
THE COMPOSITE MINI ELEMENT

COARSE MESH COMPUTATION OF STOKES FLOWS ON COMPLICATED DOMAINS

DANIEL PETERSEIM AND STEFAN A. SAUTER

Abstract. We introduce a new finite element method, the composite mini element,
for the mixed discretization of the Stokes equations on two and three-dimensional do-
mains that may contain a huge number of geometric details. In standard finite element
discretizations of the Stokes problem, such as the classical mini element, the approxi-
mation quality is determined by the maximal mesh size of the underlying triangulation
while the computational effort is determined by its number of elements. If the physical
domain is very complicated, then the minimal number of simplices, which are necessary
to resolve the domain, can be very large and distributed in a non-optimal way with
respect to the approximation quality. In contrast to that, the minimal dimension of
the composite mini element space is independent of the number of geometric details.
Instead of a geometric resolution of the domain and the boundary condition by the fi-
nite element mesh the shape of the finite element functions is adapted to the geometric
details. This approach allows low-dimensional approximations even for problems with
complicated geometric details such as holes or rough boundaries. We prove its linear
(optimal order) approximability and its inf-sup stability. Further, we will be able to
control the nonconformity in the space without increasing the space dimension in such
a way that the a priori error estimate
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holds. Thereby, in contrast to the classical methods, the choice of the mesh size
parameter h is not constraint by the size of geometric details. In addition, it turns out
that the method can be viewed as a coarse scale generalization of the classical mini
element approach, i.e. it reduces the computational effort while the approximation
quality depends on the (coarse) mesh size in the usual way.

1. Introduction

The motion of a viscous incompressible fluid in a bounded, connected Lipschitz domain
Ω ⊆ Rd, d ∈ {2, 3}, can be described by a velocity field u : Ω → Rd and a pressure
distribution p : Ω → Rd which fulfill the Stokes equations under the standard Dirichlet
boundary condition

−∆u + ∇p = f

div u = 0

}

in Ω, u = 0 on ∂Ω, (1.1)

where f : Ω → Rd is a given force density. Problem (1.1) has been studied in detail, both
analytically and numerically in the literature. A wide range of finite element methods for
the numerical approximation of (1.1) has been developed. In principle, these methods
can also be applied to flow problems on very complicated domains Ω that arise, e.g.,
in environmental modeling or life sciences. However, the standard requirement that the
underlying finite element mesh has to resolve the domain couples the minimal dimension
of the finite element space with the number and size of geometric details, e.g. rough
boundaries or holes. Such a complicated domain Ω is depicted in Figure 1a, a coarse
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(a) Model domain Ω. (b) Solution velocity (black= 0, white= 1).

Figure 1. A model problem: Stokes flow on the unit square with 100 ran-
domly distributed circular holes (r = 0.005), an Dirichlet-inflow boundary
(cf. Figure 2a) and two Neumann-outflow boundaries, f = 0.

triangulation of Ω is depicted in Figure 3a. This triangulation is a minimal subdivision in
the sense that further coarsening can only be performed by violating the shape regularity
condition (cf. (2.6)). The application of standard finite elements (cf. Section 2) with
respect to the depicted triangulation leads to a satisfactory approximation of the corre-
sponding Stokes flow depicted in Figure 1b. However, the gain of putting a huge amount
of freedom into the boundary region might be only small since the error is still mainly
determined by the maximal mesh size. The use of coarser unfitted meshes is not satisfy-
ing either since the solution of the model problem behaves critically on perturbations of
the model domain as it can be seen in Figure 2. That means that a simplification of Ω
(allowing coarser subdivisions) typically will lead to poor approximations. In this paper,
we will define a method that allows the low-dimensional discretization of such types of
problems while the convergence rates (w.r.t. the mesh size) are preserved. The main idea
is to adapt the shape of the finite element functions instead of resolving the geometric
details by the finite element mesh. This composite mini element belongs to the class of
composite finite element methods which have been introduced to Poisson-type problems
and to problems in linear elasticity ([12], [17]). Here, we will generalize composite finite
elements to the Stokes problem. Thereby the following difficulties have to be overcome:

(a) The definition of the composite mini element based on new extension operators of
finite element functions for Dirichlet, Neumann, or slip-type boundary conditions.

(b) Analysis: Proof of convergence and discrete stability.
(c) Complexity analysis.

Related approaches in the literature can be found for instance in [2], where unfitted
meshes are used to approximate elliptic equations with Neumann boundary data. Alter-
native approaches in [13], [24] and [1] are not restricted to Neumann conditions. How-
ever, the introduced coarse spaces are still coupled with the geometry and the major
goal lies in the efficient solution of fine-scale discretization ([24] and [1]). In contrast to
our approach, the asymptotic convergence order of the underlying discretization is not
preserved on coarser meshes. In cases where the geometric details are distributed peri-
odically over the domain, homogenization-based approaches to solve Stokes problems on
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(a) Inflow velocity of
the model problem.
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(b) Outflow velocity of
the model problem.
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(c) Outflow velocity of
the model problem with
a different random hole
distribution.
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(d) Outflow velocity
of the model problem
without holes.

Figure 2. Consequences of simplification or perturbation of the model
problem introduced in Figure 1 on the outflow behavior: Velocity compo-
nents (x1 solid, x2 dotted) on {0}× (0, 1) and on {1}× (0, 1) for different
domain modifications.

(a) Triangulation T with dark-shaded inner
zone T dof (♯T dof ≈ 1000).

(b) (0.8, 1) × (0.25, 0.45)-section of Figure 3a.

Figure 3. Shape regular triangulation T of the model domain Ω from
Figure 1a resolving the holes as well as the in- and outflow boundaries:
max. mesh size ≈ 10−1, min. mesh size ≈ 10−3, regularity constant ≈ 2,
number of triangles ≈ 9000.

complicated domains provide a powerful machinery to construct problem-adapted finite
element spaces (see, e.g. [8], [6]). In contrast, composite finite elements do not require
any periodicity assumptions on the geometry.

The paper is organized as follows. In Section 2 we recall the classical mini element for
the weak formulation of the Stokes problem. Then, in Section 3, we define the composite
mini element space. Its convergence analysis is the topic of Section 4 while the final
section is devoted to numerical experiments.
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2. The weak Stokes problem and the classical mini element

We first introduce some basic notation. By Wm
p (Ω) we denote the Sobolev space of

Lp-functions with weak derivatives up to order m ∈ N ∪ {0} in Lp(Ω), p ∈ N ∪ {∞}. In
the special case p = 2, these spaces are Hilbert spaces and denoted by Hm(Ω). We will
write ∥

∥·
∥
∥

m,p,Ω

(∣
∣·
∣
∣
m,p,Ω

)
for the norm (seminorm) in Wm

p (Ω),
∥
∥·
∥
∥

m,Ω

(∣
∣·
∣
∣
m,Ω

)
for the norm (seminorm) in Hm(Ω),

and 〈·, ·〉m,Ω for the scalar product in Hm(Ω).

We will use bold letters for the function spaces if their elements are vector valued.
The Sobolev space that contains the velocity fields of Stokes flows with homogeneous

Dirichlet boundary condition is denoted by

H1
0 (Ω) :=

{
u ∈ H1 (Ω) : u|∂Ω = 0 in the sense of traces

}
.

The associated pressure space is L2
0 (Ω) :=

{
p ∈ L2 (Ω) :

∫

Ω p = 0
}
. For a given right-

hand side f ∈ H−1(Ω) := (H1
0 (Ω))′, the weak formulation of (1.1) reads: Find a pair

(u, p) ∈ H1
0 (Ω) × L2

0 (Ω) such that

a(u,v) + b(v, p) = 〈f ,v〉0,Ω , ∀v ∈ H1
0 (Ω) ,

b(u, q) = 0, ∀q ∈ L2
0 (Ω) .

