CASTELNUOVO REGULARITY AND DEGREES OF GENERATORS OF GRADED SUBMODULES

MARKUS BRODMANN

Institute of Pure Mathematics
University of Zürich
Winterthurerstrasse 190
8057 Zürich, Switzerland
brodmann@math.unizh.ch

Abstract

We extend the regularity criterion of Bayer-Stillman for a graded ideal \mathfrak{a} of a polynomial ring $K[\underline{\mathbf{x}}]:=K\left[\underline{\mathbf{x}}_{0}, \cdots, \mathbf{x}_{r}\right]$ over an infinite field K, to the situation of a graded submodule M of a finitely generated graded module U over a noetherian homogeneous ring $R=\underset{n>0}{\oplus} R_{n}$, whose base ring R_{0} has infinite residue fields. If R_{0} is artinian, we give a polynomial $P_{U}^{\widetilde{U}} \in \mathbb{Q}[\mathbf{x}]$, which depends only on the Hilbert polynomial of U such that $\operatorname{reg}(M) \leq P_{U}^{\sim}(\max \{d(M), \operatorname{reg}(U)+1\})$, where $d(M)$ is the generating degree of M. This extends the regularity bound of Bayer-Mumford for a graded ideal $\mathfrak{a} \subseteq K[\underline{x}]$ over a field K to the pair $M \subseteq U$.

1. Introduction

Let $R=\underset{n \geq 0}{\oplus} R_{n}$ be a homogeneous noetherian ring and let $M \neq 0$ be a finitely generated graded R-module. For $i \in \mathbb{N}_{0}$ and $n \in \mathbb{N}$ let $H_{R_{+}}^{i}(M)_{n}$ denote the n-th graded component of the i-th local cohomology module $H_{R_{+}}^{i}(M)$ of M with respect to the irrelevant ideal $R_{+}=\underset{n>0}{\oplus} R_{n}$ of R. The (Castelnuovo-Mumford) regularity reg(M) of M is defined by

$$
\begin{equation*}
\operatorname{reg}(M):=\inf \left\{m \in \mathbb{Z} \mid H_{R_{+}}^{i}(M)_{m-i+1}=0 \quad \forall i \in \mathbb{N}_{0}\right\} \tag{1.1}
\end{equation*}
$$

[^0]Upper bounds on $\operatorname{reg}(M)$ in terms of other invariants of M are of fundamental significance in algebraic geometry, commutative algebra and computational algebraic geometry (cf [3]).
So, in the theory of Hilbert and Piccard schemes one is lead to bound the regularity of a graded submodule M of a graded free module F over a polynomial ring in terms of the Hilbert polynomial of M, the generating degree and the rank of F, (cf [13], [14], [15], [22]).
On the other hand if the base ring R_{0} is artinian, $\operatorname{reg}(M)$ and various other cohomological invariants of M may be bounded in terms of the diagonal values $\operatorname{length}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{-i}\right)(i=0,1, \cdots)$ of cohomology (cf [5], [6], [7]). In close relation to these bounds of diagonal type, the mere vanishing and non-vanishing of the graded components $H_{R_{+}}^{i}(M)_{n}$ is completely governed by a few simple combinatorial conditions, if R_{0} is semilocal and of dimension ≤ 1 (cf [4]).
If $R=K\left[\mathbf{x}_{0}, \cdots, \mathbf{x}_{r}\right]=: K[\underline{\mathbf{x}}]$ is a polynomial ring over a field, $\operatorname{reg}(M)$ gives an upper bound on the generating degrees of the syzigies of M and hence is of crucial significance for the classical problem of "the finitely many steps" (cf [16], [17]). In more recent terms: $\operatorname{reg}(M)$ governs the computational complexity of calculating the syzygies of the finitely generated graded $K[\underline{\mathbf{x}}]$-module M (cf [9]).
Let us recall that the problem of "the finitely many steps" consists in constructing in a predictable number of steps, a minimal graded free resolution of M from a minimal graded free presentation $F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$. This problem can be solved as the regularity $\operatorname{reg}(M)$ of a graded submodule M of the free module $K[\underline{\mathbf{x}}]^{\oplus s}$ can be bounded in terms of r, s and the generating degree $d(M)$ of M. This was essentially shown by Hermann [17] on use of ideas of Henzelt-Noether [16]. (Note that the bounds calculated by Hermann are not correct; for correctly calculated bounds see [19], for example.) In the spirit of this, Bayer and Mumford have shown that for a graded ideal $\mathfrak{a} \subseteq K[\underline{\mathbf{x}}]$ one has the bound (cf [1])

$$
\begin{equation*}
\operatorname{reg}(\mathfrak{a}) \leq(2 d(\mathfrak{a}))^{r!} \tag{1.2}
\end{equation*}
$$

In [5] we have extended this bound by showing that for a graded submodule $M \subseteq$ $K[\underline{\mathbf{x}}]^{\oplus s}$ it holds

$$
\begin{equation*}
\operatorname{reg}(M) \leq s^{e_{r}}(2 d(M))^{r!} \tag{1.3}
\end{equation*}
$$

where the numbers e_{r} are defined recursively by $e_{0}=0$ and $e_{r}:=e_{r-1} \cdot r+1$, if $r>0$. It also should be noted that the bounds given in (1.2) and (1.3) still appear to be rather far away from being sharp: namely, if $\operatorname{Char}(K)=0$ one has reg $(\mathfrak{a}) \leq(2 d(\mathfrak{a}))^{2^{r-1}}($ cf [11], [12]), and by the examples of Mayr and Meyer (cf [21]) this latter bound is about to be of best possible type.
One basic aim of this paper is to extend the regularity bounds of (1.2) and (1.3) to a much more general situation. We namely consider an arbitrary finitely generated
graded module U over a noetherian homogeneous ring $R=\underset{n \geq 0}{\oplus} R_{n}$ with artinian base ring R_{0}. Then we show (cf Theorem 5.7)

There is a polynomial $P_{U}^{\sim} \in \mathbb{Q}[\mathbf{x}]$ (of degree $\operatorname{dim}(U)$!) which depends only on the Hilbert polynomial P_{U} of U, such that for each graded submodule $M \subseteq$ U we have $\operatorname{reg}(M) \leq P_{U}^{\sim}(\max \{d(M), \operatorname{reg}(U)+1\})$.

If in addition $\operatorname{dim}(U)=\operatorname{dim}(R)$ and $d(M)+\operatorname{reg}(M) \leq \operatorname{reg}(U)+1$, we may replace P_{U}^{\sim} by a polynomial $P_{U}^{*} \in \mathbb{Q}[\mathbf{x}]$ which is such that we get the bounds of (1.3) if we choose $R=K[\underline{\mathbf{x}}]$ and $U=K[\underline{\mathbf{x}}]^{\oplus s}$.
In [1], the bound of (1.2) is deduced on use of the regularity criterion of BayerStillman (cf [2]). In fact it turns out, that the bound (1.2), and its extension (1.3), may be deduced without using this criterion (cf [5]). But nevertheless, our proof of the bound (1.3) (resp. its extension (1.4)) is closely related to the regularity criterion of Bayer-Stillman, as both rely on the technique of (saturated) filter-regular sequences of linear forms. In section 3 we give a criterion - in terms of such sequences - for detecting whether a graded submodule M of a finitely generated graded module U over a homogeneous noetherian ring $R=\underset{n \geq 0}{\oplus} R_{n}$ is m-regular, (cf Theorem 3.8). If the base ring R_{0} has infinite residue fields, our criterion extends the corresponding criterion of Bayer-Stillman for a graded ideal $\mathfrak{a} \subseteq K[\underline{\mathbf{x}}]$ to the case of a graded submodule $M \subseteq U$ (cf Theorem 4.7).

2. Some Preliminaries

In this section we recall a few generalities on graded rings and graded modules. We use \mathbb{N}_{0} (resp. \mathbb{N}) to denote the set of non-negative (resp. positive) integers.
2.1. Definition and Remark. A) By a homogeneous ring we mean a (commutative unitary) \mathbb{N}_{0}-graded ring $R=\underset{n>0}{\oplus} R_{n}$ which is generated over its base ring R_{0} by linear forms, thus with $R=R_{0}\left[R_{1}\right]$. Keep in mind that the \mathbb{N}_{0}-graded ring $R=\underset{n \geq 0}{\oplus} R_{n}$ is homogeneous and noetherian, if and only if R_{0} is noetherian and there are finitely many linear forms $f_{0}, \cdots, f_{r} \in R_{1}$ such that $R=R_{0}\left[f_{0}, \cdots, f_{r}\right]$.
B) If $R=\underset{n \geq 0}{\oplus} R_{n}$ is a \mathbb{N}_{0}-graded ring, we shall denote by R_{+}the irrelevant ideal of R, thus $R_{+}:=\underset{n>0}{\oplus} R_{n}$. Recall that R is homogeneous if and only if R_{+}is generated by linear forms, thus if and only if $R_{+}=R_{1} \cdot R$.
C) If $R=\underset{n \geq 0}{\oplus} R_{n}$ is a \mathbb{N}_{0}-graded ring, we use $\operatorname{Proj}(R)$ to denote the projective spectrum of R, e.g. the set of all graded primes $\mathfrak{p} \subseteq R$ with $R_{+} \nsubseteq \mathfrak{p}$.
2.2. Definition. A) Let $R=\underset{n \geq 0}{\oplus} R_{n}$ be a \mathbb{N}_{0}-graded ring and let $T=\underset{n \in \mathbb{N}}{\oplus} T_{n}$ be a graded R-module. We define the beginning and the end of T respectively by

$$
\operatorname{beg}(T):=\inf \left\{n \in \mathbb{Z} \mid T_{n} \neq 0\right\}, \quad \operatorname{end}(T):=\sup \left\{n \in \mathbb{Z} \mid T_{n} \neq 0\right\}
$$

where "inf" and "sup" are formed in $\mathbb{Z} \cup\{ \pm \infty\}$ with the convention that $\inf \emptyset=\infty$ and $\sup \emptyset=-\infty$.
B) Let R and T be as in part A) and let $m \in \mathbb{Z}$. We define the m-th left-truncation and the m-th right-truncation of T respectively as the following R_{0}-submodules of T :

$$
T_{\geq m}:=\underset{n \geq m}{\oplus} T_{n} ; \quad T_{\leq m}:=\underset{n \leq m}{\oplus} T_{n}
$$

