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Abstract

A new a-posteriori error estimator is presented for the verification of the dimensionally reduced
models stemming from the elliptic problems on thin domains. The original problem is considered
in a general setting, without any specific assumptions on the domain geometry, coefficients and
the right-hand sides. For the energy norm of the error of the zero-order dimension reduction
method, the proposed estimator is shown to always provide a guaranteed upper bound. In the
case when the original domain has constant thickness (but, possibly, non-plane upper and lower
faces), the estimator demonstrates the optimal convergence rate as the thickness tends to zero.
It is also flexible enough to successfully cope with the case of infinitely growing right-hand side of
the equation when the domain thickness tends to zero. The numerical tests indicate the efficiency
of the estimator and its ability to accurately represent the local error distribution needed for an
adaptive improvement of the reduced model.
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1 Introduction

The method of dimension reduction is a popular approach frequently used by engineers for the
approximate solution of the problems posed in thin domains. The term “thin” means that the size
of the original physical domain along one coordinate direction is much smaller than along the others;
this allows to make some simplifying assumptions on the behaviour of the exact solution and to
replace the original high-dimensional problem by a lower-dimensional one. For instance, such a
situation arises if a 3D problem is analysed with the help of a 2D model. It is, however, clear that
the solution of the new, “reduced” problem will, in general, differ from the solution to the original
high-dimensional problem. Thus, the dimension reduction method unavoidably produces an error
that can be referred to as the dimension reduction or the modelling error. The essential part of the
model verification is, hence, a reliable a-posteriori control of the dimension reduction error.

Despite the practical importance of the topic, only a few a-posteriori estimators for the dimension
reduction error have been introduced so far. In [12] and [3] (see also [2]) the residual-type estimators
were proposed and proved reliable and efficient under the assumptions that the right-hand side of
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the given equation is zero and the original domain is a plate with plane parallel faces. In [4] and
[10] the implicit estimators based on the solution of local three-dimensional Neumann problems were
developed for the hierarchical modelling of complex elastic plates. In [1] the estimator of Babuška
and Schwab (see [2], [3]) was extended to take into account the discretization error stemming from
the approximate solution of the reduced problem. In this respect, we have to notice that the present
work is focused on the estimation of the modelling error, i.e. we assume, exactly as in [2], [3], that
the error of discretizing the reduced problem is negligible. The work on the simultaneous a-posteriori
estimation of both the modelling and the discretization error will be reported in a forthcoming paper.

In this work we propose a reliable and efficient a posteriori estimator for the dimension reduction
error in the energy norm, having no specific assumptions on the right-hand side of the given equa-
tion and considering a general geometry of the given domain. In contrast to the above mentioned
papers, which deal with the hierarchical modelling of the problems in thin domains, we only consider
the so-called zero-order method of dimension reduction that is, however, very popular owing to its
simplicity and purely two-dimensional formulation. At the same time, this method forms a basis
for the hierarchical modelling of three-dimensional plates (see, e.g., [11], [3], [10]). We advocate
the functional-type a posteriori error estimation approach (see [5], [6], [7], [8]) that essentially dif-
fers from the approaches taken in the aforementioned articles; however, surprisingly enough, it is
possible to show that Babuška and Schwab’s estimator for the zero-order reduced problem can be
obtained as a particular case of our estimator when the right-hand side of the equation is zero and
the original domain is a plate with plane parallel faces. It must be also noticed that the treatment
of the case with non-zero right-hand side may require a special care, as we are about to see in one
of the numerical examples; the presented estimator exhibits sufficient flexibility to remain efficient
in this case.

The paper is set out as follows. Section 2 contains the geometric definitions and the problem
statement. In Section 3 we derive the reduced problem. Section 4 is devoted to the derivation of
the a-posteriori error estimate, while in Section 5 we consider two particular cases and analyse the
behaviour of the estimator. The numerical examples are considered in Section 6, and we draw the
conclusions in Section 7.

2 Problem setting

We consider three-dimensional Lipschitz domains which can be given in the form

Ω := {x ∈ � 3 | (x1, x2) ∈ Ω̂ , d	(x1, x2) < x3 < d⊕(x1, x2)} ,

where Ω̂ ⊂ � 2 is the orthogonal projection of Ω on the (x1, x2)-plane (Ω̂ has the Lipschitz boundary

Γ̂) and d	 and d⊕ are Lipschitz continuous functions defined on Ω̂. The lower and upper faces of Ω
are denoted by

Γ	 := {x ∈ � 3 | (x1, x2) ∈ Ω̂ , x3 = d	(x1, x2)}
and

Γ⊕ := {x ∈ � 3 | (x1, x2) ∈ Ω̂ , x3 = d⊕(x1, x2)} ,
the lateral boundary by

Γ0 := {x ∈ � 3 | (x1, x2) ∈ Γ̂ , d	(x1, x2) < x3 < d⊕(x1, x2)}

(see Figure 1).

Remark 2.1 We consider d	 and d⊕ as explicit functions of (x1, x2)-coordinates only for the sake
of simplicity. The generalization of the theory to the case of an arbitrary Lipschitz domain Ω presents
no difficulty from the conceptional point of view.
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Figure 1: Sketch of the domain geometry.