(2.1)

The bilinear forms a : H1 (Ω) ×H1 (Ω) → R and b : H1 (Ω) × L2 (Ω) → R are defined by

a(u,v) := 2

∫

Ω
Du : Dv, Du := 1

2 (∇u + (∇u)⊺), b(v, q) := −
∫

Ω
q div v. (2.2)

Both bilinear forms are continuous and, due to Korn’s inequality (cf. [9] and [14]), the
bilinear form a is coercive with respect to H1

0 (Ω), i.e., there exists α > 0 such that

a(u,u) ≥ α
∥
∥u
∥
∥2

1,Ω
∀u ∈ H1

0 (Ω) . (2.3)

The coercivity constant α depends only on the diameter of Ω. The bilinear form b fulfills
the inf-sup condition ([10, Lemma 3.2]):

inf
06=p∈L2

0(Ω)
sup

06=u∈H1
0
(Ω)

b(u, p)

‖u‖1,Ω ‖p‖0,Ω

≥ β > 0. (2.4)

It is well known from the framework of mixed variational problems (cf. [10]) that
coercivity (2.3) and stability (2.4) are sufficient conditions for the unique solvability
of problem (2.1). If the solution has additional smoothness properties, i.e. (u, p) ∈
(
H1

0 (Ω) × L2
0 (Ω)

)
∩
(
H2 (Ω) × H1 (Ω)

)
then (cf. [21]) there exists a constant Creg such

that
∥
∥u
∥
∥

2,Ω
+
∥
∥p
∥
∥

1,Ω
≤ Creg

∥
∥f
∥
∥

0,Ω
. (2.5)

We recall the approximation of the weak solution by the classical mini element (see,
e.g., [4]). Its basis is the subdivision of the physical domain Ω into simplices, which
can only be performed in an exact way if Ω is a polyhedron. In the general case, Ω
needs to be approximated by a polyhedral domain ΩT . Let T := {Ti : 1 ≤ i ≤ N} be
a subdivision of ΩT consisting of (closed) simplices. The mesh size of T is denoted by

h := maxT∈T diam
(
T
)
. Any two different simplices are supposed either to be disjoint or

to share exactly either one face or one side or one vertex. We will refer to Θ as the set
of vertices of T and to ∂Θ := Θ ∩ ∂ΩT as the set of boundary vertices. Furthermore, T
is assumed to be shape-regular, i.e., there exists ρ > 0 such that

ρT :=
diam

(
BT

)

diam
(
T
) ≥ ρ, ∀T ∈ T , (2.6)



THE COMPOSITE MINI ELEMENT 5

where BT denotes the largest ball contained in T . Based on the triangulation T we
define the space of continuous piecewise affine functions

ST :=
{
v ∈ C0

(
ΩT

)
| ∀T ∈ T : v|T ∈ P1

}
. (2.7)

In order to fulfill the discrete analogue of the inf-sup condition (2.4) the velocity space
has to be enriched by simplex bubble functions, i.e.,

BT := span {ψT : T ∈ T } , ψT := (d+ 1)d+1
∏

y∈V (T )

λy, (2.8)

where V (T ) denotes the set of vertices of a simplex T and λy, y ∈ V (T ), its barycentric
coordinates. The unconstrained mini element space on T is given by

XT × MT :=
(
ST ⊕ BT

)
× ST , (2.9)

where bold letters mark vector valued spaces. For problems with homogeneous Dirichlet
boundary condition, the mini element space is given by

X0
T × MT :=

(
{v ∈ ST | v|∂Θ = 0}
︸ ︷︷ ︸

{v∈ST |v|∂ΩT
=0}

⊕BT

)
× ST . (2.10)

If Ω = ΩT then the mini element space X0
T × MT is conforming, i.e. X0

T ⊆ H1
0 (Ω). A

pair (u, p) ∈ X0
T ×

(
MT ∩ L2

0 (Ω)
)

is called the mini element approximation if it fulfills

the discrete variational system

a(u,v) + b(v, p) = 〈f ,v〉0,Ω , ∀v ∈ X0
T ,

b(u, q) = 0 ∀q ∈ MT ∩ L2
0 (Ω) .

(2.11)

It is well known that, if the continuous solution satisfies (u∗, p∗) ∈ H1+r(Ω)×Hr(Ω) for
some r ∈ (1

2 , 1], the resulting method fulfills the following a priori error estimate
∥
∥u∗ − u

∥
∥

1,Ω
+
∥
∥p∗ − p

∥
∥

0,Ω
≤ Chr

∥
∥f
∥
∥

1−r,Ω
, (2.12)

where C > 0 is a constant that is independent of h, u∗, and p∗. As already mentioned
in the introduction, estimate (2.12) indeed reflects the error but not necessarily the
computational effort, namely the dimension of the finite element space. Our focus is on
problems with different scales in the geometry, i.e. the domain contains parts that can be
resolved by coarse meshes, and, in addition, (a huge number of) small geometric details.
The standard (domain resolving) mini element has two disadvantages for problems of
this type:

(1) In practice, one is often interested in a moderate accuracy that cannot be achieved
at a moderate effort if the mesh has very fine parts in order to resolve the geom-
etry.

(2) The mesh density of coarse shape regular triangulations of complicated domains is
determined by the geometry and not by the smoothness properties of the solution.

The composite mini element allows a flexible handling of multiple scales in the geometry
and coarse mesh computations even on very complicated domains.

3. The composite mini element

In this section we define a new mixed finite element for the Stokes equations, the
composite mini element (CME). It decouples the minimal space dimension of the ap-
proximation space from the domain geometry. In the classical finite element methods
this coupling is due to the fact that the boundary condition has to be incorporated in
the space, which usually leads to boundary concentrated meshes. The simple idea is now
not to use every vertex of the mesh as a degree of freedom as it is usually done but
to assign degrees of freedom only to nodal points at a proper distance to the boundary
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and "smear" the shape functions to the boundary by taking the Dirichlet condition into
account. To increase flexibility we will use an overlapping triangulation T , i.e.

Ω ⊆ ΩT := int

(
⋃

τ∈T

τ

)

.1

We define shape functions depending only on a subset of nodes of T ; the remaining nodes
are slave nodes. The latter are used to adapt the shape of the composite mini element
functions to the complicated zero boundary. We split the triangulation into two disjoint
submeshes, a coarse (inner) part T dof and a possibly refined (boundary) part T slave (see
Figure 3):

T = T dof ∪ T slave, ∅ 6= ΩT dof :=
⋃

T∈T dof

T ⊆ Ω.

Accordingly, the set of vertices Θ is decomposed into Θ = Θdof ∪ Θslave, where Θdof is
set of vertices of T dof and Θslave := Θ \ Θdof . The common vertices of T dof and T slave

have been put into Θdof and the degrees of freedom will be associated with Θdof . We
refer to the vertices in Θslave as slave nodes since later, the values therein are defined
via extension from the inner degrees of freedom toward the boundary conditions. This
approach reduces the number of unknowns in the finite element discretization of the
problem to the order ♯T dof compared to ♯T . Thus, the local mesh refinements located
in the slave part of the mesh do not affect the space dimension. This technique will turn
out to be very efficient for problems on domains with rough outer boundaries and (or) a
moderate number of holes (see 3). The crucial point in the definition of the composite
mini element space is the choice of suitable extension operators for the pressure as well
as for the velocity.

3.1. Construction of extension operators for finite elements. First we assign a
closest boundary point x̄ ∈ ∂Ω and a closest inner simplex Tx ∈ T dof to every slave node
x ∈ Θslave by

x 7→ x̄ ∈ arg inf
y∈∂Ω

dist(x,y) , x 7→ Tx ∈ arg min
T∈T dof

dist(x, T ) . (3.1)

Both mappings are illustrated in Figure 4. They can be computed easily in a preprocess-
ing step, for instance during the assembling of the triangulation (cf. [11], [16]).

3.1.1. Pressure extension. Pressure test functions q ∈ ST dof , defined on the inner mesh

T dof , are extended to ΩT by

Ep : ST dof → ST ,
(
Epq
)
(x) :=

{
q(x) ,x ∈ Θdof

qTx
(x) ,x ∈ Θslave , (3.2)

where qT denotes the affine extension (extension by itself) of q|T to Rd. The operator Ep

is well defined since its image is supposed to be a subspace of ST .

3.1.2. Velocity extension. We will use a modification of Ep for the extension of the ve-
locity which takes into account the homogeneous Dirichlet boundary condition (cf. [17]):

E
0 : ST dof → ST , E

0u(x) :=

{
u(x) ∀x ∈ Θdof ,

uTx
(x) − uTx

(x̄) ∀x ∈ Θslave.
(3.3)

1This inclusion condition can be relaxed in the sense that triangulations are allowed if the errors
arising from the domain approximation are negligible.
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(b) Inner simplex T with its domain of influence
T slave
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Figure 4. Illustration of a part of a composite mesh T with dark-shaded
inner part T dof .

Note that
(
E

0u
)
(x) = 0 if x ∈ ∂Ω and that only the linear part of a mini element

velocity field is extended. Using the mean value theorem,
(
E

0u
)
(x) can be rewritten in

the following form
(
E

0u
)
(x) = (∇uTx

)(x − x̄), ∀x ∈ Θslave, (3.4)

where u = (u1, . . . , ud)T and ∇uTx
is the (constant) Jacobian matrix of u on Tx.