As R is \mathbb{N}_{0}-graded, $T_{\geq m}$ is a (graded) R-submodule of T.
C) Let R and T be as above. We denote the generating degree of T by $d(T)$, so that

$$
d(T):=\inf \left\{m \in \mathbb{Z} \mid T=T_{\leq t} \cdot R\right\}
$$

where "inf" is formed under the same convention as in part A).
2.3. Definition and Remark. (cf [8]). A) Let $R=\underset{n \geq 0}{\oplus} R_{n}$ be a homogeneous noetherian ring and let $M=\underset{n \in \mathbb{Z}}{\oplus} M_{n}$ be a graded R-module. Then, for each $i \in \mathbb{N}_{0}$, the i-th local cohomology module $H_{R_{+}}^{i}(M)$ of M with respect to the irrelevant ideal R_{+}of R carries a natural grading. For all $n \in \mathbb{Z}$ we use $H_{R_{+}}^{i}(M)_{n}$ to denote the n-th graded component of $H_{R_{+}}^{i}(M)$.
B) Let $R=\underset{n \geq 0}{\oplus} R_{n}$ and $M=\underset{n \in \mathbb{Z}}{\oplus} M_{n}$ be as in part A) but assume in addition that the
R-module M is finitely generated. Then, for all $i \in \mathbb{N}_{0}$ and all $n \in \mathbb{Z}$ the R_{0}-module $H_{R_{+}}^{i}(M)_{n}$ is finitely generated and vanishes for all $n \gg 0$. Moreover $H_{R_{+}}^{i}(M)$ vanishes for all $i>\operatorname{dim}(M)$. So, for each $k \in \mathbb{N}_{0}$ we may define the (Castelnuovo-Mumford) regularity of M at and above level k by

$$
\operatorname{reg}^{k}(M):=\sup \left\{\operatorname{end}\left(H_{R_{+}}^{i}(M)\right)+i \mid i \geq k\right\}
$$

and obtain $\operatorname{reg}^{k}(M) \in \mathbb{Z} \cup\{-\infty\}$.
C) Let R and M be as in part B). The (Castelnuovo-Mumford) regularity of M is defined as (cf (1.1))

$$
\operatorname{reg}(M):=\operatorname{reg}^{0}(M)
$$

where $\operatorname{reg}^{0}(M)$ is defined according to part B$)$. It is important to keep in mind, that the generating degree and the regularity of M are related by the inequality (cf [8, 15.3.1])

$$
d(M) \leq \operatorname{reg}(M)
$$

D) Let R and M be as in part B) and let $k \in \mathbb{N}_{0}, m \in \mathbb{N}$. Then, the following equivalence is known to hold (cf [8, 15.2.5])

$$
\operatorname{reg}^{k}(M) \leq m \Longleftrightarrow H_{R_{+}}^{i}(M)_{m-i+1}=0 \quad \forall i \geq k
$$

If $\operatorname{reg}^{k}(M) \leq m$ we say that M is m-regular at and above level k. If $\operatorname{reg}(M) \leq m$, e.g. if M is m-regular at and above level 0 , we say that M is m-regular.
2.4. Remark. (Faithfully flat base change) A) Let $R=\underset{n \geq 0}{\oplus} R_{n}$ be a homogeneous noetherian ring and let R_{0}^{\prime} be a noetherian faithfully flat R_{0}-algebra. Then, the faithfully flat R-algebra $R_{0}^{\prime} \underset{R_{0}}{\otimes} R=\underset{n \geq 0}{\oplus}\left(R_{0}^{\prime} \underset{R_{0}}{\otimes} R_{n}\right)$ is a homogeneous noetherian ring in a natural way and $\left(R_{0}^{\prime} \otimes_{R_{0}}^{\otimes} R\right)_{+}=R_{+}\left(R_{0}^{\prime} \otimes_{R_{0}}^{\otimes} R\right)$.
B) Keep the notations and hypotheses of part A), let $T=\underset{n \in \mathbb{Z}}{\oplus} T_{n}$ be a graded R-module and $S=\underset{n \in \mathbb{Z}}{\oplus} S_{n} \subseteq T$ a graded submodule. Then $R_{0}^{\prime} \underset{R_{0}}{\otimes} T=\underset{n \in \mathbb{Z}}{\oplus} R_{0}^{\prime} \underset{R_{0}}{\otimes} T_{n}$ is a graded
 graded submodule. Clearly if T is finitely generated, then the $R_{0}^{\prime} \underset{R_{0}}{\otimes} R$-module $R_{0}^{\prime} \underset{R_{0}}{\otimes} T$ is finitely generated, too. Moreover $d\left(R_{0}^{\prime} \underset{R_{0}}{\otimes} T\right)=d(T)$.
C) Let R and R_{0}^{\prime} be as in part A) and let $M=\underset{n \in \mathbb{Z}}{\oplus} M_{n}$ be a finitely generated graded R-module and let $i \in \mathbb{N}_{0}$. Then, the graded flat base-change property of local cohomology yields a natural isomorphism of graded $R_{0}^{\prime} \underset{R_{0}}{\otimes} R$-modules

$$
H_{\left(R_{R_{R_{0}}^{\prime} \otimes}^{\otimes} R\right)_{+}}^{i}\left(R_{0}^{\prime} \underset{R_{0}}{\otimes} M\right) \cong R_{0}^{\prime} \underset{R_{0}}{\otimes} H_{R_{+}}^{i}(M)
$$

$(\mathrm{cf}[8,15.2 .3])$. As a consequence we have

$$
\operatorname{reg}^{k}\left(R_{0}^{\prime} \underset{R_{0}}{\otimes} M\right)=\operatorname{reg}^{k}(M) \quad \forall k \in \mathbb{N}_{0}
$$

D) (Replacement argument) Let R and R_{0}^{\prime} be as above. Let M be a finitely generated graded R-module and $N \subseteq M$ a graded submodule. Then, the previous observations allow to replace M and N by $R_{0}^{\prime} \underset{R_{0}}{\otimes} M$ resp. $R_{0}^{\prime} \underset{R_{0}}{\otimes} N$ whenever we wish to prove a statement on regularities and generating degrees of M and N.

For further unexplained notation and terminology from commutative algebra we refer to [10], [20].

3. Filter-Regular Sequences and Regularity

Let $R=\underset{n>0}{\oplus} R_{n}$ be a homogeneous noetherian ring, let U be a finitely generated graded R-module and let $M \subseteq U$ be a graded submodule. Let $m \in \mathbb{Z}$ and let $f_{1}, \cdots, f_{r} \in R_{1}$ be a sequence of linear forms. We prove a criterion for the condition that M is m regular and f_{1}, \cdots, f_{r} form a saturated filter-regular sequence with respect to U / M. We briefly recall the notion of filter-regular sequence.
3.1. Reminder and Remark. (cf [8, Chapt. 18]). A) Let $R \underset{n>0}{\oplus} R_{n}$ be a homogeneous noetherian ring and let $T=\underset{n \in \mathbb{Z}}{\oplus} T_{n}$ be a finitely generated and graded R-module. A homogeneous element $f \in R$ is said to be $\left(R_{+}-\right)$filter-regular with respect to T if it is a non-zero divisor with respect to $T / H_{R_{+}}^{0}(T)$. It is equivalent to say that f avoids all $\mathfrak{p} \in \operatorname{Ass}_{R}(T) \cap \operatorname{Proj}(R)$. Clearly, f is filter-regular with respect to T if and only if the annihilator $0 \underset{\dot{T}}{f}$ of f in T is contained in $H_{R_{+}}^{0}(T)$, thus if and only if end $(0 \dot{T} f)<\infty$.
B) Let R and T be as in part A). A sequence of homogeneous elements $f_{1}, \cdots, f_{r} \in R$ is called a filter-regular sequence with respect to T if f_{i} is filter-regular with respect to $T / \sum_{j=1}^{i-1} f_{j} T$ for all $i \in\{1, \cdots, r\}$. If in addition $f_{1}, \cdots, f_{r} \in R_{1}$, we speak of a filter-regular sequence of linear forms. If $W \subseteq H_{R_{+}}^{0}(T)$ is a graded submodule, a sequence f_{1}, \cdots, f_{r} of homogeneous elements in R is filter-regular with respect to T if and only if it is with respect to T / W.
3.2. Lemma. Let $R=\underset{n \geq 0}{\oplus} R_{n}$ be a homogeneous noetherian ring, let $T=\underset{n \in \mathbb{Z}}{\oplus} T_{n}$ be a finitely generated graded R-module, let $f_{1}, \cdots, f_{r} \in R_{1}$ be a filter-regular sequence with respect to T and let $i \in\{0, \cdots, r\}$. Then
a) $\operatorname{reg}\left(T / \sum_{j=1}^{i} f_{j} T\right) \leq \operatorname{reg}(T)$;
b) $\operatorname{end}\left(H_{R_{+}}^{i}(T)\right)+i \leq \operatorname{end}\left(H_{R_{+}}^{0}\left(T / \sum_{j=1}^{i} f_{j} T\right)\right)$.