The assumption that the given domain Ω is “thin” can now be written as

diam Ω̂ � max
(x1,x2)∈ �Ω

d (x1, x2) , (2.1)

where d = d⊕ − d	 is the domain thickness, d (x1, x2) ≥ d∗ > 0 ∀(x1, x2) ∈ Ω̂. Although the
assumption is of purely qualitative nature, it will motivate the derivation of the corresponding two-
dimensional reduced model in the next section. We also have to notice that Figure 1 depicts a
simplified case; in the geometrical definitions we do not assume the domain thickness d (x1, x2) to
be a constant.

In the domain Ω we consider a model elliptic problem

−Div (A∇u) = f in Ω , (2.2)

u = 0 on Γ0 , (2.3)

A∇u · ν	 = F	 on Γ	 , (2.4)

A∇u · ν⊕ = F⊕ on Γ⊕ , (2.5)

where f ∈ L2(Ω), F	 ∈ L2(Γ	), F⊕ ∈ L2(Γ⊕), ν	 and ν⊕ are outward normal vectors at Γ	 and
Γ⊕ respectively. The matrix A = (aij(x))i,j=1,3 with the components from L∞(Ω) is symmetric and
uniformly positive definite, i.e. there exist constants 0 < c < C <∞ such that

c|ξ|2 ≤ A(x)ξ · ξ ≤ C|ξ|2 ∀ξ ∈ � 3 , a. e. in Ω . (2.6)

If the space of admissible functions is denoted by

V0 := {v ∈ H1(Ω) | v = 0 on Γ0} , (2.7)

the weak form of the problem (2.2)–(2.5) reads
Problem (P): Find u ∈ V0 such that

∫

Ω
A∇u · ∇w dx =

∫

Ω
f w dx+

∫

Γ	

F	 w ds+

∫

Γ⊕

F⊕w ds ∀w ∈ V0 . (2.8)
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From now on we will frequently use the notation x̂ = (x1, x2), x̂ ∈ Ω̂, and all functions depending only
on (x1, x2) will be marked by ̂ ; in addition, we will distinguish between the 3- and 2-dimensional
divergence operator:

Div τ =
∂τ 1

∂x1
+
∂τ 2

∂x2
+
∂τ 3

∂x3
, div τ̂ =

∂τ̂ 1

∂x1
+
∂τ̂ 2

∂x2
.

We also denote F̂	(x̂) := F	(x̂, d	(x̂)), F̂⊕(x̂) := F⊕(x̂, d⊕(x̂)) for any x̂ ∈ Ω̂. Finally, we define the
energy norm

|||v||| :=

(∫

Ω
A(x)∇v · ∇v dx

)1/2

∀v ∈ V0 . (2.9)

3 The reduced problem

In view of (2.1), it is reasonable to consider the hypothesis that

the exact solution u is almost constant with respect to x3-coordinate. (3.1)

This gives rise to the so-called zero-order reduced model for the original problem (2.8). The model
is very popular due to its simplicity and purely two-dimensional formulation. The discussion on the
hierarchy of reduced models of different orders can be found in, e.g., [11], [3].

With (3.1) in mind, one can expect that the exact solution u may be well-approximated by the
functions from the subspace

V̂0 := {v ∈ V0 | ∃ v̂ ∈ H1
0 (Ω̂) such that v(x) = v̂(x̂) for a.e. x = (x̂, x3) ∈ Ω} . (3.2)

Thus, any function from V̂0 can be identified with the corresponding function v̂ ∈ H 1
0 (Ω̂) (and vice

versa, for any v̂ ∈ H1
0 (Ω̂) one can reconstruct v ∈ V̂0 ⊂ V0 by the constant extension as in the

definition of V̂0). Then, the energy-norm projection of u onto the subspace V̂0 yields the reduced
problem (the zero-order reduced model)
Problem (P̂ ): Find û ∈ V̂0 such that

∫

Ω
A∇û · ∇ŵ dx =

∫

Ω
f ŵ dx+

∫

Γ	

F	 ŵ ds+

∫

Γ⊕

F⊕ ŵ ds ∀ŵ ∈ V̂0 . (3.3)

Now we can define the dimension reduction error (the modelling error) as the difference e := u− û
between the solutions to the original problem (2.8) and to the reduced problem (3.3).

Remark 3.1 It may be noticed that assumption (2.1) (and, consequently, (3.1)) serves only as an
intuitive motivation for the introduction of the approximation subspace V̂0 and the reduced problem
(3.3). Since the assumption cannot be quantified, the real error of “replacing” u by û may be large;
a robust a-posteriori error estimator should, however, measure this error sufficiently accurately even
in the cases when assumption (2.1) is virtually unsatisfied.

Remark 3.2 The asymptotic behaviour of the modelling error e was analysed in [11] (see also
[2]) for the case of a plate with plane parallel faces Γ	 and Γ⊕ (i.e. when d	 = −d0

2 , d⊕ = d0
2 ,

d0 = const > 0 is the plate thickness) and f = 0. It was proved that

|||e||| ≤ C d
1/2
0 (‖F̂	‖L2( �Ω)

+ ‖F̂⊕‖L2( �Ω)
) as d0 → 0 .

