CASTELNUOVO REGULARITY AND DEGREES OF GENERATORS OF GRADED SUBMODULES

MARKUS BRODMANN

Institute of Pure Mathematics University of Zürich Winterthurerstrasse 190 8057 Zürich, Switzerland

brodmann@math.unizh.ch

ABSTRACT. We extend the regularity criterion of Bayer-Stillman for a graded ideal \mathfrak{a} of a polynomial ring $K[\underline{\mathbf{x}}] := K[\underline{\mathbf{x}}_0, \cdots, \mathbf{x}_r]$ over an infinite field K, to the situation of a graded submodule M of a finitely generated graded module U over a noetherian homogeneous ring $R = \bigoplus_{n\geq 0} R_n$, whose base ring R_0 has infinite residue fields. If R_0 is artinian, we give a polynomial $P_U^{\sim} \in \mathbb{Q}[\mathbf{x}]$, which depends only on the Hilbert polynomial of U such that $\operatorname{reg}(M) \leq P_U^{\sim}(\max\{d(M), \operatorname{reg}(U) + 1\})$, where d(M) is the generating degree of M. This extends the regularity bound of Bayer-Mumford for a graded ideal $\mathfrak{a} \subseteq K[\underline{\mathbf{x}}]$ over a field K to the pair $M \subseteq U$.

1. INTRODUCTION

Let $R = \bigoplus_{n \ge 0} R_n$ be a homogeneous noetherian ring and let $M \ne 0$ be a finitely generated graded *R*-module. For $i \in \mathbb{N}_0$ and $n \in \mathbb{N}$ let $H^i_{R_+}(M)_n$ denote the *n*-th graded component of the *i*-th local cohomology module $H^i_{R_+}(M)$ of M with respect to the irrelevant ideal $R_+ = \bigoplus_{n>0} R_n$ of R. The (Castelnuovo-Mumford) regularity reg(M) of M is defined by

(1.1)
$$\operatorname{reg}(M) := \inf\{m \in \mathbb{Z} \mid H^{i}_{R_{+}}(M)_{m-i+1} = 0 \quad \forall i \in \mathbb{N}_{0}\}.$$

¹⁹⁹¹ Mathematics Subject Classification. primary 13D45; secondary 13D40.

Key words and phrases. Castelnuovo-Mumford regularity, filter-regular sequences, Hilbert polynomials, generating degrees.

Upper bounds on reg(M) in terms of other invariants of M are of fundamental significance in algebraic geometry, commutative algebra and computational algebraic geometry (cf [3]).

So, in the theory of Hilbert and Piccard schemes one is lead to bound the regularity of a graded submodule M of a graded free module F over a polynomial ring in terms of the Hilbert polynomial of M, the generating degree and the rank of F, (cf [13], [14], [15], [22]).

On the other hand if the base ring R_0 is artinian, reg(M) and various other cohomological invariants of M may be bounded in terms of the *diagonal values* length_{R_0} $(H^i_{R_+}(M)_{-i})$ $(i = 0, 1, \cdots)$ of cohomology (cf [5], [6], [7]). In close relation to these bounds of diagonal type, the mere vanishing and non-vanishing of the graded components $H^i_{R_+}(M)_n$ is completely governed by a few simple combinatorial conditions, if R_0 is semilocal and of dimension ≤ 1 (cf [4]).

If $R = K[\mathbf{x}_0, \dots, \mathbf{x}_r] =: K[\underline{\mathbf{x}}]$ is a polynomial ring over a field, $\operatorname{reg}(M)$ gives an upper bound on the generating degrees of the syzigies of M and hence is of crucial significance for the classical problem of "the finitely many steps" (cf [16], [17]). In more recent terms: $\operatorname{reg}(M)$ governs the computational complexity of calculating the syzygies of the finitely generated graded $K[\underline{\mathbf{x}}]$ -module M (cf [9]).

Let us recall that the problem of "the finitely many steps" consists in constructing in a predictable number of steps, a minimal graded free resolution of M from a minimal graded free presentation $F_1 \to F_0 \to M \to 0$. This problem can be solved as the regularity $\operatorname{reg}(M)$ of a graded submodule M of the free module $K[\underline{\mathbf{x}}]^{\oplus s}$ can be bounded in terms of r, s and the generating degree d(M) of M. This was essentially shown by Hermann [17] on use of ideas of Henzelt-Noether [16]. (Note that the bounds calculated by Hermann are not correct; for correctly calculated bounds see [19], for example.) In the spirit of this, Bayer and Mumford have shown that for a graded ideal $\mathfrak{a} \subseteq K[\underline{\mathbf{x}}]$ one has the bound (cf [1])

(1.2)
$$\operatorname{reg}(\mathfrak{a}) \le (2d(\mathfrak{a}))^{r!}.$$

In [5] we have extended this bound by showing that for a graded submodule $M \subseteq K[\underline{\mathbf{x}}]^{\oplus s}$ it holds

(1.3)
$$\operatorname{reg}(M) \le s^{e_r} \left(2d(M)\right)^{r!},$$

where the numbers e_r are defined recursively by $e_0 = 0$ and $e_r := e_{r-1} \cdot r + 1$, if r > 0. It also should be noted that the bounds given in (1.2) and (1.3) still appear to be rather far away from being sharp: namely, if $\operatorname{Char}(K) = 0$ one has $\operatorname{reg}(\mathfrak{a}) \leq (2d(\mathfrak{a}))^{2^{r-1}}$ (cf [11], [12]), and by the examples of Mayr and Meyer (cf [21]) this latter bound is about to be of best possible type.

One basic aim of this paper is to extend the regularity bounds of (1.2) and (1.3) to a much more general situation. We namely consider an arbitrary finitely generated graded module U over a noetherian homogeneous ring $R = \bigoplus_{n\geq 0} R_n$ with artinian base ring R_0 . Then we show (cf Theorem 5.7)

(1.4) There is a polynomial $P_U^{\sim} \in \mathbb{Q}[\mathbf{x}]$ (of degree dim(U)!) which depends only on the Hilbert polynomial P_U of U, such that for each graded submodule $M \subseteq U$ we have $\operatorname{reg}(M) \leq P_U^{\sim}(\max\{d(M), \operatorname{reg}(U) + 1\})$.

If in addition dim $(U) = \dim(R)$ and $d(M) + \operatorname{reg}(M) \leq \operatorname{reg}(U) + 1$, we may replace P_U^{\sim} by a polynomial $P_U^* \in \mathbb{Q}[\mathbf{x}]$ which is such that we get the bounds of (1.3) if we choose $R = K[\mathbf{x}]$ and $U = K[\mathbf{x}]^{\oplus s}$.

In [1], the bound of (1.2) is deduced on use of the regularity criterion of Bayer-Stillman (cf [2]). In fact it turns out, that the bound (1.2), and its extension (1.3), may be deduced without using this criterion (cf [5]). But nevertheless, our proof of the bound (1.3) (resp. its extension (1.4)) is closely related to the regularity criterion of Bayer-Stillman, as both rely on the technique of (saturated) filter-regular sequences of linear forms. In section 3 we give a criterion - in terms of such sequences - for detecting whether a graded submodule M of a finitely generated graded module Uover a homogeneous noetherian ring $R = \bigoplus_{n\geq 0} R_n$ is m-regular, (cf Theorem 3.8). If the base ring R_0 has infinite residue fields, our criterion extends the corresponding criterion of Bayer-Stillman for a graded ideal $\mathfrak{a} \subseteq K[\underline{\mathbf{x}}]$ to the case of a graded submodule $M \subseteq U$ (cf Theorem 4.7).

2. Some Preliminaries

In this section we recall a few generalities on graded rings and graded modules. We use \mathbb{N}_0 (resp. \mathbb{N}) to denote the set of non-negative (resp. positive) integers.

2.1. Definition and Remark. A) By a homogeneous ring we mean a (commutative unitary) \mathbb{N}_0 -graded ring $R = \bigoplus_{n\geq 0} R_n$ which is generated over its base ring R_0 by linear forms, thus with $R = R_0[R_1]$. Keep in mind that the \mathbb{N}_0 -graded ring $R = \bigoplus_{n\geq 0} R_n$ is homogeneous and noetherian, if and only if R_0 is noetherian and there are finitely many linear forms $f_0, \dots, f_r \in R_1$ such that $R = R_0[f_0, \dots, f_r]$.

B) If $R = \bigoplus_{n \ge 0} R_n$ is a \mathbb{N}_0 -graded ring, we shall denote by R_+ the *irrelevant ideal* of R, thus $R_+ := \bigoplus_{n>0} R_n$. Recall that R is homogeneous if and only if R_+ is generated by linear forms, thus if and only if $R_+ = R_1 \cdot R$.

