� R1F (P )

δ1,F
S �� R2F (N) �� · · ·
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is exact. The homomorphism δn,F
S

is called the n-th connecting homomorphism with respect
to F associated to S. The exact sequence a) is called the right derived sequence with respect
to F associated to S.

Moreover, the construction of the connecting homomorphisms δn,F
S

is natural, that is, it has
the following property:

a) For each commutative diagram of R-modules

S : 0 �� N
h ��

u

��

M
� ��

v

��

P ��

w

��

0

S′ : 0 �� N ′
h′

�� M ′
�′ �� P ′ �� 0

with exact rows S and S′ and for all n ∈ N0 we have the commutative diagram

RnF (P )
δn,F

S ��

RnF (w)

��

Rn+1F (N)

RnF (u)
��

RnF (P ′)
δn,F

S′ �� Rn+1F (N ′)

.

For the construction and th proves of the stated properties of the connected homomorphisms,
we recommend to consult [B-F, 3.5, 3.6 and 3.7].

B) Let a be an ideal of the noetherian ring R and let S : 0 → N
h−→ M

�−→ P → 0 be
a short exact sequence. Then, having in mind the definition 2.6 we have the connecting
homomorphisms with respect to Γa associated to S:

δn,a
S

:= δn,Γa

S
: Hn

a (P ) → Hn+1
a (N).

We call these connecting homomorphisms with respect to a associated to S. These now occur
in the exact sequence

a)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 �� H0

a(N)
H0

a (h) �� H0
a(M)

H0
a (�) �� H0

a(P )
δ0,a

S �� H1
a(N)

H1
a (h) �� H1

a(M)
H1

a (�) �� H1
a(P )

δ1,a
S �� H2

a(N) �� · · ·
which is called the cohomology sequence with respect to a associated to S. This sequence is
natural as was made clear already above. •
C) Let a ⊆ R be as above and let M be an R-module. Let x ∈ NZDR(M). Then, we have a
short exact sequence of R-modules

S : 0 →M
x·−→M

p−→ M/xM → 0,
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in which x· denotes the multiplication map m �→ xm and p denotes the canonical map
m �→ m + xM . As each of the functors Hn

a is linear, we have Hn
a (x·) = Hn

a (x idM) =
xHn

a ( idM) = x idHn
a
(M) = x· : Hn

a (M) → Hn
a (M). So, the cohomology sequence with

respect to a associated to S takes the form:

a)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 �� H0

a(N)
x· �� H0

a(M)
H0

a (p) �� H0
a(M/xM)

δ0,a
S �� H1

a(M)
x· �� H1

a(M)
H1

a (p) �� H1
a(M/xM)

δ1,a
S �� H2

a(M) �� · · · .

This is an exact sequence, which will be used often. •

Definition 3.3 Let a be an ideal of the noetherian ring R. An R-module M is said to be
a-torsion if M = Γa(M). •

Remark and Exercise 3.4 Let a be an ideal of the noetherian ring R. Then:

a) If M is an R-module, Γa(M) is a-torsion.

b) Submodules and homomorphic images of a-torsion modules are a-torsion.

c) A finitely generated R-module M is a-torsion if and only if there is some n ∈ N with
anM = 0. •

Proposition 3.5 Let a be an ideal of the noetherian ring R, let n ∈ N0 and let M be an
R-module. Then the module Hn

a (M) is a-torsion.

Proof. This follows from the construction of Hn
a (M) = RnΓa(M) = Hn(Γa(I

•),Γa(d
•)) =

Ker(Γa(d
n))/Im(Γa(d

n−1)) ⊆ Γa(I
n)/Im(Γa(d

n−1)) on use of 3.4 a), b). �

Proposition 3.6 Let a be an ideal of the noetherian ring R and let I be an injective R-
module. Then Γa(I) is an injective R-module, too.

Proof. [B-F, 3.13] or [B-S]. �

Corollary 3.7 Let a be an ideal of the noetherian ring R and let M be an a-torsion R-
module. Then, M has an injective resolution ((I•, d•); a) in which all the injective modules
In are a-torsion.
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Proof. [B-F, 3.14, 3.15]. �

Theorem 3.8 Let a be an ideal of the noetherian ring R and let M be an a-torsion R-
module. Then Hn

a (M) = 0 for all n > 0.

Proof. By 3.7 the module M has an injective resolution ((I•, d•); a) such that In is a-
torsion for all n ∈ N0. Let n > 0. It follows Hn

a (M) = RnΓa(M) = Hn(Γa(I
•),Γ(d•)) =

Hn(I•, d•) = Ker(dn)/ Im(dn−1) = 0. �

Corollary 3.9 Let a be an ideal of the noetherian ring R. Let M be an R-module and let
N ⊆M be a submodule which is a-torsion. Let M

p−→ M/N be the canonical map. Then

a) H0
a(p) : H0

a(M) → H0
a(M/N) is surjective.

b) Hn
a (p) : Hn

a (M) → Hn
a (M/N) is an isomorphism for all n > 0.

Proof. The cohomology sequence with respect to a and associated to

0 ��N
incl. ��M

p ��M/N �� 0 has the shape

0 �� H0
a(N) �� H0

a(M)
H0

a (p) �� H0
a(M/N)

δ0
�� H1

a(N) �� H1
a(M)

H1
a (p) �� H1

a(M/N) �� · · ·Hn−1
a (M/N)

δn−1
�� Hn

a (N) �� Hn
a (M)

Hn
a (p) �� Hn

a (M/N) �� Hn+1
a (N) �� · · ·

By 3.8 we have Hn
a (N) = 0 for all n > 0. �

Second Lecture: Vanishing Results

4 Grade and Depth

Throughout this section, let R be a noetherian ring and let a ⊆ R be an ideal. If S ⊆ R is a
set of real numbers, we form inf(S) and sup(S) in R ∪ {−∞,∞}, with the convention that
inf(∅) = ∞ and sup(∅) = −∞.

Definition 4.1 The a-depth of a finitely generated R-module M is defined as

ta(M) := inf{i ∈ N0

⏐⏐H i
a(M) �= 0}.

•
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Our goal is to characterize the a-depth of a finitely generated R-module in “non-cohomological
terms”.

Reminder and Exercise 4.2 A) Let M be an R-module. A sequence x1, · · · , xr ∈ R is
called an M-sequence if

xi ∈ NZDR(M/

i−1∑
j=1

xjM), for i = 1, · · · , r.

B) Let M be as above and let x1, · · · , xr ∈ R. Then:

a) x1, · · · , xr is anM-sequence if and only if x1 ∈ NZDR(M) and x2, · · · , xr is anM/x1M-
sequence. •

Definition 4.3 The a-grade of an R-module M is defined by

gradeM(a) :=

{
0, if a ⊆ ZDR(M)

sup
{
r ∈ N

⏐⏐⏐∃x1, · · · , xr ∈ a : x1, · · · , xr is an M-sequence
}
.

If x1, · · · , xr is a sequence of elements of R, we say that r is the length of the sequence. So,
gradeM(a) is 0, if there is no M-sequence consisting of elements of a. Otherwise, gradeM(a)
is the supremum of the lengths of all M-sequence which consist of elements of a. •

Proposition 4.4 Let M be a finitely generated R-module. Let r ∈ N. The following state-
ments are equivalent:

(i) There is an M-sequence x1, · · · , xr ∈ a.

(ii) H i
a(M) = 0 for all i < r.

Proof. “(i) =⇒ (ii)”: (Induction on r). As x1 ∈ a ∩ NZDR(M) we may conclude by 3.1 B)
c) that H0

a(M) ∼= Γa(M) ⊆ Γx1R(M) =
⋃

n∈N
(0 :

M
xn

1R) = 0, and this proves the case r = 1.

Let r > 1. Then x1, · · · , xr−1 ∈ a form an M-sequence. So, by induction H i
a(M) = 0 for all

i < r − 1. It remains to be shown that Hr−1
a (M) = 0. According to 3.2 C) a) we have an

exact sequence
Hr−2

a (M/x1M) → Hr−1
a (M)

x·−→ Hr−1
a (M).

According to 4.2 B) x2, · · · , xr is an M/x1M-sequence. In particular by induction we get
H i

a(M/x1M) = 0 for all i < r − 1. It follows that the map x· : Hr−1
a (M) → Hr−1

a (M) is
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injective, hence, that x ∈ NZDR(Hr−1
a (M)). Consequently xn ∈ NZRR(Hr−1

a (M)) for all
n ∈ N. As Hr−1

a (M) is a-torsion (cf 3.5) and as x ∈ a it follows Hr−1
a (M) = 0.

“(ii) =⇒ (i)”: Assume that H i
a(M) = 0 for all i ∈ {0, · · · , r − 1}. We have to find an

M-sequence x1, x2, · · · , xr ∈ a. In view of 3.1 B) c) we get Γa(M) ∼= H0
a(M) = 0. So,

1.5 a) implies AssR(M) ∩ Var(a) = AssR(Γa(M)) = AssR(0) = ∅ so that a ⊆ p for each
p ∈ AssR(M). As AssR(M) is finite it follows from the Prime Avoidance Principle, that
a �

⋃
p∈AssR(M)

p = ZDR(M) (cf 1.4 C) ), hence that a ∩ NZDR(M) �= ∅. So, there is an

element x1 ∈ a∩NZDR(M). This proves the case r = 1. So, let r > 1. By 3.2 C) a) we have
exact sequences

H i−1
a (M) → H i−1

a (M/x1M) → H i
a(M), (i ∈ N).