Remark 3.3 We have to note that the third component of the vector ∇û is zero (since û does not
depend on x3) and, thus, the vector will sometimes be considered as a two-component vector, if no
confusion is possible.
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In order to see that the reduced problem (3.3) is, in fact, a two-dimensional problem, we define
the operation (˜) of averaging in x3-direction

∀g ∈ L1(Ω) : g̃(x̂) :=
1

d (x̂)

d⊕( �x)∫

d	( �x)

g(x̂, x3) dx3 for a.e. x̂ ∈ Ω̂ ,

and, having noticed that

∫

Γ	

F	 ŵ ds =

∫

�Ω
F̂	 (x̂) ŵ (x̂)

√
1 + |∇d	(x̂)|2 dx̂ (analogously for

∫

Γ⊕

F⊕ ŵ ds) ,

we can rewrite problem (3.3) as follows:
Find û ∈ V̂0 such that

∫

�Ω
d (x̂)Ãp(x̂)∇û · ∇ŵ dx̂ =

∫

�Ω
d (x̂)f̂(x̂)ŵ dx̂ ∀ŵ ∈ V̂0 . (3.4)

Here Ãp(x̂) = (ãij(x̂))i,j=1,2 is the averaged “plane” part Ap(x) (Ap(x) = (aij(x))i,j=1,2) of the
matrix A and

f̂(x̂) = f̃(x̂) +
F̂	(x̂)

√
1 + |∇d	(x̂)|2 + F̂⊕(x̂)

√
1 + |∇d⊕(x̂)|2

d (x̂)
.

It is clear that problem (3.4) is a two-dimensional elliptic problem with the homogeneous Dirichlet
boundary condition:

−div (d(x̂) Ãp(x̂)∇û) = d(x̂) f̂(x̂) in Ω̂ (3.5)

û = 0 on Γ̂ . (3.6)

4 A posteriori estimation of the modelling error

In order to control the dimension reduction error, we apply the functional-type a posteriori error
estimate derived in [8] (see also [5] and [7]) to the original three-dimensional problem (2.8). The
estimate reads as follows:
For all γ > 0, δ > 0 and y∗ ∈ H∗(Ω,Div) there holds

|||u− v|||2 ≤ (1 + γ)M 2
1 +

(
1 +

1

γ

)
(1 + δ)C2

Ω M
2
2 +

(
1 +

1

γ

)(
1 +

1

δ

)
C2

Γ(1 + C2
Ω)M2

3 , (4.1)

where v is any function from the energy space V0, CΩ is the constant from Friedrichs’ inequality,

C−2
Ω = inf

w∈V0\{0}

|||w|||2
‖w‖2

L2(Ω)

, (4.2)

CΓ is the constant from the trace inequality,

C2
Γ = sup

w∈V0\{0}

‖w‖2
L2(Γ⊕) + ‖w‖2

L2(Γ	)

|||w|||2 + ‖w‖2
L2(Ω)

, (4.3)

the space H∗(Ω,Div) is defined as

H∗(Ω,Div) := {y∗ ∈ L2(Ω,
� 3 ) | Div y∗ ∈ L2(Ω) , y∗ · ν	 ∈ L2(Γ	) , y∗ · ν⊕ ∈ L2(Γ⊕)} ,
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and the functionals M 2
1 , M2

2 , M2
3 are defined by

M2
1 :=

∫

Ω
(∇v −A

−1y∗) · (A∇v − y∗) dx ,

M2
2 := ‖Div y∗ + f‖2

L2(Ω) ,

M2
3 := ‖F	 − y∗ · ν	‖2

L2(Γ	) + ‖F⊕ − y∗ · ν⊕‖2
L2(Γ⊕) .

Since estimate (4.1) holds true for any “approximate solution” v from V0 and the solution to the
reduced problem û ∈ V̂0 ⊂ V0, we can simply plug û into estimate (4.1) to obtain an upper bound of
the modelling error. We also emphasize that the estimate is valid for any positive numbers γ and δ
and for any vector-function y∗ from the space H∗(Ω,Div). While the best possible option would be
to take as y∗ the exact flux A∇u (then M2 and M3 would vanish and M1 would give us the energy
norm of the exact error), we have to restrict ourselves to choosing some computable quantity, i.e.
not containing the unknown exact solution u. We approximate the flux by

y∗ = Ãp∇û+ τ
∗ , (4.4)

with τ
∗ = {0 , 0 , ψ(x)}T , ψ is the auxiliary function from L2(Ω) such that ∂ψ

∂x3
∈ L2(Ω) , ψ ∈ L2(Γ	)

and ψ ∈ L2(Γ⊕). The concrete form of the function ψ will be given later; its meaning becomes clear
in the case of the Poisson equation (i.e. if A is the identity matrix), where ψ should, obviously,
approximate the derivative ∂u

∂x3
of the exact solution in x3-direction. Using (3.5), it is easy to verify

that y∗ from (4.4) belongs to H∗(Ω,Div).