C) If $R = \bigoplus_{n \ge 0} R_n$ is a \mathbb{N}_0 -graded ring, we use $\operatorname{Proj}(R)$ to denote the *projective spectrum* of R, e.g. the set of all graded primes $\mathfrak{p} \subseteq R$ with $R_+ \not\subseteq \mathfrak{p}$.

2.2. **Definition.** A) Let $R = \bigoplus_{n \ge 0} R_n$ be a \mathbb{N}_0 -graded ring and let $T = \bigoplus_{n \in \mathbb{N}} T_n$ be a graded *R*-module. We define the *beginning* and the *end* of *T* respectively by

 $\operatorname{beg}(T) := \inf\{n \in \mathbb{Z} \mid T_n \neq 0\}, \quad \operatorname{end}(T) := \sup\{n \in \mathbb{Z} \mid T_n \neq 0\},$

where "inf" and "sup" are formed in $\mathbb{Z} \cup \{\pm \infty\}$ with the convention that $\inf \emptyset = \infty$ and $\sup \emptyset = -\infty$.

B) Let R and T be as in part A) and let $m \in \mathbb{Z}$. We define the *m*-th *left-truncation* and the *m*-th *right-truncation* of T respectively as the following R_0 -submodules of T:

$$T_{\geq m} := \bigoplus_{n \geq m} T_n ; \quad T_{\leq m} := \bigoplus_{n \leq m} T_n.$$

As R is \mathbb{N}_0 -graded, $T_{\geq m}$ is a (graded) R-submodule of T.

C) Let R and T be as above. We denote the generating degree of T by d(T), so that

$$d(T) := \inf\{m \in \mathbb{Z} \mid T = T_{\leq t} \cdot R\},\$$

•

where "inf" is formed under the same convention as in part A).

2.3. Definition and Remark. (cf [8]). A) Let $R = \bigoplus_{n\geq 0} R_n$ be a homogeneous noetherian ring and let $M = \bigoplus_{n\in\mathbb{Z}} M_n$ be a graded *R*-module. Then, for each $i \in \mathbb{N}_0$, the *i*-th local cohomology module $H^i_{R_+}(M)$ of M with respect to the irrelevant ideal R_+ of R carries a natural grading. For all $n \in \mathbb{Z}$ we use $H^i_{R_+}(M)_n$ to denote the *n*-th graded component of $H^i_{R_+}(M)$.

B) Let $R = \bigoplus_{n \ge 0} R_n$ and $M = \bigoplus_{n \in \mathbb{Z}} M_n$ be as in part A) but assume in addition that the *R*-module *M* is finitely generated. Then, for all $i \in \mathbb{N}_0$ and all $n \in \mathbb{Z}$ the R_0 -module $H^i_{R_+}(M)_n$ is finitely generated and vanishes for all $n \gg 0$. Moreover $H^i_{R_+}(M)$ vanishes for all $i > \dim(M)$. So, for each $k \in \mathbb{N}_0$ we may define the (*Castelnuovo-Mumford*) regularity of *M* at and above level *k* by

$$\operatorname{reg}^{k}(M) := \sup\{\operatorname{end}(H_{R_{+}}^{i}(M)) + i \mid i \ge k\},\$$

and obtain $\operatorname{reg}^k(M) \in \mathbb{Z} \cup \{-\infty\}$.

C) Let R and M be as in part B). The (*Castelnuovo-Mumford*) regularity of M is defined as (cf (1.1))

$$\operatorname{reg}(M) := \operatorname{reg}^0(M),$$

where $\operatorname{reg}^{0}(M)$ is defined according to part B). It is important to keep in mind, that the generating degree and the regularity of M are related by the inequality (cf [8, 15.3.1])

$$d(M) \le \operatorname{reg}(M).$$

D) Let R and M be as in part B) and let $k \in \mathbb{N}_0, m \in \mathbb{N}$. Then, the following equivalence is known to hold (cf [8, 15.2.5])

$$\operatorname{reg}^k(M) \le m \iff H^i_{R_+}(M)_{m-i+1} = 0 \quad \forall i \ge k.$$

If $\operatorname{reg}^k(M) \leq m$ we say that M is *m*-regular at and above level k. If $\operatorname{reg}(M) \leq m$, e.g. if M is *m*-regular at and above level 0, we say that M is *m*-regular.

2.4. **Remark.** (*Faithfully flat base change*) A) Let $R = \bigoplus_{n\geq 0} R_n$ be a homogeneous noetherian ring and let R'_0 be a noetherian faithfully flat R_0 -algebra. Then, the faithfully flat R-algebra $R'_0 \bigotimes_{R_0} R = \bigoplus_{n\geq 0} (R'_0 \bigotimes_{R_0} R_n)$ is a homogeneous noetherian ring in a natural way and $(R'_0 \bigotimes_{R_0} R)_+ = R_+(R'_0 \bigotimes_{R_0} R)$.

B) Keep the notations and hypotheses of part A), let $T = \bigoplus_{n \in \mathbb{Z}} T_n$ be a graded *R*-module and $S = \bigoplus_{n \in \mathbb{Z}} S_n \subseteq T$ a graded submodule. Then $R'_0 \bigotimes_{R_0} T = \bigoplus_{n \in \mathbb{Z}} R'_0 \bigotimes_{R_0} T_n$ is a graded $(R'_0 \bigotimes_{R_0} R)$ -module in a natural way and $R'_0 \bigotimes_{R_0} S = \bigoplus_{n \in \mathbb{Z}} R'_0 \bigotimes_{R_0} S_n \subseteq R'_0 \bigotimes_{R_0} T$ becomes a graded submodule. Clearly if *T* is finitely generated, then the $R'_0 \bigotimes_{R_0} R$ -module $R'_0 \bigotimes_{R_0} T$ is finitely generated, too. Moreover $d(R'_0 \bigotimes_{R_0} T) = d(T)$.

C) Let R and R'_0 be as in part A) and let $M = \bigoplus_{n \in \mathbb{Z}} M_n$ be a finitely generated graded R-module and let $i \in \mathbb{N}_0$. Then, the graded flat base-change property of local cohomology yields a natural isomorphism of graded $R'_0 \bigotimes_{R_0} R$ -modules

$$H^i_{(R'_0\mathop{\otimes} R)_+}(R'_0\mathop{\otimes}_{R_0}M)\cong R'_0\mathop{\otimes}_{R_0}H^i_{R_+}(M),$$

(cf [8, 15.2.3]). As a consequence we have

$$\operatorname{reg}^k(R'_0 \underset{R_0}{\otimes} M) = \operatorname{reg}^k(M) \quad \forall k \in \mathbb{N}_0.$$

D) (*Replacement argument*) Let R and R'_0 be as above. Let M be a finitely generated graded R-module and $N \subseteq M$ a graded submodule. Then, the previous observations allow to replace M and N by $R'_0 \bigotimes_{R_0} M$ resp. $R'_0 \bigotimes_{R_0} N$ whenever we wish to prove a statement on regularities and generating degrees of M and N.

For further unexplained notation and terminology from commutative algebra we refer to [10], [20].

3. FILTER-REGULAR SEQUENCES AND REGULARITY

Let $R = \bigoplus_{n \ge 0} R_n$ be a homogeneous noetherian ring, let U be a finitely generated graded R-module and let $M \subseteq U$ be a graded submodule. Let $m \in \mathbb{Z}$ and let $f_1, \dots, f_r \in R_1$ be a sequence of linear forms. We prove a criterion for the condition that M is m-regular and f_1, \dots, f_r form a saturated filter-regular sequence with respect to U/M. We briefly recall the notion of filter-regular sequence.

3.1. Reminder and Remark. (cf [8, Chapt. 18]). A) Let $R \bigoplus_{n \ge 0} R_n$ be a homogeneous noetherian ring and let $T = \bigoplus_{n \in \mathbb{Z}} T_n$ be a finitely generated and graded *R*-module. A homogeneous element $f \in R$ is said to be (R_+-) filter-regular with respect to *T* if it is a non-zero divisor with respect to $T/H^0_{R_+}(T)$. It is equivalent to say that f avoids all $\mathfrak{p} \in \operatorname{Ass}_R(T) \cap \operatorname{Proj}(R)$. Clearly, f is filter-regular with respect to *T* if and only if the annihilator 0 : f of f in *T* is contained in $H^0_{R_+}(T)$, thus if and only if $\operatorname{end}(0 : f) < \infty$.