These show that Hj
a(M/x1M) = 0 for all j < r − 1. By induction, there is an M/x1M-

sequence x2, · · · , xr consisting of elements xi ∈ a. By 4.2 B) x1, · · · , xr becomes an M-
sequence. �

Theorem 4.5 Let M be a finitely generated R-module. Then ta(M) = gradeM(a).

Proof. Easy from 4.4. �

5 Dimension and Cohomological Dimension

Let R be a noetherian ring and let a ⊆ R be an ideal.

Definition 5.1 The cohomological dimension of the R-module M with respect to a is defined
as:

cda(M) := sup{i ∈ N0

⏐⏐H i
a(M) �= 0}.

•

Reminder and Exercise 5.2 A) Let M be a finitely generated R-module. The dimension
of M is defined as the supremum of lengths of chains of primes in the variety of the annilator
0 :

R
M ⊆ R of M .

dim(M) := sup
{
� ∈ N0

⏐⏐∃p0, p1, · · · , p� ∈ Var(0 :
R
M) : p0 � p1 · · · � p�

}
.

B) Keep in mind the following facts:

a) dim(M) = −∞ ⇐⇒M = 0 ⇐⇒ dim(M) < 0 .
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b) N ⊆M submodule =⇒ dim(N), dim(M/N) ≤ dim(M).

c) x ∈ NZDR(M) =⇒ dim(M/xM) ≤ dim(M) − 1. •

Theorem 5.3 (Vanishing Theorem of Grothendieck): If M is a finitely generated R-module,
then cda(M) ≤ dim(M).

Proof. Let d := dim(M). If d = ∞, there is nothing to prove. If d = −∞, we have M = 0
and hence H i

a(M) = 0 for all i ∈ Z, and our claim is clear. So, let d ∈ N0. We have to
show that H i

a(M) = 0 for all i > d. Let M := M/Γa(M). According to 3.9 b) we have
H i

a(M) ∼= H i
a(M) for all i > 0. By 5.2 B) b) we have d := dim(M) ≤ d. It thus suffices to

show that H i
a(M) = 0 for all i > d. As Γa(M) = 0 (cf 3.1 B) c) ), we may replace M by M

and thus assume that Γa(M) = 0. So, by 4.4 there is an x ∈ a ∩ NZDR(M). According to
3.2 C) a) there are exact sequences

H i−1
a (M/xM) → H i

a(M)
x−→ H i

a(M), (∀i > 0).

As x ∈ a and as H i
a(M) is a-torsion, it suffices to show that H i−1

a (M/xM) = 0 for all i > d (cf
proof of 4.4, “(i) =⇒ (ii)”). Assume first that d = 0. Then, by 5.2 B) c) dim(M/xM) ≤ −1,
hence M/xM = 0 (cf 5.2 B) a) ). It follows that H i−1

a (M/xM) = 0 for all i > 0 = d. So, let
d > 0. By 5.2 B) c) it follows dim(M/xM) ≤ d − 1. Now, by induction H i−1

a (M/xM) = 0
for all i > d. �

6 Arithmetic Rank and Cohomological Dimension

Again, let a be an ideal of the noetherian ring R.

Definition 6.1 The arithmetic rank of a is defined as

ara(a) := inf
{
r ∈ N0

⏐⏐∃x1, · · · , xr ∈ R :

√√√√ r∑
i=1

Rxi =
√

a
}
.

Remark 6.2 If a is generated by r elements x1, · · · , xr, then clearly ara(a) ≤ r. So:

a) ara(a) <∞;

b) ara(a) = 0 ⇐⇒ √
a =

√
0 ⇐⇒ a ⊆ √

0. •
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Remark 6.3 Let b ⊆ R be a second ideal. Then, for each R-module M there is an exact
sequence

0 �� H0
a+b(M) �� H0

a(M) ⊕H0
b(M) �� H0

a∩b(M)

�� H1
a+b(M) �� H1

a(M) ⊕H1
b(M) �� H1

a∩b(M)

�� H2
a+b(M) �� H2

a(M) ⊕H2
b(M) �� · · · ,

the Mayer-Vietoris sequence with respect to a and b associated to M . For the construction
of this sequence see [B-F, (4.11), (4.12), (4.13), (4.14), (4.15)]. For a different approach see
[B-S, Chap. 3]. •

Lemma 6.4 Let x ∈ R and let M be an R-module. Then H i
Rx(M) = 0 for all i > 1.

Proof. Let η : M → Mx := {xn|n ∈ N0}−1M be the natural homomorphism of R-modules
defined by m �→ m

1
for all m ∈ M . Then Ker(η) = ΓRx(M). Let M := M/ΓRx(M); we get

an exact sequence

0 → M
η−→Mx →Mx/η(M) → 0,

where η is defined by m+ ΓRx(M) �→ η(m).

It follows from 3.2 B) that there are exact sequences

H i−1
Rx (Mx/η(M)) → H i

Rx(M) → H i(Mx) → H i
Rx(Mx/η(M)) for all i > 0.

It is easy to verify that Mx/η(M) is Rx-torsion. It follows by 3.8 that

H i−1
Rx (Mx/η(M)) = H i

Rx(Mx/η(M)) = 0 for all i > 1.

Therefore H i
Rx(M) ∼= H i

Rx(Mx) for all i > 1. Moreover, by 3.9 b) we have H i
Rx(M) ∼=

H i
Rx(M) for all i > 0. It thus suffices to show that H i

Rx(Mx) = 0 for all i > 1. Observe,
that the multiplication map x· : Mx → Mx is an isomorphism of R-modules. Therefore
x· = H i

Rx(x·) : H i
Rx(Mx) → H i

Rx(Mx) is an isomorphism, hence injective. As H i
Rx(Mx) is

Rx-torsion, it follows H i
Rx(Mx) = 0 for all i ≥ 0. �

Theorem 6.5 (Vanishing Theorem of Hartshorne): If M is a finitely generated R-module,
then cda(M) ≥ ara(a).

Proof. Let r ∈ N and let a =
∑r

j=1Rxi. According to 3.1 C) a) and 6.2 it suffices to

show that H i
a(M) = 0 for all i > r. The case r = 1 is clear by 6.4. So, let r > 1. We
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write b :=
∑r−1

j=1 Rxi. As a = b +Rxr, the Mayer-Vietoris sequence of the ideals b and Rxr

associated to M yields exact sequences

H i−1
b∩(Rxr)(M) → H i

a(M) → H i
b(M) ⊕H i

Rxr
(M), (∀i > 0).

By induction H i
b(M) = 0 for all i ≥ r. By 6.4 H i

Rxr
(M) = 0 for all i > 1. As

√
b ∩ (Rxr) =

√
b · Rxr =

√∑r−1
j=1 xjxrR we have H i−1

b∩(Rxr)(M) = H i−1∑r−1
j=1 xjxrR

(M) for all i > 0 by 1.3 C)

a). But by induction, the right hand side module vanishes for all i > r. On use of the above
sequences we get H i

a(M) = 0 for all i > r. �

7 Affine Varieties: Numbers of Defining Equations

Reminders 7.1 A) Let r ∈ N, let k be an algebraically closed field and consider the poly-
nomial ring k[x1, · · · , xr]. Let ∅ �= S ⊆ k[x1, · · · , xr]. The algebraic set defined by S is the
set

V (S) := {(c1, · · · , cr) = c ∈ kr
⏐⏐f(c) = 0, ∀f ∈ S}.

We also convene that V (∅) = kr. Algebraic sets V ⊆ kr are often called affine (algebraic)
varieties in kr. If f1, · · · , fn ∈ k[x1, · · · , xn] are finitely many polynomials, we write

V (f1, · · · , fn) := V ({f1, · · · , fn})

and we say that V = V (f1, · · · , fn) is defined by the n-equations fi = 0, i = 1, · · · , n. A
basic question of algebraic geometry asks:

Which is the minimal number n = n(V ) such that a given affine variety V ⊆ kn may be
defined by n equations?

B) It is immediate, that

a) V (S) = V (
∑

f∈S fk[x1, · · · , xn]).

Therefore:

b) Each affine variety V ⊆ kn is of the form V = V (a), with an ideal a ⊆ k[x1, · · · , xr].

As each ideal is finitely generated we conclude from statement a)

c) Each affine variety V ⊆ kn is of the form V = V (f1, · · · , fn), with finitely many
polynomials f1, · · · , fn ∈ k[x1, · · · , xr].
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C) Let V ⊆ kr be an affine variety. The vanishing ideal of V is defined as

I(V ) := {f ∈ k[x1, · · · , xr]
⏐⏐f(V ) = 0}.

This is indeed an ideal of k[x1, · · · , xr] which moreover is radical, that is I(V ) =
√
I(V ).