Remark 4.1 The estimate (4.1) possesses the property of asymptotic exactness (see [8]), but, if
we choose y∗ as in (4.4), this property might be lost, since the only remaining “degree of freedom” is
the function ψ and the approximate plane flux Ãp∇û may not represent the first two components of
the exact flux A∇u sufficiently well. On the other hand, if we did not fix the first two components
of y∗, the process of estimation would require the minimization of the right-hand side of (4.1) with
respect to those components, which is, in principle, equivalent to solving a three-dimensional problem.
However, our goal is to avoid any truly three-dimensional calculations in the evaluation of the error
estimator (this process should not be more expensive than the solution of the reduced problem).
Fortunately, in most of the situations, Ãp∇û is a good approximation to the “plane” part of the
exact flux, and the modelling-error estimate with y∗ as in (4.4) exhibits both efficiency and flexibility,
as the numerical tests of Section 6 show.

In order to rewrite estimate (4.1) in a more convenient form, we introduce the notation:

B := A
−1 (B(x) = (bij(x))i,j=1,3 , B = B

T ) , (4.5)

Bp := (bij)i,j=1,2 , (4.6)

b3 := {b31 , b32}T . (4.7)

The term M 2
1 with v = û reads

M2
1 =

∫

Ω
(∇û−By∗) · (A∇û− y∗) dx =

∫

Ω
(A∇û · ∇û− 2y∗ · ∇û+ By∗ · y∗) dx . (4.8)

For the first term in (4.8), one immediately obtains
∫

Ω
A∇û · ∇û dx =

∫

�Ω
d (x̂)Ãp(x̂)∇û · ∇û dx̂ . (4.9)

The second term in (4.8) can be further rewritten if one notices that

y∗ · ∇û = (Ãp∇û+ τ∗) · ∇û = Ãp∇û · ∇û .
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Thus, ∫

Ω
y∗ · ∇û dx =

∫

�Ω
d (x̂)Ãp(x̂)∇û · ∇û dx̂ . (4.10)

For the third term in (4.8) we have

By∗ · y∗ = (BÃp∇û+ Bτ ∗) · (Ãp∇û+ τ∗) = BÃp∇û · Ãp∇û+ BÃp∇û · τ∗

+ Bτ∗ · Ãp∇û+ Bτ ∗ · τ∗ = BpÃp∇û · Ãp∇û+ 2(b3 · Ãp∇û)ψ + b33ψ
2

that yields

∫

Ω
By∗ · y∗ dx =

∫

�Ω
d (x̂)B̃pÃp∇û · Ãp∇û dx̂+

∫

Ω
(b33ψ(x)2 + 2(b3 · Ãp∇û)ψ(x)) dx , (4.11)

where B̃p is the averaged “plane” part Bp(x) of the matrix B(x).
Substituting (4.9), (4.10) and (4.11) into (4.8) one obtains

M2
1 =

∫

�Ω
d (x̂) (B̃pÃp − I)∇û · Ãp∇û dx̂+

∫

Ω
(b33ψ(x)2 + 2(b3 · Ãp∇û)ψ(x)) dx , (4.12)

where I is the identity 2×2-matrix. It is interesting to note that the first integral in (4.12) represents
the error in averaging the coefficient matrix A(x); this becomes fully transparent in the case of a
block-diagonal matrix A, i.e. when a31 = a32 = 0 (then Bp = A−1

p and without the averaging the
integral would be identically zero).

The functional M 2
2 of (4.1) can be also rearranged if one takes y∗ as in (4.4). First, note that

Div y∗ = div Ãp∇û+
∂ψ

∂x3
.

From (3.5) one can deduce

div Ãp∇û = −f̂ − ∇d
d

· Ãp∇û .

Hence,

M2
2 =

∥∥∥∥∥f − f̃ − F̂	

√
1 + |∇d	|2 + F̂⊕

√
1 + |∇d⊕|2

d
− ∇d

d
· Ãp∇û+

∂ψ

∂x3

∥∥∥∥∥

2

L2(Ω)

. (4.13)

The term M 2
3 with y∗ from (4.4) reads

M2
3 = ‖F	 − Ãp∇û · ν	 − ψν	3‖2

L2(Γ	) + ‖F⊕ − Ãp∇û · ν⊕ − ψν⊕3‖2
L2(Γ⊕) , (4.14)

where Ãp∇û is considered as a vector in
� 3 with the third component equal to zero, and

ν	3 =
−1√

1 + |∇d	|2
, ν⊕3 =

1√
1 + |∇d⊕|2

are the third components of the normal vectors ν	 and ν⊕.

Now we can write the general a-posteriori estimate for the dimension reduction error:
For all γ > 0 and δ > 0 there holds

|||u− û|||2 ≤ (1 + γ)M 2
1 +

(
1 +

1

γ

)
(1 + δ)C2

ΩM
2
2 +

(
1 +

1

γ

)(
1 +

1

δ

)
C2

Γ(1 + C2
Ω)M2

3 , (4.15)
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where the constants CΩ and CΓ are as above (see (4.2) and (4.3)), the functionals M 2
1 , M2

2 and M2
3

are given by (4.12), (4.13) and (4.14).
In estimate (4.15) we still have the freedom of choosing the auxiliary function ψ. The simplest

choice is to take such ψ that the term M3 (i.e. the residual on the Neumann boundary condition)
would be identically zero. To do so, we first rewrite the L2-norms on Γ⊕,	 in (4.14) as the integrals

over Ω̂:

‖F	 − Ãp∇û · ν	 − ψν	3‖2
L2(Γ	) =

∫

�Ω
(F̂	(x̂) − Ãp∇û · ν	 − ψ(x̂, d	(x̂))ν	3)

2
√

1 + |∇d	|2 dx̂

(analogously for the norm in L2(Γ⊕)). Then, we denote

Ĝ⊕,	 := F̂⊕,	 − Ãp∇û · ν⊕,	

and set
ψ1(x) = α̂(x̂)x3 + β̂(x̂) , (4.16)

where the functions α̂ and β̂ (α̂ , β̂ ∈ L2(Ω̂)) are chosen so that

ψ1ν⊕3 = Ĝ⊕ at x3 = d⊕ , ψ1ν	3 = Ĝ	 at x3 = d	 . (4.17)

As ν	3, ν⊕3 belong to L∞(Ω̂) and cannot be zero in Ω̂, the functions α̂ and β̂ are uniquely defined
by the conditions (4.17):

α̂ =
1

d

(
Ĝ⊕

ν⊕3
− Ĝ	

ν	3

)
, (4.18)

β̂ =
1

d

(
Ĝ	

ν	3
d⊕ − Ĝ⊕

ν⊕3
d	

)
. (4.19)

It is obvious that the function ψ1 as well as its derivative in x3-direction belong to L2(Ω), ψ1 belongs
to L2(Γ⊕) and L2(Γ	) (since ψ1

∣∣
x3=d⊕,	( �x)

∈ L2(Ω̂)), and, moreover, with such a function ψ the

term M3 becomes zero.

Remark 4.2 One can also consider a quadratic (with respect to x3) function

ψ2(x) = ψ1(x) + η̂(x̂)(x3 − d⊕(x̂))(x3 − d	(x̂))

with η̂ being an arbitrary function from L2(Ω̂). The substitution of ψ2 into (4.14) instead of ψ will
evidently imply M3 = 0. In the second numerical example of Section 6 we will use ψ2 because of
the freedom in the choice of the function η̂. It is clear that one can quite analogously construct the
functions {ψm}, m = 3, 4, . . . , which would make the M3-term vanish and could, possibly, allow to
approximate the third component of the exact flux A∇u with a higher accuracy.

Having chosen the function ψ such that M3 = 0, one can obtain from (4.15) the following estimate
for the squared energy norm of the modelling error:

|||u− û|||2 ≤ (1 + γ)M 2
1 +

(
1 +

1

γ

)
C2

ΩM
2
2 , (4.20)

where γ is any positive number, CΩ is the Friedrichs constant, M 2
1 and M2

2 are given by (4.12) and
(4.13). Minimizing the right-hand side of (4.20) with respect to the scalar parameter γ > 0, we
immediately arrive at the estimate for the energy norm of the modelling error

|||u− û||| ≤M := M1 + CΩM2 (4.21)

with M1 and M2 defined by (4.12) and (4.13).
The rest of the paper will be devoted to the analysis of the properties of estimates (4.20), (4.21).
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5 Particular cases

The error majorant M in (4.21) has been derived for quite general geometry of Ω and coefficient
matrix A(x); to make the estimate more transparent, we consider two particular cases.

5.1 Plate of constant thickness

We assume that
d⊕ = d	 + d0 (d0 = const > 0) (5.1)

and, in addition, that

A = A(x̂) (this immediately implies B = B(x̂)) , (5.2)

a31 = a32 = 0 (this yields Bp = A
−1
p , b33 = a−1

33 , b31 = b32 = 0) . (5.3)

With these assumptions and the choice ψ = ψ1 (see (4.16)) the terms M1 and M2 in estimate (4.21)
become simpler:

M1 =

(∫

Ω
a−1

33 ψ
2
1 dx

)1/2

, M2 = ‖f − f̃‖L2(Ω) . (5.4)

One may notice that the integral in the first term M1 of the error majorant M can be rewritten as

∫

Ω
a−1

33 ψ
2
1 dx = d0 ·

∫

�Ω
a−1

33 (α̂2 d
2
⊕ + d⊕d	 + d2

	

3
+ α̂β̂(d⊕ + d	) + β̂2) dx̂ ,

which means that the term M1 is of order O(d
1/2
0 ) when the plate thickness d0 tends to zero. If

f ∈ L∞(Ω), the second term M2 is obviously of the same order O(d
1/2
0 ), i.e. the whole estimator

M converges to zero with the rate O(d
1/2
0 ) as d0 → 0. This is the optimal convergence rate for the

modelling error e in the energy norm, as was shown in [11] for the simpler case of a plate with plane
parallel faces and f = 0 (see Remark 3.2). It is worth noting that, if f ∈ C 1(Ω), the second term in

M is of higher order O(d
3/2
0 ) as compared to the first term.