B) Let R and T be as in part A). A sequence of homogeneous elements $f_1, \dots, f_r \in R$ is called a *filter-regular sequence with respect to* T if f_i is filter-regular with respect to $T/\sum_{j=1}^{i-1} f_j T$ for all $i \in \{1, \dots, r\}$. If in addition $f_1, \dots, f_r \in R_1$, we speak of a *filter-regular sequence of linear forms*. If $W \subseteq H^0_{R_+}(T)$ is a graded submodule, a sequence f_1, \dots, f_r of homogeneous elements in R is filter-regular with respect to Tif and only if it is with respect to T/W.

3.2. Lemma. Let $R = \bigoplus_{n \ge 0} R_n$ be a homogeneous noetherian ring, let $T = \bigoplus_{n \in \mathbb{Z}} T_n$ be a finitely generated graded *R*-module, let $f_1, \dots, f_r \in R_1$ be a filter-regular sequence with respect to *T* and let $i \in \{0, \dots, r\}$. Then

a)
$$\operatorname{reg}\left(T / \sum_{j=1}^{i} f_j T\right) \leq \operatorname{reg}(T) ;$$

b) $\operatorname{end}\left(H_{R_+}^i(T)\right) + i \leq \operatorname{end}\left(H_{R_+}^0\left(T / \sum_{j=1}^{i} f_j T\right)\right)$

Proof: "a)": Follows from [8, (18.3.11)].

"b)": The case i = 0 is obvious. So, let i > 0. As f_2, \dots, f_r is a filter-regular sequence with respect to T/f_1T , by induction

$$\operatorname{end}\left(H_{R_{+}}^{i-1}(T/f_{1}T)\right) + i - 1 \leq \operatorname{end}\left(H_{R_{+}}^{0}(T/\sum_{j=1}^{i}f_{j}T)\right) =: e.$$

Let $\overline{T} := T/H^0_{R_+}(T)$. Then, the graded epimorphism $H^{i-1}_{R_+}(T/f_1T) \twoheadrightarrow H^{i-1}_{R_+}(\overline{T}/f_1\overline{T})$ shows that $\operatorname{end}\left(H^{i-1}_{R_+}(\overline{T}/f_1\overline{T})\right) + i - 1 \leq e$. But now, the exact sequences

$$H^{i-1}_{R_+}(\overline{T}/f_1\overline{T})_{n+1} \longrightarrow H^i_{R_+}(\overline{T})_n \xrightarrow{f_1} H^i_{R_+}(\overline{T})_{n+1}$$

and the vanishing of $H^i_{R_+}(\overline{T})_n$ for all $n \gg 0$ show that

$$\operatorname{end}\left(H_{R_{+}}^{i}(\overline{T})\right) \leq \operatorname{end}\left(H_{R_{+}}^{i-1}(\overline{T}/f_{1}\overline{T}))\right) - 1 \leq e - i.$$

In view of the graded isomorphism $H^i_{R_+}(T) \cong H^i_{R_+}(\overline{T})$ we get our claim.

In order to prove and to formulate the announced regularity criterion we introduce the notion of saturated filter-regular sequence.

3.3. Definition and Remark. A) Let $R = \bigoplus_{n \ge 0} R_n$ and $T = \bigoplus_{n \in \mathbb{Z}} T_n$ be as in 3.1. A filter-regular sequence f_1, \dots, f_r with respect to T is saturated if $f_1, \dots, f_r \in R_+$ and if $T/\sum_{j=1}^r f_j T$ is an R_+ -torsion module. It is equivalent to say that $\sum_{j=1}^r f_j R \subseteq R_+ \subseteq \sqrt{0:T/\sum_{j=1}^r f_j T}$ or else that $\sqrt{(0:T) + R_+} = \sqrt{(0:T) + \sum_{j=1}^r f_j R}$.

B) As a consequence of this we can say (cf [8, 2.1.9]):

If $f_1, \dots, f_r \in R$ is a saturated filter-regular sequence with respect to T, there are natural isomorphisms $H^i_{R_+}(T) \cong H^i_{(f_1,\dots,f_r)}(T)$ for all $i \in \mathbb{N}_0$. So, in this situation we have $H^i_{R_+}(T) = 0$ for all i > r.

3.4. **Proposition.** Let $R = \bigoplus_{n\geq 0} R_n$ be a homogeneous noetherian ring, let $T = \bigoplus_{n\in\mathbb{Z}} T_n$ be a finitely generated graded *R*-module, let $f_1, \dots, f_r \in R_1$ and let $m \in \mathbb{Z}$. Then, the following statements are equivalent:

(i) $\operatorname{reg}(T) < m \text{ and } f_1, \cdots, f_r \text{ is a saturated filter-regular sequence with respect to } T;$

(*ii*) end(0 :
$$T/\sum_{j=1}^{i-1} f_j T$$
 f_i) < m for all $i \in \{1, \dots, r\}$ and end($T/\sum_{j=1}^r f_j T$) < m

Proof: "(i) \Longrightarrow (ii)": Assume that condition (i) holds. Then, 3.2 a) shows that $\operatorname{end}\left(H_{R_+}^0(T/\sum_{j=1}^k f_jT)\right) \leq \operatorname{reg}(T/\sum_{j=1}^k f_jT) \leq \operatorname{reg}(T) < m$ for all $k \in \{1, \dots, r\}$. As f_i is filter-regular with respect to $T/\sum_{j=1}^{i-1} f_jT$, we obtain

end(0 :
$$_{T/\sum_{j=1}^{i-1} f_j T} f_i$$
) \leq end $\left(H^0_{R_+}(T/\sum_{j=1}^{i-1} f_j T)\right) < m, \quad \forall i \in \{1, \cdots, r\}.$

As the sequence f_1, \dots, f_r is saturated, we have $T/\sum_{j=1}^r f_j T = H^0_{R_+}(T/\sum_{j=1}^r f_j T)$ and hence obtain $\operatorname{end}(T/\sum_{j=1}^r f_j T) < m$. "(ii) \Longrightarrow (i)": Assume that condition (ii) holds. As $\operatorname{end}(0 : f_i) < \infty$ for $T/\sum_{j=1}^{i-1} f_j T$ $i = 1, \dots, r$, it follows that the sequence f_1, \dots, f_r is filter-regular with respect to T. As $\operatorname{end}(T/\sum_{j=1}^r f_j T) < \infty$ this sequence is saturated. In particular we have $H^i_{R_+}(T) = 0$ for all i > r (cf 3.3 B)). If we apply 3.2 b) with $i = 1, \dots, r$ we obtain $\operatorname{reg}(T) < m$.

3.5. Corollary. Let $R = \bigoplus_{n \ge 0} R_n$ be a homogeneous noetherian ring, let $m \in \mathbb{Z}$, let U be a finitely generated graded R-module such that $\operatorname{reg}(U) < m$. Let $M \subseteq U$ be a graded submodule and let $f_1, \dots, f_r \in R_1$. Then, the following statements are equivalent:

- (i) $\operatorname{reg}(M) \leq m \text{ and } f_1, \cdots, f_r \text{ is a saturated filter-regular sequence with respect to <math>U/M$.
- (*ii*) $\left(\left(M + \sum_{j=1}^{i-1} f_j U \right) : f_i \right)_{\geq m} = \left(M + \sum_{j=1}^{i-1} f_j U \right)_{\geq m} \text{ for all } i \in \{1, \cdots, r\}$ and $\left(M + \sum_{j=1}^{r} f_j U \right)_{\geq m} = U_{\geq m}.$

Proof: Let T := U/M. Then, the graded exact sequence $0 \to M \to U \to T \to 0$ shows that $\operatorname{reg}(M) \leq \max\{\operatorname{reg}(U), \operatorname{reg}(T)+1\}$ and $\operatorname{reg}(T) \leq \max\{\operatorname{reg}(U), \operatorname{reg}(M)-1\}$ (cf [8, 15.2.15]). So, statement (i) of 3.4 is equivalent to statement (i) of 3.5. It is immediate that statement (ii) of 3.4 is equivalent to statement (ii) of 3.5. ■

The announced regularity criterion turns the criterion 3.5 into a "persistency result": the comparison of graded components in all degrees $\geq m$ which appears in statement 3.5 (ii) may be replaced by a comparison in degree m. To prove this, we use the following lemma:

3.6. Lemma. Let $R = \bigoplus_{n\geq 0} R_n$ be a homogeneous noetherian ring. Let U be a finitely generated graded R-module, let $m \in \mathbb{Z}$ and let $M, N \subseteq U$ be two graded submodules such that $d(M), d(N) \leq m$ and $\operatorname{reg}(M + N) < m$. Then, $d(M \cap N) \leq m$.