Proof: "a)": Follows from [8, (18.3.11)].
"b)": The case $i=0$ is obvious. So, let $i>0$. As f_{2}, \cdots, f_{r} is a filter-regular sequence with respect to $T / f_{1} T$, by induction

$$
\operatorname{end}\left(H_{R_{+}}^{i-1}\left(T / f_{1} T\right)\right)+i-1 \leq \operatorname{end}\left(H_{R_{+}}^{0}\left(T / \sum_{j=1}^{i} f_{j} T\right)\right)=: e .
$$

Let $\bar{T}:=T / H_{R_{+}}^{0}(T)$. Then, the graded epimorphism $H_{R_{+}}^{i-1}\left(T / f_{1} T\right) \rightarrow H_{R_{+}}^{i-1}\left(\bar{T} / f_{1} \bar{T}\right)$ shows that end $\left(H_{R_{+}}^{i-1}\left(\bar{T} / f_{1} \bar{T}\right)\right)+i-1 \leq e$. But now, the exact sequences

$$
H_{R_{+}}^{i-1}\left(\bar{T} / f_{1} \bar{T}\right)_{n+1} \longrightarrow H_{R_{+}}^{i}(\bar{T})_{n} \xrightarrow{f_{1}} H_{R_{+}}^{i}(\bar{T})_{n+1}
$$

and the vanishing of $H_{R_{+}}^{i}(\bar{T})_{n}$ for all $n \gg 0$ show that

$$
\left.\operatorname{end}\left(H_{R_{+}}^{i}(\bar{T})\right) \leq \operatorname{end}\left(H_{R_{+}}^{i-1}\left(\bar{T} / f_{1} \bar{T}\right)\right)\right)-1 \leq e-i
$$

In view of the graded isomorphism $H_{R_{+}}^{i}(T) \cong H_{R_{+}}^{i}(\bar{T})$ we get our claim.
In order to prove and to formulate the announced regularity criterion we introduce the notion of saturated filter-regular sequence.
3.3. Definition and Remark. A) Let $R=\underset{n \geq 0}{\oplus} R_{n}$ and $T=\underset{n \in \mathbb{Z}}{\oplus} T_{n}$ be as in 3.1. A filter-regular sequence f_{1}, \cdots, f_{r} with respect to T is saturated if $f_{1}, \cdots, f_{r} \in R_{+}$and if $T / \sum_{j=1}^{r} f_{j} T$ is an R_{+}-torsion module. It is equivalent to say that $\sum_{j=1}^{r} f_{j} R \subseteq R_{+} \subseteq$ $\sqrt{0 \dot{R} T / \sum_{j=1}^{r} f_{j} T}$ or else that $\sqrt{(0 \dot{\dot{R}} T)+R_{+}}=\sqrt{(0 \dot{\dot{R}} T)+\sum_{j=1}^{r} f_{j} R}$.
B) As a consequence of this we can say (cf [8, 2.1.9]):

If $f_{1}, \cdots, f_{r} \in R$ is a saturated filter-regular sequence with respect to T, there are natural isomorphisms $H_{R_{+}}^{i}(T) \cong H_{\left(f_{1}, \cdots, f_{r}\right)}^{i}(T)$ for all $i \in \mathbb{N}_{0}$. So, in this situation we have $H_{R_{+}}^{i}(T)=0$ for all $i>r$.
3.4. Proposition. Let $R=\underset{n \geq 0}{\oplus} R_{n}$ be a homogeneous noetherian ring, let $T=\underset{n \in \mathbb{Z}}{\oplus} T_{n}$ be a finitely generated graded \bar{R}-module, let $f_{1}, \cdots, f_{r} \in R_{1}$ and let $m \in \mathbb{Z}$. Then, the following statements are equivalent:
(i) $\operatorname{reg}(T)<m$ and f_{1}, \cdots, f_{r} is a saturated filter-regular sequence with respect to T;
(ii) $\operatorname{end}\left(0 \underset{T /{ }_{j=1}^{i=1} f_{j} T}{:} f_{i}\right)<m$ for all $i \in\{1, \cdots, r\}$ and $\operatorname{end}\left(T / \sum_{j=1}^{r} f_{j} T\right)<m$.

Proof: "(i) \Longrightarrow (ii)": Assume that condition (i) holds. Then, 3.2 a) shows that $\operatorname{end}\left(H_{R_{+}}^{0}\left(T / \sum_{j=1}^{k} f_{j} T\right)\right) \leq \operatorname{reg}\left(T / \sum_{j=1}^{k} f_{j} T\right) \leq \operatorname{reg}(T)<m$ for all $k \in\{1, \cdots, r\}$. As f_{i} is filter-regular with respect to $T / \sum_{j=1}^{i-1} f_{j} T$, we obtain

$$
\operatorname{end}\left(0 \underset{T / \sum_{j=1}^{i=1} f_{j} T}{:} \quad f_{i}\right) \leq \operatorname{end}\left(H_{R_{+}}^{0}\left(T / \sum_{j=1}^{i-1} f_{j} T\right)\right)<m, \quad \forall i \in\{1, \cdots, r\}
$$

As the sequence f_{1}, \cdots, f_{r} is saturated, we have $T / \sum_{j=1}^{r} f_{j} T=H_{R_{+}}^{0}\left(T / \sum_{j=1}^{r} f_{j} T\right)$ and hence obtain end $\left(T / \sum_{j=1}^{r} f_{j} T\right)<m$.
$"(\mathrm{ii}) \Longrightarrow(\mathrm{i})$ ": Assume that condition (ii) holds. As $\operatorname{end}\left(0 \underset{T / \sum_{j=1}^{i=1} f_{j} T}{:} f_{i}\right)<\infty$ for $i=1, \cdots, r$, it follows that the sequence f_{1}, \cdots, f_{r} is filter-regular with respect to T. As end $\left(T / \sum_{j=1}^{r} f_{j} T\right)<\infty$ this sequence is saturated. In particular we have $H_{R_{+}}^{i}(T)=0$ for all $i>r(\operatorname{cf} 3.3 \mathrm{~B}))$. If we apply 3.2 b$)$ with $i=1, \cdots, r$ we obtain $\operatorname{reg}(T)<m$.
3.5. Corollary. Let $R=\underset{n \geq 0}{\oplus} R_{n}$ be a homogeneous noetherian ring, let $m \in \mathbb{Z}$, let U be a finitely generated graded R-module such that $\operatorname{reg}(U)<m$. Let $M \subseteq U$ be a graded submodule and let $f_{1}, \cdots, f_{r} \in R_{1}$. Then, the following statements are equivalent:
(i) $\quad \operatorname{reg}(M) \leq m$ and f_{1}, \cdots, f_{r} is a saturated filter-regular sequence with respect to U / M.
(ii) $\quad\left(\left(M+\sum_{j=1}^{i-1} f_{j} U\right) \underset{\dot{U}}{\dot{L}} \quad f_{i}\right)_{\geq m}=\left(M+\sum_{j=1}^{i-1} f_{j} U\right)_{\geq m}$ for all $i \in\{1, \cdots, r\}$

$$
\text { and }\left(M+\sum_{j=1}^{r} f_{j} U\right)_{\geq m}=U_{\geq m}
$$

Proof: Let $T:=U / M$. Then, the graded exact sequence $0 \rightarrow M \rightarrow U \rightarrow T \rightarrow 0$ shows that $\operatorname{reg}(M) \leq \max \{\operatorname{reg}(U), \operatorname{reg}(T)+1\}$ and $\operatorname{reg}(T) \leq \max \{\operatorname{reg}(U), \operatorname{reg}(M)-1\}$ (cf $[8,15.2 .15]$). So, statement (i) of 3.4 is equivalent to statement (i) of 3.5. It is immediate that statement (ii) of 3.4 is equivalent to statement (ii) of 3.5 .

The announced regularity criterion turns the criterion 3.5 into a "persistency result": the comparison of graded components in all degrees $\geq m$ which appears in statement 3.5 (ii) may be replaced by a comparison in degree m. To prove this, we use the following lemma:
3.6. Lemma. Let $R=\underset{n \geq 0}{\oplus} R_{n}$ be a homogeneous noetherian ring. Let U be a finitely generated graded R-module, let $m \in \mathbb{Z}$ and let $M, N \subseteq U$ be two graded submodules such that $d(M), d(N) \leq m$ and $\operatorname{reg}(M+N)<m$. Then, $d(M \cap N) \leq m$.