5.2 Plate with plane parallel faces

If, in addition to (5.2), (5.3), we strengthen the assumption (5.1) replacing it by

d⊕ =
d0

2
, d	 = −d0

2
(d0 = const > 0) , (5.5)

the function ψ1 takes the simple form

ψ1(x) =
F̂⊕(x̂) + F̂	(x̂)

d0
x3 +

F̂⊕(x̂) − F̂	(x̂)

2

and the error estimate (4.21) reduces to

|||u− û||| ≤
√
d0

3

(∫

�Ω
a−1

33 (F̂ 2
⊕ + F̂ 2

	 − F̂⊕F̂	) dx̂

)1/2

+ CΩ ‖f − f̃‖L2(Ω) . (5.6)

If we set here f = 0, a33 = 1 and F̂⊕ = F̂	 = F̂ , we obtain

|||u− û||| ≤
√
d0

3
‖F̂‖

L2( �Ω)
(5.7)
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that is exactly the estimator of Babuška and Schwab (see [2]) for the zero-order reduced model.
Thus, the latter estimator can be obtained as a particular case of the error majorant (4.21) if one
makes the assumptions (5.2), (5.3), (5.5) and sets f = 0. This fact is especially interesting, since we
advocate the estimation approach (see the details in [8]) completely different from the one utilized
in [2].

Remark 5.1 The error estimate (4.21) contains the Friedrichs constant CΩ that must be, in general,
evaluated numerically. The constant depends solely on the geometry of the domain Ω and can be
computed as 1/

√
λ where λ is the minimal eigenvalue of the elliptic operator −Div (A∇· ) equipped

with the homogeneous Dirichlet condition on Γ0 and homogeneous Neumann conditions on Γ⊕,	 (see
(4.2)). It is clear that, in the case of a plate with plane parallel faces, CΩ can be easily estimated
from above, if one computes the Friedrichs constant in a larger domain obtained by embedding the
cross-section Ω̂ of Ω into some rectangle; the faces of this larger domain are, then, obtained by
the extension of plane faces of Ω. Yet simpler but rougher upper estimate for CΩ in the case of a
plate with plane parallel faces is given by (diam Ω̂)/c, where c is the lower bound of the minimal
eigenvalue of the matrix A(x) in Ω (see (2.6)). It is worth noticing that the constant CΩ multiplies
in the majorant the term M2 which is often of higher order as compared to the first term M1 (it is
so, for example, in the considered above particular cases, when the function f is smooth). Then, the
possible error of overestimation of CΩ is harmless for the majorant accuracy.

6 Numerical examples

6.1 Numerical test 1

In order to analyse the performance of the proposed error estimator, we consider a two-dimensional
test problem in the “sine-shape’ domain (see Figure 2 (left)) whose upper and lower faces are given
by

d⊕,	(x) = sin(kπx) ± d0

2
, k = 1, 2, . . . ,

where d0 > 0 is the domain thickness. In this example, Ω̂ = (0, 1) and Ω = {(x, y) ∈ � 2 | x ∈
Ω̂ , d	(x) < y < d⊕(x)}. The considered problem is

−∆u = f in Ω ,

u = 0 at x = 0 and x = 1 ,

∇u · ν⊕,	 = F⊕,	 at y = d⊕,	 ,

and the right-hand sides of the equation and of the boundary condition are computed using the exact
solution

u(x, y) = sin(πx) · ym (m = 1, 2, . . .)

The reduced problem (3.3) is, in this case, a one-dimensional Dirichlet problem that, of course, can
be solved very accurately (in the present work, we address the estimation of the modelling error
only, assuming that the discretization error stemming from the solution of the reduced problem is
negligible). The Friedrichs constant CΩ was evaluated by computing the minimal eigenvalue of the
Laplace operator with the corresponding homogeneous Dirichlet/Neumann boundary conditions (see
Remark 5.1). We found that, for each k = 1, 2, . . . , CΩ is an increasing function of the thickness d0

as d0 → 0. There always exists, however, a clear upper bound for CΩ; in particular, the estimates
CΩ ≤

√
2 for k = 2 and CΩ ≤ 3 for k = 4 hold true.

Figure 2 (right) shows the convergence rates of the exact modelling-error in the energy norm
(|||e|||) and of the error majorant (M) as the domain thickness d0 tends to zero (the analysis here
corresponds to the case k = 2, when the domain Ω has the shape depicted in Figure 2 (left)). It is
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Figure 2: (left) The domain geometry; (right) Convergence rate of the exact modelling-error and of
the error majorant, k = 2, m = 4 (solid lines) and m = 5 (dash-dot lines), the majorant is indicated
by “◦”.
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Figure 3: Local error distribution provided by the exact modelling-error (solid line) and by the
M1-term of the majorant (dash-dot line), k = 4, m = 4: (left) d0 = 0.1, (right) d0 = 0.05.
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m = 4 m = 5

d−1
0 |||e||| M M

|||e||| |||e||| M M
|||e|||

100 3.2108 9.5598 2.9774 5.0842 16.8434 3.3129
101 0.5058 0.5690 1.1250 0.6399 1.3481 2.1066
102 0.1581 0.1598 1.0106 0.1991 0.3937 1.9770
103 0.0500 0.0501 1.0010 0.0630 0.1237 1.9650
104 0.0158 0.0158 1.0000 0.0199 0.0391 1.9638

Table 1: Convergence of the exact modelling-error in the energy norm (|||e|||) and of the error
majorant (M) as d0 → 0 (k = 2); the results are rounded up to 10−4.