It is easy to verify that

a) V (I(V )) = V for each affine variety V ⊆ kr.

Moreover, it is a consequence of “Hilbert’s Nullstellensatz”, that

b) I(V (a)) =
√

a for each ideal a ⊆ k[x1, · · · , xr]. •

Now, we can characterize the minimal number of equations needed to define an affine variety.

Theorem 7.2 Let k be an algebraically closed field. Let a be an ideal of the polynomial
ring k[x1, · · · , xr]. Let V = V (a). Then ara(a) = ara(I(V )) and this number is the
smallest number n such that there are n-polynomials f1, · · · , fn ∈ k[x1, · · · , xr] for which
V = V (f1, · · · , fn).

Proof. As I(V ) = I(V (a)) =
√

a (cf 7.1 C) b) ) we have ara(a) = ara(I(V )). Let
f1, · · · , fn ∈ k[x1, · · · , xr] such that V = V (f1, · · · , fn). It follows

√∑n
i=1 fik[x1, · · · , xr] =

I(V (
∑r

i=1 fik[x1, · · · , xr])) = I(V (f1, · · · , fn)) = I(V ) =
√

a, hence n ≥ ara(a).

Let m = ara(a) and let f1, · · · , fm ∈ k[x1, · · · , xr] such that
√∑m

i=1 fik[x1, · · · , xr] =√
a. It follows V (f1, · · · , fm) = V (

∑m
i=1 fik[x1, · · · , xr]) = V (I(V (

∑m
i=1 fik[x1, · · · , xr])))

= V (
√∑m

i=1 fik[x1, · · · , xr]) = V (
√

a) = V (I(V (a))) = V (I(V )) = V (cf 7.2 C) a), b)). �

Corollary 7.3 Let k be an algebraically closed field, let a be an ideal of the polynomial ring
k[x1, · · · , xr] =: R and let c = cda(R). Then, one needs at least c equations to define the
affine variety V = V (a) ⊆ kn.

Proof. Clear by 7.2 and 6.5. �

Exercise 7.4 Consider the polynomial ring k[x1, · · · , xr] =: R over the field k. Let m :=∑
i=1 xiR. Use 4.5 and 6.5 to show that H i

m(R) �= 0 if and only if i = r. •
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Example 7.5 Let k be an algebraically closed field, let V = V (x1x3, x1x4, x2x3, x2x4) ⊆ k4.
As (x2x3)

2 = (x1x4 + x2x3)x2x3 − x1x3x2x4 and (x1x4)
2 = (x1x4 + x2x3)x1x4 − x1x3x2x4,

we have V = V (x1x3, x1x4 + x2x3, x2x4), so that V can be defined by 3 equations. Hence
ara(I(V )) ≤ 3.

As I(V ) =
√

(x1x3, x1x4, x2x3x2x4) =
√

(x1, x3) · (x2, x4) =
√

(x1, x2) ∩ (x3, x4) = (x1, x2)∩
(x3, x4) we have H3

I(V )(R) = H3
(x1,x2)∩(x3,x4)

(R), where R = k[x1, x2, x3, x4] (cf 3.1 C) a) ).
So, the Mayer-Vietoris sequence gives rise to an exact sequence

H3
I(V )(R) → H4

(x1,··· ,x4)
(R) → H4

(x1,x2)
(R) ⊕H4

(x3,x4)
(R),

By 7.4 we have H4
(x1,x2,x3,x4)

(R) �= 0. By 6.5 we have H4
(x1,x2)

(R) = H4
(x3,x4)

(R) = 0. So

H3
I(V )(R) �= 0 hence cdI(V )(R) ≥ 3, thus ara(I(V )) ≥ 3, hence ara(I(V )) = 3. •

Comment and Exercise 7.6 In the previous example we have V = V (x1, x2)∪ V (x3, x4).
So V is the union of the two planes V (x1, x2) and V (x2, x3) in k4 which intersect each other
in the origin (0, 0, 0, 0). On the other hand, the union of two planes which intersect each
other in a line, can be defined by 2 equations. •

8 Affine Varieties: Extending Regular Functions

Reminder and Exercise 8.1 A) Let k be an algebraically closed field, let r ∈ N and let
V ⊆ kr be an affine algebraic variety. Then V is said to be irreducible if V �= ∅ and if
V cannot be written as the union of two proper subsets V1, V2 � V which are again affine
varieties in kr. It is easy to verify, that the following statements are equivalent:

(i) V is irreducible;

(ii) I(V ) ⊆ k[x1, · · · , xr] is a prime ideal;

(iii) V = V (p), where p ⊆ k[x1, · · · , xr] is a prime ideal.

B) We assume from now on, that V is irreducible and furnish V with its Zariski-topology.
So, the open sets of V are precisely the sets of the form V \W , where W ⊆ kr is an affine
variety. Equivalently: The closed sets of V are the affine varieties W ⊆ kr with W ⊆ V .

C) Let U ⊆ V be a non-empty open set. A function f : U → k is said to be regular if it is
locally presented by rational functions, more precisely:

21



For each p ∈ U , there are polynomials hp, gp ∈ k[x1, · · · , xr] and an open neighborhood
Wp ⊆ U of p such that:

∀q ∈Wp : gp(q) �= 0 and f(q) =
hp(q)

gp(q)
.

We set
O(U) := {f : U → k

⏐⏐f is a regular function }.
It is easy to see, that O(U) is a subring of the ring of all functions U → k. We thus call
O(U) the ring of regular functions on U . Let us note two important facts, for which we refer
to [B-F, (7.1), (7.4)]

a) O(U) is a domain.

b) The restriction map k[x1, · · · , xr]
π−→ O(V ) given by f �→ f�V is a surjective homo-

morphism of rings with Ker(π) = I(V ).

D) Now, let Z ⊆ V be a closed subset. Then

IV (Z) := {f ∈ O(V )
⏐⏐f(Z) = 0}

is a radical ideal of O(V ). We call this ideal the vanishing ideal of Z in O(V ). Keep in mind
that Ikn(V ) = I(V ) ⊆ k[x1, · · · , xn] = O(kn) (cf C) b) ).

Theorem 8.2 Let V ⊆ kr be an irreducible affine variety and let U � V be a non-empty
open subset. Then, there is an exact sequence of O(V )-modules

0 ��O(V )
resV U ��O(U) ��H1

IV (V \U)(O(V )) ��0

in which resV U is the restriction map defined by f �→ f �U .

Proof. See [B-F, (7.8)]. �

Corollary 8.3 Let V and U be as above. Then, the following statements are equivalent:

(i) Each regular function f : U → k may be extended to a regular function f̃ : V → k.

(ii) H1
IV (V \U)(O(V )) = 0

(iii) There are functions f1, f2 ∈ IV (V \U) which form an O(V )-sequence.
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Proof. “(i) ⇐⇒ (ii)”: Statement (i) is equivalent to the surjectivity of the restriction map
resV U : O(V ) → O(U) and hence implies statement (ii) by 8.2 – and conversely.

“(ii) =⇒ (iii)”: As V \U ⊆ V we have I(V ) ⊆ I(V \U). As V \U �= V we have V (I(V \U)) =
V \U �= V = V (I(V )) (cf 7.1 C) a) ) and hence I(V ) � I(V \U). So, there is some f ∈
I(V \U)\I(V ). Therefore f �V (V \U) = f(V \U) = 0 and f �V �= 0 (cf 8.1 C) b)). This shows,
that IV (V \U) �= 0. As O(V ) is a domain (cf 8.1 C) a) ), this implies H0

IV (V \U)(O(V )) = 0

(cf 4.4). So, statement (ii) is equivalent to tIV (V \U)(O(V )) ≥ 2. By 4.4 this is equivalent to
statement (iii). �

Example and Exercise 8.4 A) (Hartshorne) Let k be an algebraically closed field and
consider the homomorphism of polynomial rings

h : k[x1, x2, x3, x4] → k[x, y]

given by x1 �→ x, x2 �→ xy, x3 �→ y(y − 1), x4 �→ y2(y − 1).

Then, clearly
Im(h) = k[x, xy, y(y − 1), y2(y − 1)].

Moreover, as k[x, y] is a domain, Ker(h) ⊆ k[x1, x2, x3, x4] is a prime ideal. So by 8.1 A) a)

V := V (Ker(h)) ⊆ k4

is an irreducible affine variety.

Keeping in mind the Homomorphism Theorem, the Nullstellensatz (cf 7.1 C) b)) and 8.1 C)
b) we get isomorphisms of k-algebras

k[x, xy, y(y − 1), y2(y − 1)] ∼= k[x1, x2, x3, x4]/Ker(h) = k[x1, x2, x3, x4]/I(V ) ∼= O(V ).

We thus identify

O(V ) = k[x, xy, y(y − 1), y2(y − 1)] and

x1 �V = x, x2 �V = xy, x3 �V = y(y − 1), x4 �V = y2(y − 1).

B) Clearly Ker(h) ⊆ (x1, x2, x3, x4), hence {0} = V (x1, x2, x3, x4) ⊆ V (Ker(h)) = V . We set

U := V \{0}.
Then V \U = {0} and hence

IV (V \U) = (x1 �V , x2 �V , x3 �V , x4 �V ) = (x, xy, y(y − 1), y2(y − 1)).