Proof: Write R as a graded homomorphic image of a polynomial ring $R_{0}[\underline{\mathbf{x}}]=$ $R_{0}\left[\mathbf{x}_{0}, \cdots, \mathbf{x}_{r}\right]$ and observe that neither the generating degree nor the regularity of a finitely generated graded R-module V change their values, if we consider V as an $R_{0}[\underline{\mathbf{x}}]$-module. Therefore we may and do assume that $R=R_{0}[\underline{\mathbf{x}}]$ is a polynomial ring. Now, we may proceed as in the proof of $[5,2.4]$, where our result is shown in the special case in which R is a polynomial ring over a field. Namely, as $d(M), d(N) \leq m$
there are graded epimorphisms $\pi: F \rightarrow M \rightarrow 0, \varrho: G \rightarrow N \rightarrow 0$ in which F and G are graded free R-modules of finite rank with $d(F), d(G) \leq m$. As $\operatorname{reg}(R)=0$ we thus obtain $\operatorname{reg}(F \oplus G) \leq m$ and the graded short exact sequence

$$
0 \rightarrow \operatorname{Ker}(\pi+\varrho) \rightarrow F \oplus G \xrightarrow{\pi+\varrho} M+N \rightarrow 0
$$

yields that $\operatorname{reg}(\operatorname{Ker}(\pi+\varrho)) \leq m$, thus $d(\operatorname{Ker}(\pi+\varrho)) \leq m($ cf 2.3 C$))$. Now, the commutative diagram

shows that $(\pi \oplus \varrho)(\operatorname{Ker}(\pi+\varrho))=\operatorname{Ker}(\sigma)$ and thus $d(\operatorname{Ker}(\sigma)) \leq m$. In view of the graded isomorphism $M \cap N \cong \operatorname{Ker}(\sigma)$ we get our claim.
3.7. Lemma. Let $R=\underset{n \geq 0}{\oplus} R_{n}$ be a homogeneous noetherian ring and let $m \in \mathbb{Z}$. Let U be a finitely generated graded R-module, let $M \subseteq U$ be a graded submodule and let $f \in R_{1}$ be filter-regular with respect to U. Assume that $d(M), \operatorname{reg}(U), \operatorname{reg}(M+f U) \leq$ m. Then, $d(M \underset{\dot{U}}{\dot{\prime}} f) \leq m$.

Proof: As $d(f U) \leq d(U)+1 \leq \operatorname{reg}(U)+1 \leq m+1$, Lemma 3.6 implies $d(M \cap f U) \leq$ $m+1$. As $M \cap f U=f(M \underset{\dot{U}}{\dot{\dot{~}}} f)$ we have a graded short exact sequence

$$
0 \rightarrow(0 \dot{\dot{U}} \dot{\dot{~}} f) \rightarrow(M \underset{\dot{U}}{\dot{\prime}} f) \rightarrow(M \cap f U)(1) \rightarrow 0
$$

As f is filter-regular with respect to U, we have $(0 \underset{\dot{U}}{\dot{\dot{C}}} f) \subseteq H_{R_{+}}^{0}(U)$ and hence $d(0 \dot{\dot{U}} \mid f) \leq \operatorname{end}(0 \dot{\dot{U}} f) \leq \operatorname{end}\left(H_{R_{+}}^{0}(U)\right) \leq \operatorname{reg}(U) \leq m$. Now, the above exact sequence yields $d(M \underset{\dot{U}}{\dot{\prime}} f) \leq m$.

Now, we are ready to formulate and to prove the main result of this section.
3.8. Theorem. Let $R=\underset{n \geq 0}{\oplus} R_{n}$ be a homogeneous noetherian ring and let $m \in \mathbb{Z}$. Let U be a finitely generated graded R-module, let $M \subseteq U$ be a graded submodule, let $f_{1}, \cdots, f_{r} \in R_{1}$ be filter-regular elements with respect to U and assume that $\operatorname{reg}(U)<$ m and $d(M) \leq m$. Then, the following statements are equivalent:
(i) $\quad \operatorname{reg}(M) \leq m$ and f_{1}, \cdots, f_{r} is a saturated filter-regular sequence with respect to U / M;
(ii) $\quad\left(\left(M+\sum_{j=1}^{i-1} f_{j} U\right) \dot{\dot{U}} f_{i}\right)_{m}=\left(M+\sum_{j=1}^{i-1} f_{j} U\right)_{m}$ for all $i \in\{1, \cdots, r\}$ and $\left(M+\sum_{j=1}^{r} f_{j} U\right)_{m}=U_{m}$.

Proof: "(i) \Longrightarrow (ii)": Clear by 3.5.
"(ii) \Longrightarrow (i)": We proceed by induction on r. First, let $r=1$. By statement (ii) we have $\left(M+f_{1} U\right)_{m}=U_{m}$. As $d(U) \leq \operatorname{reg}(U) \leq m$ it follows $\left(M+f_{1} U\right)_{\geq m}=$ $U_{\geq m}$, hence $\operatorname{end}\left(U /\left(M+f_{1} U\right)\right)<m$. In view of the graded short exact sequence $0 \rightarrow\left(M+f_{1} U\right) \rightarrow U \rightarrow U /\left(M+f_{1} U\right) \rightarrow 0$ it follows $\operatorname{reg}\left(M+f_{1} U\right) \leq m$. By Lemma 3.7 we get $d\left(M \underset{\dot{U}}{\dot{U}} f_{1}\right) \leq m$. By statement (ii), we have $\left(M \underset{\dot{U}}{\dot{U}} f_{1}\right)_{m}=M_{m}$; it follows $\left(M \underset{\dot{U}}{\dot{~}} f_{1}\right)_{\geq m}=M_{\geq m}$. By the implication "(ii) \Longrightarrow (i)" of Corollary 3.5 we get $\operatorname{reg}(M) \leq m$ and that f_{1} constitutes a saturated filter-regular sequence with respect to U / M.

Now, let $r>1$ and assume that statement (ii) holds. As $d\left(f_{1} U\right) \leq d(U)+1 \leq$ $\operatorname{reg}(U)+1 \leq m$, we have $d\left(M+f_{1} U\right) \leq m$. We apply induction to the graded submodule $M+f_{1} U \subseteq U$ and the sequence $f_{2}, \cdots, f_{r} \in R_{1}$. In doing so, we thus see that $\operatorname{reg}\left(M+f_{1} U\right) \leq m$ and that f_{2}, \cdots, f_{r} is a saturated filter-regular sequence with respect to $U /\left(M+f_{1} U\right)$. So, by 3.5 we have $\left(\left(M+\sum_{j=1}^{i-1} f_{j} U\right) \underset{U}{\dot{U}} f_{i}\right)_{\geq m}=\left(M+\sum_{j=1}^{i-1} f_{j} U\right)_{\geq m}$ for all $i \in\{2, \cdots, r\}$ and $\left(M+\sum_{j=1}^{r} f_{j} U\right)_{\geq m}=U_{\geq m}$. By 3.7 we also have $d\left(M \underset{\dot{U}}{ } f_{1}\right) \leq m$. As $\left(M \underset{\dot{U}}{\dot{~}} f_{1}\right)_{m}=M_{m}$ and $d(M) \leq m$, it follows $\left(M_{\dot{U}}^{\dot{\dot{~}}} f_{1}\right)_{\geq m}=M_{\geq m}$. Now, another use of 3.5 gives statement (i).

4. Extending the Regularity Criterion of Bayer-Stillman

Let $K[\underline{\mathbf{x}}]=K\left[\mathbf{x}_{0}, \cdots, \mathbf{x}_{t}\right]$ be a polynomial ring over an infinite field K and let $\mathfrak{a} \subseteq$ $K[\underline{\mathbf{x}}]$ be a graded ideal. Let $m \in \mathbb{N}$. In [2,1.10] Bayer and Stillman proved that \mathfrak{a} is m-regular if and only if there is a sequence of linear forms $f_{1}, \cdots, f_{r} \in K[\underline{\mathbf{x}}]_{1}$ such that statement (ii) of Theorem 3.8 holds with $M=\mathfrak{a}$ and $U=K[\underline{\mathbf{x}}]$. The aim of this section is to extend this regularity criterion of Bayer-Stillman to a situation closely as general as in 3.8. To do so, we obviously need that there are saturated filter-regular sequences of linear forms with respect to arbitrary finitely generated modules over the considered homogeneous noetherian ring $R=\underset{n \geq 0}{\oplus} R_{n}$. To ensure the existence of such sequences, we shall subject the base ring R_{0} to an appropriate condition.
4.1. Definition and Remark. A) A Ring R_{0} is said to have infinite residue fields if the field R_{0} / \mathfrak{m}_{0} is infinite for each $\mathfrak{m}_{0} \in \operatorname{Max}\left(R_{0}\right)$ or - equivalently - if R_{0} / \mathfrak{p}_{0} is an infinite domain for each $\mathfrak{p}_{0} \in \operatorname{Spec}\left(R_{0}\right)$.
B) Clearly, if $f: R_{0} \rightarrow R_{0}^{\prime}$ is a homomorphism of rings and R_{0} has infinite residue fields, then so has R_{0}^{\prime}. In particular R_{0} has infinite residue fields if it contains an infinite field.
4.2. Lemma. Let $R=\underset{n \geq 0}{\oplus} R_{n}$ be a homogeneous noetherian ring such that R_{0} has infinite residue fields and let $\mathfrak{Q} \subseteq \operatorname{Proj}(R)$ be a finite set. Then $R_{1} \nsubseteq \bigcup_{\mathfrak{q} \in \mathfrak{Q}} \mathfrak{q}$.