clear that both the exact error and the majorant vanish with the theoretically predicted, optimal

rate O(d
1/2
0 ). However, the behaviour of the majorant is different for even and odd values of degree

m determining the polynomial growth of the exact solution u in y-direction. The typical picture
corresponding to an even value of the parameter m is well represented by the case m = 4 in Figure 2
(right); in this case, the majorant M demonstrates the asymptotic exactness, and, moreover, the
effectivity index M

|||e||| behaves like 1+O(d0) (see Table 1). In the case of an odd value ofm (represented

by m = 5 in Figure 2 (right)), the majorant loses the property of asymptotic exactness, although the
effectivity index remains stable and behaves like, approximately, 1.963 + O(d0) (see Table 1). This
problem was addressed in Remark 4.1 and is caused by the fact that the approximate flux computed
in the reduced model does not bring sufficient information on the corresponding components of the
exact flux. We may note, however, that the effectivity index is still quite acceptable in this case.
Finally, it is worth noticing that the presented error estimator provides a reliable upper bound for
the exact error at any positive values of the domain thickness d0, i.e. also in the cases when the
domain is not “thin” at all.

The local error distribution provided by the exact error and by the first, M1-term of the majorant
M (see (5.4)) are depicted in Figure 3 (here we consider the case k = 4, when the functions d⊕,	
defining the shape of the domain have 4 extrema). The figure shows that already for rather large
value of the domain thickness d0 = 0.1 the majorant delivers sufficiently accurate information on the
location of the regions of the biggest modelling error, while for d0 = 0.05 the exact and the estimated
error distributions are practically coincident.

6.2 Numerical test 2

The previous test shows that in the standard situations the proposed error estimator performs
well. The example of this section is supposed to demonstrate the performance of the estimator in
a relatively difficult case when the right-hand side of the equation grows infinitely as the domain
thickness tends to zero.

In this test, we consider a very simple geometry (see Figure 4 (left)), namely

d⊕,	 = ±d0

2
,

where d0 > 0 is the given thickness of the domain, Ω̂ = (0, 1) and Ω = {(x, y) ∈ � 2 | x ∈ Ω̂ , −d0
2 <

y < d0
2 }. The considered problem reads

−∆u = f in Ω ,

u = 0 at x = 0 and x = 1 ,

∂u

∂y
= ±F⊕,	 at y = ±d0

2
,
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Figure 4: (left) The domain geometry; (right) Convergence rate of the exact modelling-error and
of the error majorant, m = 2, the majorant is indicated by “◦”.

and the right-hand sides of the equation and of the boundary condition are computed using the exact
solution

u(x, y) = sin(πx) · ym

dm−1
0

(m = 1, 2, . . .)

The scaling factor dm−1
0 makes this test essentially different from the previous one: while the Neu-

mann boundary data F⊕,	 remain of order O(1) as d0 → 0, the right-hand side of the equation f

exhibits the behaviour f ∼ O(d0) + O
(

1
d0

)
, i.e. unboundedly grows when d0 tends to zero. The

unbounded growth of f may yield serious problems for an a-posteriori error estimator, as we are
about to see. We also note that the constant CΩ can be computed exactly in this example: CΩ = 1

π
for all values of the thickness d0.

First, we take m = 2 and observe the convergence of the exact modelling-error in the energy norm
and of the error majorant as d0 tends to zero, see Figure 4 (right). As in the preceding example,
the error majorant provides a reliable upper bound for the exact error at any values of the thickness

d0, both the exact error and the majorant demonstrate the optimal convergence rate O(d
1/2
0 ) and,

moreover, the error majorant shows the asymptotic exactness in this case (the effectivity index
M

|||e||| = 1 + O(d0), see Table 2, the column under “m = 2, M(ψ1)”). However, if we set m = 3, the

second term of the majorant M (i.e. ‖f − f̃‖L2(Ω), see (5.6)) becomes dominating and the whole
estimator grows unboundedly, as can be seen in Figure 5 (left). The estimator becomes, of course,
useless as it dramatically overestimates the exact error for small values of d0. It is rather clear
that the problem originates from the bad choice of the auxiliary function ψ that is supposed to
approximate ∂u

∂y ; for m = 3 the derivative is quadratic and cannot be adequately represented by the
linear function ψ1.

The situation may be cured by invoking the quadratic function ψ = ψ2 (see Remark 4.2),

ψ2(x, y) = ψ1(x, y) + η̂(x) (y2 − d2
0

4 ), where η̂ is an arbitrary function from L2(Ω̂). The possibil-
ity to choose a suitable η̂ enables us to suppress the unbounded growth of f in the M2-term of the
majorant and makes the majorant flexible enough to efficiently reproduce the behaviour of the exact
error.

If we plug ψ2 into the estimate (4.20), we obtain

|||u− û|||2 ≤M2(η̂, γ) ∀η̂ ∈ L2(Ω̂) , ∀γ > 0 , (6.1)
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Figure 5: The case m = 3: (left) Divergence of the majorant M(ψ1) as d0 → 0; (right) Convergence
of the improved majorant M(ψ2).

where

M2(η̂, γ) := (1 + γ)‖ψ2‖2
L2(Ω) +

(
1 +

1

γ

)
C2

Ω ‖f − f̃ +
∂ψ2

∂y
‖2
L2(Ω) =

(1 + γ)

∫

Ω
(ψ1(x, y) + η̂(x) (y2 − d2

0

4
))2 dxdy +

(
1 +

1

γ

)
C2

Ω

∫

Ω
(f(x, y) − f̃(x) + η̂(x) · 2y)2 dxdy .