3.2. Space definition. The composite mini element space is defined as the image of
the mini element space on T dof under the linear mapping E

CME that is composed of the
previous extensions:

E
CME : XT dof × MT dof → XT × MT ,

(
uS + uB , p

)
7→
(
E

0uS + uB, Epp
)
. (3.5)

Thereby, the bubble part uB ∈ BT dof of a velocity field u = uS + uB, uS ∈ ST dof , is

simply extended by zero. The operator E
CME is injective, since functions are not changed

on T dof . If any two elements of XT dof ×MT dof are different, so are their images. Finally,
the composite mini element space is defined by

XCME
T × MCME

T := E
CME

(
XT dof × MT dof

)
⊆ XT × MT .

Note that, in general, the composite mini element is nonconforming because the Dirichlet
boundary condition is satisfied only in an approximate way. This nonconformity can be
controlled in an a priori or, respectively, in an a posteriori way by the local mesh size
in the near boundary zone T slave. Note that there is no nonconformity arising from the
pressure part of the space. A pair (u, p) ∈ XCME

T ×
(
MCME

T ∩L2
0 (Ω)

)
defines the composite

mini element approximation if it fulfills the discrete variational system:

a(u,v) + b(v, p) = 〈f ,v〉0,Ω , ∀v ∈ XCME
T ,

b(u, q) = 0 ∀q ∈ MCME
T ∩ L2

0 (Ω) .
(3.6)
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4. A priori error analysis

In this section we will present the main theorem on the convergence of the composite
mini element method. Our results are based on the general mixed theory presented in
[10] and [4]. The main steps are the investigation of the approximation properties as well
as discrete coercivity and inf-sup stability.

4.1. Approximability. First, we show that H1
0 (Ω)- functions can be approximated

by the velocity part of the composite mini element space. Usually, a piecewise affine
interpolant IT with respect to the mesh T is used to prove this property. However, this

is not possible in our situation because the simplices in T slave do not contain degrees
of freedom. We will use the extensions of the affine interpolants IT dof on the inner

mesh T dof instead. Therefore we may apply standard interpolation results on T dof . The
approximation quality of the proposed method will depend on the choice of T dof and the
following two constants

C
T
1 := max

t∈T slave

dist(t, ∂Ω)

diam
(
t
) and C

T
2 := max

x∈Θslave

dist(x, Tx)

diam
(
Tx

) (4.1)

will enter the convergence estimates. We suppose them to be moderately bounded. An
algorithm for the generation of meshes such that (4.1) holds is presented in [16]. It is
well known (cf. [5, Theorem 16.1]) that, for an arbitrary simplex T ⊆ Rd, d = 2, 3, with
regularity constant ρT , there exists a constant Cint = Cint(m, p, d) such that

∣
∣u− ITu

∣
∣
m,p,T

≤ Cint

ρm
T

diam
(
T
)

“

2− d
2
+ d

p
−m

”

∣
∣u
∣
∣
2,T
, ∀u ∈ H2(T ), (4.2)

where m ∈ {0, 1} and 1 ≤ p ≤ ∞, provided Wm
p (Ω) ⊆ H2(Ω) 2. ITu ∈ P1(R

d) denotes
the linear interpolant of u in the vertices of T . The subsequent lemma analyzes the
approximation quality of ITu in a neighborhood of T . A basic tool proof is an inverse
estimate of the form

∣
∣q
∣
∣
m,p,T

≤
(

2

ρT

)m

h

“

d
p
−m

”

T

∥
∥q
∥
∥

0,∞,T
∀q ∈ P1(R

d), (4.3)

where m ∈ {0, 1} and p ∈ N ∪ {∞}.
Lemma 1 (Neighborhood property3). Let T be an arbitrary simplex with regularity con-
stant ρT , t be an arbitrary simplex with regularity constant ρt. Let the ratio of the
diameters of t and T be denoted by Csize and the distance between T and t relative to the
size of T by Cdist, i.e.

Csize :=
diam

(
t
)

diam
(
T
) and Cdist :=

dist(t, T )

diam
(
T
) .

Furthermore let u ∈ H2(conv
(
T ∪ t

)
) and let ITu ∈ P1(R

d) denote the affine interpolation

of u at the vertices of T . Then, for m ∈ {0, 1} and 1 ≤ p ≤ ∞, provided Wm
p (Ω) ⊆ H2(Ω),

there exists a constant Cnp = Cnp(Cint, d, Csize, Cdist, ρt, ρT ) > 0 such that

∣
∣u− ITu

∣
∣
m,p,t

≤ Cnp diam
(
T
)(2− d

2) diam
(
t
)

“

d
p
−m

”

∣
∣u
∣
∣
2,conv

(
T∪t
).

2The condition Wm
p (Ω) ⊆ H2(Ω) restricts the choices of m and p depending on the dimension d. The

combinations of m and p that will be useful later ((m,p) ∈ {(0, 2), (0,∞), (1, 2)}) are allowed in two as
well as three dimensions.

3A less general two-dimensional version of this lemma has already been given in [17].
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τ

(a) t ∩ T = ∅, Cdist ≈ Csize ≈ 1

3
,

t, T ( conv(T ∪ t)

T

b

x

t

τconv(T ∪ t)

(b) T ⊆ t, Cdist = 0, Csize ≈ 3

2
,

conv(T ∪ t) = t

Figure 5. Two typical situations for the simplices t and T from Lemma 1.

Proof. Let Itu ∈ P1(R
d) denote the affine interpolation of u at the vertices of t. We

define ht := diam
(
t
)

and hT := diam
(
T
)
. The use of triangle inequality, (4.2), and (4.3)

lead to
∣
∣u− ITu

∣
∣
m,p,t

≤
∣
∣u− Itu

∣
∣
m,p,t

+
∣
∣Itu− ITu

∣
∣
m,p,t

≤ Cint

ρm
t

h

“

2− d
2
+ d

p
−m

”

t

∣
∣u
∣
∣
2,t

+

(
2

ρt

)m

h

“

d
p
−m

”

t

∥
∥Itu− ITu

∥
∥

0,∞,t
. (4.4)

Note that
∥
∥Itu−ITu

∥
∥

0,∞,t
= maxx∈V (t)

∣
∣Itu(x)−ITu(x)

∣
∣. We will relate the interpolates

with respect to T and t by constructing a simplex τ that contains an arbitrary but fixed
x ∈ V (t) as a vertex while the other vertices are taken from V (T ). More precisely, we
chose τ out of the d+ 1 simplices collected in the set

Λ :=
{
τ | τ is a simplex, x ∈ V (τ), V (τ) \ {x} ⊆ V (T )

}
.

There is at least one τ ∈ Λ (cf. Figure 5) that fulfills

∣
∣τ ∩ T

∣
∣ ≥ 1

d+ 1

∣
∣T
∣
∣.4 (4.5)

Since τ ∩ T is again a simplex, we can use Heron’s formula to derive

diam
(
Bτ

)
≥ diam

(
Bτ∩T

)
=

d
∣
∣τ ∩ T

∣
∣

∣
∣∂(τ ∩ T )

∣
∣
≥ 1

d+ 1

d
∣
∣T
∣
∣

∣
∣∂T

∣
∣

=
1

d+ 1
diam

(
BT

)
,

where, again, Bτ (resp. Bτ∩T ) is the maximal ball contained in τ (resp. τ ∩ T ). For this
choice of τ we get

diam
(
τ
)
≤ (1 + Cdist + Csize)hT , ρτ ≥ ρT

(d+ 1)(1 + Cdist + Csize)
. (4.6)

4Inequality (4.5) is sharp if T is a regular simplex and x its midpoint.
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For y ∈ V (τ) \ {x} = (V (τ) ∩ V (T )) and a Taylor expansion argument, we get
∣
∣Itu(x)−ITu(x)

∣
∣ =

∣
∣Iτu(x) − ITu(x)

∣
∣

=
∣
∣Iτu(y) − ITu(y) + ∇ (Iτu− ITu) · (x − y)

∣
∣

≤
∣
∣∇ (Iτu− ITu)

∣
∣ diam

(
τ
) (4.6)

.
∣
∣∇ (Iτu− ITu)

∣
∣
∣
∣T
∣
∣
1
2h

(1− d
2)

T

(4.6),(4.5)

. h
(1− d

2)
T

∣
∣Iτu− ITu

∣
∣
1,T∩τ

. h
(1− d

2)
T

(∣
∣Iτu− u

∣
∣
1,τ

+
∣
∣u− ITu

∣
∣
1,T

)

(4.2)

. h
(1− d

2)
T

(
diam

(
τ
)

+ hT

) ∣
∣u
∣
∣
2,conv

(
T∪τ
)

(4.6)

. h
(2− d

2)
T

∣
∣u
∣
∣
2,conv

(
T∪t
). (4.7)

Plugging (4.7) into (4.4) finishes the proof. Devoting more effort to the estimation of the
constants (see [15]) leads to

Cnp ≤ 4(d+ 1)
3
2Cint

ρm
t ρ

(1+ d
2)

T

(

C
(2− d

2)
size + (1 + Cdist + Csize)

3

)

.