Proof: We may assume that $\mathfrak{Q} \neq \emptyset$. For $\mathfrak{m}_{0} \in \operatorname{Max}\left(R_{0}\right)$ set $\mathfrak{Q}\left(\mathfrak{m}_{0}\right):=\{\mathfrak{q} \in \mathfrak{Q} \mid$ $\left.\mathfrak{q} \cap R_{0} \subseteq \mathfrak{m}_{0}\right\}$. Clearly, there is a finite set $\mathbb{M} \subseteq \operatorname{Max}\left(R_{0}\right)$ such that $\mathfrak{Q}\left(\mathfrak{m}_{0}\right) \neq \emptyset$ for each $\mathfrak{m}_{0} \in \mathbb{M}$ and $\mathfrak{Q}=\bigcup_{\mathfrak{m}_{0} \in \mathbb{M}} \mathfrak{Q}\left(\mathfrak{m}_{0}\right)$. For each $\mathfrak{m}_{0} \in \mathbb{M}$ and each $\mathfrak{q} \in \mathfrak{Q}\left(\mathfrak{m}_{0}\right)$ it follows by Nakayama that $\mathfrak{q} \cap R_{1}+\mathfrak{m}_{0} R_{1} \varsubsetneqq R_{1}$. So, as $\mathfrak{Q}\left(\mathfrak{m}_{0}\right)$ is finite and R_{0} / \mathfrak{m}_{0} is infinite, there is some $v_{\mathfrak{m}_{0}} \in R_{1} \backslash \bigcup_{\mathfrak{q} \in \mathfrak{Q}\left(\mathfrak{m}_{0}\right)}^{\neq}\left(\mathfrak{q}_{1}+\mathfrak{m}_{0} R_{1}\right)$. For each $\mathfrak{m}_{0} \in \mathbb{M}$ we find some element $a_{\mathfrak{m}_{0}} \in\left(\bigcap_{\mathfrak{n}_{0} \in \mathbb{M} \backslash\left\{\mathfrak{m}_{0}\right\}} \mathfrak{n}_{0}\right) \backslash \mathfrak{m}_{0}$. With $v:=\sum_{\mathfrak{m}_{0} \in \mathbb{M}} a_{\mathfrak{m}_{0}} v_{\mathfrak{m}_{0}}$ it follows $v \in R_{1} \backslash \bigcup_{\mathfrak{m}_{0} \in \mathbb{M}} \bigcup_{\mathfrak{q} \in \mathfrak{Q}\left(\mathfrak{m}_{0}\right)}\left(\mathfrak{q}_{1}+\mathfrak{m}_{0} R_{1}\right)=R_{1} \backslash \bigcup_{\mathfrak{q} \in \mathfrak{Q}} \mathfrak{q}$.
4.3. Lemma. Let $R=\underset{n \geq 0}{\oplus} R_{n}$ be a homogeneous noetherian ring such that R_{0} has infinite residue fields and let $\mathcal{P} \subseteq \operatorname{Proj}(R)$ be a finite set. Let $r \in \mathbb{N}$ and let $T=\underset{n \in \mathbb{Z}}{\oplus} T_{n}$ be a finitely generated graded R-module. Then there is a sequence $\left(f_{i}\right)_{i \in \mathbb{N}} \subseteq R_{1} \backslash \bigcup_{\mathfrak{p} \in \mathcal{P}}^{n \in \mathbb{Z}} \mathfrak{p}$ such that f_{1}, \cdots, f_{r} is a filter-regular sequence with respect to T for each $r \in \mathbb{N}$.
Proof: If we apply 4.2 with $\mathfrak{Q}:=\mathcal{P} \cap \operatorname{Ass}(T) \cap \operatorname{Proj}(R)$ we get an element $f_{1} \in R_{1} \backslash \bigcup_{\mathbf{q} \in \mathcal{P}} \mathfrak{p}$ which is filter-regular with respect to T. On use of this observation, a sequence $\left(f_{i}\right)_{i \in \mathbb{N}}$ of the requested type is easily constructed by induction.

So, if the base ring R_{0} has infinite residue fields, filter-regular sequence of arbitrary length and consisting of linear forms exist. Now, the existence of saturated filterregular sequences follows easily.
4.4. Lemma. Let $R=\underset{n \geq 0}{\oplus} R_{n}$ be a homogeneous noetherian ring and let T be a finitely generated graded R-module. Let $\left(f_{i}\right)_{i \in \mathbb{N}} \subseteq R_{+}$be a sequence such that f_{1}, \cdots, f_{r} is a filter-regular sequence with respect to T for each $r \in \mathbb{N}$. Then, there is some $r_{0} \in \mathbb{N}$ such that the filter-regular sequence f_{1}, \cdots, f_{r} is saturated for each $r \geq r_{0}$.
Proof: If, for some $r \in \mathbb{N}$, the filter-regular sequence f_{1}, \cdots, f_{r} is non-saturated, f_{r+1} avoids some member of $\operatorname{Ass}_{R}\left(T / \sum_{i=1}^{r} f_{i} T\right)$, so that $f_{r+1} \notin \sum_{i=1}^{r} f_{i} R$, hence $\sum_{i=1}^{r} f_{i} R \varsubsetneqq^{r+1} \sum_{i=1}^{r+1} f_{i} R$. As R is noetherian, we get our claim.

The possible values of the number r_{0} in Lemma 4.4 can be bounded easily. In order to do so, let us recall some notion.
4.5. Definition. The arithmetic rank $\operatorname{ara}(\mathfrak{a})$ of an ideal \mathfrak{a} of a noetherian ring R is defined as the minimum number of elements in R, which generate an ideal which is radically equal to \mathfrak{a}, thus

$$
\operatorname{ara}(\mathfrak{a}):=\min \left\{r \in \mathbb{N}_{0} \mid \exists a_{1}, \cdots, a_{r} \in R: \sqrt{\sum_{i=1}^{r} a_{i} R}=\sqrt{\mathfrak{a}}\right\} .
$$

4.6. Lemma. Let $R=\underset{n \geq 0}{\oplus} R_{n}$ be a homogeneous noetherian ring, let T be a finitely generated graded R-module and let $f_{1}, \cdots, f_{r} \in R_{+}$be a filter-regular sequence with respect to T. Then:
a) If the filter-regular sequence f_{1}, \cdots, f_{r} is saturated, $r \geq \operatorname{ara}\left(\left(R /\left(0 \dot{R}^{T} T\right)\right)_{+}\right)$.
b) If $r \geq \operatorname{dim}(T)$, the filter-regular sequence f_{1}, \cdots, f_{r} is saturated.
c) If R_{0} is artinian, then the filter-regular sequence f_{1}, \cdots, f_{r} is saturated if and only if $r \geq \operatorname{dim}(T)$.

Proof: "a)": Clear by 3.3 A).
"b)": Assume that the sequence f_{1}, \cdots, f_{r} is not saturated, so that $\sqrt{(0 \dot{R} T)+R_{+}} \supsetneqq$ $\sqrt{(0 \dot{R} T)+\sum_{j=1}^{r} f_{j} R}$. Then, there is a prime $\mathfrak{p} \in \operatorname{Var}\left((0 \dot{R} T)+\sum_{j=1}^{r} f_{j} R\right) \backslash \operatorname{Var}\left(R_{+}\right)$. Thus $f_{1} / 1, \cdots f_{r} / 1 \in \mathfrak{p} R_{\mathfrak{p}}$ is a regular sequence with respect to $T_{\mathfrak{p}}(c f[8,18.3 .8])$, so that $r \leq \operatorname{depth}\left(T_{\mathfrak{p}}\right) \leq \operatorname{dim}\left(T_{\mathfrak{p}}\right)$. As $\mathfrak{p} \varsubsetneqq \mathfrak{p}_{0}+R_{+} \in \operatorname{Spec}(R)$, we have $\operatorname{dim}\left(T_{\mathfrak{p}}\right)<\operatorname{dim}(T)$ and hence get $r<\operatorname{dim}(T)$.
"c)" As R_{0} is artinian, we have $\operatorname{dim}(R /(0 \underset{R}{\dot{R}} T))=\operatorname{ara}\left((R /(0 \underset{R}{\dot{R}} T))_{+}\right)$. Now, we conclude by statements a) and b).

Next, we give the announced extension of the regularity criterion of Bayer-Stillman.
4.7. Theorem. Let $R=\underset{n \geq 0}{\oplus} R_{n}$ be a homogeneous noetherian ring such that R_{0} has infinite residue fields. Let $m \in \mathbb{Z}$, let U be a finitely generated graded R-module and let $M \subseteq U$ be a graded submodule. Assume that $\operatorname{reg}(U)<m$ and $d(M) \leq m$. Then, the following statements are equivalent:
(i) $\operatorname{reg}(M) \leq m$;
(ii) there are elements $f_{1}, \cdots, f_{r} \in R_{1}$ which are filter-regular with respect to U and such that

$$
\left(\left(M+\sum_{j=1}^{i-1} f_{j} U\right) \dot{\dot{U}} f_{i}\right)_{m}=\left(M+\sum_{j=1}^{i-1} f_{j} U\right)_{m} \quad \forall i \in\{1, \cdots, r\}
$$

and

$$
\left(M+\sum_{j=1}^{r} f_{j} U\right)_{m}=U_{m}
$$

Proof: "(ii) \Longrightarrow (i)": Clear by Theorem 3.8.
"(i) \Longrightarrow (ii)": If we apply 4.3 with $\mathcal{P}=\operatorname{Ass}_{R}(U) \cap \operatorname{Proj}(R)$ and keep in mind 4.4 we get a saturated filter-regular sequence $f_{1}, \cdots, f_{r} \in R_{1}$ with respect to U / M such that each f_{i} is filter-regular with respect to U. Now, we conclude by Theorem 3.8.
4.8. Remark. A) Keep the notations and all the hypotheses of 4.7. Let $f_{1}, \cdots, f_{r} \in$ R_{1} be filter-regular linear forms with respect to U. Then, in view of Theorem 3.8 the two conditions

$$
\left(\left(M+\sum_{j=1}^{i-1} f_{j} U\right) \dot{\dot{U}} f_{i}\right)_{m}=\left(M+\sum_{j=1}^{i-1} f_{j} U\right)_{m} \quad \forall i \in\{1, \cdots, r\}
$$