Since estimate (6.1) is valid for any γ > 0 and η̂ from L2(Ω̂), one can minimize the functional
M2(η̂, γ) with respect to these parameters. In particular, one can set γ = γ∗ < 1 (the concrete value
of γ∗ does not matter, as the numerical experiments show; we used the value γ∗ = 0.5) and find η̂min

as the minimizer of M 2(η̂, γ∗) over the space S of piecewise-constant functions defined on some finite
subdivision of Ω̂ (obviously, S ⊂ L2(Ω̂)). The minimization problem is just an L2-projection onto
the space of functions defined on Ω̂ and amounts to the solution of a linear system with the diagonal
matrix.

The properties of the improved majorant M(ψ2) = M1(ψ2) + CΩM2(ψ2), where

M1(ψ2) := ‖ψ1 + η̂min (y2 − d2
0

4
)‖L2(Ω) ,

M2(ψ2) := ‖f − f̃ + η̂min · 2y‖L2(Ω) ,

can be observed in Figure 5 (right). We see that the improved majorant vanishes with the optimal

rate O(d
1/2
0 ) as d0 → 0, remains a reliable upper bound for the exact error at any values of the

thickness d0 and even demonstrates the asymptotic exactness with the effectivity index behaving
like 1 + O(d0) (see Table 2).

We may note that in the case of larger values of m (m > 3) the higher-degree function ψm−1

might be needed (see Remark 4.2); the function will contain several free parameters which are the
functions from L2(Ω̂), and, hence, the minimization should be performed with respect to all of them.
However, as this always remains a least-squares minimization problem, the total complexity for the
moderate values of m will not be greater than the complexity of solving the reduced problem. In
general, if the right-hand side f exhibits an unbounded growth for d0 → 0 and no a-priori information
on the behaviour of the exact solution is available, one has to choose the function ψ in an adaptive
way, i.e. starting with ψ1 increase the polynomial degree of the function until the difference between
two successive majorants M(ψn−1) and M(ψn) becomes small enough.
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m = 2, M(ψ1) m = 3, M(ψ2)

d−1
0 |||e||| M M

|||e||| |||e||| M M
|||e|||

100 0.4405 0.9284 2.1074 0.2594 0.4187 1.6142
101 0.1291 0.1461 1.1265 0.0751 0.0793 1.0562
102 0.0408 0.0414 1.0127 0.0237 0.0239 1.0056
103 0.0129 0.0130 1.0013 0.0075 0.0076 1.0006
104 0.0041 0.0041 1.0001 0.0024 0.0024 1.0001

Table 2: Convergence of the exact modelling-error in the energy norm (|||e|||) and of the error
majorant (M) as d0 → 0; the results are rounded up to 10−4.

7 Conclusions

For the zero-order dimension reduction method, the new a-posteriori error estimator has been derived
in a general geometrical setting of the problem and without any specific assumptions on the given
data. In particular, the estimator reduces to the Babuška and Schwab estimator when the physical
domain Ω is a plate with plane parallel faces and the equation has zero right-hand side. It has
been demonstrated, both theoretically and numerically, that also in a more complicated case of a
plate having constant thickness but non-plane faces and for a general right-hand side f ∈ L∞(Ω)

the proposed estimator vanishes with the optimal rate O(d
1/2
0 ) as the plate thickness d0 tends to

zero. Since the estimator always provides an upper bound for the exact modelling-error, the latter
convergence result can be considered as the generalization of the result on the convergence of the
dimension reduction error proved in [11] (see also [2]) for the case of a plate with plane parallel faces
and zero right-hand side f .

The presented estimator cannot, however, be considered as just a generalization of the explicit
residual-type error estimator to the case of a more complicated geometry, coefficients and right-hand
side. As numerical test 2 shows, in the problem with the right-hand side f infinitely growing as
the plate thickness tends to zero, some additional “degree of freedom” should be introduced into
the estimator to suppress the unbounded growth of f . Thus, it seems that any error estimator that
cannot be adjusted to the particular problem will fail in such a case. The proposed estimator has
been shown sufficiently flexible to allow the modification necessary for capturing the behaviour of
the exact error. The recovered efficiency of the estimator manifests itself in the asymptotics of the
effectivity index M

|||e||| = 1 +O(d0) when d0 tends to zero. We have to note that such an asymptotics
may not always be observed, if the domain Ω has non-plane faces; however, even in the latter case,
the effectivity index of the estimator remains stable (i.e. does not grow with the decreasing domain-
thickness) and stays at the acceptable level.

The computational cost of evaluating the presented error majorant is typically smaller than or,
in the worst case, of the same order as the cost of solving the reduced, lower-dimensional problem.
Finally, the numerical results show that the proposed estimator is capable of an accurate indica-
tion of the local error distribution and, hence, may be utilized not only for the verification of the
dimensionally reduced model but also for its adaptive improvement.
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[12] Vogelius, M., Babuška, I. (1981): On a dimensional reduction method III. A posteriori error
estimation and an adaptive approach. Math. Comp., 37, 361–384

16