�

Next, we will show that an arbitrary H2-function u, which will be fixed throughout

this section, can be approximated sufficiently well by E
0
(

IT dofu
)

∈ XCME
T , i.e. by the

extension of the piecewise affine interpolation with respect to T dof . Since in general
Ω ⊆ ΩT , it will be useful to extend u to the larger domain ΩT . It is known that, if Ω is

bounded and Lipschitz, there exists a continuous, linear extension operator E : Hk(Ω) →
Hk(Rd), k ∈ N0, such that

∀u ∈ Hk(Ω) : Eu|Ω = u and
∥
∥Eu

∥
∥

Hk(Rd)
≤ Cext

∥
∥u
∥
∥

Hk(Ω)
, (4.8)

with a constant Cext depending only on k and Ω (cf. [20]). It is worth noting that for
domains containing a large number of holes and a possibly rough outer boundary, there
exists an extension operator with moderately small norm Cext under mild assumptions
on the geometry. For all details including the characterization of the class of domain
geometries, we refer to [18]. In the following we always identify u with its minimal
extension Eu without mentioning this explicitly. For T ∈ T dof the approximation results
are obvious corollaries of the classical interpolation estimate (4.2). We will concentrate
on the boundary region T slave. Its elements can be grouped according to their closest
inner simplices. For T ∈ T dof we define the set of slave simplices by

T slave
T := {t ∈ T slave | ∃x ∈ V (t) : Tx = T} ⊆ T slave.

T slave
T is empty for all simplices that do not intersect ∂ΩT dof . A simplex T ∈ T dof with

T slave
T 6= ∅ is called extrapolation simplex and T slave

T its mesh of influence. Additionally,

we fix the subsets of T slave which are exclusively influenced by a single element T ∈ T dof

by

T̂ slave
T :=

{

t ∈ T slave
T | ∀x ∈ V (t) : Tx = T

}

⊆ T slave
T .

An example is depicted in Figure 4b. As a first step for the H1 approximation result we
prove a local L∞- estimate. Due to the extension E

0 the estimate with respect to a slave
simplex t cannot be local in the sense that it depends only on the H2-norm of u on t.
Therefore we introduce neighborhoods of slave simplices

ωt :=
⋃

T∈T dof : t∈T slave
T

(

T ∪
⋃

τ∈T slave
T

τ

)

, t ∈ T slave,
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and neighborhoods of extrapolation simplices

ωT :=
⋃

t∈T slave
T

ωt, T ∈ T dof .

Lemma 2. There is a constant C = C(Cint, ρ, C
T
1 , C

T
2 , d) > 0 that does not depend on

u such that

∥
∥u − E

0IT dofu
∥
∥

0,∞,t
≤ C

[(

diam
(
t
)(d−1)

h
) 1

d

](2− d
2) ∣
∣u
∣
∣
2,ωT

, ∀t ∈ T slave.

Proof. For t ∈ T slave let ht := diam
(
t
)

and Itu denote the affine interpolant of u at the
vertices of t. Then

∥
∥u− E

0IT dofu
∥
∥
∞,t

≤
∥
∥u− Itu

∥
∥
∞,t

+
∥
∥Itu− E

0IT dofu
∥
∥
∞,t

. (4.9)

A bound of the first term in (4.9) is given by (4.2). It remains to bound the second term
in (4.9) or, equivalently,

∣
∣u(x) − E

0IT dofu(x)
∣
∣ for x ∈ V (t). We construct a simplex τ

(that does not necessarily belong to T (see also Fig. 6a)) with the following properties:

(1) x ∈ τ ,
(2) x̄ is a vertex of τ ,

(3) hτ := diam
(
τ
)
∈ O

(
ht

(
h
ht

) 1
d )

, ρτ ≥ ρ and τ ⊆ ωt.

Due to (2.6) and (4.1) such a simplex always exists. The choice hτ ≈ ht

(
h
ht

) 1
d

is made

in order to minimize the bound of the pointwise error (see (4.11) in this proof). Let the
closest inner simplex according to x be denoted by Tx and let its diameter be denoted by
hTx

:= diam
(
Tx

)
. Let Iτ and ITx

denote the affine interpolation operators corresponding
to τ and Tx. Then we get

∣
∣E

0IT dofu(x) − u(x)
∣
∣

(3.3)
=
∣
∣∇ITx

u · (x − x̄)−
=∇(Iτu)·(x−x̄)

︷ ︸︸ ︷

(Iτu(x) − Iτu(x̄))+Iτu(x)
︸ ︷︷ ︸

=0

−u(x)
∣
∣

≤
∣
∣∇ (ITx

u− Iτu) · (x− x̄)
∣
∣ +

∣
∣u(x) − Iτu(x)

∣
∣ (4.10)

(4.1),(4.2)

. ht

∥
∥ITx

u − Iτu
∥
∥

1,∞,τ
+ h

(2− d
2)

τ

∣
∣u
∣
∣
2,τ

(4.3)

.
ht

hτ

∥
∥ITx

u− Iτu
∥
∥

0,∞,τ
+ h

(2− d
2)

τ

∣
∣u
∣
∣
2,τ

.
ht

hτ

(∥
∥ITx

u − u
∥
∥

0,∞,τ
+
∥
∥u− Iτu

∥
∥

0,∞,τ

)

+ h
(2− d

2)
τ

∣
∣u
∣
∣
2,τ

L1,(4.2)

.

[
hth

(2− d
2)

Tx

hτ
+ hth

(1− d
2)

τ + h
(2− d

2)
τ

]
∣
∣u
∣
∣
2,conv

(
T∪τ
). (4.11)

The choice of the diameter of τ as in 3. leads to the assertion. �

Lemma 3. Let m ∈ {0, 1}. There is a constant C = C(Cint, ρ, C
T
1 , C

T
2 , d) > 0 such that

∥
∥u− E

0IT dofu
∥
∥

m,t
≤ Ch(

2
d
− 1

2) diam
(
t
)( 5

2
−m− 2

d)∣∣u
∣
∣
2,ωt

, ∀t ∈ T slave.

Proof. We separate the linear part of the error by the triangle inequality to estimate:
∣
∣u− E

0IT dofu
∣
∣
m,t

≤
∣
∣E

0IT dofu− It(u)
∣
∣
m,t

+
∣
∣It(u) − u

∣
∣
m,t

(4.3),(4.2)

. diam
(
t
)( d

2
−m)∥∥E0IT dofu− It(u)

∥
∥
∞,t

+ diam
(
t
)(2−m)∣∣u

∣
∣
2,t
.
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We apply Lemma 2 to estimate the first summand and obtain the assertion. The resulting
constant C equals

(
2
ρ

)m
times the constant of Lemma 2. �

The error estimates in Lemma 2 and Lemma 3 contain positive powers of diam
(
t
)
.

Hence, it is possible to localize the approximation error with respect to the elements of
T slave. Unfortunately, the dependence on the H2-norm of u is not local with respect to
the fine scale mesh. Thus it is not possible to sum up the local errors to get an optimal
global estimate. A deeper analysis is needed to prove the following global approximation
property of the velocity space.

Theorem 1 (Approximation property of XCME
T ). Let m ∈ {0, 1}. There is a constant

C = C(Cint, ρ, C
T
1 , C

T
2 , d, Cext) > 0 which does not depend on h such that

∥
∥u− E

0IT dofu
∥
∥

m,Ω
≤ Ch(2−m)

∣
∣u
∣
∣
2,Ω
.

Proof. We start with a splitting of the error:
∣
∣u − E

0IT dofu
∣
∣2

m,Ω
≤
∣
∣u − IT u

∣
∣2

m,Ω
+

∑

T∈T dof

∑

t∈T slave
T

∣
∣IT u − E

0IT dofu
∣
∣2

m,t
. (4.12)

As indicated before, the direct application of Lemma 3 leads to a suboptimal error bound
in the H1-case. In fact, we use Lemma 3 only on those (few) simplices whose nodes are

assigned to different inner simplices, i.e. it does not exist a T ∈ T dof such that t ∈ T̂ slave
T .

For all other simplices we will use a more local bound. Let T ∈ T dof and t ∈ T̂ slave
T . By

Itu ⊆ P1(R
d) we denote the affine interpolation of u at the vertices of t, ht := diam

(
t
)
.