Proof: Write R as a graded homomorphic image of a polynomial ring $R_0[\underline{\mathbf{x}}] = R_0[\mathbf{x}_0, \cdots, \mathbf{x}_r]$ and observe that neither the generating degree nor the regularity of a finitely generated graded R-module V change their values, if we consider V as an $R_0[\underline{\mathbf{x}}]$ -module. Therefore we may and do assume that $R = R_0[\underline{\mathbf{x}}]$ is a polynomial ring. Now, we may proceed as in the proof of [5, 2.4], where our result is shown in the special case in which R is a polynomial ring over a field. Namely, as $d(M), d(N) \leq m$

there are graded epimorphisms $\pi : F \to M \to 0$, $\varrho : G \to N \to 0$ in which F and G are graded free R-modules of finite rank with $d(F), d(G) \leq m$. As $\operatorname{reg}(R) = 0$ we thus obtain $\operatorname{reg}(F \oplus G) \leq m$ and the graded short exact sequence

$$0 \to \operatorname{Ker}(\pi + \varrho) \to F \oplus G \xrightarrow{\pi + \varrho} M + N \to 0$$

yields that $\operatorname{reg}(\operatorname{Ker}(\pi + \varrho)) \leq m$, thus $d(\operatorname{Ker}(\pi + \varrho)) \leq m$ (cf 2.3 C)). Now, the commutative diagram

$$\begin{array}{ccc} M \oplus N & \xrightarrow{\sigma := id_M + id_N} & M + N \\ & \uparrow^{\pi \oplus \varrho} & & \uparrow^{\pi + \varrho} \\ F \oplus G & \underbrace{\qquad} & F \oplus G \end{array}$$

shows that $(\pi \oplus \varrho)(\operatorname{Ker}(\pi + \varrho)) = \operatorname{Ker}(\sigma)$ and thus $d(\operatorname{Ker}(\sigma)) \leq m$. In view of the graded isomorphism $M \cap N \cong \operatorname{Ker}(\sigma)$ we get our claim.

3.7. Lemma. Let $R = \bigoplus_{n \ge 0} R_n$ be a homogeneous noetherian ring and let $m \in \mathbb{Z}$. Let U be a finitely generated graded R-module, let $M \subseteq U$ be a graded submodule and let $f \in R_1$ be filter-regular with respect to U. Assume that $d(M), \operatorname{reg}(U), \operatorname{reg}(M + fU) \le m$. Then, $d(M : f) \le m$.

Proof: As $d(fU) \leq d(U) + 1 \leq \operatorname{reg}(U) + 1 \leq m + 1$, Lemma 3.6 implies $d(M \cap fU) \leq m + 1$. As $M \cap fU = f(M_{i_U} f)$ we have a graded short exact sequence

$$0 \to (0 \underset{U}{:} f) \to (M \underset{U}{:} f) \to (M \cap fU)(1) \to 0.$$

As f is filter-regular with respect to U, we have $(0 : f) \subseteq H^0_{R_+}(U)$ and hence $d(0 : f) \leq \operatorname{end}(0 : f) \leq \operatorname{end}(H^0_{R_+}(U)) \leq \operatorname{reg}(U) \leq m$. Now, the above exact sequence yields $d(M : f) \leq m$.

Now, we are ready to formulate and to prove the main result of this section.

3.8. Theorem. Let $R = \bigoplus_{n\geq 0} R_n$ be a homogeneous noetherian ring and let $m \in \mathbb{Z}$. Let U be a finitely generated graded R-module, let $M \subseteq U$ be a graded submodule, let $f_1, \dots, f_r \in R_1$ be filter-regular elements with respect to U and assume that $\operatorname{reg}(U) < m$ and $d(M) \leq m$. Then, the following statements are equivalent:

(i) $\operatorname{reg}(M) \leq m \text{ and } f_1, \cdots, f_r \text{ is a saturated filter-regular sequence with respect to <math>U/M$;

(*ii*)
$$\left(\left(M + \sum_{j=1}^{i-1} f_j U \right) : f_i \right)_m = \left(M + \sum_{j=1}^{i-1} f_j U \right)_m \text{ for all } i \in \{1, \cdots, r\}$$

and $\left(M + \sum_{j=1}^r f_j U \right)_m = U_m.$

Proof: "(i) \implies (ii)": Clear by 3.5.

"(ii) \Longrightarrow (i)": We proceed by induction on r. First, let r = 1. By statement (ii) we have $(M + f_1U)_m = U_m$. As $d(U) \leq \operatorname{reg}(U) \leq m$ it follows $(M + f_1U)_{\geq m} = U_{\geq m}$, hence $\operatorname{end}(U/(M + f_1U)) < m$. In view of the graded short exact sequence $0 \to (M + f_1U) \to U \to U/(M + f_1U) \to 0$ it follows $\operatorname{reg}(M + f_1U) \leq m$. By Lemma 3.7 we get $d(M : f_1) \leq m$. By statement (ii), we have $(M : f_1)_m = M_m$; it follows $(M : f_1)_{\geq m} = M_{\geq m}$. By the implication "(ii) \Longrightarrow (i)" of Corollary 3.5 we get $\operatorname{reg}(M) \leq m$ and that f_1 constitutes a saturated filter-regular sequence with respect to U/M.

Now, let r > 1 and assume that statement (ii) holds. As $d(f_1U) \leq d(U) + 1 \leq reg(U) + 1 \leq m$, we have $d(M + f_1U) \leq m$. We apply induction to the graded submodule $M + f_1U \subseteq U$ and the sequence $f_2, \dots, f_r \in R_1$. In doing so, we thus see that $reg(M + f_1U) \leq m$ and that f_2, \dots, f_r is a saturated filter-regular sequence with respect to $U/(M + f_1U)$. So, by 3.5 we have $\left((M + \sum_{j=1}^{i-1} f_jU) : f_i\right)_{\geq m} = (M + \sum_{j=1}^{i-1} f_jU)_{\geq m}$ for all $i \in \{2, \dots, r\}$ and $(M + \sum_{j=1}^r f_jU)_{\geq m} = U_{\geq m}$. By 3.7 we also have $d(M : f_1) \leq m$. As $(M : f_1)_m = M_m$ and $d(M) \leq m$, it follows $(M : f_1)_{\geq m} = M_{\geq m}$. Now, another use of 3.5 gives statement (i).

4. EXTENDING THE REGULARITY CRITERION OF BAYER-STILLMAN

Let $K[\underline{\mathbf{x}}] = K[\mathbf{x}_0, \cdots, \mathbf{x}_t]$ be a polynomial ring over an infinite field K and let $\mathfrak{a} \subseteq K[\underline{\mathbf{x}}]$ be a graded ideal. Let $m \in \mathbb{N}$. In [2, 1.10] Bayer and Stillman proved that \mathfrak{a} is *m*-regular if and only if there is a sequence of linear forms $f_1, \cdots, f_r \in K[\underline{\mathbf{x}}]_1$ such that statement (ii) of Theorem 3.8 holds with $M = \mathfrak{a}$ and $U = K[\underline{\mathbf{x}}]$. The aim of this section is to extend this regularity criterion of Bayer-Stillman to a situation closely as general as in 3.8. To do so, we obviously need that there are saturated filter-regular sequences of linear forms with respect to arbitrary finitely generated modules over the considered homogeneous noetherian ring $R = \bigoplus_{n\geq 0} R_n$. To ensure the existence of such sequences, we shall subject the base ring R_0 to an appropriate condition.

4.1. Definition and Remark. A) A Ring R_0 is said to have *infinite residue fields* if the field R_0/\mathfrak{m}_0 is infinite for each $\mathfrak{m}_0 \in \operatorname{Max}(R_0)$ or - equivalently - if R_0/\mathfrak{p}_0 is an infinite domain for each $\mathfrak{p}_0 \in \operatorname{Spec}(R_0)$.

B) Clearly, if $f : R_0 \to R'_0$ is a homomorphism of rings and R_0 has infinite residue fields, then so has R'_0 . In particular R_0 has infinite residue fields if it contains an infinite field.

4.2. Lemma. Let $R = \bigoplus_{n\geq 0} R_n$ be a homogeneous noetherian ring such that R_0 has infinite residue fields and let $\mathfrak{Q} \subseteq \operatorname{Proj}(R)$ be a finite set. Then $R_1 \nsubseteq \bigcup_{n \in \mathbb{N}} \mathfrak{q}$.