and

$$
\left(M+\sum_{j=1}^{r} f_{j} U\right)_{m}=U_{m}
$$

hold if and only if f_{1}, \cdots, f_{r} is a saturated filter-regular sequence with respect to U / M.
B) Keep the above notations and hypotheses. Assume that $\operatorname{dim}(U / M) \leq r$. Then, in view of 4.6 b) the two conditions mentioned in part A) hold if and only if the linear forms f_{1}, \cdots, f_{r} form a filter-regular sequence with respect to U / M. Moreover, the above conditions never can hold if $\left.r<\operatorname{ara}\left(\left(R /\left(0 \dot{R}_{R} T\right)\right)_{+}\right)(\operatorname{cf} 4.6 \mathrm{a})\right)$. In particular, for each $r \geq \operatorname{dim}(U / M)$ and for a "generic sequence" $f_{1}, \cdots, f_{r} \in R_{1}$ of linear forms, the above two conditions hold, whereas for $r<\operatorname{ara}\left((R /(0 \underset{R}{\dot{R}} T))_{+}\right)$they never hold simultaneously.
C) Let $K[\underline{\mathbf{x}}]=K\left[\underline{\mathbf{x}}_{0}, \cdots, \mathbf{x}_{t}\right]$ be a polynomial ring over an infinite field K, let $m, s \in$ \mathbb{N}, let $U:=K[\underline{\mathbf{x}}]^{\oplus s}$ and let $M \subseteq U$ a graded submodule with $d(M) \leq m$. As $\operatorname{reg}(U)=0$ and as U is torsion-free, it follows from 4.7 that $\operatorname{reg}(M) \leq m$ if and only there are linear forms $f_{1}, \cdots, f_{r} \in K[\underline{\mathbf{x}}]_{1} \backslash\{0\}$ such that the above two conditions hold. Moreover, if this is the case, these two conditions hold for a generic sequence f_{1}, \cdots, f_{r} of linear forms whenever $r \geq \operatorname{dim}(U / M)$. This is precisely what is shown in $[18,1.10]$. Choosing $s=1$, we get the regularity criterion of Bayer-Stillman.

5. Extending the Regularity bound of Bayer-Mumford

Let $K[\underline{\mathbf{x}}]=K\left[\mathbf{x}_{0}, \cdots, \mathbf{x}_{t}\right]$ be a polynomial ring over a field K and let $\mathfrak{a} \subseteq K[\underline{\mathbf{x}}]$ be a graded ideal. In $[1,3.8]$ Bayer and Mumford have shown that $\operatorname{reg}(\mathfrak{a}) \leq(2 d(\mathfrak{a}))^{n!}$. Our aim is to extend this bounding result to the case where $K[\underline{\mathbf{x}}]$ is replaced by an arbitrary finitely generated graded module U over a homogeneous noetherian ring $R=\underset{n \geq 0}{\oplus} R_{n}$ with artinian base ring R_{0} and \mathfrak{a} by a graded submodule M of U.
5.1. Notation and Remark. A) Let R_{0} be an artinian ring and let V be a finitely generated R_{0}-module. We use $\ell(V)=\ell_{R_{0}}(V)$ to denote the length of V.
B) Let R_{0} and V be as in part A). Let $\mathfrak{m}_{1}, \cdots, \mathfrak{m}_{t}$ be the different maximal ideals of R_{0}, let \mathbf{x} be an indeterminate and set

$$
R_{0}^{\prime}:=\left(R_{0}[\mathbf{x}] \backslash \bigcup_{i=1}^{t} \mathfrak{m}_{i} R_{0}[\mathbf{x}]\right)^{-1} R_{0}[\mathbf{x}] .
$$

Then, clearly R_{0}^{\prime} is a faithfully flat artinian extension ring of R_{0} with the different maximal ideals $\mathfrak{m}_{i}^{\prime}=\mathfrak{m}_{i} R_{0}^{\prime}(i=1, \cdots, t)$. Moreover we have $\ell_{R_{0}^{\prime}}\left(R_{0}^{\prime}{\underset{R 0}{ }}_{\otimes} V\right)=\ell_{R_{0}}(V)$. As $R_{0}^{\prime} / \mathfrak{m}_{i}^{\prime} \cong R_{0} / \mathfrak{m}_{i}(\mathbf{x})$ for all $i \in\{1, \cdots, t\}$, the ring R_{0}^{\prime} has infinite residue fields.
5.2. Lemma. Let $R=\underset{n \geq 0}{\oplus} R_{n}$ be a homogeneous noetherian ring such that R_{0} is artinian, let U be a finitely generated graded R-module, let $M \subseteq U$ be a graded submodule and let $f \in R_{1}$ be filter-regular with respect to U and to U / M. Let $k \in \mathbb{Z}$ be such that $d(M), \operatorname{reg}(M+f U), \operatorname{reg}(U)+1 \leq k$. Then
a) $\operatorname{end}\left(H_{R_{+}}^{i}(M)\right)+i \leq k$ for all $i \neq 1$;
b) $\operatorname{end}\left(H_{R_{+}}^{1}(M)\right) \leq \ell\left(U_{k}\right)+k-1$.

Proof: Let $T:=U / M$. The short exact sequence $0 \rightarrow(M+f U) \rightarrow U \rightarrow T / f T \rightarrow 0$ shows that $\operatorname{reg}(T / f T) \leq \max \{\operatorname{reg}(U), \operatorname{reg}(M+f U)-1\} \leq k-1$. As $f \in R_{1}$ is filterregular with respect to T, it follows $\operatorname{reg}^{1}(T) \leq \operatorname{reg}(T / f T) \leq k-1(\operatorname{cf}[8,18.3 .11])$ and the graded short exact sequence $0 \rightarrow M \rightarrow U \rightarrow T \rightarrow 0$ implies $\operatorname{reg}^{2}(M) \leq$ $\max \left\{\operatorname{reg}^{2}(U), \operatorname{reg}^{1}(T)+1\right\} \leq k(\mathrm{cf}[8,15.2 .15])$ and hence end $\left(H_{R_{+}}^{i}(M)\right)+i \leq k$ for all $i \geq 2$. As end $\left(H_{R_{+}}^{0}(M)\right) \leq \operatorname{end}\left(H_{R_{+}}^{0}(U)\right) \leq \operatorname{reg}(U) \leq k$, we have shown statement a).

It remains to prove statement b). In view of the graded short exact sequence $0 \rightarrow$ $M \rightarrow U \rightarrow T \rightarrow 0$ and as end $\left(H_{R_{+}}^{1}(U)\right) \leq \operatorname{reg}(U)-1 \leq k-1$, it suffices to show that $\operatorname{end}\left(H_{R_{+}}^{0}(T)\right) \leq \ell\left(U_{k}\right)+k-1$. We have seen above that $\operatorname{reg}(T / f T) \leq k-1$. So, if we apply cohomology to the graded short exact sequence $0 \rightarrow T /(0 \underset{\dot{T}}{\dot{f}} f \stackrel{f}{\rightarrow} T(1) \rightarrow$
$(T / f T)(1) \rightarrow 0$ we get isomorphisms

$$
H_{R_{+}}^{0}(T /(0 \dot{\dot{T}} f))_{n} \cong H_{R_{+}}^{0}(T)_{n+1}, \quad \forall n \geq k-1 .
$$

If we apply cohomology to the graded short exact sequence $0 \rightarrow(0 \underset{\dot{T}}{\dot{\dot{T}}} \mathrm{f}) \rightarrow T \rightarrow$
 exact sequences

$$
0 \rightarrow(0 \underset{\underset{T}{:}}{ } f)_{n} \rightarrow H_{R_{+}}^{0}(T)_{n} \xrightarrow{\pi_{n}} H_{R_{+}}^{0}(T)_{n+1} \rightarrow 0, \quad \forall n \geq k-1 .
$$

By 3.7 we have $d(0 \underset{\dot{T}}{\dot{\dot{C}}} f)=d(M \underset{\dot{U}}{\dot{\dot{C}}} f) \leq k$ so that π_{m} becomes an isomorphism for all $m \geq n$, provided π_{n} is an isomorphism for some $n \geq k$. From this it follows that the length $\ell\left(H_{R_{+}}^{0}(T)_{n}\right)$ of the R_{0}-module $H_{R_{+}}^{0}(T)_{n}$ is strictly decreasing as a function of n in the range $n \geq k$ until its value becomes 0 . This implies that end $\left(H_{R_{+}}^{0}(T)\right) \leq$ $\ell\left(H_{R_{+}}^{0}(T)_{k}\right)+k-1$. As $H_{R_{+}}^{0}(T)_{k}$ is a subquotient of the R_{0}-module U_{k} we get $\operatorname{end}\left(H_{R_{+}}^{0}(T)\right) \leq \ell\left(U_{k}\right)+k-1$.
5.3. Lemma. Let $R=\underset{n \geq 0}{\oplus} R_{n}$ be a homogeneous noetherian ring such that R_{0} is artinian and $\operatorname{dim}(R)=1$. Let U be a finitely generated and graded R-module and let $M \subseteq U$ be a graded submodule. Let $k \in \mathbb{Z}$ be such that $d(M)+\operatorname{reg}(R)$ and $\operatorname{reg}(U)+1 \leq k$. Then, $\operatorname{reg}(M) \leq k$.