Then

∣
∣E

0IT dofu−IT u
∣
∣
m,t

=
∣
∣E

0IT dofu− Itu
∣
∣
m,t

(4.3)

. h
( d

2
−m)

t

∥
∥E

0IT dofu − Itu
∥
∥

0,∞,t

(3.3)
= h

( d
2
−m)

t max
x∈V (t)

∣
∣∇ITx

u · (x− x̄) − (Itu(x̄) + ∇Itu · (x − x̄))
︸ ︷︷ ︸

=Itu(x)

∣
∣

(4.1)

. h
(1+ d

2
−m)

t

∥
∥∇ (ITx

u − Itu)
∥
∥

0,∞,t
+ h

( d
2
−m)

t max
x∈V (t)

|Itu(x̄) − u(x̄)
︸︷︷︸

=0

|

L1,(4.7)

.h
(1−m)
t

∣
∣ITu− Itu

∣
∣
1,t

+ h
(2−m)
t

∣
∣u
∣
∣
2,t̃
, (4.13)

where t̃ := conv
(
t ∪ {x̄ | x ∈ V (t)}

)
. We insert (4.13) into (4.12) and get

∑

t∈T slave
T

∣
∣IT u− E

0IT dofu
∣
∣2

m,t

≤
∑

t∈T̂ slave
T

∣
∣IT u− E

0IT dofu
∣
∣2

m,t
+

∑

t∈T slave
T

\T̂ slave
T

∣
∣IT u− E

0IT dofu
∣
∣2

m,t

(4.13),

L3

.
∑

t∈T̂ slave
T

h
(2−2m)
t

∣
∣ITu − Itu

∣
∣2

1,t
+ h

(4−2m)
t

∣
∣u
∣
∣2

2,t̃
+

∑

t∈T slave
T

\T̂ slave
T

h(
4
d
−1)h

(5−2m− 4
d)

t

∣
∣u
∣
∣2

2,ωt

≤ h2−2m

(

∣
∣ITu− IT u

∣
∣2

1,T̂ slave
T

︸ ︷︷ ︸

=:M1,T

+
∑

t∈T̂ slave
T

h2
t

∣
∣u
∣
∣2

2,t̃

︸ ︷︷ ︸

=:M2,T

+

(
∑

t∈T slave
T

\T̂ slave
T

h2
t

)
∣
∣u
∣
∣2

2,ωT

︸ ︷︷ ︸

=:M3,T

)

.
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If we could show the existence of constants Ci > 0, such that Mi,T ≤ Cih
2
∣
∣u
∣
∣2

2,ωT
for all

i ∈ {1, 2, 3}, then the proof is finished since
∑

T∈T dof

∣
∣u
∣
∣2

2,ωT
≤ C(ρ,Cext)

∣
∣u
∣
∣2

2,Ω
.

In case of M1,T this can be done in the following way:

M1,T ≤
∣
∣ITu− u

∣
∣2

1,T̂ slave
T

+
∣
∣u− IT u

∣
∣2

1,T̂ slave
T

L1,(4.2)

. h2
∣
∣u
∣
∣2

2,conv
(
T̂ slave

T

).

For the estimation of M2,T we group simplices from T slave not only according to their
extrapolation simplices but also according to their boundary distance. We define the sets

A0 := T slave, Ak :=
{
t ∈ T slave | max

x∈t
dist(x, ∂Ω) < 2−kh

}
, k ∈ N,

and choose K such that Ak = ∅ for all k > K. Their disjoint versions are given by (cf.
Figure 6b)

Ãk := Ak \ Ak+1, 0 ≤ k ≤ K − 1, ÃK := AK . (4.14)

The summation in M2,T can be re-sorted using (4.14):

M2,T =
∑

t∈T̂ slave
T

h2
t

∣
∣u
∣
∣2

2,t̃

(4.1)

.

K∑

k=0

∑

t∈T̂ slave
T

∩Ãk

2−2kh2

( K∑

j=0

∑

τ∈Ãj

∣
∣u
∣
∣2

2,τ∩t̃

)

≤ h2
K∑

k=0

2−2k

( K∑

j=0

∑

τ∈Ãj

∑

t∈T̂ slave
T

∩Ãk

2−2k
∣
∣u
∣
∣2

2,τ∩t̃

)

≤ h2
K∑

k=0

2−2k

( K∑

j=0

∑

τ∈Ãj

♯Ãk,τ

∣
∣u
∣
∣2

2,τ

)

.

Here, Ãk,τ := {t ∈ T̂ slave
T ∩ Ãk | τ ∩ t̃ 6= ∅}. For τ ∈ Ãj and j > k, Ãk,τ is an empty set.

In the other cases, j ≤ k, its number of elements is bounded by a constant C(C
T
1 , ρ, d)

since

dist(t1, t2) ≤ 2 · 2−kh ∀t1, t2 ∈ Ãk,τ and
∣
∣t1
∣
∣ ≥ C(C

T
1 , ρ)(2

−kh)d ∀t1 ∈ Ãk,τ .

Furthermore, Ãk,τ is an empty set if τ 6⊆ ωt. This leads to

M2,T .h2
K∑

k=0

2−2k
k∑

j=0

∣
∣u
∣
∣2

2,ωt
= h2

( K∑

k=0

2−2kk

︸ ︷︷ ︸

≤2

)
∣
∣u
∣
∣2

2,ωT
.

It remains to estimate M3,T . Let N(T ) denote the set of neighbors of T ∈ T dof in T dof ,

i.e. N(T ) := {τ ∈ T dof : τ̄ ∩ T̄ 6= ∅}. Since T slave
T \ T̂ slave

T ⊆
⋃

τ∈N(T )

T slave
τ we get

M3,T
(4.14)
=

(
∑

t∈T slave
T

\T slave
τ

h2
t

)
∣
∣u
∣
∣2

2,ωt
≤
( K∑

k=0

∑

τ∈N(T )

∑

t∈T slave
T

∩T slave
τ ∩Ãk

2−2kh2

)
∣
∣u
∣
∣2

2,ωT

≤ h2
∣
∣u
∣
∣2

2,ωT

(
∑

τ∈N(T )

K∑

k=0

#
(
T slave

T ∩ T slave
τ ∩ Ãk

)
2−2k

)

.

(4.15)
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∂Ω

bx
b

x̄

Tx

t

τ

b b b

b

b

(a) Illustration of a slave node x

and the simplex τx from the proof of
Lemma 2 in R2.

|
|

|
|

Ã0

Ã1

Ã2

T

∂Ω

T̂ slave

T

T slave

T
\ T̂ slave

T

b b b

b

b

(b) The boundary regions Ãi.

Figure 6. Some illustrations for the proofs of Lemma 2 and Theorem 1.

A simplex t belongs to the set T slave
T ∩ T slave

τ , τ ∈ N(T ), if it intersects the (d − 1)-
dimensional manifold on which the mapping

Rd ∋ x 7→ Tx ∈ argmin{dist(x, T ) ,dist(x, τ)}
has a jump (see also 3.1). Therefore and due to (4.1) and shape regularity (2.6) the

cardinality of T slave
T ∩ T slave

τ ∩ Ãk satisfies

#
(
T slave

T ∩ T slave
τ ∩ Ãk

)
≤ C(C

T
1 , C

T
2 , ρ, d)(2

k)d−2, ∀k = 1, . . . ,K. (4.16)

In two dimensions, the bounded number of simplices belonging to T slave
T ∩ T τ ∩ Ãk is

O(1). This is not true for d = 3, however, the growth in k is sufficiently slow to preserve
the final estimate:

M3,T

(4.15),(4.16)

.

( K∑

k=0

2−k

)

h2
∣
∣u
∣
∣2

2,ωt
≤ 2h2

∣
∣u
∣
∣2

2,ωT
.

�

The derivation of corresponding approximation results for an appropriate pressure
function p ∈ H1 (Ω) is less technical. However, the pointwise interpolation operator IT dof

which we used up to now is not well defined for H1-functions and has to be replaced by
a quasi interpolation operator ΠT : H1(ΩT ) → ST of Scott and Zhang5 (see e.g. [19]).
Following [19], Theorem 4.1 and Corollary 4.1, the operator ΠT is bounded and it exists
a constant Cqint that only depends on ρ such that

∥
∥p− ΠT p

∥
∥

m,t
≤ Cqint diam

(
t
)1−m∥∥p

∥
∥

1,ωt
∀t ∈ T , m ∈ {0, 1}. (4.17)

As before we let p ∈ H1 (Ω) be fixed and identify it with its extension Ep (cf. (4.8)). The
error estimates with respect to the inner mesh T dof are given in (4.17) and we concentrate
on the boundary part of the mesh.

5Since we only use the approximation property of this operator and not its special structure it is
also possible to use the quasi-interpolation operator as introduced by Clément [7] or its modifications as
described in [22] and [23].
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Theorem 2 (Approximation property of MCME
T ). There is a constant C that depends

only on Cqint, ρ, C
T
1 , C

T
2 , and d such that

∥
∥p− EpΠT dofp

∥
∥

0,t
≤ Ch

∥
∥p
∥
∥

1,ωt
, ∀t ∈ T slave. (4.18)

Furthermore we have the global estimate
∥
∥p− EpΠT dofp

∥
∥

0,Ω
≤ Ch

∥
∥p
∥
∥

1,Ω
,

where the constant C depends only on Cext, ρ, and the constant of the local estimate.