Proof: We may assume that $\mathfrak{Q} \neq \emptyset$. For $\mathfrak{m}_0 \in \operatorname{Max}(R_0)$ set $\mathfrak{Q}(\mathfrak{m}_0) := \{\mathfrak{q} \in \mathfrak{Q} \mid \mathfrak{q} \cap R_0 \subseteq \mathfrak{m}_0\}$. Clearly, there is a finite set $\mathbb{M} \subseteq \operatorname{Max}(R_0)$ such that $\mathfrak{Q}(\mathfrak{m}_0) \neq \emptyset$ for each $\mathfrak{m}_0 \in \mathbb{M}$ and $\mathfrak{Q} = \bigcup_{\mathfrak{m}_0 \in \mathbb{M}} \mathfrak{Q}(\mathfrak{m}_0)$. For each $\mathfrak{m}_0 \in \mathbb{M}$ and each $\mathfrak{q} \in \mathfrak{Q}(\mathfrak{m}_0)$ it follows by Nakayama that $\mathfrak{q} \cap R_1 + \mathfrak{m}_0 R_1 \subseteq R_1$. So, as $\mathfrak{Q}(\mathfrak{m}_0)$ is finite and R_0/\mathfrak{m}_0 is infinite, there is some $v_{\mathfrak{m}_0} \in R_1 \setminus \bigcup_{\mathfrak{q} \in \mathfrak{Q}(\mathfrak{m}_0)} (\mathfrak{q}_1 + \mathfrak{m}_0 R_1)$. For each $\mathfrak{m}_0 \in \mathbb{M}$ we find some element $a_{\mathfrak{m}_0} \in (\bigcap_{\mathfrak{m}_0 \in \mathbb{M} \setminus \{\mathfrak{m}_0\}} \mathfrak{m}_0) \setminus \mathfrak{m}_0$. With $v := \sum_{\mathfrak{m}_0 \in \mathbb{M}} a_{\mathfrak{m}_0} v_{\mathfrak{m}_0}$ it follows $v \in R_1 \setminus \bigcup_{\mathfrak{q} \in \mathfrak{Q}(\mathfrak{m}_0)} (\mathfrak{q}_1 + \mathfrak{m}_0 R_1) = R_1 \setminus \bigcup_{\mathfrak{q} \in \mathfrak{Q}} \mathfrak{q}$.

4.3. Lemma. Let $R = \bigoplus_{n\geq 0} R_n$ be a homogeneous noetherian ring such that R_0 has infinite residue fields and let $\mathcal{P} \subseteq \operatorname{Proj}(R)$ be a finite set. Let $r \in \mathbb{N}$ and let $T = \bigoplus_{n\in\mathbb{Z}} T_n$ be a finitely generated graded R-module. Then there is a sequence $(f_i)_{i\in\mathbb{N}} \subseteq R_1 \setminus \bigcup_{\mathfrak{p}\in\mathcal{P}} \mathfrak{p}$ such that f_1, \dots, f_r is a filter-regular sequence with respect to T for each $r \in \mathbb{N}$.

Proof: If we apply 4.2 with $\mathfrak{Q} := \mathcal{P} \cap \operatorname{Ass}(T) \cap \operatorname{Proj}(R)$ we get an element $f_1 \in R_1 \setminus \bigcup_{q \in \mathcal{P}} \mathfrak{p}$ which is filter-regular with respect to T. On use of this observation, a sequence $(f_i)_{i \in \mathbb{N}}$ of the requested type is easily constructed by induction.

So, if the base ring R_0 has infinite residue fields, filter-regular sequence of arbitrary length and consisting of linear forms exist. Now, the existence of saturated filter-regular sequences follows easily.

4.4. Lemma. Let $R = \bigoplus_{n\geq 0} R_n$ be a homogeneous noetherian ring and let T be a finitely generated graded R-module. Let $(f_i)_{i\in\mathbb{N}} \subseteq R_+$ be a sequence such that f_1, \dots, f_r is a filter-regular sequence with respect to T for each $r \in \mathbb{N}$. Then, there is some $r_0 \in \mathbb{N}$ such that the filter-regular sequence f_1, \dots, f_r is saturated for each $r \geq r_0$.

Proof: If, for some $r \in \mathbb{N}$, the filter-regular sequence f_1, \dots, f_r is non-saturated, f_{r+1} avoids some member of $\operatorname{Ass}_R(T/\sum_{i=1}^r f_i T)$, so that $f_{r+1} \notin \sum_{i=1}^r f_i R$, hence $\sum_{i=1}^r f_i R \subsetneqq \sum_{i=1}^{r+1} f_i R$. As R is noetherian, we get our claim.

The possible values of the number r_0 in Lemma 4.4 can be bounded easily. In order to do so, let us recall some notion.

4.5. Definition. The *arithmetic rank* $\operatorname{ara}(\mathfrak{a})$ of an ideal \mathfrak{a} of a noetherian ring R is defined as the minimum number of elements in R, which generate an ideal which is radically equal to \mathfrak{a} , thus

$$\operatorname{ara}(\mathfrak{a}) := \min \left\{ r \in \mathbb{N}_0 \mid \exists a_1, \cdots, a_r \in R : \sqrt{\sum_{i=1}^r a_i R} = \sqrt{\mathfrak{a}} \right\}.$$

4.6. Lemma. Let $R = \bigoplus_{n \ge 0} R_n$ be a homogeneous noetherian ring, let T be a finitely generated graded R-module and let $f_1, \dots, f_r \in R_+$ be a filter-regular sequence with respect to T. Then:

- a) If the filter-regular sequence f_1, \dots, f_r is saturated, $r \ge \operatorname{ara}\left((R/(0;T))_+\right)$.
- b) If $r \ge \dim(T)$, the filter-regular sequence f_1, \cdots, f_r is saturated.
- c) If R_0 is artinian, then the filter-regular sequence f_1, \dots, f_r is saturated if and only if $r \ge \dim(T)$.

Proof: "a)": Clear by 3.3 A).

"b)": Assume that the sequence f_1, \dots, f_r is not saturated, so that $\sqrt{(0:T) + R_+} \supseteq \sqrt{(0:T) + \sum_{j=1}^r f_j R}$. Then, there is a prime $\mathfrak{p} \in \operatorname{Var}((0:T) + \sum_{j=1}^r f_j R) \setminus \operatorname{Var}(R_+)$. Thus $f_1/1, \dots, f_r/1 \in \mathfrak{p}R_\mathfrak{p}$ is a regular sequence with respect to $T_\mathfrak{p}$ (cf [8, 18.3.8]), so that $r \leq \operatorname{depth}(T_\mathfrak{p}) \leq \operatorname{dim}(T_\mathfrak{p})$. As $\mathfrak{p} \subsetneq \mathfrak{p}_0 + R_+ \in \operatorname{Spec}(R)$, we have $\operatorname{dim}(T_\mathfrak{p}) < \operatorname{dim}(T)$ and hence get $r < \operatorname{dim}(T)$.

"c)" As R_0 is artinian, we have dim $\left(\frac{R}{0} : T\right) = \operatorname{ara}\left(\frac{R}{0} : T\right)_+$. Now, we conclude by statements a) and b).

Next, we give the announced extension of the regularity criterion of Bayer-Stillman.

4.7. Theorem. Let $R = \bigoplus_{n\geq 0} R_n$ be a homogeneous noetherian ring such that R_0 has infinite residue fields. Let $m \in \mathbb{Z}$, let U be a finitely generated graded R-module and let $M \subseteq U$ be a graded submodule. Assume that $\operatorname{reg}(U) < m$ and $d(M) \leq m$. Then, the following statements are equivalent:

(i)
$$\operatorname{reg}(M) \le m;$$

(ii) there are elements $f_1, \dots, f_r \in R_1$ which are filter-regular with respect to U and such that

$$\left((M + \sum_{j=1}^{i-1} f_j U) : \int_U f_i \right)_m = (M + \sum_{j=1}^{i-1} f_j U)_m \quad \forall i \in \{1, \cdots, r\}$$

and

$$\left(M + \sum_{j=1}^{r} f_j U\right)_m = U_m.$$

Proof: "(ii) \implies (i)": Clear by Theorem 3.8.

"(i) \implies (ii)": If we apply 4.3 with $\mathcal{P} = \operatorname{Ass}_R(U) \cap \operatorname{Proj}(R)$ and keep in mind 4.4 we get a saturated filter-regular sequence $f_1, \dots, f_r \in R_1$ with respect to U/M such that each f_i is filter-regular with respect to U. Now, we conclude by Theorem 3.8.