Proof: We may apply the replacement argument 2.4 D) with R_{0}^{\prime} defined according to $5.1 \mathrm{~B})$ and thus may assume that R_{0} has infinite residue fields. As end $\left(H_{R_{+}}^{0}(M)\right) \leq$ $\operatorname{end}\left(H_{R_{+}}^{0}(U)\right)<k$ and as $H_{R_{+}}^{i}(M)=0$ for all $i>1$ it remains to show that $\operatorname{end}\left(H_{R_{+}}^{1}(M)\right) \leq k-1$. Choosing $\mathcal{P}=\operatorname{Ass}_{R}(R) \cap \operatorname{Proj}(R)$ we conclude by 4.3 that there is a linear form $f \in R_{1}$ which is at the same time filter-regular with respect to U and to R. As f is filter-regular with respect to U, we have $\operatorname{end}(0 \underset{\dot{U}}{\dot{-}} f) \leq \operatorname{end}\left(H_{R_{+}}^{0}(U)\right)<k$. Therefore, the multiplication map $f: U_{n} \rightarrow U_{n+1}$ is injective for all $n \geq k$. As $\operatorname{dim}(R)=1$ and as $f \in R_{1}$ avoids all minimal primes of R we have $R_{+} \subseteq \sqrt{R f}$ and R is a finitely generated graded module over its subring $R_{0}[f]$. In particular by the graded base ring independence of local cohomology, $\operatorname{reg}(R)$ does not change if we consider R as an $R_{0}[f]$-module. In doing so we obtain $d(R) \leq \operatorname{reg}(R) \leq k-d(M)$ so that $R_{n+1}=f R_{n}$ for all $n \geq k-d(M)$. Hence for each $n \geq k$ we obtain $M_{n+1}=R_{n-d(M)+1} M_{d(M)}=f R_{n-d(M)} M_{d(M)}=f M_{n}$. As $f: U_{n} \rightarrow U_{n+1}$ is injective for all $n \geq k$ it follows that $\left(M_{n+1} \underset{U_{n}}{\dot{\prime}} f\right)=M_{n}$ for all such n. From this, we see that $\operatorname{end}\left(0_{U / M}^{\vdots} f\right)<k$. As $f \in R_{1}$, it follows end $\left(H_{R_{+}}^{0}(U / M)\right)<k$. If we apply cohomology to the graded exact sequence $0 \rightarrow M \rightarrow U \rightarrow U / M \rightarrow 0$ and keep in mind that $\operatorname{end}\left(H_{R_{+}}^{1}(U)\right)<\operatorname{reg}(U)<k$ it follows indeed that end $\left(H_{R_{+}}^{1}(M)\right)<k$.

In order to formulate our main result, we introduce some notation
5.4. Definition and Remark. A) Let \mathbb{P} be the set of all polynomials $P \in \mathbb{Q}[\mathbf{x}]$ with the property that $P(n) \in \mathbb{N}_{0}$ for all integers $n \gg 0$. For $P \in \mathbb{P}$, let $\Delta P \in \mathbb{P}$ denote the difference polynomial $P(\mathbf{x})-P(\mathbf{x}-1)$ of P.
B) For $P \in \mathbb{P}$ we recursively define a polynomial $P^{*}=P^{*}(\mathbf{x})$ by

$$
P^{*}(\mathbf{x}):= \begin{cases}\mathbf{x}, & \text { if } \operatorname{deg}(P) \leq 0 \\ (\Delta P)^{*}(\mathbf{x})+P\left((\Delta P)^{*}(\mathbf{x})\right), & \text { if } \operatorname{deg}(P)>0\end{cases}
$$

It is easy to see, that $P^{*} \in \mathbb{P}$, whenever $P \in \mathbb{P}$.
C) Now, let $s \in \mathbb{N}$ and $r \in \mathbb{N}_{0}$. Then clearly $s\binom{\mathbf{x}+r}{r} \in \mathbb{P}$ and $\Delta\left[s\binom{\mathbf{x}+r}{r}\right]=$ $s\binom{\mathbf{x}+r-1}{r-1}$. We write $\left.F_{r}(s, \mathbf{x}):=\left[\begin{array}{c}\mathbf{x}+r \\ r\end{array}\right)\right]^{*}$ so that

$$
F_{0}(s, \mathbf{x})=\mathbf{x} \text { and } F_{r}(s, \mathbf{x})=F_{r-1}(s, \mathbf{x})+s\binom{F_{r-1}(s, \mathbf{x})+r}{r} \text { for all } r>0
$$

This means, that $F_{r}(s, \mathbf{x})$ is as in $\left.[5,2.5 \mathrm{~A})\right]$. In particular, we have ($\left.\mathrm{cf}[5,2.5 \mathrm{~B})\right]$):

$$
F_{r}(s, t)<s^{e_{r}}(2 t)^{r!}, \quad(\forall s, t \in \mathbb{N}),
$$

where the numbers e_{r} are defined inductively by

$$
e_{0}:=0 \text { and } e_{r}:=r \cdot e_{r-1}+1 \text { for } r>0 .
$$

D) Also, for each $P \in \mathbb{P}$ we recursively define a polynomial $P^{\sim} \in \mathbb{P}$ by

$$
P^{\sim}(\mathbf{x}):= \begin{cases}\mathbf{x}, & \text { if } P=0 \\ (\Delta P)^{\sim}(\mathbf{x})+P\left((\Delta P)^{\sim}(\mathbf{x})\right), & \text { if } P \neq 0 .\end{cases}
$$

It is easy to see that $\tilde{P}(k) \geq P^{*}(k)$ for all $k \gg 0$.
Finally let us recall a few facts on Hilbert polynomials.
5.5. Reminder. A) Let $R=\underset{n \geq 0}{\oplus} R_{n}$ be a homogeneous noetherian ring such that R_{0} is artinian and let $M=\underset{n \in \mathbb{Z}}{\oplus} M_{n}$ be a finitely generated graded R-module. We denote the Hilbert polynomial of M by P_{M} so that (cf [8, Chap. 17])

$$
P_{M}(n)=\ell\left(M_{n}\right) \quad \forall n>\operatorname{reg}(M) .
$$

B) Also, if $f \in R_{1}$ is filter regular with respect to M, we have short exact sequences $0 \rightarrow M_{n-1} \xrightarrow{f} M_{n} \rightarrow(M / f M)_{n} \rightarrow 0$ for all $n \gg 0$ and these yield $P_{M / f M}=\Delta P_{M}$.

If R_{0}^{\prime} is defined according to 5.1 B) and in the notation of 2.4 B) we have

$$
P_{R_{0_{0}^{\prime}}^{\prime} \otimes M}=P_{M} .
$$

5.6. Lemma. Let $R \underset{n \geq 0}{\oplus} R_{n}$ be a homogeneous noetherian ring such that R_{0} is artinian. Let U be a finitely generated graded R-module and let $k \in \mathbb{Z}$ be such that $\operatorname{reg}(U)<k$. Then
a) $k \leq\left(\Delta P_{U}\right)^{*}(k) \leq P_{U}^{*}(k)$;
b) $k \leq\left(\Delta P_{U}\right)^{\sim}(k) \leq P_{U}^{\sim}(k)$.

Proof: In view of 2.4 D) and 5.5 B) we may assume that R_{0} has infinite residue fields. We now proceed by induction on $\operatorname{deg}\left(P_{U}\right)$. If $P_{U}=0$, we have $P_{U}^{*}=P_{U}^{\sim}=$ $\left(\Delta P_{U}\right)^{*}=\left(\Delta P_{U}\right)^{\sim}=\mathbf{x}$, and our claims are obvious. If $\operatorname{deg}\left(P_{U}\right)=0$ we have $P_{U}^{*}=$ $\left(\Delta P_{U}\right)^{*}=\left(\Delta P_{U}\right)^{\sim}=\mathbf{x}$ and $P_{U}^{\sim}=\mathbf{x}+P_{U}(\mathbf{x})$. As P_{U} is a positive constant our claims follow. Let $\operatorname{deg}\left(P_{U}\right)>0$. As R_{0} has infinite residue fields there is a linear form $f \in R_{1}$ which is filter regular with respect to U. In particular we have $\Delta P_{U}=P_{U / f U}$ (cf 5.5 B)) and $\operatorname{reg}(U / f U)<k(\operatorname{cf} 3.2$ a) $)$. So, by induction we have $k \leq\left(\Delta P_{U}\right)^{*}(k)$ and $k \leq\left(\Delta P_{U}\right)^{\sim}(k)$. In particular (cf 5.5 A)) $P_{U}\left(\left(\Delta P_{U}\right)^{*}(k)\right)=\ell\left(U_{\left(\Delta P_{U}\right)^{*}(k)}\right) \geq 0$ and $P_{U}\left(\left(\Delta P_{U}\right)^{\sim}(k)\right)=\ell\left(U_{\left(\Delta P_{U}\right)^{\sim}(k)}\right) \geq 0$. Now, both claims follow from the definitions of P_{U}^{*} and P_{U}^{\sim}.

Now, we prove the main result of this section.
5.7. Theorem. Let $R=\underset{n \geq 0}{\oplus} R_{n}$ be a homogeneous noetherian ring such that R_{0} is artinian. Let U be a finitely generated graded R-module and let $M \subseteq U$ be a graded submodule. Let $k \in \mathbb{Z}$ and assume that $\operatorname{reg}(U)<k$.
a) If $d(M) \leq k$, then $\operatorname{reg}(M) \leq P_{U}^{\sim}(k)$.
b) If $\operatorname{dim}(R)=\operatorname{dim}(U)$ and $d(M)+\operatorname{reg}(R) \leq k$, then $\operatorname{reg}(M) \leq P_{U}^{*}(k)$.