Proof. We start by estimating the local error. Let t ∈ T slave. Then
∥
∥p− EpΠT dofp

∥
∥

0,t
≤
∥
∥p− ΠT p

∥
∥

0,t
+
∥
∥ΠT p− EpΠT dofp

∥
∥

0,t

(4.17),(4.3)

. diam
(
t
)∥
∥p
∥
∥

1,ωt
+
∣
∣t
∣
∣
1
2
∥
∥IT p− EpIT dofp

∥
∥
∞,t

.

The infinity norm of the affine function equals the absolute value of
(

ΠT p− EpΠT dofp
)

in some vertex x ∈ V (t), which can be estimated as follows:
∣
∣ΠT p(x) − EpΠT dofp(x)

∣
∣ =

∣
∣ΠT p(x) − ΠTx

p(x)
∣
∣ ≤

∥
∥ΠT p− ΠTx

p
∥
∥
∞,t

.
∣
∣t
∣
∣−

1
2
∥
∥ΠT p− ΠTx

p
∥
∥

0,t

L1

. diam
(
Tx

)∣
∣t
∣
∣−

1
2
∥
∥p
∥
∥

1,ωt
.

Hence, (4.18) is proved. The global estimate follows immediately, since the overlap of ωt

can be controlled in terms of ρ. �

The preceding approximation result is one basic ingredient of the error analysis in
the next section. Note that there was no restriction concerning the minimal mesh size
in T slave which will allow us to control the nonconformity in the space by adapting
the local mesh size in T slave and without increasing the space dimension. Further it is
straightforward to generalize the Theorems 1 and 2 to the case of less regular solutions,
say u ∈ H1+r(Ω) and p ∈ Hr(Ω) for r ∈ (0, 1] by using the interpolation theory of
Sobolev spaces (cf. [3]).

4.2. Discrete stability and coercivity. In this section, we will investigate the unique
solvability of the discrete composite mini element systems. The stability proof makes use
of the boundedness of the pressure extension Ep.

Lemma 4. There is a constant CEp = CEp(ρ, d) such that
∥
∥Epp

∥
∥

0,Ω
≤ CEp

∥
∥p
∥
∥

0,Ω
T dof

for

all p ∈ MT dof .

Proof. For q ∈ MT dof there holds

∥
∥Epp

∥
∥2

0,Ω
≤
∑

T∈T dof

∥
∥Epp

∥
∥2

0,T
+
∑

t∈T slave

∥
∥Epp

∥
∥2

0,t

(4.3)

≤
∑

T∈T dof

∥
∥p
∥
∥2

0,T
+
∑

T∈T slave

∣
∣t
∣
∣
∥
∥Epp

∥
∥2

∞,t
. (4.19)

Since Epp |t takes its maximum in a vertex x ∈ V (t), there holds

∥
∥Epp

∥
∥
∞,t

≤
∥
∥pTx

∥
∥
∞,t

L1
≤
(

1 +
diam

(
Tx

)

diam
(
t
)

)

∥
∥pTx

∥
∥
∞,Tx

.
∣
∣Tx

∣
∣−

1
2
∥
∥p
∥
∥

0,ωt∩Ω
T dof

,

where pTx
denotes the extension of p|Tx

(by itself) to Rd. We plug this into (4.19) which
finishes the proof, since the resulting overlap is bounded by the maximal number of
neighbors in T dof and therefore in terms of ρ. �

Now we can show that the composite mini element is stable for the boundary conditions
under consideration.
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Theorem 3 (Stability). XCME
T ×MCME

T is a stable pairing, i.e. there is a constant βCME

which only depends on d, ρ, and the discrete inf-sup constant of the mini element such
that

inf
p∈M

CME
T

∩L
2
0(Ω)

sup
0 6=u∈XCME

T

b(u, p)
∥
∥u
∥
∥

1,Ω

∥
∥p
∥
∥

0,Ω

≥ βCME.

Proof. We start with the stability of the classical mini element XT dof×MT dof with respect

to the inner mesh T dof , which is known from [4]:

inf
06=p∈M

T dof∩L2
0(ΩT dof )

sup
0 6=u∈X

T dof

∫

Ω
T dof

p divu

‖p‖0,Ω
T dof

‖u‖1,Ω
T dof

≥ β > 0. (4.20)

Thereby β does not depend on the mesh size. We define two mappings to transport this
result to the composite mini element space. The first one is just a slight modification of
Ep in order to handle the L2

0 intersection:

Ẽp : MT dof ∩ L2
0(ΩT dof ) → MCME

T ∩ L2
0 (Ω) , q 7→ Epq − 1

|Ω|

∫

Ω
Epq.

Due to Lemma 4, Ẽp is bounded and
∥
∥Ẽpq

∥
∥

0,Ω
≤ 2CEp

∥
∥p
∥
∥

0,Ω
T dof

. Furthermore Ẽp is a

bijection since Ep maps constants on constants and the preimage of a constant function
is constant. In a second step we construct a bounded mapping π : XT dof → XCME

T

that satisfies ∫

Ω
Ẽpq div πu =

∫

Ω
T dof

q divu ∀q ∈ MT dof . (4.21)

This step is similar to Fortin’s lemma (cf. [4], Proposition II.2.9), where such a mapping
is employed to deduce the discrete stability from the continuous one. Let us suppose for
the moment that π exists. From (4.20) we know that

∀q ∈ MT dof ∩ L2
0(ΩT dof ) ∃uq ∈ XT dof :

∫

Ω
T dof

q divuq ≥ β

2

∥
∥q
∥
∥

0,Ω
T dof

∥
∥uq

∥
∥

1,Ω
T dof

.

The left-hand side can be replaced using (4.21) and the bijectivity of Ẽp which leads to:

∀p ∈ MCME
T ∩ L2

0 (Ω) ∃q ∈ MT dof ∩ L2
0(ΩT dof ), uq ∈ XT dof : p = Ẽpq and

∫

Ω
p div πuq =

∫

Ω
T dof

q divuq ≥ β

2

∥
∥q
∥
∥

0,Ω
T dof

∥
∥uq

∥
∥

1,Ω
T dof

.

Let Cπ denote the operator norm of π. Recalling CEp as in Lemma 4 we get

inf
p∈MCME

T
∩L2

0(Ω)
sup

0 6=u∈XCME
T

b(u, p)
∥
∥u
∥
∥

1,Ω

∥
∥p
∥
∥

0,Ω

≥ β

4CEpCπ
.

It remains to define π: Let u ∈ XT dof . The extension of u ∈ XT dof by zero (again

denoted by u) is mapped onto XCME
T by using the H1-orthogonal projection (denoted by

PXCME
T

). Due to (4.20) and the coercivity of a on H1
0(ΩT dof ) there is a unique u∗ ∈ XT dof

satisfying the following discrete Stokes problem of Dirichlet type in ΩT dof :
∫

Ω
T dof

D(u∗) : D(v) −
∫

Ω
T dof

p divv = 0, ∀v ∈ XT dof

∫

Ω
T dof

q divu∗ = g(q), ∀q ∈ MT dof ∩ L2
0(ΩT dof ),
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where the linear form g : MT dof ∩ L2
0(ΩT dof ) → R is given by g(q) :=

∫

Ω
Ẽpq div(u −

PXCME
T

u). Defining πu := PXCME
T

u + u∗ condition (4.21) is obviously fulfilled. The

operator π is bounded because of the boundedness of the orthogonal projection and
Lemma 4:

∥
∥πu

∥
∥

1,Ω
≤
∥
∥u
∥
∥

1,Ω
T dof

+ C*

(

sup
06=q∈M

T dof∩L2
0(Ω

T dof )

∣
∣g(q)

∣
∣

∥
∥q
∥
∥

0,Ω
T dof

)

≤
(
1 + C*(1 + 3CEp)

)

︸ ︷︷ ︸

=Cπ

∥
∥u
∥
∥

1,Ω
T dof

.

�

It is remarkable that we deduced stability from the mini element with respect to the
triangulation T dof and not from the continuous result on the complicated domain Ω.

Next, we have to investigate the coercivity of the bilinear form a with respect to
the discrete space XCME

T . We know from (2.3) that a is coercive on H1
0 (Ω). Since

XCME
T 6⊆ H1

0 (Ω) this result needs to be extended to a certain neighborhood of H1
0 (Ω).

This neighborhood can be measured in terms of L2-norm of the trace as can be seen
in the following Lemma, the proof of which (see [15]) is analogous as the proof for the
Poincaré inequality.

Lemma 5 (Equivalent norms in H1 (Ω)). For all u ∈ H1 (Ω) there holds ‖u‖2
1,Ω .

a(u,u) + ‖u‖2
0,∂Ω.