4.8. **Remark.** A) Keep the notations and all the hypotheses of 4.7. Let $f_1, \dots, f_r \in R_1$ be filter-regular linear forms with respect to U. Then, in view of Theorem 3.8 the two conditions

$$\left((M + \sum_{j=1}^{i-1} f_j U) : f_i \right)_m = (M + \sum_{j=1}^{i-1} f_j U)_m \quad \forall i \in \{1, \cdots, r\}$$

and

$$(M + \sum_{j=1}^{r} f_j U)_m = U_m$$

hold if and only if f_1, \dots, f_r is a saturated filter-regular sequence with respect to U/M.

B) Keep the above notations and hypotheses. Assume that $\dim(U/M) \leq r$. Then, in view of 4.6 b) the two conditions mentioned in part A) hold if and only if the linear forms f_1, \dots, f_r form a filter-regular sequence with respect to U/M. Moreover, the above conditions never can hold if $r < \operatorname{ara}\left((R/(0 : T))_+\right)$ (cf 4.6 a)). In particular, for each $r \geq \dim(U/M)$ and for a "generic sequence" $f_1, \dots, f_r \in R_1$ of linear forms, the above two conditions hold, whereas for $r < \operatorname{ara}\left((R/(0 : T))_+\right)$ they never hold simultaneously.

C) Let $K[\underline{\mathbf{x}}] = K[\underline{\mathbf{x}}_0, \cdots, \mathbf{x}_t]$ be a polynomial ring over an infinite field K, let $m, s \in \mathbb{N}$, let $U := K[\underline{\mathbf{x}}]^{\oplus s}$ and let $M \subseteq U$ a graded submodule with $d(M) \leq m$. As $\operatorname{reg}(U) = 0$ and as U is torsion-free, it follows from 4.7 that $\operatorname{reg}(M) \leq m$ if and only there are linear forms $f_1, \cdots, f_r \in K[\underline{\mathbf{x}}]_1 \setminus \{0\}$ such that the above two conditions hold. Moreover, if this is the case, these two conditions hold for a generic sequence f_1, \cdots, f_r of linear forms whenever $r \geq \dim(U/M)$. This is precisely what is shown in [18, 1.10]. Choosing s = 1, we get the regularity criterion of Bayer-Stillman.

5. Extending the Regularity bound of Bayer-Mumford

Let $K[\underline{\mathbf{x}}] = K[\mathbf{x}_0, \dots, \mathbf{x}_t]$ be a polynomial ring over a field K and let $\mathbf{a} \subseteq K[\underline{\mathbf{x}}]$ be a graded ideal. In [1, 3.8] Bayer and Mumford have shown that $\operatorname{reg}(\mathbf{a}) \leq (2d(\mathbf{a}))^{n!}$. Our aim is to extend this bounding result to the case where $K[\underline{\mathbf{x}}]$ is replaced by an arbitrary finitely generated graded module U over a homogeneous noetherian ring $R = \bigoplus_{n \geq 0} R_n$ with artinian base ring R_0 and \mathbf{a} by a graded submodule M of U.

5.1. Notation and Remark. A) Let R_0 be an artinian ring and let V be a finitely generated R_0 -module. We use $\ell(V) = \ell_{R_0}(V)$ to denote the length of V.

B) Let R_0 and V be as in part A). Let $\mathfrak{m}_1, \dots, \mathfrak{m}_t$ be the different maximal ideals of R_0 , let \mathbf{x} be an indeterminate and set

$$R'_0 := \left(R_0[\mathbf{x}] \setminus \bigcup_{i=1}^t \mathfrak{m}_i R_0[\mathbf{x}] \right)^{-1} R_0[\mathbf{x}].$$

Then, clearly R'_0 is a faithfully flat artinian extension ring of R_0 with the different maximal ideals $\mathfrak{m}'_i = \mathfrak{m}_i R'_0$ $(i = 1, \dots, t)$. Moreover we have $\ell_{R'_0}(R'_0 \bigotimes_{R_0} V) = \ell_{R_0}(V)$.

As $R'_0/\mathfrak{m}'_i \cong R_0/\mathfrak{m}_i(\mathbf{x})$ for all $i \in \{1, \dots, t\}$, the ring R'_0 has infinite residue fields.

5.2. Lemma. Let $R = \bigoplus_{\substack{n \ge 0 \\ n \ge 0}} R_n$ be a homogeneous noetherian ring such that R_0 is artinian, let U be a finitely generated graded R-module, let $M \subseteq U$ be a graded submodule and let $f \in R_1$ be filter-regular with respect to U and to U/M. Let $k \in \mathbb{Z}$ be such that d(M), $\operatorname{reg}(M + fU)$, $\operatorname{reg}(U) + 1 \le k$. Then

a) end $\left(H^i_{R_+}(M)\right) + i \leq k \text{ for all } i \neq 1$;

b) end
$$\left(H^1_{R_+}(M)\right) \leq \ell(U_k) + k - 1$$

Proof: Let T := U/M. The short exact sequence $0 \to (M + fU) \to U \to T/fT \to 0$ shows that $\operatorname{reg}(T/fT) \leq \max\{\operatorname{reg}(U), \operatorname{reg}(M + fU) - 1\} \leq k - 1$. As $f \in R_1$ is filterregular with respect to T, it follows $\operatorname{reg}^1(T) \leq \operatorname{reg}(T/fT) \leq k - 1$ (cf [8, 18.3.11]) and the graded short exact sequence $0 \to M \to U \to T \to 0$ implies $\operatorname{reg}^2(M) \leq \max\{\operatorname{reg}^2(U), \operatorname{reg}^1(T) + 1\} \leq k$ (cf [8, 15.2.15]) and hence $\operatorname{end}(H^i_{R_+}(M)) + i \leq k$ for all $i \geq 2$. As $\operatorname{end}(H^0_{R_+}(M)) \leq \operatorname{end}(H^0_{R_+}(U)) \leq \operatorname{reg}(U) \leq k$, we have shown statement a).

It remains to prove statement b). In view of the graded short exact sequence $0 \to M \to U \to T \to 0$ and as $\operatorname{end}(H^1_{R_+}(U)) \leq \operatorname{reg}(U) - 1 \leq k - 1$, it suffices to show that $\operatorname{end}(H^0_{R_+}(T)) \leq \ell(U_k) + k - 1$. We have seen above that $\operatorname{reg}(T/fT) \leq k - 1$. So, if we apply cohomology to the graded short exact sequence $0 \to T/(0 : f) \xrightarrow{f} T(1) \to T$

 $(T/fT)(1) \rightarrow 0$ we get isomorphisms

$$H^0_{R_+}(T/(0; f))_n \cong H^0_{R_+}(T)_{n+1}, \quad \forall n \ge k-1.$$

If we apply cohomology to the graded short exact sequence $0 \to (0 : f) \to T \to T/(0 : f) \to 0$ and keep in mind that $(0 : f) \subseteq H^0_{R_+}(T)$ (cf 3.1 A)), we thus get exact sequences

$$0 \to (0 : _T f)_n \to H^0_{R_+}(T)_n \xrightarrow{\pi_n} H^0_{R_+}(T)_{n+1} \to 0, \quad \forall n \ge k-1.$$

By 3.7 we have $d(0:T_T f) = d(M:T_U f) \leq k$ so that π_m becomes an isomorphism for all $m \geq n$, provided π_n is an isomorphism for some $n \geq k$. From this it follows that the length $\ell(H^0_{R_+}(T)_n)$ of the R_0 -module $H^0_{R_+}(T)_n$ is strictly decreasing as a function of n in the range $n \geq k$ until its value becomes 0. This implies that $\operatorname{end}(H^0_{R_+}(T)) \leq \ell(H^0_{R_+}(T)_k) + k - 1$. As $H^0_{R_+}(T)_k$ is a subquotient of the R_0 -module U_k we get $\operatorname{end}(H^0_{R_+}(T)) \leq \ell(U_k) + k - 1$.

5.3. Lemma. Let $R = \bigoplus_{n\geq 0} R_n$ be a homogeneous noetherian ring such that R_0 is artinian and dim(R) = 1. Let U be a finitely generated and graded R-module and let $M \subseteq U$ be a graded submodule. Let $k \in \mathbb{Z}$ be such that $d(M) + \operatorname{reg}(R)$ and $\operatorname{reg}(U) + 1 \leq k$. Then, $\operatorname{reg}(M) \leq k$.