Proof: In view of 2.4 D) and the last observation made in 5.5 B), we may assume that R_{0} has infinite residue fields. We proceed by induction on $\operatorname{dim}(U)$. If $\operatorname{dim}(U) \leq 0$ we have $P_{U}=0$ and $\operatorname{reg}(M)=\operatorname{end}\left(H_{R_{+}}^{0}(M)\right) \leq \operatorname{end}\left(H_{R_{+}}^{0}(U)\right)=\operatorname{reg}(U)<k=0^{*}(k)=$ $0^{\sim}(k)$, which proves both claims in this case. Now, let $\operatorname{dim}(U)>0$. From now on, we prove our two claims separately.
"a)": If we apply 4.3 with $\mathcal{P}:=\operatorname{Ass}_{R}(U / M) \cap \operatorname{Proj}(R)$, we find a linear form $f \in R_{1}$ which is filter-regular with respect to U and U / M. As $\operatorname{dim}(U)>0, f$ avoids all minimal members of $\operatorname{Ass}_{R}(U)$ so that $\operatorname{dim}(U / f U)=\operatorname{dim}(U)-1$. By 3.2 a) we have $\operatorname{reg}(U / f U) \leq \operatorname{reg}(U)<k$. Clearly $d((M+f U) / f U) \leq d(M) \leq k$. By 5.5 B) we also have $\Delta P_{U}=P_{U / f U}$. Now, by induction we have $\operatorname{reg}((M+f U) / f U) \leq(\Delta P)^{\sim}(k)$. As $(0: U) \subseteq H_{R_{+}}^{0}(U)$ and in view of the graded isomorphism $f U \cong(U /(0 \underset{\dot{U}}{ } f))(-1)$
we get $\operatorname{reg}(f U)=\operatorname{reg}(U /(0 \underset{U}{\dot{U}} f))+1 \leq \operatorname{reg}(U)+1 \leq k$, hence $\operatorname{reg}(f U) \leq(\Delta P)^{\sim}(k)$, $(c f 5.6 \mathrm{~b}))$. The exact sequence $0 \rightarrow f U \rightarrow(M+f U) \rightarrow(M+f U) / f U \rightarrow 0$ yields $\operatorname{reg}(M+f U) \leq\left(\Delta P_{U}\right)^{\sim}(k)=: m$. If we keep in mind that $k \leq m$ we get $m \leq P_{U}^{\sim}(m)$ (cf 5.6 b$)$) and $\ell\left(U_{m}\right)=P_{U}(m)($ cf 5.5 A$)$). So, if we apply 5.2 with m instead of k we get end $\left(H_{R_{+}}^{i}(M)\right)+i \leq P_{U}^{\sim}(m)$ for all $i \neq 1$ and end $\left(H_{R_{+}}^{1}(M)\right)+1 \leq P_{U}(m)+m=$ $\left(\Delta P_{U}\right)^{\sim}(k)+P_{U}\left(\left(\Delta P_{U}\right)^{\sim}(k)\right)=P_{U}^{\sim}(k)$. Therefore $\operatorname{reg}(M) \leq P_{U}^{\sim}(k)$.
"b)": Assume first that $\operatorname{dim}(U)=1$ and hence $\operatorname{dim}(R)=1$. Then, 5.3 and 5.6 a) show that $\operatorname{reg}(M) \leq k \leq P_{U}^{*}(k)$. So, let $\operatorname{dim}(U)>1$. Now apply 4.3 with $\mathcal{P}=\operatorname{Ass}_{R}(U / M) \cup \operatorname{Ass}_{R}(R) \cap \operatorname{Proj}(R)$ in order to obtain a linear form $f \in R_{1}$ which is at the same time filter-regular with respect to $U, U / M$ and R. As in the proof of statement a) we now get $\operatorname{dim}(R / f R)=\operatorname{dim}(U / f U)=\operatorname{dim}(U)-1, \operatorname{reg}(U / f U)<k$ and $d((M+f U) / f U)+\operatorname{reg}(R / f R) \leq k$. Again, by 5.5 B$)$ we have $\Delta P_{U}=P_{U / f U}$. Thus, by induction we obtain $\operatorname{reg}((M+f U) / f U) \leq(\Delta P)^{*}(k)$. Now, we may conclude literally in the same way as in the proof of statement a) if we replace $\left(\Delta P_{U}\right)^{\sim}$ by $\left(\Delta P_{U}\right)^{*}$ and P_{U}^{\sim} by P_{U}^{*}.
5.8. Corollary. Let $R_{0}[\underline{\mathbf{x}}]=R_{0}\left[\mathbf{x}_{0}, \cdots, \mathbf{x}_{r}\right]$ be a polynomial ring over an artinian ring R_{0}. Let $w \in \mathbb{N}$ and let $M \subseteq R_{0}[\underline{\mathbf{x}}]^{\oplus w}$ be a graded submodule. Then

$$
\operatorname{reg}(M) \leq\left(\ell\left(R_{0}\right) w\right)^{e_{r}}(2 d(M))^{r!}
$$

where e_{r} is defined according to $5.4 C$).
Proof: If $d(M)=0$, there is a graded isomorphism $M \cong M_{0} \underset{R_{0}}{\otimes} R_{0}[\underline{\mathbf{x}}]$, so that $\operatorname{reg}(M)=0$. Therefore we may assume that $d(M)>0$. Let $R:=R_{0}[\underline{\mathbf{x}}], U:=$ $R_{0}[\underline{\mathbf{x}}]^{\oplus w}$. Then $\operatorname{reg}(U)=\operatorname{reg}(R)=0, \operatorname{dim}(R)=\operatorname{dim}(U)=r$ and the fact that $P_{U}=\ell\left(R_{0}\right) w\binom{\mathbf{x}+r}{r}$ allow to conclude by 5.7 b$)$ and 5.4 C$)$.
5.9. Remark. If in 5.8 we choose $R_{0}=K$ to be a field, we get the bound given in [$5,2.7]$. If we choose in addition $w=1$, we get the bound of Bayer-Mumford [1, 3.8].

References

[1] D. BAYER and D. MUMFORD: What can be computed in algebraic geometry? in "Computational Algebraic Geometry and Commutative Algebra" Proc. Cortona 1991 (D. Eisenbud and L. Robbiano Eds.), Cambridge University Press (1993) 1-48.
[2] D. BAYER and M. STILLMAN: A criterion for detecting m-regularity, Invent. Math. 87 (1987) 1-11.
[3] M. BRODMANN: Cohomological invariants of coherent sheaves over projective schemes a survey in "Local Cohomology and its Applications" M. Dekker Lecture Notes 226 (G. Lyubeznik Ed.), M. Dekker (2001) 91-120.
[4] M. BRODMANN and M. HELLUS: Cohomological patterns of coherent sheaves over projective schemes, J. of Pure and Applied Algebra 172 (2002) 165-182.
[5] M. BRODMANN and A. LASHGARI: A diagonal bound for cohomological postulation numbers of projective schemes, preprint.
[6] M. BRODMANN, C. MATTEOTTI and N.D. MINH: Bounds for cohomological Hilbertfunctions of projective schemes over artinian rings, Vietnam J. of Math. 28, 4 (2000) 345 384.
[7] M. BRODMANN, C. MATTEOTTI and N.D. MINH: Bounds for cohomological deficiency functions of projective schemes over artinian rings, to appear in Vietnam J. of Math.
[8] M. BRODMANN and R.Y. SHARP: Local cohomology - an algebraic introduction with geometric applications. Cambridge Studies in Advanced Mathematics, 60, Cambridge University Press (1998).
[9] B. BUCHBERGER: A note on the complexity of constructing Gröbner-Bases, in "EUROCAL '83" (J.A. v. Hulzen Ed.), Springer LNCS 162 (1983).
[10] D. EISENBUD: Commutative algebra with a view towards algebraic geometry, Springer New York (1996).
[11] A. GALLIGO: Théorème de division et stabilité en géométrie analytique locale, Ann. Inst. Fournier 29 (1979) 107-184.
[12] M. GIUSTI: Some effectivity problems in polynomial ideal theory in "Eurosam 84", Springer Lecture Notes in Computer Sciences 174 (1984) 159-171.
[13] G. GOTZMANN: Eine Bedingung für die Flachheit und das Hilbertpolynom eines gradierten Ringes, Math. Z. 158 (1978), 61 - 70.
[14] G. GOTZMANN: Durch Hilbertfunktionen definierte Unterschemata des Hilbert-Schemas, Comment. Math. Helvetici 63 (1988) 114-149.
[15] A. GROTHENDIECK: Séminaire de géométrie algébrique VI, Springer Lecture Notes in Mathematics 225, Springer (1971).
[16] K. HENTZELT and E. NOETHER: Zur Theorie der Polynomideale und Resultanten, Math. Ann. 88 (1923), 53-79.
[17] G. HERMANN: Über die Frage der endlich vielen Schritte in der Theorie der Polynomideale, Math. Ann. 95 (1926), 736-788.
[18] A.F. LASHGARI: The cohomology diagonal bounds the postulation numbers of a coherent sheaf over a projective scheme, Dissertation, University of Zürich (2000).
[19] D. MASSER and G. WÜSTHOLZ: Fields of large transcendence degree generated by values of elliptic functions, Invent. Math. 72 (1983), 407-464.
[20] H. MATSUMURA: Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press (1986).
[21] E.W. MAYR and A.R. MEYER: The complexity of the word problem for commutative semigroups and polynomial ideals, Advances in Math. 46 (1982), 305-329.
[22] D. MUMFORD: Lectures on curves on an algebraic surface, Annals of Math. Studies 59, Princeton University Press (1966).

[^0]: 1991 Mathematics Subject Classification. primary 13D45; secondary 13D40.
 Key words and phrases. Castelnuovo-Mumford regularity, filter-regular sequences, Hilbert polynomials, generating degrees.