Now, it is easy to check that

k[x, y] = O(V ) + yO(V ), y /∈ O(V ) and IV (V \U)k[x, y] ⊆ O(V ).
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So, k[x, y]/O(V ) is a non-zero cyclic O(V )-module annihilated by IV (V \U). Therefore,
k[x, y]/O(V ) is a non-zero homomorphic image ofO(V )/IV (V \U) ∼= k, hence k[x, y]/O(V ) ∼=
k. So, we get an exact sequence of finitely generated O(V )-modules.

0 → O(V ) → k[x, y] → k → 0.

Now, x and y(y − 1) ∈ IV (V \U) form a k[x, y]-sequence, so that H i
IV (V \U)(k[u, v]) = 0 for

i = 0, 1 (cf 4.4). Thus, applying local cohomology to the above sequence, we get

H1
IV (U\U)(O(V )) ∼= k.

Therefore, by 8.3 we must have a regular function on U , which cannot be extended to a
regular function on V .

C) To make the latter statement more explicit we consider the map α : k2 → k4 given by
(x, y) �→ (x, xy, y(y − 1), y2(y − 1)). If f ∈ Ker(h) we have f(α(x, y)) = f(x, xy, y(y −
1), y2(y−1)) = f(h(x1), h(x2), h(x3), h(x4))) = 0. This shows that Im(α) ⊆ V (Ker(h)) = V .
So, we may write

α : k2 → V ; (x, y) �→ (x, xy, y(y − 1), y2(y − 1)).

As the coordinates of α are given by regular (actually polynomial) functions, we can say
that α is a morphism of algebraic varieties.

Now, consider the open sets

U1 := V \V (x1), U3 := V \V (x3).

Then x = x1�V has no zero in U1 and y(y − 1) = x3�V has no zero in U3. Therefore

U = U1 ∪ U3.

Now, we can define a map

β : U → k2; (x1, x2, x3, x4)︸ ︷︷ ︸
=:p

�→
{

(x1,
x2

x1
), if p ∈ U1

(x1,
x4

x3
), if p ∈ U3

.

This map has regular coordinates and hence is a morphism.

Clearly we have
α−1(0, 0, 0, 0) = {(0, 0), (0, 1)},

and moreover β is inverse to α �k2\{(0,0),(0,1)} so that

α �: k2\{(0, 0), (0, 1)}︸ ︷︷ ︸
=:W

∼=−→ U = V \{(0, 0, 0, 0)}.
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In particular we have O(W ) ∼= O(U). So, α maps k2 onto V by just mapping (0, 0) and
(0, 1) to the same point (0, 0, 0, 0)

D) Now, we can give explicitly a non-extendable regular function on U :

Namely, let β2 ∈ O(U) be the second component of β, so that

β2((x1, x2, x3, x4) = p) =

{
x2

x1
, if p ∈ U1

x4

x3
, if p ∈ U3

.

Then, β2 cannot be extended to a regular function on V : Namely, for all p ∈ U we
have β2(p) = y(β(p)). Choosing (x, y) ∈ k2\{(0, 0), (0, 1)} we thus get β2(α(x, y)) =
y(β(α(x, y))) = y(x, y) = y.

Assume now, that β2 can be extended to a regular function γ on V . Consider the regular
function

σ : k → k; (y
σ−→ γ(α(0, y))).

Then, for all y �= 0, 1 we have

σ(y) = γ(α(0, y)) = β2(α(0, y)) = y.

This means, that σ is given by the polynomial y ∈ k[y] = O(k). On the other hand

σ(0) = γ(α(0, 0)) = γ(0, 0, 0, 0) = γ(α(0, 1)) = σ(1),

which yields the contradiction 0 = 1. Therefore, β2 : U → k cannot be extended regularly
to V . •

As a preparation for later arguments we suggest the following exercise.
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Exercise 8.5 A) Let k be an algebraically closed field. Show that the proper closed non-
empty subsets of the line L = k are precisely the finite subsets of L.

B) Let r ∈ N and let V ⊆ kr be a curve, that is an irreducible affine variety of dimension 1,
so that dim(O(V )) = 1. Show that the conclusion of part A) holds, if we replace L by V . •

Third Lecture: Finiteness Results

9 Localization and Local Cohomology

Proposition 9.1 Let R be a noetherian ring, let S ⊆ R be a non-empty multiplicately closed
set and let I be an injective R-module. Then S−1I is an injective S−1R-module.

Proof. [B-F, (5.1)]. �

Theorem 9.2 Let R be a noetherian ring, let a ⊆ R be an ideal, let S ⊆ R be a non-empty
multiplicatively closed set and let M be an R-module. Then, for each n ∈ N0 there is an
isomorphism of S−1R-modules

	n
a,M : S−1Hn

a (M)
∼=−→ Hn

aS−1R(S−1M).

Proof. (Sketch; for details see [B-F, (5.2) - (5.6)]) Let 0 ��M a ��I0 d0
��I1 d1

��I2 �� · · ·
be an injective resolution of M . Then, by 9.1 and by the exactness of the localization functor

S−1• : (M
f ��N) � �� �� ��(S−1M

S−1f ��S−1N)

(from R-modules to S−1R-modules) we see that

0 ��S−1M
S−1a ��S−1I0 S−1d0

��S−1I1 S−1d1
��S−1I2 �� · · ·

is an injective resolution of the S−1R-module S−1M . Therefore

Hn
aS−1R(S−1M) = Hn

(
Γas−1(S−1I•),ΓaS−1(S−1d•)

)
.

It is easy to verify, that for each R-module N one has ΓaS−1(S−1N) = S−1Γa(N). Therefore
Hn

aS−1(S−1M) = Hn
(
ΓaS−1(S−1I•),ΓaS−1(S−1d•)

)
(= Hn(S−1Γa(I

•), S−1Γa(d
•)). As the

functor S−1• is exact, it commutes with cohomology, so that

Hn
aS−1R(S−1M) = S−1Hn(Γa(I

•),Γa(d
•)) = S−1Hn

a (M).

�
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Remark 9.3 Theorem 9.2 may be expressed in the form:

Local Cohomology commutes with Localization. •

Proposition 9.4 Let a be an ideal of the noetherian ring R and let M be a finitely generated
R module such that cda(M) > 0. Then, there is a j ∈ N such that the R-module Hj

a(M) is
not finitely generated.

Proof. We have to show that if Hc
a(M) �= 0 for some c > 0, then Hj

a(M) is not finitely
generated for some j ∈ N.

There is some p ∈ Spec(R) such that Hc
a(M)p �= 0. We have to find some j ∈ N such that

the Rp-module Hj
a(M)p is not finitely generated. By 9.2 we may replace R, a,M respectively

by Rp, ap,Mp and hence assume that (R,m) is local. As Hc
a(M) �= 0 and as Hc

R = RcΓR =
Rc = 0, we must have a ⊆ m Let M = M/Γa(M). As H i

a(M) ∼= H i
a(M) for all i > 0, we

may replace M by M and hence assume that H0
a(M) ∼= Γa(M) = 0, so that there is some

x ∈ a ∩ NZDR(M), (cf 4.4).

In particular, there are exact sequences

H i−1
a (M) → H i−1

a (M/xM) → H i
a(M)

x·−→ H i
a(M) → H i

a(M/xM) for all i ∈ N.

Assume first, that dim(M) = 1. Then, by Grothendieck’s Vanishing Theorem 5.3 we must
have c = 1, hence H1

a(M) �= 0. Also by this same vanishing theorem (and as dim(M/xM) ≤
dim(M) − 1, cf 5.2 B) c) ) we have H1

a(M/xM) = 0. Applying the above sequence with

i = 1 we thus get an epimorphism H1
a(M)

x·−→ H1
a(M), so that xH1

a(M) = H1
a(M) �= 0. By

Nakayama, H1
a(M) cannot be finitely generated.

So, let dim(M) > 1. If Hc
a(M) is not finitely generated, we choose j = c. So, assume

that Hc
a(M) is finitely generated. Then, by Nakayama the map Hc

a(M)
x·−→ Hc

a(M) is
not surjective. Applying the above sequence with i = c, we get Hc

a(M/xM) �= 0. As
dim(M/xM) ≤ dim(M) − 1 (cf 5.2 B) c) ) it follows by induction that H�

a(M/xM) is not
finitely generated for some � ∈ N. Applying the above sequence with i = �+ 1 we thus may
choose j ∈ {�, �+ 1}. �

Corollary 9.5 Let a be an ideal of the noetherian ring R and let M be a finitely generated
R-module. If H i

a(M) �= 0 for some i > 0, then there is a j > 0 such that Hj
a(M) is not

finitely generated. •
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10 Associated Primes of Local Cohomology Modules

Theorem 10.1 Let a be an ideal of the noetherian ring R and let M be a finitely generated
R-module. Let i ∈ N0 be such that Hj

a(M) is finitely generated for all j < i. Let N ⊆ H i
a(M)

be a finitely generated submodule. Then the set AssR(H i
a(M)/N) is finite.