Proof: We may apply the replacement argument 2.4 D) with R'_0 defined according to 5.1 B) and thus may assume that R_0 has infinite residue fields. As $\operatorname{end}(H^0_{R_+}(M)) \leq$ $\operatorname{end}(H^0_{R_+}(U)) < k$ and as $H^i_{R_+}(M) = 0$ for all i > 1 it remains to show that $\operatorname{end}(H^1_{R_+}(M)) \leq k-1$. Choosing $\mathcal{P} = \operatorname{Ass}_R(R) \cap \operatorname{Proj}(R)$ we conclude by 4.3 that there is a linear form $f \in R_1$ which is at the same time filter-regular with respect to U As f is filter-regular with respect to U, we have and to R. $\operatorname{end}(0: f) \leq \operatorname{end}(H^0_{R_+}(U)) < k$. Therefore, the multiplication map $f: U_n \to U_{n+1}$ is injective for all $n \geq k$. As dim(R) = 1 and as $f \in R_1$ avoids all minimal primes of R we have $R_+ \subseteq \sqrt{Rf}$ and R is a finitely generated graded module over its subring $R_0[f]$. In particular by the graded base ring independence of local cohomology, reg(R) does not change if we consider R as an $R_0[f]$ -module. In doing so we obtain $d(R) \leq \operatorname{reg}(R) \leq k - d(M)$ so that $R_{n+1} = fR_n$ for all $n \geq k - d(M)$. Hence for each $n \ge k$ we obtain $M_{n+1} = R_{n-d(M)+1}M_{d(M)} = fR_{n-d(M)}M_{d(M)} = fM_n$. As $f: U_n \to U_{n+1}$ is injective for all $n \ge k$ it follows that $(M_{n+1} : f) = M_n$ for all such n. From this, we see that end(0 : f) < k. As $f \in R_1$, it follows $\operatorname{end}(H^0_{R_+}(U/M)) < k$. If we apply cohomology to the graded exact sequence $0 \to M \to U \to U/M \to 0$ and keep in mind that $\operatorname{end}(H^1_{R_+}(U)) < \operatorname{reg}(U) < k$ it follows indeed that $\operatorname{end}(H^1_{R_+}(M)) < k$.

In order to formulate our main result, we introduce some notation

5.4. Definition and Remark. A) Let \mathbb{P} be the set of all polynomials $P \in \mathbb{Q}[\mathbf{x}]$ with the property that $P(n) \in \mathbb{N}_0$ for all integers $n \gg 0$. For $P \in \mathbb{P}$, let $\Delta P \in \mathbb{P}$ denote the difference polynomial $P(\mathbf{x}) - P(\mathbf{x} - 1)$ of P.

B) For $P \in \mathbb{P}$ we recursively define a polynomial $P^* = P^*(\mathbf{x})$ by

$$P^*(\mathbf{x}) := \begin{cases} \mathbf{x}, & \text{if } \deg(P) \le 0\\ (\Delta P)^*(\mathbf{x}) + P((\Delta P)^*(\mathbf{x})), & \text{if } \deg(P) > 0. \end{cases}$$

It is easy to see, that $P^* \in \mathbb{P}$, whenever $P \in \mathbb{P}$.

C) Now, let
$$s \in \mathbb{N}$$
 and $r \in \mathbb{N}_0$. Then clearly $s \begin{pmatrix} \mathbf{x} + r \\ r \end{pmatrix} \in \mathbb{P}$ and $\Delta \left[s \begin{pmatrix} \mathbf{x} + r \\ r \end{pmatrix} \right] = s \begin{pmatrix} \mathbf{x} + r - 1 \\ r - 1 \end{pmatrix}$. We write $F_r(s, \mathbf{x}) := \left[s \begin{pmatrix} \mathbf{x} + r \\ r \end{pmatrix} \right]^*$ so that
 $F_0(s, \mathbf{x}) = \mathbf{x}$ and $F_r(s, \mathbf{x}) = F_{r-1}(s, \mathbf{x}) + s \begin{pmatrix} F_{r-1}(s, \mathbf{x}) + r \\ r \end{pmatrix}$ for all $r > 0$.

This means, that $F_r(s, \mathbf{x})$ is as in [5, 2.5 A)]. In particular, we have (cf [5, 2.5 B)]):

$$F_r(s,t) < s^{e_r}(2t)^{r!}, \quad (\forall s,t \in \mathbb{N}),$$

where the numbers e_r are defined inductively by

$$e_0 := 0$$
 and $e_r := r \cdot e_{r-1} + 1$ for $r > 0$.

D) Also, for each $P \in \mathbb{P}$ we recursively define a polynomial $P^{\sim} \in \mathbb{P}$ by

$$P^{\sim}(\mathbf{x}) := \begin{cases} \mathbf{x}, & \text{if } P = 0\\ (\Delta P)^{\sim}(\mathbf{x}) + P((\Delta P)^{\sim}(\mathbf{x})), & \text{if } P \neq 0. \end{cases}$$

It is easy to see that $\tilde{P}(k) \ge P^*(k)$ for all $k \gg 0$.

Finally let us recall a few facts on Hilbert polynomials.

5.5. **Reminder.** A) Let $R = \bigoplus_{\substack{n \ge 0 \\ n \in \mathbb{Z}}} R_n$ be a homogeneous noetherian ring such that R_0 is artinian and let $M = \bigoplus_{\substack{n \in \mathbb{Z} \\ n \in \mathbb{Z}}} M_n$ be a finitely generated graded *R*-module. We denote the Hilbert polynomial of *M* by P_M so that (cf [8, Chap. 17])

$$P_M(n) = \ell(M_n) \quad \forall n > \operatorname{reg}(M)$$

B) Also, if $f \in R_1$ is filter regular with respect to M, we have short exact sequences $0 \to M_{n-1} \xrightarrow{f} M_n \to (M/fM)_n \to 0$ for all $n \gg 0$ and these yield $P_{M/fM} = \Delta P_M$.

If R'_0 is defined according to 5.1 B) and in the notation of 2.4 B) we have

$$P_{R'_0 \underset{R_0}{\otimes} M} = P_M.$$

5.6. Lemma. Let $R \bigoplus_{n \ge 0} R_n$ be a homogeneous noetherian ring such that R_0 is artinian. Let U be a finitely generated graded R-module and let $k \in \mathbb{Z}$ be such that $\operatorname{reg}(U) < k$. Then

a) $k \leq (\Delta P_U)^*(k) \leq P_U^*(k)$; b) $k \leq (\Delta P_U)^{\sim}(k) \leq P_U^{\sim}(k)$.

Proof: In view of 2.4 D) and 5.5 B) we may assume that R_0 has infinite residue fields. We now proceed by induction on deg (P_U) . If $P_U = 0$, we have $P_U^* = P_U^\sim = (\Delta P_U)^* = (\Delta P_U)^\sim = \mathbf{x}$, and our claims are obvious. If deg $(P_U) = 0$ we have $P_U^* = (\Delta P_U)^* = (\Delta P_U)^\sim = \mathbf{x}$ and $P_U^\sim = \mathbf{x} + P_U(\mathbf{x})$. As P_U is a positive constant our claims follow. Let deg $(P_U) > 0$. As R_0 has infinite residue fields there is a linear form $f \in R_1$ which is filter regular with respect to U. In particular we have $\Delta P_U = P_{U/fU}$ (cf 5.5 B)) and reg(U/fU) < k (cf 3.2 a)). So, by induction we have $k \leq (\Delta P_U)^*(k)$ and $k \leq (\Delta P_U)^\sim(k)$. In particular (cf 5.5 A)) $P_U((\Delta P_U)^*(k)) = \ell(U_{(\Delta P_U)^*(k)}) \geq 0$ and $P_U((\Delta P_U)^\sim(k)) = \ell(U_{(\Delta P_U)^\sim(k)}) \geq 0$. Now, both claims follow from the definitions of P_U^* and P_U^\sim .

Now, we prove the main result of this section.

5.7. Theorem. Let $R = \bigoplus_{n\geq 0} R_n$ be a homogeneous noetherian ring such that R_0 is artinian. Let U be a finitely generated graded R-module and let $M \subseteq U$ be a graded submodule. Let $k \in \mathbb{Z}$ and assume that $\operatorname{reg}(U) < k$.

a) If $d(M) \leq k$, then $\operatorname{reg}(M) \leq P_U^{\sim}(k)$.

b) If dim $(R) = \dim(U)$ and $d(M) + \operatorname{reg}(R) \le k$, then $\operatorname{reg}(M) \le P_U^*(k)$.

Proof: In view of 2.4 D) and the last observation made in 5.5 B), we may assume that R_0 has infinite residue fields. We proceed by induction on dim(U). If dim $(U) \leq 0$ we have $P_U = 0$ and reg $(M) = \text{end}(H^0_{R_+}(M)) \leq \text{end}(H^0_{R_+}(U)) = \text{reg}(U) < k = 0^*(k) = 0^{\sim}(k)$, which proves both claims in this case. Now, let dim(U) > 0. From now on, we prove our two claims separately.