Lemma 5 implies that a is coercive on the composite space XCME
T if the violation

of the zero boundary condition is not too large. We will make this fact precise in the
subsequent lemma by showing that the nonconformity in the space can be controlled by
the local mesh refinement in the slave part T slave of the mesh T , more precisely, by the
ratio

R(T ) := max
t∈T slave

T
:t∩∂Ω 6=∅

diam
(
t
)

diam
(
T
) , T ∈ T dof ,

which can be assigned to every extrapolation simplex.

Lemma 6 (Nonconformity). There is a constant C = C(ρ,C
T
3 ) > 0 such that

∥
∥u
∥
∥

0,∂Ω
≤ C

(
max

T∈T dof
R(T )

)
h

1
2

∣
∣u
∣
∣
1,Ω

∀u ∈ XCME
T .

Proof. Let t ∈ T slave such that t∩∂Ω 6= ∅. We start by estimating the value of u ∈ XCME
T

at a vertex x of t:

∣
∣u(x)

∣
∣

(3.4)

≤ diam
(
t
)∣
∣∇(u|Tx

)
∣
∣=

diam
(
t
)

∣
∣Tx

∣
∣
1
2

∣
∣u
∣
∣
1,Tx

. (4.22)
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Now we can estimate the L2-norm of u on ∂Ω:
∥
∥u
∥
∥2

0,∂Ω
≤

∑

T∈T dof

∑

t∈T slave
T

:t∩∂Ω 6=∅

∣
∣∂Ω ∩ t

∣
∣
∣
∣u
∣
∣2

∞,t

(4.22),(2.6)

.
∑

T∈T dof

∑

t∈T slave
T

:t∩∂Ω 6=∅

∣
∣∂Ω ∩ t

∣
∣ diam

(
t
)2

diam
(
T
)d

∣
∣u
∣
∣2

1,T

(2.6)

.
∑

T∈T dof

∣
∣∂Ω ∩ T slave

T

∣
∣

diam
(
t
)2

diam
(
T
)d

∣
∣u
∣
∣2

1,T

(2.6)

.

(

max
T∈T dof

∣
∣∂Ω ∩ T slave

T

∣
∣

diam
(
T
)(d−1)

)

︸ ︷︷ ︸

=:C
T

3

diam
(
t
)2

diam
(
T
)
∣
∣u
∣
∣2

1,Ω
.

�

In Lemma 6 we have seen that the nonconformity in the velocity space can be controlled
by the ratios R(T ) independent from the mesh size h. This fact will be important for
the error estimate in the subsequent section. For the unique solvability we want to avoid
constraints on R(T ). The right-hand side in Lemma 6 always contains at least a factor√
h. So, in view of Lemma 5, there is an h0 such that the bilinear form is coercive for

all triangulations with mesh size h ≤ h0. The case h > h0 is discussed in what follows.
The bilinear a has a nontrivial kernel given by the set of rigid body motions

R := {A · +b | A ∈ Rd×d skew symmetric, b ∈ Rd}, (4.23)

and it is therefore coercive on a subspace U ⊆ H1 (Ω) if and only if U ∩R = {0}. This
is the key to prove discrete coercivity.

Lemma 7 (Discrete coercivity). There is a constant αCME that does not depend on h

such that a(u,u) ≥ αCME
∥
∥u
∥
∥2

1,Ω
for all u ∈ XCME

T .

Proof. Let u ∈ XCME
T , A ∈ Rd×d be skew symmetric and b ∈ Rd such that u(x) =

Ax + b. Then, by definition, u(x) = Ax + b = A (x− x̄) in a slave node x and we get

Ax̄ = −b for all x̄ ∈ {x̄i | xi ∈ Θslave}. Since span{x̄i | xi ∈ Θslave} = Rd this can only
be true if A = 0 and b = 0. �

4.3. A priori error estimate. This section provides the main result on the convergence
of the composite mini element method.

Theorem 4. The discrete problem (3.6) has a always a unique solution. Furthermore if
(u∗, p∗) ∈

(
H1

0 ∩ H1+r(Ω)
)
×
(
L2

0 (Ω) ∩ Hr(Ω)
)
, r ∈ (1

2 , 1], is the solution of (2.1) then
we have the following a priori error estimate:

∥
∥u∗ − u

∥
∥

1,Ω
+
∥
∥p∗ − p

∥
∥

0,Ω
≤ C



Capprh
r + sup

0 6=v∈XCME
T

∥
∥v
∥
∥

0,∂Ω
∥
∥v
∥
∥

1,Ω




∥
∥f
∥
∥

r−1,Ω
,

where the constant C depends on αCME, βCME while Cappr depends on the constants in
Theorem 1 and 2.
Furthermore if Ω = ΩT or R(T ) . hr for all T ∈ T dof then

∥
∥u∗ − u

∥
∥

1,Ω
+
∥
∥p∗ − p

∥
∥

0,Ω
. hr

∥
∥f
∥
∥

r−1,Ω
.
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Proof. The unique solvability is a consequence of the Theorems 3 and 7. Following the
abstract mixed theory presented in [4], especially Proposition 2.16, we additionally get
the following error bound

∥
∥u∗ − u

∥
∥

1,Ω
+
∥
∥p∗ − p

∥
∥

0,Ω

T7,T3

. inf
v∈XCME

T

∥
∥u∗ − v

∥
∥

1,Ω
+ inf

q∈MCME
T

∥
∥p∗ − q

∥
∥

0,Ω

+ sup
0 6=v∈XCME

T

∣
∣a(u∗,v) + b(v, p∗) − 〈f ,v〉0,Ω

∣
∣

‖v‖1,Ω

︸ ︷︷ ︸

=:K

.

The infima have been estimated in Section 4. The supremum which reflects the error
due to nonconformity in the space can be estimated by using the identity

∫

Ω
Du∗ : Dv +

∫

Ω
p∗ divv − 〈f ,v〉0,Ω =

∫

∂Ω
〈(Du∗ − p∗Id)ν,v〉 , (4.24)

which holds for the solution (u∗, p∗) and an arbitrary v ∈ H1 (Ω), and the trace theorem

∥
∥Du∗

∥
∥2

0,∂Ω
+
∥
∥p∗
∥
∥2

0,∂Ω
.
∥
∥u∗

∥
∥2

3
2
,Ω

+
∥
∥p∗
∥
∥2

1
2
,Ω
. (4.25)

Therefore the nonconformity error K can be estimated as follows

K
(4.24),(4.25)

.
(∥
∥u∗

∥
∥2

3
2
,Ω

+
∥
∥p∗
∥
∥2

1
2
,Ω

) 1
2

sup
0 6=v∈XCME

T

∥
∥v
∥
∥

0,∂Ω

‖v‖1,Ω

.

Finally, the assertion follows from the regularity estimate (2.5) and the interpolation
theory of Sobolev spaces (cf. [3]). �

5. Numerical experiments

Typical applications of the composite mini element are flow problems on domains
with rough outer boundaries which arise for instance in the modeling of rivers, lakes, and
oceans where the shorelines are rarely smooth. Model Problems of such type have been
investigated in [15]. The results show that the theoretical estimates of the previous section
are sharp for the test problems. Performance tests for composite finite elements for the
Poisson equations and elasticity problems can be found in [17] and [16], where especially
the use of overlapping meshes has been investigated. The subsequent experiments are
addressed to flow problems on complicated domains with mixed boundary conditions.
Our first model problem on the unit square with 100 randomly distributes circular holes
of diameter 0.005 is depicted in Figure 1:

−∆u + ∇p = 0 in Ω,
divu = 0 in Ω,
u(x) = 0.5 (1 + cos(8π(x2 − 0.75))) , ∀x ∈ Γin,

2(Du(x))ν(x) = p(x)ν(x), ∀x ∈ ΓN ,

u(x) = 0, ∀x ∈ ∂Ω \ (Γin ∪ ΓN ),

(5.1)

where Γin := {0} × (5
8 ,

7
8 ) and ΓN := {1} × (1

8 ,
3
8) ∪ (5

8 ,
7
8). The difficulties of problem

(5.1) not only stem from the holes but are also related to the mixed boundary conditions.
The second test problem (see Figure 7) models a force driven flow in a perturbed unit
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Ω

(a) Model domain Ω := {x ∈ R2 | 0 < x1 <

1, g(x1) < x2 < 1}, g(x1) := a sin(ωπx1), a :=
0.001, ω := 199.

(b) Solution velocity (black= 0, white= 0.5).