Proof. (Induction on i). The case i = 0 is clear as H0
a(M) ∼= Γa(M) ⊆ M is finitely

generated. So, let i > 0 and set M = M/Γa(M). Then H0
a(M) ∼= Γa(M) = 0 and H i

a(M) ∼=
H i

a(M) for all i > 0. In particular, Hj
a(M) = 0 for all j < i. We thus may replace M by M

and hence assume that H0
a(M) = 0. By 4.4 we thus find an element y ∈ a ∩ NZD(M).

Moreover, as N is finitely generated and a-torsion, there is some n ∈ N such that ynN = 0.
Let x := yn. Then x ∈ a ∩ NZD(M) and xN = 0.

On use of the cohomology sequence with respect to a and associated to the exact sequence
S : 0 → M

x·−→ M
p−→ M/xM → 0 we now get a commutative diagram with exact rows

and columns

Hn−1
a (M)

ε �� H i−1
a (M/xM)

δ ��

π

��

H i
a(M)

x· ��

�

��

H i
a(M)

‖
��

T := H i−1
a (M/xM)/δ−1(N)

δ ��

��

H i
a(M)/N

x· ��

��

H i
a(M)

0 0

in which ε = H i−1
a (p) is induced by the canonical map p : M → M/xM , in which δ

is the connecting homomorphism δi
S,a, in which π and 	 are the canonical maps given by

m + δ−1(N)
δ�→ δ(m) and m + N

x·�→ xm. Observe that Ker(δ) = ε(H i−1
a (M)) is finitely

generated. As R is noetherian and N is finitely generated, it follows that δ−1(N) is finitely
generated.

By the exact sequences resulting from S

Hj−1
a (M) → Hj−1

a (M/xM) → Hj
a(M) (j > 0),

we see that Hk
a(M/xM) is finitely generated for all k < i − 1. So, by induction we have

�AssR(T ) <∞. As N is finitely generated, we also have �AssR(N) <∞. It therefore suffices
to show that

AssR(H i
a(M)/N) ⊆ AssR(T ) ∪ AssR(N).

So, let p ∈ AssR(H i
a(M)/N)\AssR(T ). It suffices to show that p ∈ AssR(N). With an

appropriate element h ∈ H i
a(M) we may write p = (0 :

R
	(h)). Consider the submodule

U := δ
−1

(R	(h)) ⊆ T . The second row of the above diagram gives rise to an exact sequence

0 �� U
δ� �� R	(h)

x·� �� x ·R	(h) �� 0,
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where the maps δ � and x· � are obtained by restriction of δ respectively of x·. As U ⊆ T
we have AssR(U) ⊆ AssR(T ) and hence p /∈ AssR(U). As p = (0 :

R
	(h)) ∈ AssR(R	(h)),

the above exact sequence yields p ∈ AssR(xR	(h)). As x · R	(h) = Rx	(h) = Rxh we get
p ∈ AssR(Rxh). So, there is some s ∈ R such that p = (0 :

R
sxh).

As x ∈ a and H i
a(M) is a-torsion, there is some m ∈ N with xm(xsh) = 0 Therefore we have

xm ∈ (0 :
R
xsh) = p, hence x ∈ p = (0 :

R
	(h)).

From this we obtain xh + N = 	(xh) = x	(h) = 0, hence xh ∈ N and thus xsh ∈ N . As
p = (0 :

R
sxh), we get indeed p ∈ AssR(N). �

As an immediate application (namely by taking N = 0) we get:

Corollary 10.2 Let a be an ideal of the noetherian ring R and let M be a finitely generated
R-module. Let i ∈ N0 be such that Hj

a(M) is finitely generated for all j < i. Then the set
AssR(H i

a(M)) is finite.

Example and Exercise 10.3 (A.K. Singh) Let x, y, z, u, v, w be inderminates. We set

R := Z[x, y, z, u, v, w]/(xu+ yv + zw) and a := (x, y, z)R.

Then according to [Si] we have �AssR(H3
a(R)) = ∞.

Show that for this choice of R and a we have

H i
a(R)

{
= 0, if i �= 2, 3,

not finitely generated if i = 2, 3.

•

11 The Cohomological Finiteness Dimension

Definition 11.1 Let a be an ideal of the noetherian ring R and let M be a finitely generated
R-module. The (cohomological) a-finiteness dimension of M with respect to a is defined by

fa(M) := inf{r ∈ N0

⏐⏐Hr
a(M) not finitely generated }.

•

Remark 11.2 A) Let R, a and M be as above. Then:
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a) fa(M) ∈ N ∪ {∞} with fa(M) = ∞ if and only if H i
a(M) is finitely generated for all

i ∈ N0, hence if and only if cda(M) ≤ 0 (cf 9.4).

b) ta(M) ≤ fa(M).

c) If fa(M) <∞, then fa(M) ≤ cda(M).

We now may formulate 9.4 in the form:

d) cda(M) > 0 =⇒ fa(M) ≤ cda(M).

B) Keeping the notation of part A) we may reformulate 10.2 in the form

a) i ≤ fa(M) =⇒ �AssR(H i
a(M)) <∞. •

Proposition 11.3 Let a be an ideal of the noetherian ring R and let M be a finitely gener-
ated R-module. Then

fa(M) = inf{r ∈ N0

⏐⏐a �
√

0 :
R
Hr

a(M)}.

Proof. Let sa(M) := inf{r ∈ N0|a �
√

0 :
R
Hr

a(M)}. First, let i < fa(M). Then H i
a(M) is a

finitely generated a-torsion module. It follows that there is some n ∈ N with anH i
a(M) = 0,

(cf 3.4 c) ). So, we get a ⊆
√

0 :
R
H i

a(M) for all i < fa(M). Consequently fa(M) ≤ sa(M).

We now prove the converse inequality. To do so, it suffices to show that for each s ∈ N we
have the implication

a ⊆
√

(0 :
R
H i

a(M)) for all i < s =⇒ s ≤ fa(M).

We prove this by induction on s. If s = 1 there is nothing to show (cf 11.2 A) a) ).
So, let s > 1. It suffices to show that the modules H i

a(M) are finitely generated for all
i ∈ {1, · · · , s− 1}.
Let M := M/Γa(M). Then H0

a(M) ∼= Γa(M) = 0 and H i
a(M) ∼= H i

a(M) for all i > 0.

Therefore a ⊆
√

0 : H i
a(M) for all i < s and it suffices to show the R-modules H i

a(M) are

finitely generated for all i ∈ {1, · · · , s − 1}. This allows to replace M by M and hence to
assume that H0

a(M) = 0.

We thus find an element x ∈ a ∩ NZDR(M). Now, for each i < s there is some ni ∈ N with
ani ⊆ 0 :

R
H i

a(M). Let n = max{ni|i < s}. Then xn ∈ an ∩NZDR(M). In particular we have
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xnH i
a(M) = 0 for all i < s. Applying cohomology to the exact sequence 0 → M

xn·−→ M →
M/xnM → 0 we thus get exact sequences

0 → H i−1
a (M) → H i−1

a (M/xnM) → H i
a(M) → 0

for all i ∈ {1, · · · , s− 1}. As anH i
a(M) = 0 for all these i it follows a2nH i−1

a (M/xnM) = 0

and hence a ⊆
√

0 : H i−1
a (M/xnM) for all i ∈ {1, · · · , s− 1}. So, by induction the modules

H i−1
a (M/xnM) are finitely generated for all i ∈ {1, · · · , s − 1}. Now, the above exact

sequences show that H i
a(M) is finitely generated for all i < s. �

Lemma 11.4 Let a be an ideal of the noetherian ring R. Let L be an R-module such
that �AssR(L) < ∞. Assume that for each p ∈ AssR(L) there is some np ∈ N such that
(anpL)p = 0. Then, with n := max{np|p ∈ AssR(L)} we have anL = 0.

Proof. Let x ∈ L and let t1, · · · , tr ∈ L be such that anx =
∑r

i=1Rti. Let p ∈ AssR(L).
Then (anx)p ⊆ (anL)p ⊆ (anpL)p = 0, hence (

∑r
i=1Rti)p = 0.

So, for each i ∈ {1, · · · , r} there is some si,p ∈ R\p such that si,pti = 0. Let sp :=
∏r

i=1 si,p.
Then sp ∈ R\p and spti = 0 for i = 1, · · · , r, hence spa

nx = 0.

Let b :=
∑

p∈AssR(L)Rsp. Then clearly banx = 0. As sp /∈ p we must have b � p for

all p ∈ AssR(L). As �AssR(L) < ∞ we get by the Prime Avoidance Principle that b �⋃
p∈AssR(L) p = ZDR(L). So, there is an element z ∈ b∩NZDR(L). But now, zanx ⊆ banx = 0

implies anx = 0. As x ∈ L was arbitrarily chosen, we get anL = 0. �

Theorem 11.5 (Local-Global Principle of Faltings) Let a be an ideal of the noetherian ring
R, let r ∈ N and let M be a finitely generated R-module. Then, the following statements are
equivalent:

(i) H i
a(M) is finitely generated for all i < r.

(ii) The Rp-module H i
a(M)p is finitely generated for all i < r and for all p ∈ Spec(R).