"a)": If we apply 4.3 with $\mathcal{P} := \operatorname{Ass}_R(U/M) \cap \operatorname{Proj}(R)$, we find a linear form $f \in R_1$ which is filter-regular with respect to U and U/M. As $\dim(U) > 0$, f avoids all minimal members of $\operatorname{Ass}_R(U)$ so that $\dim(U/fU) = \dim(U) - 1$. By 3.2 a) we have $\operatorname{reg}(U/fU) \leq \operatorname{reg}(U) < k$. Clearly $d((M + fU)/fU) \leq d(M) \leq k$. By 5.5 B) we also have $\Delta P_U = P_{U/fU}$. Now, by induction we have $\operatorname{reg}((M + fU)/fU) \leq (\Delta P)^{\sim}(k)$. As $(0 : U) \subseteq H^0_{R_+}(U)$ and in view of the graded isomorphism $fU \cong (U/(0 : f))(-1)$

.

we get $\operatorname{reg}(fU) = \operatorname{reg}(U/(0 : f)) + 1 \leq \operatorname{reg}(U) + 1 \leq k$, hence $\operatorname{reg}(fU) \leq (\Delta P)^{\sim}(k)$, (cf 5.6 b)). The exact sequence $0 \to fU \to (M + fU) \to (M + fU)/fU \to 0$ yields $\operatorname{reg}(M + fU) \leq (\Delta P_U)^{\sim}(k) =: m$. If we keep in mind that $k \leq m$ we get $m \leq P_U^{\sim}(m)$ (cf 5.6 b)) and $\ell(U_m) = P_U(m)$ (cf 5.5 A)). So, if we apply 5.2 with m instead of k we get $\operatorname{end}(H^i_{R_+}(M)) + i \leq P_U^{\sim}(m)$ for all $i \neq 1$ and $\operatorname{end}(H^1_{R_+}(M)) + 1 \leq P_U(m) + m = (\Delta P_U)^{\sim}(k) + P_U((\Delta P_U)^{\sim}(k)) = P_U^{\sim}(k)$. Therefore $\operatorname{reg}(M) \leq P_U^{\sim}(k)$.

"b)": Assume first that $\dim(U) = 1$ and hence $\dim(R) = 1$. Then, 5.3 and 5.6 a) show that $\operatorname{reg}(M) \leq k \leq P_U^*(k)$. So, let $\dim(U) > 1$. Now apply 4.3 with $\mathcal{P} = \operatorname{Ass}_R(U/M) \cup \operatorname{Ass}_R(R) \cap \operatorname{Proj}(R)$ in order to obtain a linear form $f \in R_1$ which is at the same time filter-regular with respect to U, U/M and R. As in the proof of statement a) we now get $\dim(R/fR) = \dim(U/fU) = \dim(U) - 1, \operatorname{reg}(U/fU) < k$ and $d((M + fU)/fU) + \operatorname{reg}(R/fR) \leq k$. Again, by 5.5 B) we have $\Delta P_U = P_{U/fU}$. Thus, by induction we obtain $\operatorname{reg}((M + fU)/fU) \leq (\Delta P)^*(k)$. Now, we may conclude literally in the same way as in the proof of statement a) if we replace $(\Delta P_U)^\sim$ by $(\Delta P_U)^*$ and P_U^\sim by P_U^* .

5.8. Corollary. Let $R_0[\underline{\mathbf{x}}] = R_0[\mathbf{x}_0, \cdots, \mathbf{x}_r]$ be a polynomial ring over an artinian ring R_0 . Let $w \in \mathbb{N}$ and let $M \subseteq R_0[\underline{\mathbf{x}}]^{\oplus w}$ be a graded submodule. Then

$$\operatorname{reg}(M) \le \left(\ell(R_0)w\right)^{e_r} \left(2d(M)\right)^{r!},$$

where e_r is defined according to 5.4 C).

Proof: If d(M) = 0, there is a graded isomorphism $M \cong M_0 \bigotimes_{R_0} R_0[\underline{\mathbf{x}}]$, so that $\operatorname{reg}(M) = 0$. Therefore we may assume that d(M) > 0. Let $R := R_0[\underline{\mathbf{x}}], U := R_0[\underline{\mathbf{x}}]^{\oplus w}$. Then $\operatorname{reg}(U) = \operatorname{reg}(R) = 0$, $\dim(R) = \dim(U) = r$ and the fact that $P_U = \ell(R_0)w\begin{pmatrix} \mathbf{x}+r\\r \end{pmatrix}$ allow to conclude by 5.7 b) and 5.4 C).

5.9. **Remark.** If in 5.8 we choose $R_0 = K$ to be a field, we get the bound given in [5, 2.7]. If we choose in addition w = 1, we get the bound of Bayer-Mumford [1, 3.8].

References

 D. BAYER and D. MUMFORD: What can be computed in algebraic geometry? in "Computational Algebraic Geometry and Commutative Algebra" Proc. Cortona 1991 (D. Eisenbud and L. Robbiano Eds.), Cambridge University Press (1993) 1 - 48.

- D. BAYER and M. STILLMAN: A criterion for detecting m-regularity, Invent. Math. 87 (1987) 1 - 11.
- M. BRODMANN: Cohomological invariants of coherent sheaves over projective schemes a survey in "Local Cohomology and its Applications" M. Dekker Lecture Notes 226 (G. Lyubeznik Ed.), M. Dekker (2001) 91 - 120.
- [4] M. BRODMANN and M. HELLUS: Cohomological patterns of coherent sheaves over projective schemes, J. of Pure and Applied Algebra 172 (2002) 165 - 182.
- [5] M. BRODMANN and A. LASHGARI: A diagonal bound for cohomological postulation numbers of projective schemes, preprint.
- [6] M. BRODMANN, C. MATTEOTTI and N.D. MINH: Bounds for cohomological Hilbertfunctions of projective schemes over artinian rings, Vietnam J. of Math. 28, 4 (2000) 345 -384.
- [7] M. BRODMANN, C. MATTEOTTI and N.D. MINH: Bounds for cohomological deficiency functions of projective schemes over artinian rings, to appear in Vietnam J. of Math.
- [8] M. BRODMANN and R.Y. SHARP: Local cohomology an algebraic introduction with geometric applications. Cambridge Studies in Advanced Mathematics, 60, Cambridge University Press (1998).
- B. BUCHBERGER: A note on the complexity of constructing Gröbner-Bases, in "EUROCAL '83" (J.A. v. Hulzen Ed.), Springer LNCS 162 (1983).
- [10] D. EISENBUD: Commutative algebra with a view towards algebraic geometry, Springer New York (1996).
- [11] A. GALLIGO: Théorème de division et stabilité en géométrie analytique locale, Ann. Inst. Fournier 29 (1979) 107 - 184.
- [12] M. GIUSTI: Some effectivity problems in polynomial ideal theory in "Eurosam 84", Springer Lecture Notes in Computer Sciences 174 (1984) 159 - 171.
- [13] G. GOTZMANN: Eine Bedingung f
 ür die Flachheit und das Hilbertpolynom eines gradierten Ringes, Math. Z. 158 (1978), 61 - 70.
- G. GOTZMANN: Durch Hilbertfunktionen definierte Unterschemata des Hilbert-Schemas, Comment. Math. Helvetici 63 (1988) 114 - 149.
- [15] A. GROTHENDIECK: Séminaire de géométrie algébrique VI, Springer Lecture Notes in Mathematics 225, Springer (1971).
- [16] K. HENTZELT and E. NOETHER: Zur Theorie der Polynomideale und Resultanten, Math. Ann. 88 (1923), 53 - 79.
- G. HERMANN: Über die Frage der endlich vielen Schritte in der Theorie der Polynomideale, Math. Ann. 95 (1926), 736 - 788.
- [18] A.F. LASHGARI: The cohomology diagonal bounds the postulation numbers of a coherent sheaf over a projective scheme, Dissertation, University of Zürich (2000).
- [19] D. MASSER and G. WÜSTHOLZ: Fields of large transcendence degree generated by values of elliptic functions, Invent. Math. 72 (1983), 407 464.
- [20] H. MATSUMURA: Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press (1986).
- [21] E.W. MAYR and A.R. MEYER: The complexity of the word problem for commutative semigroups and polynomial ideals, Advances in Math. 46 (1982), 305 - 329.

[22] D. MUMFORD: Lectures on curves on an algebraic surface, Annals of Math. Studies 59, Princeton University Press (1966).