Figure 7. A model problem: Force-driven Stokes flow in a domain with
rough slip bottom boundary.

square (rough bottom boundary) with mixed Dirichlet and slip boundary conditions:

−∆u + ∇p = f in Ω,
divu = 0 in Ω,
u(x) = 0 ∀x ∈ ΓD,

〈u(x),ν(x)〉 = 0, ∀x ∈ ∂Ω \ ΓD,

(Du(x))ν(x) =
(
ν(x)T (Du(x))ν(x)

)
ν(x), ∀x ∈ ∂Ω \ ΓD,

(5.2)

where f(x) := (cos(2πx2) sin(2πx1), (
3
2 − 3

2x2)
5 sin(πx2) cos(2πx1))

T and ΓD := {0} ×
[0, 1] ∪ [0, 1] × {1} ∪ {1} × [0, 1]. Analytical solutions of (5.1) or (5.2) are not known,
approximations on very fine meshes will be used for the error indication instead. We will
investigate the mini element spaces with respect to coarse shape-regular meshes (see,
e.g., Figure 3 and 10) for the domains of (5.1) and (5.2). They resolve the geometric
details of the domain, i.e. the rough boundaries and holes, as well as the inflow and
outflow boundaries. The definition of the method in Section 3 has left some freedom in
the choice of the inner mesh T dof determining the composite mini element space. We
will use the simplest possible rule:

t ∈ T dof ⇔ dist(t, ∂Ω) > 1
2h

slave.

In case of boundary concentrated meshes as depicted in Figures 3 and 10 this choice
leads to moderate constants in condition (4.1), at least for hslave ∈ (0, h). Note that this
choice does not take any special properties of the model problems into account. The
sparse linear system SCMEwCME = g, which arises from the composite mini element
discretization of (5.1) and (5.2), can be assembled locally in the usual way (see [11], [16],
and [15]). The resulting system matrix is SCME fulfills

SCME = (ECME)T SECME,

where ECME is the matrix representation of the linear operator E
CME presented in (3.5).

ECME is a sparse rectangular matrix with order ♯T number of rows but only order ♯T dof
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(a) Relative H
1 (Ω) velocity error (◦) and rela-

tive space dimension (�) versus hslave, h = 0.05.
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(b) Relative L2 (Ω) pressure error (◦) and rela-
tive space dimension (�) versus hslave, h = 0.05.

Figure 8. Relative errors CME-error
Mini-error in suitable Sobolev norms (◦) and

relative system dimensions CME-dim
Mini-dim (�) for resolving triangulations with

h = 0.05 under the variation of the parameter hslave ∈ (10−3, 1). The
product of relative error and relative dimension, depicted as a dotted
line, indicates the efficiency of the coarsening process.

number of columns. It is obvious that the composite system matrix SCME is (much)
smaller than the classical mini element matrix S. Sparsity can thereby be preserved
since the support of the composite mini element basis functions remains local. As a
consequence the storage requirements are reduced and a (possibly) much smaller system
has to be solved.

Before we present numerical results we will comment on the handling of the boundary
conditions that are not covered by the theory presented before. The inhomogeneous
Dirichlet boundary condition can be handled in the standard way. By introducing a
discrete vector field u0 : Ω → R2 that approximates the inflow condition sufficiently well
the problem can be reduced to a homogeneous problem with a modified right hand side.
Note that u0 can be chosen in the full mini element space based on a possibly fine mesh
close to the inhomogeneous Dirichlet boundary which allows to handle even complicated
Dirichlet data. It is therefore independent from the choice of hslave. From the pressure
part of the composite mini element space we know how to deal with functions that are
unconstrained on the domain boundary. We simply use Ep component-wise to define
the values of the velocity test functions close to the Neumann boundary. For the slip
boundary condition in (5.2) we use Ep in tangential direction and E

0 in normal direction.
A theoretical justification of this procedure has been presented in [15] where the use of
slip boundary condition is discussed in detail. The question which extension has to be
used in a slave node x is decided by its closest boundary point x̄ that either belongs to
the Dirichlet, Neumann, or slip boundary.

We will use Problem (5.1) to investigate the behavior of the error and the system
dimension on two coarse triangulation for varying choices of the parameter hslave. Figure
8 summarizes the results: In both plots the lower curves (�) represent the compression
rates, that is the quotients between the dimensions of the composite spaces for varying
values of hslave and the classical mini element space. The upper curves (◦) show the
relative errors (left: velocity, right: pressure), more precisely the quotient of the errors
of the composite approximations and the full mini element approximation. In between,
the dotted curves (×) are the product of compression rate and relative error. It can be
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0 1

0

0.5

(a) Reference output.

0 1

0

0.5

(b) Mini element output, space
dimension ≈ 7 · 104.

0 1

0

0.5

(c) CME output, space dimen-
sion ≈ 104.

Figure 9. Outflow behavior of the model problem of Figure 1a: Velocity
components (x1 solid, x2 dotted) on {0} × (0, 1) and on {1} × (0, 1) for
the reference approximation (a), the full mini element approximation (b)
on the triangulation from Figure 3 and composite approximation (c) for
hslave ≈ h

4 ≈ 0.025.

seen that the errors stay almost constant as hslave tends to h. Since the space dimension
rapidly decreases at the same time the efficiency of the composite method increases. Only
for values of hslave > h the pressure error becomes large which indicates that the pressure
extension depends more critical on the choice of hslave. This is not surprising, since
information from the boundary conditions is not available. However, the velocity error in
Figure 8a is not affected from the worse pressure approximation and the behavior is fine if
hslave < h. In Figure 9 it can be observed that the generalization of the composite method
to Neumann boundaries works well for the model problem under consideration. Due to
the extension there is an expected loss in smoothness but the general outflow behavior
can be captured without placing additional degrees of freedom. This indicates a certain
potential of the method not only for problems with complicated boundaries but also
with complicated boundary conditions, i.e. complicated Dirichlet data or complicated
distribution of mixed Dirichlet-Neumann boundary conditions.

Finally, we use the second model problem (5.2) to investigate the convergence rates as
the mesh size h decreases. Thereby we compare the classical mini element on a resolving
triangulation (Mini), its composite version (CME) for hslave = 0.1h and a classical mini
element with respect to non-matching, quasi uniform triangulations (uniformMini). All
approaches and the according parameter choices are summarized in Table 10. The results
of the slip model computations are depicted in Figure 11, where the dependence of the
velocity and pressure errors on the mesh size and the system dimension are depicted. We
make the following observations:

(1) The (conforming) mini element and its composite version converge at the pre-
dicted optimal (linear) rate (cf. Figure 11a). The compressed method CME is
only slightly worse than the full version (cf. Figure 11a). Note, that the error
of the composite method is larger than full mini error only in a near boundary
zone. Away from the rough boundary the errors are almost equal, i.e. pollution
effects can not be observed for this test case (cf. Figures 11b).

(2) The quasi uniform approach is not competitive (cf. Figures 11a-b). The reason is
that the very crude approximation of the boundary conditions spoils the overall
discretization too significantly. That means that our choice of the minimal mesh
size for the boundary resolution cannot be weakened without increasing the errors.

(3) The dimension of the composite mini element space behaves like h−d (cf. Figure
10d). That means that the composite mini element preserves the accuracy of the
full mini element space on the coarser levels while the cost is comparable with the
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(a) Classical mini ele-
ment (Mini) on a resolv-
ing mesh (minimal mesh
size 2−10).

(b) Composite mini ele-
ment (CME) on a resolv-
ing mesh with marked
degrees of freedom (•)
(minimal mesh size 2−10,
hslave = h).

(c) Nonconforming
classical mini element
(Mini) on quasi uniform
mesh.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

h

nu
m

be
r 

of
 u

nk
no

w
ns

 

 

(d) System dimension as a
function of h.

Figure 10. The different approaches for the solution of the model prob-
lem (5.2).
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(b) Error on (0, 1) × (0.1, 1) as a
function of h.
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(c) Error on Ω as a function of
the system dimension.

Figure 11. Convergence of the methods applied to model problem (5.2).
The errors (sum of H1-velocity and L2-pressure error are plotted versus
the maximal mesh size h and the system dimension: Mini (dashed, �),
CME (solid, ◦), uniformMini (dotted, ×).

quasi uniform approach. This underpins the efficiency of our “fuzzy” treatment
of the boundary conditions.

(4) The composite method is the most efficient method in this test case. Though the
full mini element produces slightly smaller errors than the composite element,
the resulting system dimension is up to 100 times bigger than for CME on the
coarsest level (see Figure 11c). In contrast to CME the less costly quasi uniform
method produces unsatisfying approximations.

The gain of the composite method depends on the maximal mesh size h. If h is small
enough to resolve the domain the composite and the full method are almost equal in
cost and accuracy. If one is satisfied with only moderate errors, or one is restricted to
smaller dimensions then the composite method is the better choice. Refinements in the
triangulation which are due to geometric issues do not need to be treated by degrees of
freedom.
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