(iii) The Rp-module H i
aRp

(M)p is finitely generated for all i < r and all p ∈ Spec(R).

Proof. “(i) =⇒ (ii)”: Clear by the basic properties of localization.

“(ii) ⇐⇒ (iii)”: Clear by the fact that local cohomology commutes with localization (cf 9.2).

“(ii) =⇒ (i)”: (Induction on r). The case r = 1 is clear as H0
a(M) ∼= Γa(M) is finitely

generated. So, let r > 1. By induction we know already that H i
a(M) is finitely generated

for all i < r − 1. It remains to be shown that L := Hr−1
a (M) is finitely generated. By 11.3

it suffices to show that a ⊆
√

0 :
R
L, hence to find an n ∈ N with anL = 0.
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By 10.2 we have AssR(L) <∞. Let p ∈ AssR(L). By our hypothesis Lp is finitely generated
over Rp. As L is a-torsion, Lp is aRp-torsion. So, there is some np ∈ N with (anpL)p =
anpRpLp = (aRp)

npLp = 0, (cf 3.4 c) ). Now, we conclude by 11.4. �

Corollary 11.6 Let R, a and M be as in 11.5. Then

fa(M) = min{faRp(Mp)
⏐⏐p ∈ Spec(R)} = min{faRp(Mp)

⏐⏐p ∈ Var(a) ∩ Supp(M)}.

Proof. The first equation is immediate by 11.5. The second equation is easy from 9.2. �

12 The Finiteness Theorem

Definition 12.1 A) Let (R,m) be a noetherian local ring. Then, the depth of a finitely
generated R-module M is defined by (cf 4.3)

depthR(M) := gradeM(m).

So, by 4.5 we may write

depthR(M) = tm(M) = inf{i ∈ N0

⏐⏐H i
m(M) �= 0}.

B) Let a be an ideal of the noetherian ring R and let M be a finitely generated R-module.
We define a a-adjusted depth of M at a prime p ∈ Spec(R) by

adjadepth(Mp) := depthRp
(Mp) + height((a + p)/p),

where height((a+p)/p) is understood to be the height of the ideal a := (a+p)/p ⊆ R/p =: R,
hence by the definition of height:

height((a + p)/p) = min{dim(Rp

⏐⏐p ∈ Var(a)}
•

Remark 12.2 Keep the notation and hypotheses of 12.1. Then, the number

height((a + p)/p) corresponds to the “distance of p from the variety Var(a)”.

More precisely, if q ∈ Spec(R) with p ⊆ q one can consider height(q/p) as “the distance
between p and q” measured in terms of lengths of chains of primes which connect p and q:

height(q/p) = max
{
� ∈ N0

⏐⏐∃p0, · · · , p� ∈ Spec(R) : p ⊆ p0 � p1 � · · · � p� ⊆ q
}
.
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Therefore we can say

height((a + p)/p) = inf{ height(q/p)
⏐⏐q ⊆ q and q ∈ Var(a)} := “distance (a,Var(a))”.

So, the adjusted depth measures the usual depth of M at p, that is depthRp
(Mp), and adds

to it the distance p has from Var(a).

Having large depth at p, means that M “behaves well at p”. So, the a-adjusted depth
measures the “well-behaviour of M at p” giving a bonus to points p which are far away
from Var(a). Therefore, the a-adjusted depth tells us, how well behaved M is at points
p ∈ Spec(R) “near the variety Var(a) of a”.

Reminder 12.3 By Krull’s Principal Ideal Theorem the maximal ideal m of a local noethe-
rian ring R cannot be generated be less than height(m) = dim(R) elements. A noetherian
local ring (R,m) whose maximal ideal m can be generated by dim(R) element is called a
regular local ring.

A noetherian ring R is said to be regular, if Rp is a regular local ring for each p ∈ Spec(R).
•

Theorem 12.4 (Finiteness Theorem of Grothendieck) Assume that the noetherian ring R
is a homomorphic image of a regular ring. Then

fa(M) = inf{adjadepth(Mp)
⏐⏐p ∈ Spec(R)\Var(a)}.

Proof. See [B-S, 9.5.2]. �
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Remarks 12.5 A) The hypothesis that R is a homomorphic image of a regular ring is not
at all restrictive for most applications. It is satisfied for example whenever R is “essentially
of finite” over a field (or over Z). Let us recall, that a ring R is essentially of finite type over
a ring R0 if R is a ring of fractions of a finitely generated R0-algebra.

B) The hypothesis that R is a homomorphic image of a regular ring can be replaced by
the weaker condition, that R is a so-called tolerable ring, that is a ring which is universally
catenary and whose formal fibres are all Cohen-Macaulay rings (cf [B-S, 9.6.7]). Let us recall
here that a noetherian ring R is called a Cohen-Macaulay ring if all its localizations Rp, with
p ∈ Spec(R) are local Cohen-Macaulay rings. A local noetherian ring (R,m) is said to be a
Cohen-Macaulay ring if its depth is maximal, that is depthR(R) = dim(R).

In particular, all homomorphic images of Cohen-Macaulay rings are tolerable. Moreover all
regular rings are Cohen-Macaulay rings. So, in 12.4 one can replace the condition “regular”
by the weaker condition “Cohen-Macaulay”. •

Exercises 12.6 A) Let k be an algebraically closed field, let r ∈ N and let V ⊆ kr be an
irreducible affine variety. Let U � V be a non-empty open subset and let Z = V \U . Prove
that O(U) is a finitely generated O(V )-module if and only if Z is of “codimension ≥ 2 in
V ”, that is if and only if height(IV (Z)) ≥ 2.

B) Let (R,m) be a local domain which is a homomorphic image of local (noetherian) Cohen-
Macaulay ring. Show that the R-modules H i

m(R) are finitely generated for all i < dim(R) if
and only if “R is Cohen-Macaulay on its punctured spectrum”, that is if and only if Rp is
Cohen-Macaulay ring for all p ∈ Spec(R)\{m}. •

Fourth Lecture: Connectivity in Algebraic Varieties

13 Analytically Irreducible Rings

Definition 13.1 A local noetherian domain (R,m) is said to be analytically irreducible if
its completion (R̂,mR̂) with respect to the m-adic topology is an integral domain. •

Theorem 13.2 (Vanishing Theorem of Hartshorne-Lichtenbaum) Let (R,m) be an analyt-
ically irreducible domain and let a ⊆ m be an ideal of R such that dim(R/a) > 0. Then
cda(R) < dim(R).

Proof. [B-S, 8.2.10]. �
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Theorem 13.3 (Non-Vanishing Theorem of Grothendieck) Let (R,m) be a local noetherian

ring and let M be a finitely generated R-module. Then H
dim(M)
m (M) �= 0.

Proof. [B-S, 6.1.4]. �

Proposition 13.4 Assume that (R,m) is a local analytically irreducible domain and let
a, b ⊆ m be two ideals such that dim(R/a), dim(R/b) > 0 = dim(R/(a + b)). Then

ara(a ∩ b) ≥ dim(R) − 1.

Proof. Let d := dim(R). We have to show that ara(a ∩ b) ≥ d − 1. The Mayer-Vietoris
sequence gives an exact sequence

Hd−1
a∩b (R) → Hd

a+b(R) → Hd
a(R) ⊕Hd

b(R).

By 13.2 we have Hd
a(R) = Hd

b(R) = 0. As dim(R/(a + b)) = 0 we have
√

a + b = m, hence
Hd

a+b(R) = Hd√
a+b

(R) = Hd
m(R) �= 0 (cf 3.1 C) a) and 13.3).

It follows Hd−1
a∩b (R) �= 0, hence cda∩b(R) ≥ d− 1, thus ara(a ∩ b) ≥ d− 1 (cf 6.5). �

14 Affine Algebraic Cones

Reminders 14.1 Let k be an algebraically closed field and let r ∈ N. An affine (algebraic)
cone (with vertex 0 ∈ kr+1) is an affine variety V ⊆ kr+1 such that 0 ∈ V and such that for
each p ∈ V \{0} the straight line joining p and 0 is contained in V . As an exercise one can
prove that for an affine variety V ⊆ kr+1 the following are equivalent:

(i) V is an affine cone;

(ii) V = V (a), where a ⊆ k[x0, · · · , xr] is a graded ideal;

(iii) I(V ) ⊆ k[x0, · · · , xr] is a graded ideal;

(iv) V = V (f1, · · · , ft) with homogeneous polynomials fi ∈ k[x0, · · · , xr].

B) Let V ⊆ kr+1 b an irreducible affine cone. Then O(V ) ∼= k[x0, · · · , xr]/I(V ) is a domain
(cf 8.1 C) ). As the ideal I(V ) ⊆ k[x0, · · · , xr] is graded, the ring k[x0, · · · , xr]/I(V ) carries
a natural grading, given by

(k[x0, · · · , xr]/I(V ))n = (k[x0, · · · , xr]n + I(V ))/I(V ) ∼= k[x0, · · · , xr]n/I(V )n;

(prove this as an exercise). Correspondingly, the domain O(V ) carries a natural grading
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a) O(V ) = ⊕n≥0O(V )n, with O(V )n
∼= k[x0, · · · , xr]n/I(V )n, (∀n ∈ N0).

In particular

b) O(V ) = k[x0�V , · · · , xr�V ] with xi�V ∈ O(V )1 for i = 0, · · · , r.

C) Keep the notations of part B). Let IV ({0}) ⊆ O(V ) be the vanishing ideal of 0 in O(V ).
It is easy to check that

a) IV ({0}) = ⊕n>0O(V )n =: O(V )+.

We now consider the local ring of V at its vertex:

OV,0 := O(V )IV ({0}) = O(V )O(V )+ and the ideal mV,0 := IV ({0})O(V )IV ({0})

Then:

b) (OV,0,mV,0) is a local noetherian domain.

c) dim(OV,0) = dim(O(V )) := dim(V ). •

Reminders and Exercises 14.2 A) Let k be a field and let R = ⊕n∈N0R0 be a noetherian
homogeneous k-algebra. So, we have R0 = k and R = k[f0, · · · , fr] with finitely many
elements f0, · · · , fr ∈ R1. Consider the irrelevant ideal R+ := ⊕n>0Rn of R. As R/R+

∼= k,
we see that R+ is a maximal ideal of R. Moreover, any graded ideal of R is contained in R+.
So R+ is the graded (or homogeneous) maximal ideal of R.

B) Keep the previous notations. We consider the local ring (RR+ , R+RR+). As R+ ⊆ R is a
maximal ideal it follows easily, that for each n ∈ N, the natural homomorphism

εn : R/(R+)n → RR+/(R+RR+)n,
(
x+ (R+)n �→ x

1
+ (R+RR+)n

)
is an isomorphism of rings. So, we get an isomorphism of rings

a) ε := lim
←−

n

εn : (R,R+)∧ = R/(R+)n −→∼= lim
←−

n

RR+/(R+RR+)n = (RR+ , R+RR+)∧
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between the R+-adic completion of the homogeneous k-algebra R and the R+RR+-adic com-
pletion of the local ring RR+ .

C) Next, consider the direct product of k-vector spaces Πn∈N0Rn =: R̂. On R̂ we may
introduce a binary operation

· : R̂× R̂ → R̂; (xn)n∈N · (yn)n∈N := (
∑

i+j=n

xiyj)n∈N.

Then, it is not hard to verify:

a) R̂ furnished with its standard addition and the previous multiplication “·” is a commu-

tative local ring with unit element 1R̂ = (1, 0, 0, · · · ) and maximal ideal Πn>0Rn =: R̂+.

Moreover, it is immediate to see

b) The inclusion map R = ⊕n∈N0Rn

i� Πn∈N0Rn = R̂ is a homomorphism of rings and

R+R̂ = R̂+.

Finally, we can say

c) R is a domain if and only if R̂ is.

D) As R is homogeneous, we have

a) (R+)n = R≥n = ⊕m≥nRm, for all n ∈ N.

In particular, for each n ∈ N and each x ∈ R/(R+)n there is a unique element ν(n)(x) ∈
R0 ⊕ · · · ⊕ Rn−1 such that ν(n)(x) + (R+)n = x. We write ν(n)(x) =

∑n−1
i=0 ν

(n)
i (x) with

ν
(n)
i (x) ∈ Ri. Keep in mind that

(R,R+)∧ = lim
←−

n

(R/(R+)n) = {(x(n))n∈N ∈ Πn∈N(R/(R+)n)
⏐⏐x(n+1) can�→ x(n), ∀n ∈ N}

= {(x(n))n∈N ∈ Πn∈N(R/(R+)n)
⏐⏐ν(n+1)

i (x(n+1)) = ν
(n)
i (x(n)) for all n ∈ N and all i < n}.

So, we have a bijective map

b) ψ : (R,R+)∧ → R̂ = Πn≥0Rn, given by (x(n))n∈N �→ (ν
(n+1)
n (x(n+1)))n∈N0.

It is not too hard to calculate that ψ is a homomorphism of rings. So, we get isomorphisms
of rings (cf B) a)):
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c) ψ : (R,R+)∧
∼=−→ R̂ = Πn≥0Rn; ψ ◦ ε−1 : (R+, R+RR+)∧

∼=−→ Πn≥0Rn. •

Lemma 14.3 Let k be an algebraically closed field, let r ∈ N and let V ⊆ kr+1 be an
irreducible affine cone. Then, the local ring OV,0 of V at its vertex 0 is an analytically
irreducible noetherian local domain with dim(OV,0) = dim(V ).

Proof. By 14.1 C) we already know that OV,0 is a local noetherian domain of dimension
dim(V ) and with maximal ideal mV,0. We set R := O(V ) = ⊕n≥0O(V )n. According to 14.1
B) we know that R is a noetherian homogeneous k-algebra and a domain. Now, on use of

14.2 D) c) we get ÔV.0 = (RR+)∧ = (RR+ , R+RR+)∧ ∼= Πn≥0Rn. So, by 14.2 C) c) we see

that ÔV,0 is a domain. �

Lemma 14.4 Let k be an algebraically closed field, let r ∈ N and let V ⊆ kr+1 be an
irreducible affine cone. Let Z ⊆ V be another affine cone and let Z1, Z2 ⊆ Z be two closed
subsets such that Z1 ∪ Z2 = Z,Z1 ∩ Z2 = {0} and Z1, Z2 � {0}. Then IV ({0}) ⊆ O(V ) is
not a minimal prime of IV (Zi) for i = 1, 2.

Proof. Assume to the contrary, that IV ({0}) is a minimal prime of IV (Zi) for i = 1 or for
i = 2. Without loss of generality, we may assume that IV ({0}) is a minimal prime of IV (Z1).

We find some f̃ ∈ O(V )\IV ({0}) which is contained in the intersection of all (the finitely
many) minimal primes of IV (Z1) different from IV ({0}). According to 8.1 C) b) there is a
polynomial f ∈ k[x0, · · · , xr] with f̃ = f �V . We consider the open set

U := V \V (f) = {p ∈ V
⏐⏐f̃(p) �= 0}.

Clearly, 0 ∈ U . Next, let q ∈ Z1\{0}. Then IV ({0}) �= IV ({q}) ⊇ IV (Z1) shows that the
maximal ideal IV ({0}) ⊆ O(V ) must contain a minimal prime p �= IV ({0}) of IV (Z1). In
particular we get f̃ ∈ p ⊆ IV ({q}), hence f̃(q) = 0, thus q /∈ U . This first shows that
U ∩ Z1 = {0}.
Now, let L ⊆ kr+1 be the straight line through 0 and q. As Z is a cone we have L ⊆ Z.
Moreover, L = (L ∩ Z1) ∪ (L ∩ Z2), where L ∩ Zi ⊆ L is closed. As q ∈ Z1\{0} it follows
from Z1 ∩ Z2 = {0}, that q /∈ Z2. Therefore L ∩ Z2 � L and so L ∩ Z2 is finite, (cf 8.5 A).

Moreover U ∩ L is an open neighborhood of 0 in L. In particular, there is a point p ∈
(L ∩ U)\{0}. As U ∩ Z1 = {0} it follows p /∈ Z1, hence L ∩ Z1 � L. So L ∩ Z1 is a finite
set, too. So, the infinite set L is the union of the two finite sets L ∩ Z1, and L ∩ Z2, a
contradiction. �
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Proposition 14.5 Let k be an algebraically closed field, let r ∈ N, let V ⊆ kr+1 be an
irreducible affine cone of dimension d + 1. Let s < d and let f1, · · · , fs ∈ k[x0, · · · , xr] be
homogeneous polynomials.

Then [V ∩ V (f1, · · · , fs)]\{0} is connected.

Proof. Clearly Z := V ∩ V (f1, · · · , fs) = V (I(V ) + (f1, · · · , fs)) is an affine cone with
I(Z) =

√
I(V ) + (f1, · · · , fs). Writing • � for the restriction map k[x0, · · · , xr] � O(V ) we

get IV (Z) = • � (I(Z)) =
√

(f1�, · · · , fs�). In particular we have ara(IV (Z)) ≤ s. Assume
that Z\{0} is disconnected. Then, Z\{0} is the disjoint union of two non-empty relatively
closed subsets. We thus may write Z = Z1∪Z2 with closed sets Z1, Z2 ⊆ V with Z1, Z2 � {0}
and Z1 ∩ Z2 = {0}.
It follows IV (Z) = IV (Z1 ∪ Z2) = IV (Z1) ∩ IV (Z2) and

√
IV (Z1) + IV (Z2) = IV ({0}).

Moreover 14.4 implies that IV ({0}) is not a minimal prime of IV (Zi) for i = 1, 2.

Now, consider the analytically irreducible local noetherian domain R := OV,0 of dimension
d+ 1 (cf 14.3) and the ideals a := IV (Z1)OV,0 and b := IV (Z2)OV,0.

It follows a ∩ b = IV (Z)OV,0 and hence ara(a ∩ b) ≤ ara(IV (Z)) ≤ s. Moreover by 14.4
IV ({0}) is not a minimal prime of IV (Zi) for i = 1, 2. Therefore dim(R/a), dim(R/b) > 0 =
dim(R/(a + b)). In addition

√
IV (Z1) + IV (Z2) = IV ({0}.

By 13.4 it follows s ≥ ara(a ∩ b) ≥ d+ 1 − 1 = d, a contradiction. �

Proposition 14.6 Let k be an algebraically closed field, let r ∈ N and let V,W ⊆ kr+1 be
two irreducible affine cones such that dim(V ) + dim(W ) > r + 2. Then, the set V ∩W\{0}
is connected.

Proof. Consider the diagonal embedding δ : kr+1 → kr+1 × kr+1; (c �→ (c, c)) and the
diagonal ∆ = Im(δ). Writing O(kr+1 × kr+1) = k[x0, · · · , xr, y0, · · · , yr], we have

∆ = V (x0 − y0, x1 − y1, · · · , xr − yr).

Moreover, the diagonal embedding δ yields an isomorphism of algebraic varieties

δ �: V ∩W ∼=−→ (V ×W ) ∩ ∆

and hence a homeomorphism. Observe that δ(0) = (0, 0). It thus suffices to show that
[(V ×W ) ∩ ∆]\{(0, 0)} is connected. But V ×W ⊆ kr+1 × kr+1 = k2r+2 is an irreducible
affine variety with dim(V ×W ) = dim(V ) + dim(W ). Clearly V ×W is also a cone with
vertex (0, 0). By 14.5 and as r + 1 < dim(V ×W ) − 1, it follows that

[(V ×W ) ∩ ∆]\{(0, 0)} = [(V ×W ) ∩ V (x0 − y0, x1 − y1, · · · , xr − yr)]\{(0, 0)}
is connected. �
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15 Projective Varieties

Reminder 15.1 A) Let k be an algebraically closed field and let r ∈ N. We define the
projective r-space Pr

k as the space of all lines L ⊆ kr+1 through 0. For c = (c0, · · · , cr) ∈
kr+1\{0}, we write

π(c) = (c0 : · · · : cr) := kc ⊆ kr+1

for the line running through 0 and c. We thus may write

Pr
k = {(c0 : · · · : cr)

⏐⏐(c0, · · · , cr) ∈ kr+1\{0}}

and get a surjective map

π : kr+1\{0} � Pr
k, (c �→ (c0 : c1 : · · · : cr)),

the natural projection.

Observe in particular that

a) (c0 : · · · : cr) = (b0 : · · · : br) ⇐⇒ ∃λ ∈ k\{0} : λc = b.

B) A projective (algebraic) variety V ⊆ Pr
k is a set of the form V := π(Ṽ \{0}) with Ṽ ⊆ kr+1

an affine cone. In this situation we also write

V = P(Ṽ )

and call V the projectivization of Ṽ . Observe that in this case Ṽ is uniquely determined by
V and has the form Ṽ = π−1(V ) ∪ {0}. We call Ṽ the affine cone over V and denote it by
cone(V ). Thus:

cone(V ) := π−1(V ) ∪ {0}.

C) Keeping the above notations we thus have two bijections which are inverse to each other:{
Ṽ ⊆ kr+1

⏐⏐⏐⏐⏐Ṽ = affine
cone

}
P(•) ��

cone(•)
��

{
V ⊆ Pr

k

⏐⏐⏐⏐⏐V = projective
variety

}
.

In view of this the following statements seem not very surprising for a projective variety
V ⊆ Pr

k

a) dim(cone(V )) = dim(V ) + 1;

b) cone(V ) irreducible ⇐⇒ V irreducible ;

c) cone(V )\{0} connected ⇐⇒ V connected .
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Moreover:

d) The assignments P(•) and cone(•) commute with finite unions and intersections. •

Theorem 15.2 (Connectedness Theorem of Bertini-Grothendieck) Let k be an algebraically
closed field, let r ∈ N and let V ⊆ Pr

k be an irreducible projective variety of dimension d > 1.
Let s < d and let f1, · · · , fs ∈ k[x0, · · · , xr] be homogeneous polynomials.

Then V ∩ P(V (f1, · · · , fs)) is connected.

Proof. Clear from 14.5 and 15.1 C). �

Theorem 15.3 (Connectedness Theorem of Fulton-Hansen and Faltings) Let k be an alge-
braically closed field, let r ∈ N and let V,W ⊆ Pr

k be two irreducible projective varieties such
that dim(V ) + dim(W ) > r. Then V ∩W is connected.

Proof. Easy from 14.6 and 15.1 C). �

Example 15.4 A) We write O(k3) = k[x1, x2, x3], where k is an algebraically closed field.
We consider the two surfaces in k3 given by

◦
V := V (x1 − x2x3),

◦
W := V (x1 + x2

2 − x2x3 − 1),

which are indeed both irreducible as their defining polynomials are irreducible. Then

◦
V ∩

◦
W = V (x1 − x2x3, x1 + x2

2 − x2x3 − 1)

= V (x1 − x2x3, x
2
2 − 1)

= V (x1 − x2x3, x2 + 1) ∪ V (x1 − x2x3, x2 − 1)

= V (x1 + x3, x2 + 1)︸ ︷︷ ︸
L0

1:=

∪ V (x1 − x3, x2 − 1)︸ ︷︷ ︸
L0

2:=

.

So,
◦
V ∩

◦
W is the union of the two skew lines L0

1 and L0
2 and hence is disconnected. But, on

the other hand

dim(
◦
V ) + dim(

◦
W ) = 2 + 2 > 3.

This means that the analogue of 15.3 need not hold in the affine setting. Now, let us write
O(k4) = k[x0, x1, x2, x3] and consider the projective varieties

P(V (x0x1 − x2x3)) =: V ⊆ P3
k and P(V (x0x1 + x2

2 − x2x3 − x2
0)) =: W ⊆ P3

k
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whose affine cones are respectively

cone(V ) = V (x0x1 − x2x3) ⊆ k4 and cone(W ) = V (x0x1 + x2
2 − x2x3 − x2

0) ⊆ k4

In particular, these cones are both irreducible (as their defining polynomials are) and of
dimension 4 − 1 = 3. So, V and W are both irreducible and of dimension 2. As dim(V ) +
dim(W ) = 4 > 3 we may expect by 15.3 that V ∩W is connected. Indeed it is easy to check
that V (x0x1 −x2x3, x0x1 +x2

2 −x2x3) = V (x1 +x3, x2 +x0)∪V (y1 −x1, x2 −x0)∪V (x0, x2).
Therefore we have

V ∩W = P(cone(V )) ∩ P(cone(W ))

= P(cone(V ) ∩ cone(W ))

= P(V (x0x1 − x2x3, x0x1 + x2
2 − x2x3 − x2

0))

= P(V (x1 + x3, x2 + x0) ∪ V (x1 − x3, x2 − x0) ∪ V (x0, x2))

= P(V (x1 + x3, x2 + x0))︸ ︷︷ ︸
L1:=

∪ P(V (x1 − x3, x2 − x0)︸ ︷︷ ︸
L2:=

∪ P(V (x0, x2))︸ ︷︷ ︸
L:=

.

Now, L1,L2 ⊆ Pk
3 form a pair of skew lines and L ⊆ Pk

3 is a line which intersects L1 at
p := (0 : 1 : 0 : −1) and L2 at q := (0 : 1 : 0 : 1).

q

p

IL ILILIL

IL

12

In particular V ∩W = L1 ∪L2 ∪L is
connected, as predicted by the con-
nectedness theorem 15.3.

B) To get a slightly better insight, we consider the canonical embedding

σ0 : k2 ↪→ P3
k, ((c1, c2, c3) �→ (1 : c1 : c2 : c3))

and identify k3 := Im(σ0) = {(1 : c1 : c2 : c3)|ci ∈ k}. So, P3
k = k3

◦∪ P(V (x0))︸ ︷︷ ︸
H:=

, where H ⊆ P3
k

is “the plane at infinite”. Now we have the situation:

L1 = L0
1

◦∪ {p}, L2 = L0
2 ∪ {p}, and L ⊆ H, thus L ∩ k3 = ∅.

Moreover

V =
◦
V
◦∪ L and W =

◦
W

◦∪ L.
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In other words: Li is the projective closure of L0
i , V is the projective closure of

◦
V , W is

the projective closure of
◦
W and moreover the closures V and W intersect at the line L at

infinity and V ∩W becomes connected.

q

IL
ILILIL

IL

1

p
V

W

V

W

"at "

2

°

°

h

C) We can look at previous the example in yet another way: We have a surface
◦
V ⊆ k3

which is irreducible. We have intersected
◦
V with the irreducible (hypersurface-) variety

◦
W = V (x1 + x2

2 − x2x1 − 1)

and did get a non-connected intersection! This shows that the Bertini-Grothendieck con-
nectedness theorem need not hold in the affine setting.

On the other hand V ∩ P(V (x0x1 + x2
2 − x2x3 − x2

0)) = V ∩W is connected, in accordance
with the Bertini-Grothendieck connectedness theorem 15.2. •

Remark 15.5 For a complete treatment of the theme of this lecture, for sharper results and
further extensions, see Chapter 19 of [B-S].
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